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Abstract
We study the statistical properties of various directed networks using ranking
of their nodes based on the dominant vectors of the Google matrix known as
PageRank and CheiRank. On average PageRank orders nodes proportionally
to a number of ingoing links, while CheiRank orders nodes proportionally to
a number of outgoing links. In this way, the ranking of nodes becomes two
dimensional which paves the way for the development of two-dimensional
search engines of a new type. Statistical properties of information flow on
the PageRank–CheiRank plane are analyzed for networks of British, French
and Italian universities, Wikipedia, Linux Kernel, gene regulation and other
networks. A special emphasis is done for British universities networks using
the large database publicly available in the UK. Methods of spam links control
are also analyzed.

PACS numbers: 89.75.Fb, 89.75.Hc, 89.20.Hh

(Some figures may appear in colour only in the online journal)

1. Introduction

During the past decade, modern society has developed enormously large communication
networks. The well-known example is the World Wide Web (WWW) which has started
approaching 1011 webpages [1]. The sizes of social networks like Facebook [2] and
VKONTAKTE [3] have also become enormously large, reaching 600 and 100 millions
user pages, respectively. The information retrieval from such huge databases becomes the
foundation and main challenge for search engines [4, 5]. The fundamental basis of the Google
search engine is the PageRank algorithm [6]. This algorithm ranks all websites in a decreasing
order of components of the PageRank vector (see e.g. detailed description at [7], historical
surveys of PageRank are given at [8, 9]). This vector is a right eigenvector of the Google matrix
at the unit eigenvalue, it is constructed on the basis of the adjacency matrix of the directed
network, its components give a probability of finding a random surfer on a given node.

1751-8113/12/275101+20$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1
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The Google matrix G of a directed network with N nodes is given by

Gi j = αSi j + (1 − α)/N, (1)

where the matrix S is obtained by normalizing to unity all columns of the adjacency matrix
Ai, j, and replacing columns with zero elements by 1/N. An element Ai j of the adjacency matrix
is equal to unity, if a node j points to node i and zero otherwise. The damping parameter α

in the WWW context describes the probability (1 − α) for a random surfer to jump to any
node. The value α = 0.85 gives a good classification for the WWW [7] and thus we also use
this value here. A few examples of Google matrix for various directed networks are shown
in figure 1. The matrix G belongs to the class of Perron–Frobenius operators [7], its largest
eigenvalue is λ = 1 and other eigenvalues have |λ| � α. The right eigenvector at λ = 1
gives the probability P(i) to find a random surfer at site i and is called the PageRank. Once
the PageRank is found, all nodes can be sorted by decreasing probabilities P(i). The node
rank is then given by index K(i) which reflects the relevance of the node i. The PageRank
dependence on K is well described by a power law P(K) ∝ 1/Kβin with βin ≈ 0.9. This is
consistent with the relation βin = 1/(μin − 1) corresponding to the average proportionality of
PageRank probability P(i) to its in-degree distribution win(k) ∝ 1/kμin , where k(i) is a number
of ingoing links for a node i [7, 10]. For the WWW, it is established that for the ingoing links
μin ≈ 2.1 (with βin ≈ 0.9) while for the out-degree distribution wout of outgoing links a power
law has the exponent μout ≈ 2.7 [11, 12]. Similar values of these exponents are found for the
WWW British university networks [13], the procedure call network (PCN) of Linux Kernel
software introduced in [14] and for Wikipedia hyperlink citation network of English articles
(see e.g. [15]).

The PageRank gives at the top the most known and popular nodes. However, an example
of the Linux PCN studied in [14] shows that in this case the PageRank puts at the top certain
procedures which are not very important from the software view point (e.g. printk). As a result
it was proposed [14] to use in addition another ranking taking the network with inverse link
directions in the adjacency matrix corresponding to Ai j → AT = Aji and constructing from
it an additional Google matrix G∗ according to relation (1) at the same α. The eigenvector of
G∗ with eigenvalue λ = 1 then gives a new inverse PageRank P∗(i) with ranking index K∗(i).
This ranking was named CheiRank [15] to mark that it allows us to chercher l’information
in a new way (which in English means search the information in a new way). Indeed, for
the Linux PCN the CheiRank gives at the top more interesting and important procedures
compared to the PageRank [14] (e.g. start_kernel). While the PageRank ranks the network
nodes in average proportionally to a number of ingoing links, the CheiRank ranks nodes in
average proportionally to a number of outgoing links. The physical meaning of PageRank
vector components is that they give the probability to find a random surfer on a given node
when a surfer follows the given directions of network links. In a similar way, the CheiRank
vector components give the probability to find a random surfer on a given node when a surfer
follows the inverted directions of network links. The inversion of links is a mathematical way
to give a weight to outgoing links. We note that each directed network has both outgoing and
ingoing links, and thus it is important to characterize these two complementary properties
of information flow on directed networks. Since each node belongs both to CheiRank and
PageRank vectors, the ranking of information flow on a directed network becomes two
dimensional. We note that there have been earlier studies of PageRank of the Google matrix
with inverted directions of links [16, 17], but no systematic analysis of statistical properties of
2DRanking was presented there.

An example of variation of PageRank probability P(K) with K and CheiRank probability
P∗(K∗) with K∗ is shown in figure 2, for the WWW network of University of Cambridge in

2
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Figure 1. Google matrix gallery: all matrices are shown in the basis of PageRank index K (and
K′) of matrix GKK′ , which corresponds to x (and y) axis with 1 � K, K′ � N (left column) and
1 � K, K′ � 200 (right column); all nodes are ordered by PageRank index K of matrix G and thus
we have two matrix indexes K, K′ for matrix elements in this basis. Left column: coarse-grained
density of Google matrix elements GK,K′ written in the PageRank basis K(i) with indexes j → K(i)
(in x-axis) and i → K′(i) (in a usual matrix representation with K = K′ = 1 on the top-left corner);
the coarse graining is done on 500 × 500 square cells for the networks of University of Cambridge
2006, University of Oxford 2006, Wikipedia English articles, PCN of Linux Kernel V2.6 (from
top to bottom). Right column shows the first 200 × 200 matrix elements of G matrix at α = 0.85
without coarse graining with the same order of panels as in the left column. Color shows the density
of matrix elements changing from black for minimum value ((1 − α)/N to white for maximum
value via green and yellow (density is coarse grained in the left column).
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Figure 2. Dependence of probabilities of PageRank P(K) (red/gray curve) and CheiRank P∗(K∗)

(blue/black curve) on corresponding ranks K and K∗ for the network of University of Cambridge
in 2006 (dashed curve) and in 2011 (full curve). The power-law dependences with the exponents
β ≈ 0.91, 0.59, corresponding to the relation β = 1/(μ − 1) with μ = 2.1, 2.7, respectively, are
shown by dotted straight lines.

years 2006 and 2011. Other examples for PCN Linux Kernel and Wikipedia can be found in
[14, 15]. Detailed parameters of networks which we analyze in this paper and their sources
are given in the appendix.

A detailed comparative analysis of PageRank and CheiRank two-dimensional
classification was done in [15] for the example of the Wikipedia hyperlink citation network
of English articles. It was shown that CheiRank highlights communicative property of nodes
leading to a new way of two-dimensional ranking. While according to PageRank the top three
countries are (1) USA, (2) UK and (3) France, CheiRank gives (1) India, (2) Singapore and
(3) Pakistan as the most communicative Wikipedia country articles. The top 100 personalities
of PageRank have the following percents in five main category activities: 58 (politics), 10
(religion), 17 (arts), 15 (science) and 0 (sport) [15]. Clearly, the significance of politicians is
overestimated (many of them are USA presidents not broadly known to public). In contrast,
CheiRank gives a more balanced distribution over these categories with 15, 1, 52, 16 and 16,
respectively. It allows us to classify information in a new way finding composers, architects,
botanists and astronomers who are not well known but who, for example, discovered a lot of
Australian butterflies (George Lyell) or many asteroids (Nikolai Chernykh). These two people
appear in the large listings of Australian butterflies and in the listing of asteroids (since they
discovered many of them) and due to that they gain high CheiRank values. In a similar way,
popular singers and musicians have long listings of their songs and music which increase
their outgoing links and CheiRank. This shows that the information retrieval, which uses both
PageRank and CheiRank, allows us to rank nodes not only by an amount of their popularity
(how known is a given node) but also by an amount of their communicative property (how
communicative is a given node). This 2DRanking was also applied to the brain model of the
neuronal network [18] and the business process management network [19], and it was shown
that it gives a new useful way of information treatment in these networks. The 2DRanking in the
PageRank–CheiRank plane also naturally appears for the world trade network corresponding
to import and export trade flows [20]. Thus, the 2DRanking based on PageRank and CheiRank
paves the way for the development of 2D search engines which can become more intelligent
than the present Google search based on the 1D PageRank algorithm.
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In this work, we study the statistical properties of such a 2DRanking using examples of
various real directed networks, including the WWW of British, French and Italian university
networks [21], Wikipedia network [15], Linux Kernel networks [14, 22], gene regulation
networks [23, 24] and other networks. The rest of the paper is organized as follows: in
section 2, we study the properties of node density in the plane of PageRank and CheiRank;
in section 3, the correlator properties between PageRank and CheiRank vectors are analyzed
for various networks; information flow on the plane of PageRank and CheiRank is analyzed
in section 4; the methods of control of SPAM outgoing links are discussed in section 5;
2DRanking applications for the gene regulation networks are considered in section 6 and the
discussion of results is presented in section 7. The parameters of the networks and references
on their sources are given in the appendix.

2. Node density of 2DRanking

A few examples of the Google matrix for four directed networks are shown in figure 1. There is
a significant similarity in the global structure of G for the Universities of Cambridge and Oxford
with well-visible hyperbolic curves (left column) even if at small scales the matrix elements
are rather different (right column) in these two networks (see figure 1). Such hyperbolic
curves are also visible in the Google matrix of Wikipedia (left column) even if here they are
less pronounced due to much larger averaging inside the cells which contain about 15 times
larger number of nodes (see network parameters in the appendix). We make a conjecture that
the appearance of such curves is related to the existence of certain natural categories existing
in the network, e.g., departments for universities or countries, cities, personalities etc for
Wikipedia. We expect that there are relatively more links inside a given category compared
to links between categories. However, this is only a statistical property, since on small scales
at small K values the hyperbolic curves are not visible (right column in figure 1). Hence,
more detailed studies are required to verify this conjecture. At small scale, the G matrix
of Wikipedia is much more dense compared to the cases of Cambridge and Oxford (right
column). We attribute such an increase of density of significant matrix elements to a stronger
connectivity between nodes with large K in Wikipedia compared to the case of universities
where the links have a more hierarchical structure. Partially this increase of density can be
attributed to a larger number of links per node in the case of Wikipedia, but this increase by
a factor 2.1 is not so strong and cannot explain all the differences of densities at small K
scale. For Wikipedia, there are about 20% of nodes at the bottom of the matrix where there
are almost no links. For PCN of Linux Kernel, this fraction becomes significantly larger with
about 60% of nodes. The hyperbolic curves are still well visible for Linux PCN inside the
remaining 40% of nodes. On a small scale, the density of matrix elements for Linux is rather
small compared to the three previous cases. We attribute this to a much smaller number of
links per node which is by factor 5 smaller for Linux compared to the university networks of
figure 1 (see data in appendix).

The distributions of density of nodes W (K, K∗) = dNi/dKdK∗ in the plane of PageRank
and CheiRank in the logscale are shown for four networks of British universities in figure 3.
Here, dNi is a number of nodes in a cell of size dKdK∗ (see the detailed description in [15]).
Even if the coarse-grained G matrices for Cambridge and Oxford look rather similar the density
distributions in the (K, K∗) plane are rather different, at least at moderate values of K, K∗. The
density distributions for all four universities clearly show that nodes with high PageRank have
low CheiRank that corresponds to zero density at low K, K∗ values. At large K, K∗ values,
there is a maximum line of density which is located not very far from the diagonal K ≈ K∗.
The presence of such a line should correspond to significant correlations between P(K(i)) and

5
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Figure 3. Density distribution W (K, K∗) = dNi/dKdK∗ for networks of four British universities in
the plane of PageRank K and CheiRank K∗ indexes in the logscale (logN K, logN K∗). The density
is shown for 100 × 100 equidistant grid in logN K, logN K∗ ∈ [0, 1], the density is averaged over
all nodes inside each cell of the grid, the normalization condition is

∑
K,K∗ W (K, K∗) = 1. Color

varies from black for zero to yellow for maximum density value WM with a saturation value of
W 1/4

s = 0.5W 1/4
M so that the same color is fixed for 0.5W 1/4

M � W 1/4 � W 1/4
M to show low densities

in a better way. The panels show networks of University of Cambridge (2006) with N = 212 710
(top left); University of Oxford with N = 200 823 (top right); University of Bath with N = 73 491
(bottom left); University of East Anglia with N = 33 623 (bottom right). The axes show logN K in
the x-axis and logN K∗ in the y-axis, in both axes the variation range is (0, 1).

P∗(K∗(i)) vectors that will be discussed in more detail in the next section. The presence of
correlations between P(K(i)) and P∗(K∗(i)) leads to a probability distribution with one main
maximum along a diagonal at K − K∗ = const. This is similar to the properties of density
distribution for the Wikipedia network discussed in [15] (see also the bottom-right panel in
figure 13).

The density of nodes for Linux networks is shown in figure 4. In these networks, the
density is homogeneous along lines K +K∗ = const that correspond to absence of correlations
between P(K(i)) and P∗(K∗(i)). Indeed, in the absence of such correlations the distribution of
nodes in the K, K∗ plane is given by the product of independent probabilities. In the log-scale
format used in figure 4, this leads to a homogeneous density of nodes in the top-right corner
of the (logN K, logN K∗) plane as it was discussed in [15, see right panel in figure 4]. Indeed,
the distributions in figure 4 are very homogeneous inside the top-right triangle. We note that,
a part from fluctuations, the distributions remain rather stable even if the size of the network is
changed by factor 20 from the V2.0 to V2.6 version. The physical reasons for the absence of
correlations between P(i) and P∗(i) have been explained in [14] on the basis of the concept of
‘separation of concerns’ used in software architecture. As discussed in [14], a good code should
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Figure 4. Density distribution W (K, K∗) = dNi/dKdK∗ of four Linux Kernel networks shown in
the same frame as in figure 3. The panels show networks for Linux versions V2.0 with N = 14 080
(top left); V2.3 with N = 41 117 (top right); V2.4 with N = 85 757 (bottom left); V2.6 with
N = 285 510 (bottom right). Color panel is the same as in figure 3 with a saturation value of
W 1/4

s = 0.2W 1/4
M so that the same color is fixed for 0.2W 1/4

M � W 1/4 � W 1/4
M to show low densities

in a better way. The axes show logN K in the x-axis and logN K∗ in the y-axis, in both axes the
variation range is (0, 1).

decrease a number of procedures that have high values of both PageRank and CheiRank; such
procedures will play a critical role in error propagation since they are both popular and highly
communicative at the same time. For example in the Linux Kernel, do_fork(), that creates new
processes, belongs to this class. These critical procedures may introduce subtle errors because
they entangle otherwise independent segments of code. The above observations suggest that
the independence between popular procedures, which have high P(Ki) and fulfil important but
well-defined tasks, and communicative procedures, which have high P∗(K∗

i ) and organize and
assign tasks in the code, is an important ingredient of well-structured software. We discuss the
properties of PageRank–CheiRank correlations in the next section.

3. Correlations between PageRank and CheiRank

The correlations between PageRank and CheiRank can be quantitatively characterized by the
correlator

κ(τ ) = N
N∑

i=1

P(K(i) + τ )P∗(K∗(i)) − 1. (2)

Such a correlator was introduced in [14] for τ = 0 and we will use the same notation κ =
κ(τ = 0). This correlator at τ = 0 shows if there are correlations and dependences between
PageRank and CheiRank vectors. Indeed, for homogeneous vectors P(K) = P∗(K∗) = 1/N
we have κ = 0 corresponding to absence of correlations. We will see below that the values
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network. The parameters of networks are given in the appendix.
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Figure 6. Correlator κ(τ ) for two different long and short range of τ in the main and inset panel,
respectively. The Kernel Linux PCN V2.6 and V2.4 are shown by dashed curves while universities
networks of Cambridge and Oxford are shown by full curves.

of κ are very different for various directed networks. Hence, this new characteristic is able
to distinguish various types of networks even if they have rather similar algebraic decay of
PageRank and CheiRank vectors.

The values of κ for networks of various size N are shown in figure 5. The two types of
networks are well visible according to these data. The human created university and Wikipedia
networks have typical values of κ in the range 1 < κ < 8. Other networks like Linux
PCN, gene transcription networks, brain model and business process management networks
have κ ≈ 0.

The dependence of κ(τ ) on the correlation ‘time’ τ is shown in figure 6. For the PCN
of Linux there are no correlations at any τ , while for the university networks we find that the
correlator drops to small values with increase of |τ | (e.g. |τ | > 5) even if at certain rather large
values of |τ | significant values of correlator κ can reappear.
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Figure 7. Histogram of frequency appearance of correlator components κi = NP(K(i))P∗(K∗(i))
for networks of Wikipedia (black), University of Cambridge in 2006 (green) and in 2011 (red),
and PCN of Linux Kernel V2.6 (blue). For the histogram the whole interval 10−8 � κi � 102 is
divided into 200 cells of equal size in the logarithmic scale. Curve colors are black, red, green and
blue from left to right at the bottom of the vertical axis.

It is interesting to see what are typical values κi = NP(K(i))P∗(K∗(i)) of contributions
in the correlator sum (2) at τ = 0. The distribution of κi values for a few networks are shown
in figure 7. All of them follow a power law with an exponent a =1.23 for PCN Linux, 0.70
for Wikipedia and 0.76 (2006) and 0.66 (2011) for University of Cambridge. We note that
further studies are required to analytically obtain the values of the exponent a. In the latter two
cases the exponent and the distribution shape remains stable in time; however, in 2011 there
appear few nodes with very large κi values which give a significant increase of the correlator
from κ = 1.71 (in 2006) up to κ = 30.0 (in 2011). It is possible that such a situation can
appear if it is imposed that practically any page points to the main university page, which may
have a rather high CheiRank due to many outgoing links to other departments and university
divisions. We suppose that these are also the reasons why we have the appearance of large
values of κ(τ ) in university networks. At the same time more detailed studies are required
to clarify the correlation properties on directed networks of a deeper level. We will return in
section 7 to a discussion of university networks collected in 2011.

Another way to analyze the correlations between PageRank and CheiRank is simply
to count the number of nodes �(n) inside a square 1 � K(i), K∗(i) � n. For a totally
correlated distribution with K(i) = K∗(i) we have �(n)/N = n/N, while in absence of
correlations we should have points homogeneously distributed inside a square n × n that gives
�(n)/N = (n/N)2. The dependence of such point-count correlator �(n) on size n is displayed
in figure 8 for various networks. These data clearly show that the Linux PCN is uncorrelated
being close to the limiting uncorrelated dependence, while Wikipedia and British university
networks show intermediate strength of correlations being between the two limiting functions
of �(n).

4. Information flow of 2DRanking

According to 2DRanking, all network nodes are distributed on a two-dimensional plane
(K, K∗). The directed links of the network create an information flow in this plane. To visualize
this flow, we use the following procedure:

9
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Figure 8. Dependence of the point-count correlation function �(n)/N on n/N for networks of
Wikipedia, British universities and Kernel Linux PCN. The curves in the top panel show the cases
of Wikipedia (solid violet/gray) and four versions of PCN of Linux Kernel with V2.0 (solid black),
V2.3 (dashed red), V2.4 (dot-dashed green) and V2.6 (dotted blue). The curves in the bottom panel
show the cases of British universities with East Anglia (solid black), Bath (dashed red), Oxford
(dot-dashed green) and Cambridge 2006 (dotted blue). Dotted orange curves represent the totally
correlated case with �(n)/N = n/N and the totally uncorrelated one with �(n)/N = (n/N)2.

(a) each node is represented by one point in the (K, K∗) plane;
(b) the whole space is divided into equal size cells with indexes (i, i∗) with the number of

nodes inside each cell being ni,i∗ , in figure 9 we use cells of equal size in usual (left
column) and logarithmic (right column) scales;

(c) for each node inside the cell (i, i∗), pointing to any other cell (i′, i∗′), we compute the
vector (i′ − i, i∗′ − i∗) and average it over all nodes ni,i∗ inside the cell (the weight of links
is not taken into account);

(d) we put an arrow centered at (i, i∗) with the modulus and direction given by the average
vector computed in (c).

Examples of such average flows for the networks of figure 1 are shown in figure 9. All
flows have a fixed point attractor. The fixed point is located at rather large values K, K∗ ∼ N/4,
that is, due to the fact that in average nodes with maximal values K, K∗ ∼ N point to lower
values. At the same time nodes with very small K, K∗ ∼ 1 still point to some nodes which
have larger values of K, K∗ that places the fixed point at certain intermediate K, K∗ values. We
note that the analyzed directed networks have dangling nodes which have no outgoing links,
the fraction of such nodes is especially large for the Linux network. Due to the absence of
outgoing links, we obtain an empty white region in the information flow shown in figure 9.
A more detailed analysis of statistical properties of information flows on the PageRank–
CheiRank plane requires further study.

5. Control of spam links

For many networks, ingoing and outgoing links have their own importance and thus should
be treated on equal grounds by PageRank and CheiRank as described above. However, for
the WWW it is more easy to manipulate outgoing links which are handled by an owner of a
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Figure 9. Information flow on the PageRank–CheiRank plane (K, K∗) generated by directed links
of the networks of figure 1. Outgoing links flow is shown in the linear scale (K, K∗) with K, K∗ ∈
[1, N] on left panels, and in the logarithmic scale (logN K, logN K∗) for logN K, logN K∗ ∈ [0, 1]
on right panels. The flow is shown by arrows whose size is proportional to the vector amplitude,
which is also indicated by color [from yellow for large to blue for small amplitudes]. The rows
corresponds to University of Cambridge (2006); University of Oxford (2006), Wikipedia English
articles, PCN of Linux Kernel V2.6 (from top to bottom). The axes show: on the left column K/N
in the x-axis, K∗/N in the y-axis; on the right column logN K in the x-axis, logN K∗ in the y-axis;
in all axes the variation range is (0, 1).
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given webpage, while ingoing links are handled by other users. This requires the introduction
of some level of control on the outgoing links which should be taken into account for the
ratings. Since it is very easy to create links to highly popular sites, we will call ‘spam links’
links for which the destination site is much more popular than the source. A quantitative
measure of popularity can be provided by the PageRank of the sites. We do not think that
spam links are frequent in networks such as procedure calls in the Linux kernel, Wikipedia
and gene regulation. Even for university networks we think that there is not much reason to
put spam links inside the university domain. However, for a large-scale WWW an excessive
number of such spam links can become harmful for the network performance. However,
for WWW networks spam links are probably more widespread. Some websites may try to
improve their rating by carefully choosing their outgoing links. Also it is a common policy
to have links back to a website’s root pages to facilitate navigation. Naturally, a good rating
should not be sensitive to the presence of such links. Thus it is important to treat spam
links appropriately in order to construct a two-dimensional web-search engine. Below we
propose a method for spam links control and test it on an example of the Wikipedia network
which has the largest size among networks analyzed in this paper. We stress that this is done
as a test example and not because we think that there are spam links between Wikipedia
articles.

With this aim, we propose the following filter procedure for computation of CheiRank.
The standard procedure described above is to invert the directions of all links of the network
and then to compute the CheiRank. The filter procedure inverts a link from j to i only if
ηP(K( j)) > P(K(i)), where η is some positive filter parameter. After such an inversion of
certain links, while other links remain unchanged, the matrix S∗ and G∗ are computed and
the CheiRank vector P∗(K∗(i)) of G∗ is determined in a usual way. From the definition it is
clear that for η = 0 there are no inverted links, and thus after filtering P∗ is the same as the
PageRank vector P. In the opposite limit η = ∞ all links are inverted and P∗ is then the usual
CheiRank discussed in previous sections. Thus intermediate values of η allow us to handle
the properties of CheiRank depending on a wanted strength of filtering. We note that the
proposed filtering procedure is rather generic and can be applied to various types of directed
networks.

The dependence of the fraction f of inverted links (defined as a ratio between the number
of inverted links to the total number of links) on the filter parameter η is shown for various
networks in figure 10. There is a significant jump of f at η ≈ 1 for British university networks.
In fact the condition η ≈ 1 corresponds approximately to the border relation P(K) ≈ P(K′)
with K ≈ K′ that marks the diagonal of the G matrix shown in figure 1, which has a significant
density of matrix elements. As a result for η > 1, we have a significant increase of inversion
of links leading to a jump of f present in figure 10. The diagonal density is most pronounced
for university networks so that for them the jump of f is mostly sharp.

It is also convenient to consider another condition for link inversion defined not for
P(Ki) but directly in the plane (K, K′) defined by the condition: links are inverted only if
K( j) < ηKK(i) (where node j points to node i, j → i). In a first approximation, we can
assume that the links are homogeneously distributed in the plane of transitions from K to K′.
This density is similar to the density distribution of Google matrix elements GK′K shown in
figure 1. For the homogeneous distribution, the fraction f of inverted links is given by an area
ηK/2 of a triangle, whose height is 1 and the basis is ηK , for ηK � 1. In a similar way, we have
f = 1 − 1/2ηK for ηK � 1. We can generalize this distribution assuming that there are only
links with 1 � K′ � aN, that is, approximately the case for Linux network where a = 0.4 (see
figure 1 bottom row), and that inside this interval the density of links decreases as 1/(K′)ν .
Then after computing the area we obtain the expression for the fraction of inverted links valid
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Figure 10. Fraction f of inverted links as a function of filter parameter η for various studied
networks. Top panel: Wikipedia (violet/gray curve) and four versions of Kernel Linux PCN with
V2.0 (solid black curve), V2.3 (dashed red curve), V2.4 (dot-dashed green curve) V2.6 (dotted
blue curve). Bottom panel shows data for British university networks with East Anglia (solid black
curve), Bath (dashed red curve), Oxford (dot-dashed green curve) and Cambridge 2006 (dotted
blue curve).
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Figure 11. Fraction f of inverted links in the (K, K′) plane with the condition K( j) < ηKK(i)
shown as a function of filter parameter ηK for Linux networks versions shown by different curves.
Gray curves from left to right are the theory curves with a = 1, ν = 0 (dashed); a = 0.4, ν = 0
(dotted) and a = 0.4, ν = 0.8 (full) (see text).

for 0 � ν < 1:

f (ηK ) =

⎧⎪⎨
⎪⎩

1 − ν

2 − ν
(aηK ) ηK � 1/a

1 +
(

1 − ν

2 − ν
− 1

)
(aηK )ν−1 ηK > 1/a

. (3)

The comparison of this theoretical expression with the numerical data for Linux PCN is shown
in figure 11. It shows that the data for Linux are well described by the theory (3) with a = 0.4
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Figure 12. Density distribution W (K, K∗) = dNi/dKdK∗ for Wikipedia in the plane of PageRank
and filtered CheiRank indexes, (logN K, logN K∗), in a equidistant 100 × 100 lattice with
logN K, logN K∗ ∈ [0, 1]. The filter parameter is η = 10 (left-top panel), 100 (right-top panel),
1000 (left-bottom panel), 105 where all links are inverted (right-bottom panel). The color panel is
the same as in figure 3 with the saturation value W 1/4

s = 0.5W 1/4
M . The axes show: logN K in the

x-axis, logN K∗ in the y-axis, in both axes the variation range is (0, 1).

and ν = 0.8. The last value takes into account the fact that the density of links decreases with
PageRank index K′ as it is well visible in figure 1.

The variation of nodes density in the plane of PageRank and filtered CheiRank (K, K∗)
for the Wikipedia network is shown in figure 12 with the filtering by η for P(K) and P(K′)
values. At moderate values η = 10 the density is concentrated near the diagonal, with further
increase of η = 100, 1000 a broader density distribution appears at large K values which goes
to smaller and smaller K until the limiting distribution without filtering is established at very
large η. The top 100 Wikipedia articles obtained with filtered CheiRank at the above values
of η are given at [25]. We also give there top articles in 2DRank which gives articles in order
of their appearance on the borders of a square of increasing size in (K, K∗) plane (see the
detailed description in [15]). These data clearly show that filtering eliminates articles with
many outgoing links and gives a significant modification of top CheiRank articles. Thus the
described method can be efficiently used for control of spam links present in the WWW.

6. 2DRanking of gene regulation networks

The method of 2DRanking described above is rather generic and can be applied to various
types of directed networks. Here, we apply it to gene regulation networks of Escherichia Coli
and Yeast with the network links taken from [24]. Such transcription regulation networks
control the expression of genes and have important biological functions [23].
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Figure 13. Distribution of nodes in the plane of PageRank K and CheiRank K∗ for Escherichia
Coli and Yeast transcription networks on left and right panels, respectively (network data are taken
from [24]). The nodes with the five top probability values of PageRank, CheiRank and 2DRank
are labeled by their corresponding node names; they correspond to five lowest index values.

The distribution of nodes in PageRank–CheiRank plane is shown in figure 13. The top
five nodes in CheiRank probability value (lowest CheiRank indexes) are those which send
many outgoing orders, the top five in PageRank probability value are those which obtain many
incoming signals and the top five indexes in 2DRank (with five lowest 2DRank index values)
combine these two functions. For these networks the correlator κ is close to zero (even slightly
negative), which indicates the statistical independence between outgoing and ingoing links
quite similarly to the case of the PCN for the Linux Kernel. This may indicate that a slightly
negative correlator κ is a generic property for the data flow network of control and regulation
systems. We use these networks here to show that the general methods proposed above can
be applied to these directed networks as well. Whether the obtained ratings can bring deep
insights into the functioning of gene regulation can only be assessed by experts in the field.
However, we hope that such an analysis will prove to be useful for a better understanding of
gene regulation networks.

7. Discussion

Above we presented extensive studies of statistical properties of 2DRanking based on
PageRank and CheiRank for various types of directed networks. All studied networks are
of a free-scale type with an algebraic distribution of ingoing and outgoing links with a usual
value of exponents. In spite of that their statistical characteristics related to PageRank and
CheiRank are rather different. Some networks have high correlators between PageRank and
CheiRank (e.g. Wikipedia, British universities), while others have practically zero correlators
(PCN of Linux Kernel, gene regulation networks). The distribution of nodes in PageRank–
CheiRank plane also varies significantly between different types of networks. Thus 2DRanking
discussed here gives more detailed classification of information flows on directed networks.

We think that 2DRanking gives new possibilities for information retrieval from large
databases which are growing rapidly with time. Indeed, for example the size of the Cambridge
network increased by a factor 4 from 2006 to 2011 (see appendix and figure 2). At present,
web robots start automatically generating new webpages. These features can be responsible
for the appearance of gaps in the density distribution in the (K, K∗) plane at large K, K∗ ∼ N
values visible for large-scale university networks of Cambridge and ENS Paris in 2011 (see
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Figure 14. Density distribution W (K, K∗) = dNi/dKdK∗ shown in the same frame as in
figure 3 for networks collected in 2011: University of Cambridge (top left), University of Bologna
(top right), ENS Paris for crawling level 5 (bottom left) and 7 (bottom right). The color panel is
the same as in figure 3 with the saturation value W 1/4

s = 0.5W 1/4
M . The axes show: logN K in the

x-axis, logN K∗ in the y-axis, is both axes the variation range is (0, 1).
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Figure 15. Dependence of probabilities of PageRank P(K) (red/gray curve) and CheiRank P∗(K∗)

(blue/black curve) on corresponding ranks K and K∗ for the networks of ENS Paris (crawling
levels 3,5,7) and the University of Bologna.

figure 14). Such an automatic generation of links can change the scale-free properties of
networks. Indeed, for ENS Paris we observe the appearance of a large step in the PageRank
distribution P(K) shown in figure 15. This step for P(K) remains not sensitive to the deepness
of crawling which goes on a level of 3, 5 and 7 links. However, the CheiRank distribution
changes with the deepness level becoming more and more flat (see figure 15). Such a tendency
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in a modification of network statistical properties is visible in 2011 for large-size university
networks, while networks of moderate size, like the University of Bologna 2011 (see data in
figures 14 and 15), are not yet affected. A sign of ongoing changes is a significant growth of
the correlator value κ which increases up to a very large value (30 for Cambridge 2011 and 63
for ENS Paris). There is a danger that automatic generation of links can lead to a delocalization
transition of PageRank that can destroy efficiency of information retrieval from the WWW.
We note that it is known that PageRank delocalization can appear in certain models of Markov
chains and Ulam networks [26, 27] (see e.g. in [26] figure 1 (right-top panel) and figure 6
directly showing the delocalization of PageRank vector). Such a delocalization of PageRank
would make the ranking of nodes inefficient due to high sensitivity of ranking to fluctuations
that would create a very dangerous situation for the WWW information retrieval and ranking.
We also note that the spectrum of the Google matrix of British universities networks has been
recently analyzed in [28]. The spectrum and eigenstates analysis can be a sensitive tool for
location of precursors of a delocalization transition.

Our studies of 2DRanking pave the way to the development of two-dimensional search
engines which will use the advantages of both PageRank and CheiRank. Indeed, the Google
search engine uses as the fundamental mathematical basis the one-dimension ranking related
to PageRank [7]. Of course, there are various other important elements used by the Google
search which remain the company secret, and not only PageRank order matters for the Google
ranking. However, the mathematical aspects of these additional elements are not really known
(e.g. they are not described in [7]). At the same time, the size of databases generated by
the modern society continues its enormous growth. Due to that, the information retrieval and
ordering of such datasets becomes of primary importance and new mathematical tools should
be developed to operate and characterize efficiently their information flows and ranking. Here
we proposed and analyzed the properties of the new two-dimensional search engine, which we
call Dvvadi from Russian ‘dva (two)’ and ‘dimension’ that will use the complementary ranking
abilities of both PageRank and CheiRank. Now the procedure of ordering of all network nodes
uses not one but two vectors of the Google matrix of a network. The computational efforts are
twice as expensive but for that we obtain a new quality, since now the nodes are ranked in the 2D
plane not only by their degree of popularity but also by their degree of communicability. Thus
for the Wikipedia network the top three articles in PageRank probability are three countries
(most popular), while the top three articles in CheiRank probability are three listings of
knowledge, state leaders and geographical places (most communicative). Hence, we can rank
the nodes of the network in a new two-dimensional manner which highlight complementary
properties of node popularity and communicability. Thus, the Dvvadi search can present
nodes not in a line but on a 2D plane characterizing these two complementary properties of
nodes. Examples of such 2D representation of nodes selected from Wikipedia articles by a
specific subject are shown in figure 16: we determine global K and K∗ indexes of all articles,
select a specific subject (e.g. countries) and then represent countries in the local index K
and K∗ corresponding to their appearance in the global order via PageRank and CheiRank.
For countries, we see a clear tendency that the countries on the top of PageRank probability
(low K) have relatively high CheiRank index (high K∗) (e.g. US, UK, France) while small
countries in the region K ≈ 50, K∗ ≈ 10 have another tendency (e.g. Singapore). We attribute
this to specific routes of cultural and industrial development of the world: e.g. Singapore was
a colony of UK and became a strong trade country and due to that has historically many
links pointing to the UK and other developed countries. For universities we also see that
those at the top of PageRank (Harvard, Oxford and Cambridge) are not very communicative
having high K∗ values, while Columbia and Berkeley are more balanced, and Florida and
FSU are very communicative probably due to the initial location of the Wikimedia Foundation
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Figure 16. Examples of Dvvadi search analysis of Wikipedia articles shown on the 2D plane of
PageRank K and CheiRank K∗ local indexes for specific subjects (articles): countries marked by
their flag (top left), universities (top right), physicists (bottom left), Nobel laureates in physics
(bottom right), circles mark the node location; high resolution figures and listings of names with
local (K, K∗) values in 100 × 100 square are available at [25] (listings with global ranking are
available at [15]).

at Florida. For physicists, we see that links to many scientific fields (like Shen Kuo) or
popularization of science (like Hawking and Feynman) place those people at the top positions
of CheiRank. In a similar way, for the Nobel laureates in physics we see that CheiRank stresses
the communicative aspects: e.g. Feynman, due to his popularization of physics; Salam, due to
the institute with his name at Trieste, with a broad international activity; Raman, due to the
Raman effect.

On the basis of the above results, we think that PageRank–CheiRank classification of
network nodes on 2D plane will allow us to analyze the information flows on directed networks
in a better way. It is also important to note that 2DRanking is very natural for financial and
trade networks. Indeed, the world trade usually uses the import and export ranking which
is analogous to PageRank and CheiRank, as it is shown in [20]. We think that such Dvvadi
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Table A1. Linux Kernel network parameters

Version N Nlinks κ

V1.0 2 752 5 933 κ = −0.11
V1.1 4 247 9 710 κ = −0.083
V1.2 4 359 10 215 κ = −0.048
V1.3 10 233 24 343 κ = −0.102
V2.0 14 080 34 551 κ = −0.037
V2.1 26 268 59 230 κ = −0.058
V2.2 38 767 87 480 κ = −0.022
V2.3 41 117 89 355 κ = −0.081
V2.4 85 757 195 106 κ = −0.034
V2.6 285 510 588 861 κ = 0.022

Table A2. British universities network parameters

University N Nlinks κ

RGU (Abardeen) 1 658 15 295 κ = 1.03
Uwic (Wales) 5 524 111 733 κ = 0.82
NTU (Nottingham) 6 999 143 358 κ = 0.50
Liverpool 11 590 141 447 κ = 1.49
Hull 16 176 236 525 κ = 5.31
Keele 16 530 117 944 κ = 3.24
UCE (Birmingham) 18 055 351 227 κ = 1.67
Kent 31 972 277 044 κ = 2.65
East Anglia 33 623 325 967 κ = 5.50
Sussex 54 759 804 246 κ = 7.29
York 59 689 414 200 κ = 8.13
Bath 73 491 541 351 κ = 3.97
Glasgow 90 218 544 774 κ = 2.22
Manchester 99 930 1254 939 κ = 3.47
UCL (London) 128 450 1397 261 κ = 2.33
Oxford 200 823 1831 542 κ = 4.66
Cambridge (2006) 212 710 2015 265 κ = 1.71

engine/motor [25] will find useful applications for the treatment of enormously large databases
created by modern society.
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Appendix

We list below the directed networks used in this work giving for them number of nodes N,
number of links Nlinks and correlator between PageRank and CheiRank κ . Additional data can
be find at [25].

Linux Kernel PCNs are taken from [14] (see also [22]) with the parameters for various
kernel versions shown in table A1.

Web networks of British universities dated by year 2006 are taken from [21] and are
shown in table A2.
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We also developed a special code with which we performed crawling of university web
networks in January—March 2011 with the parameters given below: University of Cambridge
(2011) with N = 898 262, Nlinks = 15 027 630, κ = 30.0; École Normale Supérieure, Paris
(ENS 2011) with N = 28 144, Nlinks = 971 856, κ = 1.67 (crawling deepness level of three
links), N = 129 910, Nlinks = 2111 944, κ = 16.2 (crawling deepness level of five links),
N = 1820 015, Nlinks = 25 706 373, κ = 63.6 (crawling deepness level of seven links);
University of Bologna with N = 339 872, Nlinks = 16 345 488, κ = 2.63.

The data for the hyperlink network of Wikipedia English articles (2009) are taken from
[15] with N = 3282 257, Nlinks = 71 012 307, κ = 4.08.

Transcription gene networks are taken from [24]. We have for them: Escherichia Coli
with N = 423, Nlinks = 519, κ = −0.0645; Yeast with N = 690, Nlinks = 1079, κ = −0.0497;
for all links the weight is taken to be the same.

Business process management network is taken from [19] with N = 175, Nlinks = 240,
κ = 0.164.

Brain model network is taken from [18] with N = 10 000, Nlinks = 1960 108, κ = −0.054
(unweighted), κ = −0.065 (weighted).
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Abstract. We construct the Google matrix of the entire Twitter network, dated by July 2009, and analyze
its spectrum and eigenstate properties including the PageRank and CheiRank vectors and 2DRanking of
all nodes. Our studies show much stronger inter-connectivity between top PageRank nodes for the Twitter
network compared to the networks of Wikipedia and British Universities studied previously. Our analysis
allows to locate the top Twitter users which control the information flow on the network. We argue that
this small fraction of the whole number of users, which can be viewed as the social network elite, plays the
dominant role in the process of opinion formation on the network.

1 Introduction

Twitter is an online directed social network that enables
its users to exchange short communications of up to 140
characters [1]. In March 2012 this network had around
140 million active users [1]. Being founded in 2006, the size
of this network demonstrates an enormously fast growth
with 41 million users in July 2009 [2], only three years af-
ter its creation. The crawling and statistical analysis of the
entire Twitter network, collected in July 2009, was done
by the KAIST group [2] with additional statistical charac-
teristics available at LAW DSI of Milano University1. This
network has scale-free properties with an average power
law distribution of ingoing and outgoing links1 [2] being
typical for the World Wide Web (WWW), Wikipedia and
other social networks (see e.g [3–5]). In this work we use
this Twitter dataset to construct the Google matrix [6,7]
of this directed network and we analyze the spectral prop-
erties of its eigenvalues and eigenvectors. Even if the en-
tire size of Twitter 2009 is very large the powerful Arnoldi
method (see e.g. [8–11]) allows to obtain the spectrum and
eigenstates for the largest eigenvalues.

A special analysis is performed for the PageRank vec-
tor, used in the Google search engine [6,7], and the Chei-
Rank vector studied for the Linux Kernel network [12,13],
Wikipedia articles network [5], world trade network [14]
and other directed networks [15]. While the components
of the PageRank vector are on average proportional to
a number of ingoing links [16], the components of the
CheiRank vector are on average proportional to a number
of outgoing links [5,12] that leads to a two-dimensional
ranking of all network nodes [15]. Thus our studies allow

a e-mail: dima@irsamc.ups-tlse.fr
1 Twitter web data of [2] are downloaded from the web site

maintained by S. Vigna, http://law.dsi.unimi.it/webdata/
twitter-2010.

to analyze the spectral properties of the entire Twitter
network of an enormously large size which is by one-
two orders of magnitude larger compared to previous
studies [5,11,13,15].

The paper is organized as follows: the construction of
the Google matrix and its global structure are described
in Section 2; the properties of spectrum and eigenvectors
of the Google matrix of Twitter are presented in Section 3;
properties of 2DRanking of Twitter network are analyzed
in Section 4 and the discussion of the results is given in
Section 5. Detailed data and results of our statistical anal-
ysis of the Twitter matrix are presented at the web page2.

2 Google matrix construction

The Google matrix of the Twitter network is constructed
following the standard rules described in [6,7]: we consider
the elements Aij of the adjacency matrix being equal to
unity if a user (or node) j points to user i and zero oth-
erwise. Then the Google matrix of the network with N
users is given by

Gij = αSij + (1 − α)/N, (1)

where the matrix S is obtained by normalizing to unity
all columns of the adjacency matrix Ai,j with at least one
non-zero element, and replacing columns with only zero
elements, corresponding to the dangling nodes, by 1/N .
The damping factor α in the WWW context describes
the probability (1 − α) to jump to any node for a ran-
dom surfer. The value α = 0.85 gives a good classifica-
tion for WWW [7] and thus we also use this value here.
The matrix G belongs to the class of Perron-Frobenius

2 http://www.quantware.ups-tlse.fr/QWLIB/

twittermatrix/.
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operators [7], its largest eigenvalue is λ = 1 and other
eigenvalues have |λ| ≤ α. The right eigenvector at λ = 1
gives the probability P (i) to find a random surfer at site i
and is called the PageRank. Once the PageRank is found,
all nodes can be sorted by decreasing probabilities P (i).
The node rank is then given by index K(i) which reflects
the relevance of the node i. The top PageRank nodes are
located at small values of K(i) = 1, 2, . . .

The PageRank dependence on K is well described by
a power law P (K) ∝ 1/Kβin with βin ≈ 0.9. This is con-
sistent with the relation βin = 1/(μin − 1) correspond-
ing to the average proportionality of PageRank proba-
bility P (i) to its in-degree distribution win(k) ∝ 1/kμin

where k(i) is a number of ingoing links for a node i [7,16].
For the WWW it is established that for the ingoing links
μin ≈ 2.1 (with βin ≈ 0.9) while for the out-degree distri-
bution wout of outgoing links the power law has the ex-
ponent μout ≈ 2.7 [3,4]. Similar values of these exponents
are found for the WWW British university networks [11],
the procedure call network of Linux Kernel software intro-
duced in [12] and for Wikipedia hyperlink citation network
of English articles (see e.g. [5]).

In addition to the Google matrix G we also analyze
the properties of matrix G∗ constructed from the network
with inverted directions of links, with the adjacency ma-
trix Ai,j → Aj,i. After the inversion of links the Google
matrix G∗ is constructed via the procedure (1) described
above. The right eigenvector at unit eigenvalue of the ma-
trix G∗ is called the CheiRank [5,12]. In analogy with the
PageRank the probability values of CheiRank are pro-
portional to number of outgoing links, due to links in-
version. All nodes of the network can be ordered in a
decreasing order with the CheiRank index K∗(i) with
P ∗ ∝ 1/K∗βout with βout = 1/(μout − 1). Since each
node i of the network is characterized both by PageRank
K(i) and CheiRank K∗(i) indexes the ranking of nodes be-
comes two-dimensional. While PageRank highlights well-
know popular nodes, CheiRank highlights communicative
nodes. As discussed in [5,12,15], such 2DRanking allows
to characterize an information flow on networks in a more
efficient and rich manner. It is convenient to character-
ize the interdependence between PageRank and CheiRank
vectors by the correlator

κ = N

N∑
i=1

P (K(i))P ∗(K∗(i)) − 1. (2)

As it is shown in [12,15], we have κ ≈ 0 for Linux Kernel
network, transcription gene networks and κ ≈ 2−4 for
University and Wikipedia networks.

In this work we apply the Google matrix analysis de-
veloped in [5,11–15] to the Twitter 2009 network avail-
able at1 [2]. The total size of the Google matrix is N =
41 652 230 and the number of links is N� = 1 468 365 182.
This matrix size is by one-two orders of magnitude larger
than those studied in [11,13,15]. The number of links per
node is ξ� = N�/N ≈ 35 being by a factor 1.5−3.5 larger
than for Wikipedia network or Cambridge University 2006
network [15]. The matrix elements of G and G∗ are shown

in Figure 1 on a scale of top 200 (top panels) and 400
(middle panels) values of K (for G) and K∗ (for G∗) and
in a coarse grained image for the whole matrix size scale
(bottom panels).

It is interesting to note that the coarse-grained image
has well visible hyperbolic onion curves of high density
which are similar to those found in [15] for Wikipedia and
University networks. In [15] the appearance of such curves
was attributed to existence of specific categories. We as-
sume that for the Twitter network such curves are a result
of enhanced links between various categories of users (e.g.
actors, journalists, etc.) but a detailed origin is still to be
established.

In the following sections we also compare the proper-
ties of the Twitter network with those of the Wikipedia
articles network from [5]. Some spectral properties of
the Wikipedia network with N = 3 282 257 nodes and
N� = 71 012 307 links are analyzed in [11,15]. We also com-
pare certain parameters with the networks of Cambridge
and Oxford Universities of 2006 with N = 212 710 and
N = 200 823 nodes and with N� = 2 015 265 and N� =
1 831 542 links respectively. The properties of these net-
works are discussed in [11,15]. The gallery of the Google
matrix G images for these networks, as well as for the
Linux Kernel network, are presented in [15]. The compar-
ison with the data shown in Figure 1 here shows that for
the Twitter network we have much stronger interconnec-
tion matrix at moderate K values. We return to this point
in Sections 4 and 5.

3 Spectrum and eigenstates of Twitter

To obtain the spectrum of the Google matrix of Twitter we
use the Arnoldi method [8–10]. However, at first, following
the approach developed in [11], we determine the invariant
subspaces of the Twitter network. For that for each node
we find iteratively the set of nodes that can be reached by
a chain of non-zero matrix elements of S. Usually, there
are several such invariant isolated subsets and the size of
such subsets is smaller than the whole matrix size. These
subsets are invariant with respect to applications of ma-
trix S. We merge all subspaces with common members,
and obtain a sequence of disjoint subspaces Vj of dimen-
sion dj invariant by applications of S. The remaining part
of nodes forms the wholly connected core space. Such a
classification scheme can be efficiently implemented in a
computer program, it provides a subdivision of network
nodes in Nc core space nodes (typically 70−80% of N for
British University networks [11]) and Ns subspace nodes
belonging to at least one of the invariant subspaces Vj

inducing the block triangular structure,

S =
(

Sss Ssc

0 Scc

)
. (3)

Here the subspace-subspace block Sss is actually com-
posed of many diagonal blocks for each of the invariant
subspaces. Each of these blocks corresponds to a column
sum normalized matrix of the same type as G and has
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Fig. 1. (Color online) Google matrix of Twitter: matrix el-
ements of G (left column) and G∗ (right column) are shown
in the basis of PageRank index K (and K′) of matrix GKK′

(left column panels) and in the basis of CheiRank index K∗

(and K∗′) of matrix G∗
K∗K∗′ (right column panels). Here, x

(and y) axis shows K (and K
′
) (left column) (and respec-

tively K∗ and K∗′ on right column) with the range 1 ≤
K,K′ ≤ 200 (top panels); 1 ≤ K,K′ ≤ 400 (middle pan-
els); 1 ≤ K,K′ ≤ N (bottom panels). All nodes are ordered
by PageRank index K of the matrix G and thus we have two
matrix indexes K,K′ for matrix elements in this basis (left

column) and respectively K∗,K∗′ for matrix G∗ (right col-
umn). Bottom panels show the coarse-grained density of ma-
trix elements GK,K′ and G∗

K∗K∗′ ; the coarse graining is done
on 500 × 500 square cells for the entire Twitter network. We
use a standard matrix representation with K = K′ = 1 on top

left panel corner (left column) and respectively K∗ = K∗′ = 1
(right column). Color shows the amplitude of matrix elements
in top and middle panels or their density in the bottom panels
changing from blue for minimum zero value to red at maximum
value. Here the PageRank index K (and CheiRank index K∗)
has been calculated for the damping factor α = 0.85. However,
the matrix elements G are shown for the damping factor α = 1
since a value α < 1 only adds a uniform background value and
modifies the overall scale in the density plots.

therefore at least one unit eigenvalue thus explaining the
high degeneracy. Its eigenvalues and eigenvectors are eas-
ily accessible by numerical diagonalization (for full matri-
ces) thus allowing to count the number of unit eigenvalues.

We find for the G matrix of Twitter 2009 that there
are Ns = 40 307 subset sites with a maximal subspace di-
mension of 44 (most subspaces are of dimension 2 or 3).
For the matrix G∗ we find Ns = 180 414 also with a lot

of subspaces of dimension 2 or 3 and a maximal subspace
dimension of 2959. The remaining eigenvalues of S can
be obtained from the projected core block Scc which is
not column sum normalized (due to non-zero matrix el-
ements in the block Ssc) and has therefore eigenvalues
strictly inside the unit circle |λ(core)

j | < 1. We have ap-
plied the Arnoldi method (AM) [8–10] with Arnoldi di-
mension nA = 640 to determine the largest eigenvalues
of Scc which required a machine with 250 GB of physical
RAM memory to store the non-zero matrix elements of S
and the 640 vectors of the Krylov space.

In general the Arnoldi method provides numerically
accurate values for the largest eigenvalues (in modulus)
but their number depends crucially on the Arnoldi di-
mension. In our case there is a considerable density of real
eigenvalues close to the points 1 and −1 where convergence
is rather difficult. Comparing the results for different val-
ues of nA, we find that for the matrix S (S∗) the first
200 (150) eigenvalues are correct within a relative error
below 0.3% while the marjority of the remaining eigenval-
ues with |λj | ≥ 0.5 (|λj | ≥ 0.6) have a relative error of
10%. However, the well isolated complex eigenvalues, well
visible in Figure 2, converge much better and are numeri-
cally accurate (with an error ∼10−14). The first three core
space eigenvalues of S (S∗) are also numerically acurrate
with an error of ∼10−14 (∼10−8).

The composed spectrum of subspaces and core space
eigenvalues obtained by the Arnoldi method is shown in
Figure 2 for G and G∗. The obtained results show that the
fraction of invariant subspaces with λ = 1 (g1 = Ns/N ≈
10−3) is by orders of magnitude smaller than the one found
for British Universities (g1 ≈ 0.2 at N ≈ 2×105) [11]. We
note that the cross and triple-star structures are visible for
Twitter spectrum in Figure 2 but they are significantly
less pronounced as compared to the case of Cambridge
and Oxford network spectrum (see Fig. 2 in [11]). It is in-
teresting that such a triplet and cross structures naturally
appear in the spectra of random unistochastic matrices of
size N = 3 and 4 which have been analyzed analytically
and numerically in [17]. A similar star-structure spectrum
appears also in sparse regular graphs with loops studied
recently in [18] even if in the later case the spectrum goes
outside of unit circle. This shows that even in large size
networks the loop structure between 3 or 4 dominant types
of nodes is well visible for University networks. For Twitter
network it is less pronounced probably due to a larger
number ξ� of links per node. At the same time a circle
structure in the spectrum remains well visible both for
Twitter and University networks. The integrated number
of eigenvalues as a function of |λ| is shown in the bottom
panels of Figure 2. Further detailed analysis is required
for a better understanding of the origin of such spectral
structures.

It is interesting to note that a circular structure,
formed by eigenvalues λi with |λi| being close to unity (see
red and blue point in top left and right panels of Fig. 3),
is rather similar to those appearing in the Ulam networks
of intermittency maps (see Fig. 4 in [19]). Following an
analogy with the dynamics of these one-dimensional maps
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Fig. 2. (Color online) Spectrum of the Twitter matrix S (S∗

with inverted direction of links) for the Twitter network shown
on left panels (right panels). Top panel: subspace eigenvalues
(blue dots) and core space eigenvalues (red dots) in λ-plane
(green curve shows unit circle); there are 17 504 (66 316) in-
variant subspaces, with maximal dimension 44 (2959) and the
sum of all subspace dimensions is Ns = 40 307 (180 414). The
core space eigenvalues are obtained from the Arnoldi method
applied to the core space subblock Scc of S with Arnoldi di-
mension 640 as explained in reference [11]. Bottom panels:
fraction j/N of eigenvalues with |λ| > |λj | for the core space
eigenvalues (red bottom curve) and all eigenvalues (blue top
curve) from raw data of top panels. The number of eigenvalues
with |λj | = 1 is 34135 (129 185) of which 17505 (66 357) are at
λj = 1; this number is (slightly) larger than the number of in-
variant subspaces which have each at least one unit eigenvalue.
Note that in the bottom panels the number of eigenvalues with
|λj | = 1 is artificially reduced to 200 in order to have a better
scale on the vertical axis. The correct number of those eigen-
values corresponds to j/N = 8.195×10−4 (3.102×10−3) which
is strongly outside the vertical panel scale.

we may say that the eigenstates related to such a circu-
lar structure corresponds to quasi-isolated communities,
being similar to orbits in a vicinity of intermittency re-
gion, where the information circulates mainly inside the
community with only a very little flow outside of it.

The eigenstates of G and G∗ with |λ| being unity or
close to unity are shown in Figure 3. For the PageRank P
(CheiRank P ∗) we compare its dependence on the corre-
sponding index K (K∗) with the PageRank (CheiRank) of
the Wikipedia network analyzed in [5,11,15] which size N
(number of links N�) is by a factor of 10 (20) smaller.
Surprisingly we find that the PageRank P (K) of Twitter,
approximated by the algebraic decay P (K) = a/Kβ, has
a slower drop as compared to Wikipedia case. Indeed, we
have β = 0.540 ± 0.004 (a = 0.00054 ± 0.00002) for the
PageRank of Twitter in the range 1 ≤ log10 K ≤ 6 (simi-
lar value as in [20] for the range log10 K ≤ 5.5) while we
have β = 0.767 ± 0.0005 (a = 0.0086 ± 0.00035) for the
same range of PageRank of Wikipedia network. Also we
have a sharper drop of CheiRank with β = 0.857 ± 0.003
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Fig. 3. (Color online) The left (right) panel shows the Page-
Rank P (CheiRank P ∗) versus the corresponding rank in-
dex K (K∗) for the Google matrix of Twitter at the damp-
ing parameter α = 0.85 (thick black curve); for comparison
the PageRank (CheiRank) of the Google matrix of Wikipedia
network [5] is shown by the gray curve at same α. The col-
ored thin curves (shifted down by factor 1000 for clarity)
show the modulus of four core space eigenvectors |ψi| (|ψ∗

i |)
of S (S∗) versus their own ranking indexes Ki (K∗

i ). Red
and green lines are the eigenvectors corresponding to the two
largest core space eigenvalues (in modulus) λ1 = 0.99997358,
λ2 = 0.99932634 (λ1 = 0.99997002, λ2 = 0.99994658); blue
and pink lines are the eigenvectors corresponding to the two
complex eigenvalues λ151 = 0.09032572 + i 0.90000530, λ161 =
−0.47504961+ i 0.76576321 (λ457 = 0.38070896+ i 0.39207668,
λ105 = −0.45794117+ i 0.80825210). Eigenvalues and eigenvec-
tors are obtained by the Arnoldi method with Arnoldi dimen-
sion 640 as for the data in Figure 2.

(a = 0.0148 ± 0.0004) compared to those of PageRank of
Twitter while for CheiRank of Wikipedia network we find
an opposite tendency (β = 0.620 ± 0.001, a = 0.0015 ±
0.00002) in the same index range. Thus for Twitter net-
work the PageRank is more delocalized compared to
CheiRank (e.g. P (1) < P ∗(1)) while usually one has the
opposite relation (e.g. for Wikipedia P (1) > P ∗(1)). We
attribute this to the enormously high inter-connectivity
between the top PageRank nodes K ≤ 104 which is well
visible in Figure 1.

We should also point out a specific property of
PageRank and CheiRank vectors which has been already
noted in [21]: there are some degenerate plateaus in
P (K(i)) or P ∗(K∗(i)) with absolutely the same values
of P or P ∗ for a few nodes. For example, for the Twitter
network we have the appearance of the first degenerate
plateau at P = 7.639 × 10−7 for 196489 ≤ K ≤ 196491.
As a result the PageRank index K can be ordered in var-
ious ways. We attribute this phenomenon to the fact that
the matrix elements of G are composed from rational ele-
ments that leads to such type of degeneracy. However, the
sizes of such degenerate plateaus are relatively short and
they do not influence significantly the PageRank order.
Indeed, on large scales the curves of P (K), P ∗(K∗) are
rather smooth being characterized by a finite slope (see
Fig. 3). Similar type of degenerate plateaus exits for net-
works of Wikipedia, Cambridge and Oxford Universities.

Other eigenvectors of G and G∗ of Twitter network are
shown by color curves in Figure 3. We see that the shape
of eigenstates with λ1 and λ2, shown as a function of their
monotonic decrease index Ki, is well pronounced in P (K).
Indeed, these vectors have a rather small gap separating
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Fig. 4. (Color online) Fraction of invariant subspaces F with
dimensions larger than d as a function of the rescaled variable
x = d/〈d〉, where 〈d〉 is the average subspace dimension. Left
(right) panel corresponds to the matrix S (S∗) for the Twitter
network (thick red curve) with 〈d〉 = 2.30 (2.72). The tail can
be fitted for x ≥ 0.5 (x ≥ 10) by the power law F (x) = a/xb

with a = 0.092±0.011 and b = 2.60±0.07 (a = 0.0125±0.0008
and b = 0.94±0.02). The thin black line is F (x) = (1+2x)−1.5

which corresponds to the universal behavior of F (x) found in
reference [11] for the WWW of British university networks.

them from unity (|Δλ| ∼ 2 × 10−5) and thus they signif-
icantly contribute to the PageRank at α = 0.85. At the
same time we note that the gap values are significantly
smaller than those for certain British Universities (see e.g.
Fig. 4 in [11]). We argue that a larger number of links ξ� for
Twitter is at the origin of moderate spectral gap between
the core space spectrum and λ = 1. The eigenvectors of G∗
have less slope variations and their decay is rather similar
to the decay of CheiRank vector P ∗(K∗).

Finally, in Figure 4 we use the approach developed
in [11] and analyze the dependence of the fraction of in-
variant subspaces F (x) with dimensions larger than d on
the rescaled variable x = d/〈d〉 where 〈d〉 is the average
subspace dimension. In [11] it was found that the British
University networks are characterized by a universal func-
tional distribution F (x) = 1/(1 + 2x)3/2. For the Twitter
network we find significant deviations from such a depen-
dence as it is well seen in Figure 4. The tail can be fitted
by the power law F (x) ∼ x−b with the exponent b = 2.60
for G and b = 0.94 for G∗. It seems that with the in-
crease of number of links per node ξ� we start to see devi-
ations from the above universal distribution: it is visible
for Wikipedia network (see Fig. 7 in [11]) and becomes
even more pronounced for the Twitter network. We as-
sume that a large value of ξ� for Twitter leads to a change
of the percolation properties of the network generating
other type of distribution F which properties should be
studied in more detail in further.

4 CheiRank versus PageRank of Twitter

As discussed in [5,12,15] each network node i has its own
PageRank index K(i) and CheiRank index K∗(i) and,
hence, the ranking of network nodes becomes a two-dimen-
sional (2DRanking). The distribution of Twitter nodes
in the PageRank-CheiRank plane (K, K∗) is shown in
Figure 5 (left column) in comparison to the case of the
Wikipedia network from [5,15] (right column). There are
much more nodes inside the square of size K, K∗ ≤ 1000

Fig. 5. (Color online) Density of nodes W (K,K∗) on
PageRank-CheiRank plane (K,K∗) for Twitter (left panels)
and Wikipedia (right panels). Top panels show density in the
range 1 ≤ K,K∗ ≤ 1000 with averaging over cells of size
10 × 10; middle panels show the range 1 ≤ K,K∗ ≤ 104 with
averaging over cells of size 100×100; bottom panels show den-
sity averaged over 100 × 100 logarithmically equidistant grids
for 0 ≤ lnK, lnK∗ ≤ lnN , the density is averaged over all
nodes inside each cell of the grid, the normalization condition
is

∑
K,K∗ W (K,K∗) = 1. Color varies from blue at zero value

to red at maximal density value. At each panel the x-axis cor-
responds to K (or lnK for the bottom panels) and the y-axis
to K∗ (or lnK∗ for the bottom panels).

for Twitter as compared to the case of Wikipedia. For the
squares of larger sizes the densities become comparable.
The global logarithmic density distribution is shown in the
bottom panels of Figure 5 for both networks. The two den-
sities have certain similarities in their distributions: both
have a maximal density along a certain ridge along a line
ln K∗ = ln K+ const. However, for the Twitter network
we have a significantly larger number of nodes at small
values K, K∗ < 1000 while in the Wikipedia network this
area is practically empty.

The striking difference between the Twitter and
Wikipedia networks is in the number of points NK , lo-
cated inside a square area of size K×K in the PageRank-
CheiRank plane. This is directly illustrated in Figure 6:
at K = 500 there are 40 times more nodes for Twitter,
at K = 1000 we have this ratio around 6. We note that a
similar dependence NK was studied in [15] for Wikipedia,
British Universities and Linux Kernel networks (see Fig. 8
there), where in all cases the initial growth of NK was
significantly smaller as compared to the Twitter network
considered here.
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Fig. 7. (Color online) Histogram of frequency appearance of
correlator components κi = NP (K(i))P ∗(K∗(i)) for networks
of Twitter (blue) and Wikipedia (red). For the histogram the
whole interval 10−10 ≤ κi ≤ 102 is divided in 240 cells of equal
size in logarithmic scale.

Another important characteristics of 2DRanking is the
correlator κ (2) between PageRank and CheiRank vectors.
We find for Twitter the value κ = 112.60 which is by a
factor 30−60 larger compared to this value for Wikipedia
(4.08), Cambridge and Oxford University networks of 2006
considered in [5,11,15]. The origin of such a large value
of κ for the Twitter network becomes more clear from the
analysis of the distribution of individual node contribu-
tions κi = NP (K(i))P ∗(K∗(i)) in the correlator sum (2)
shown in Figure 7. We see that there are certain nodes
with very large κi values and even if there are only few of
them still they give a significant contribution to the total
correlator value. We note that there is a similar feature for
the Cambridge University network in 2011 as discussed
in [15] even if there one finds a smaller value κ = 30.
Thus we see that for certain nodes we have strongly cor-
related large values of P (K(i)) and P ∗(K∗(i)) explaining
the largest correlator value κ among all networks studied
up to now. We will argue below that this is related to a
very strong inter-connectivity between top K PageRank
users of the Twitter network.

5 Discussion

In this work we study the statistical properties of the
Google matrix of Twitter network including its spectrum,
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Fig. 8. (Color online) Left panel: dependence of the area den-
sity gK = NG/K

2 of nonzero elements of the adjacency ma-
trix among top PageRank nodes on the PageRank index K for
Twitter (blue curve) and Wikipedia (red curve) networks, data
are shown in linear scale. Right panel: linear density NG/K of
same matrix elements shown for the whole range ofK in log-log
scale for Twitter (blue curve), Wikipedia (red curve), Oxford
University 2006 (magenta curve) and Cambridge University
2006 (green curve) (curves from top to bottom at K = 100).

eigenstates and 2DRanking of PageRank and CheiRank
vectors. The comparison with Wikipedia shows that for
Twitter we have much stronger correlations between Page-
Rank and CheiRank vectors. Thus for the Twitter net-
work there are nodes which are very well known by the
community of users and at the same time they are very
communicative being strongly connected with top Page-
Rank nodes. We attribute the origin of this phenomenon
to a very strong connectivity between top K nodes for
Twitter as compared to the Wikipedia network. This prop-
erty is illustrated in Figure 8 where we show the number
of nonzero elements NG of the Google matrix, taken at
α = 1 and counted in the top left corner with indexes
being smaller or equal to K (elements in columns of dan-
gling nodes are not taken into account). We see that for
K ≤ 1000 we have for Twitter the 2D density of nonzero
elements to be on a level of 70% while for Wikipedia this
density is by a factor 10 smaller. For these two networks
the dependence of NG on K at K ≤ 1000 is well de-
scribed by a power law NG = aN b with a = 0.72 ± 0.01,
b = 1.993 ± 0.002 for Twitter and a = 2.10 ± 0.01,
b = 1.469 ± 0.001 for Wikipedia. Thus for Twitter the
top K ≤ 1000 elements fill about 70% of the matrix and
about 20% for size K ≤ 104. For Wikipedia the filling
factor is smaller by a factor 10−20. An effective number
of links per node for top K nodes is given by the ratio
NG/K which is equal to ξ� at K = N . The dependence
of this ratio on K is shown in Figure 8 in right panel. We
see a striking difference between Twitter network and net-
works of Wikipedia, Cambridge and Oxford Universities.
For Twitter the maximum value of NG/K is by two or-
ders of magnitude larger as compared to the Universities
networks, and by a factor 20 larger than for Wikipedia.
Thus the Twitter network is characterized by a very strong
connectivity between top PageRank nodes which can be
considered as the Twitter elite [20].

It is interesting to note that for K ≤ 20 the Wikipedia
network has a larger value of the ratio NG/K2 com-
pared to the Twitter network, but the situation is changed
for larger values of K > 20. In fact the first top 20
nodes of Wikipedia network are mainly composed from
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world countries (see [5]) which are strongly interconnected
due to historical reasons. However, at larger values of K
Wikipedia starts to have articles on various subjects and
the ratio NG/K2 drops significantly. On the other hand,
for the Twitter network we see that a large group of very
important persons (VIP) with K < 104 is strongly in-
terconnected. This dominant VIP structure has certain
similarities with the structure of transnational corpora-
tions and their ownership network dominated by a small
tightly-knit core of financial institutions [22]. The exis-
tence of a solid phase of industrially developed, strongly
linked countries is also established for the world trade
network obtained from the United Nations COMTRADE
data base [23]. It is possible that such super concentration
of links between top Twitter users results from a global
increase of number of links per node characteristic for such
type of social networks. Indeed, the recent analysis of the
Facebook network shows a significant decrease of degree of
separation during the time evolution of this network [24].
Also the number of friendship links per node reaches as
high value as ξ� ≈ 100 at the current Facebook snapshot
(see Tab. 2 in [24]). This significant growth of ξ� during
the time evolution of social networks leads to an enormous
concentration of links among society elite at top Page-
Rank users and may significantly influence the process of
strategic decisions on such networks in the future. The
growth of ξ� leads also to a significant decrease of the ex-
ponent β of algebraic decay of PageRank which is known
to be β ≈ 0.9 for the WWW (see e.g. [3,4,7]) while for
the Twitter network we find β ≈ 0.5 (see also [20]). This
tendency may be a precursor of a delocalization transition
of the PageRank vector emerging at a large values of ξ�.
Such a delocalization would lead to a flat PageRank prob-
ability distribution and a strong drop of the efficiency of
the information retrieval process. It is known that for the
Ulam networks of dynamical maps such a delocalization
indeed takes place under certain conditions [19,25].

Our results show that the strong inter-connectivity of
VIP users with about top 1000 PageRank indexes domi-
nates the information flow on the network. This result is
in line with the recent studies of opinion formation of the
Twitter network [20] showing that the top 1300 PageRank
users of Twitter can impose their opinion for the whole
network of 41 million size. Thus we think that the statis-
tical analysis presented here plays a very important role
for a better understanding of decision making and opinion
formation on the modern social networks.

The present size of the Twitter network is by a fac-
tor 3.5 larger as compared to its size in 2009 analyzed
in this work. Thus it would be very interesting to extend
the present analysis to the current status of the Twitter
network which now includes all layers of the world soci-
ety. Such an analysis will allow to understand in an better
way the process of information flow and decision making
on social networks.

This work is supported in part by the EC FET Open project
“New tools and algorithms for directed network analysis”
(NADINE No. 288956). We thank S.Vigna for providing us a
friendly access to the Twitter dataset1 [2]. We also acknowledge
the France-Armenia collaboration grant CNRS/SCS No. 24943
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Abstract. We study the time evolution of ranking and spectral properties of the Google matrix of English
Wikipedia hyperlink network during years 2003 - 2011. The statistical properties of ranking of Wikipedia
articles via PageRank and CheiRank probabilities, as well as the matrix spectrum, are shown to be stabi-
lized for 2007 - 2011. A special emphasis is done on ranking of Wikipedia personalities and universities. We
show that PageRank selection is dominated by politicians while 2DRank, which combines PageRank and
CheiRank, gives more accent on personalities of arts. The Wikipedia PageRank of universities recovers 80
percents of top universities of Shanghai ranking during the considered time period.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 89.20.Hh World Wide Web, Internet

1 Introduction

At present Wikipedia [1] became the world largest En-
cyclopedia with open public access to its contain. A re-
cent review [2] represents a detailed description of pub-
lications and scientific research of this modern Library
of Babel, which stores an enormous amount of informa-
tion, approaching the one described by Jorge Luis Borges
[3]. The hyperlinks of citations between Wikipedia articles
represent a directed network which reminds the structure
of the World Wide Web (WWW). Hence, the mathemat-
ical tools developed for WWW search engines, based on
the Markov chains [4], Perron-Frobenius operators [5] and
the PageRank algorithm of the corresponding Google ma-
trix [6,7], give solid mathematical grounds for analysis of
information flow on the Wikipedia network. In this work
we perform the Google matrix analysis of Wikipedia net-
work of English articles extending the results presented
in [8,9],[10,11]. The main new element of this work is
the study of time evolution of Wikipedia network during
the years 2003 to 2011. We analyze how the ranking of
Wikipedia articles and the spectrum of the Google matrix
G of Wikipedia are changed during this period.

The directed network of Wikipedia articles is const-
ructed in a usual way: a directed link is formed from an
article j to an article i when j quotes i and an element Aij

of the adjacency matrix is taken to be unity when there is
such a link and zero in absence of link. Then the matrix
Sij of Markov transitions is constructed by normalizing
elements of each column to unity (

∑

j Sij = 1) and re-

placing columns with only zero elements (dangling nodes)

by 1/N , with N being the matrix size. Then the Google
matrix of the network takes the form [6,7]:

Gij = αSij + (1− α)/N . (1)

The damping parameter α in the WWW context describes
the probability (1−α) to jump to any node for a random
surfer. For WWW the Google search engine uses α ≈ 0.85
[7]. The matrix G belongs to the class of Perron-Frobenius
operators [5,7], its largest eigenvalue is λ = 1 and other
eigenvalues have |λ| ≤ α. The right eigenvector at λ = 1,
which is called the PageRank, has real nonnegative ele-
ments P (i) and gives a probability P (i) to find a random
surfer at site i. It is possible to rank all nodes in a de-
creasing order of PageRank probability P (K(i)) so that
the PageRank index K(i) counts all N nodes i according
their ranking, placing the most popular articles or nodes
at the top values K = 1, 2, 3....

Due to the gap 1−α ≈ 0.15 between the largest eigen-
value λ = 1 and other eigenvalues the PageRank algo-
rithm permits an efficient and simple determination of the
PageRank by the power iteration method [7]. It is also
possible to use the powerful Arnoldi method [12,13],[14]
to compute efficiently the eigenspectrum λi of the Google
matrix:

N
∑

k=1

Gjkψi(k) = λiψi(j) . (2)

The Arnoldi method allows to find a several thousands
of eigenvalues λi with maximal |λ| for a matrix size N
as large as a few tens of millions [10,11], [14,15]. Usually,

http://arxiv.org/abs/1304.6601v1
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at α = 1 the largest eigenvalue λ = 1 is highly degen-
erate [15] due to many invariant subspaces which define
many independent Perron-Frobenius operators providing
(at least) one eigenvalue λ = 1.

In addition to a given directed network Aij it is use-
ful to analyze an inverse network with inverted direction
of links with elements of adjacency matrix Aij → Aji.
The Google matrix G∗ of the inverse network is then con-
structed via corresponding matrix S∗ according to the re-
lations (1) using the same value of α as for the G matrix.
This time inversion approach was used in [16,17] but the
statistical properties and correlations between direct and
inversed ranking were not analyzed there. In [18], on an
example of the Linux Kernel network, it was shown thus
this approach allows to obtain an additional interesting
characterization of information flow on directed networks.
Indeed, the right eigenvector of G∗ at eigenvalue λ = 1
gives a probability P ∗(i), called CheiRank vector [8]. It
determines a complementary rank index K∗(i) of network
nodes in a decreasing order of probability P ∗(K∗(i)) [8,
9],[10,18]. It is known that the PageRank probability is
proportional to the number of ingoing links characteriz-
ing how popular or known is a given node. In a similar
way the CheiRank probability is proportional to the num-
ber of outgoing links highlighting the node communicativ-
ity (see e.g. [7,19], [20,21],[8,9]). The statistical properties
of distribution of indexes K(i),K∗(i) on the PageRank-
CheiRank plane are described in [9].

In this work we apply the above mathematical meth-
ods to the analysis of time evolution of Wikipedia network
ranking using English Wikipedia snapshots dated by De-
cember 31 of years 2003, 2005, 2007, 2009, 2011. In ad-
dition we use the snapshot of August 2009 (200908) ana-
lyzed in [8]. The parameters of networks with the number
of articles (nodes) N , number of links Nℓ and other in-
formation are given in Tables 1,2 with the description of
notations given in Appendix.

The paper is composed as following: the statistical
properties of PageRank and CheiRank are analyzed in
Section 2, ranking of Wikipedia personalities and univer-
sities are considered in Sections 3, 4 respectively, the prop-
erties of spectrum of Google matrix are considered in Sec-
tion 5, the discussion of the results is presented in Section
6, Appendix Section 7 gives network parameters.

2 CheiRank versus PageRank

The dependencies of PageRank and CheiRank probabili-
ties P (K) and P ∗(K∗) on their indexes K, K∗ at different
years are shown in Fig. 1. The top positions of K are oc-
cupied by countries starting from United States while at
the top positions of K∗ we find various listings (e.g. ge-
ographical names, prime ministers etc.; in 2011 we have
appearance of listings of listings). Indeed, the countries
accumulate links from all types of human activities and
nature, that make them most popular Wikipedia articles,
while listings have the largest number of outgoing links
making them the most communicative articles.
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Fig. 1. PageRank probability P (K) (left panel) and CheiRank
probability P

∗(K∗) (right panel) are shown as a function of the
corresponding rank indexes K and K

∗ for English Wikipedia
articles at years 2003, 2005, 2007, 200908, 2009, 2011; here the
damping factor is α = 0.85.

The data of Fig. 1 show that the global behavior of
P (K) remains stable from 2007 to 2011. The probability
P ∗(K∗) is stable in the time interval 2007 - 2009 while at
2011 we see the appearance of peak at 1 ≤ K∗ < 10 that
is related to introduction of listings of listings which were
absent at earlier years. At the same time the behavior of
P ∗(K∗) in the range 10 ≤ K∗ ≤ 106 remains stable for
2007 - 2011.

Each article i has its PageRank and CheiRank indexes
K(i), K∗(i) so that all articles are distributed on two-
dimensional plane of PageRank-CheiRank indexes. Fol-
lowing [8,9] we present the density of articles in the 2D
plane (K,K∗) in Fig. 2. The density is computed for 100×
100 logarithmically equidistant cells which cover the whole
plane (K,K∗) for each year. The density distribution is
globally stable for years 2007-2011 even if there are arti-
cles which change their location in 2D plane. We see an
appearance of a mountain like ridge of probability along a
line lnK∗ ≈ lnK + 4.6 that indicate the presence of cor-
relation between P (K(i)) and P ∗(K∗(i)). Following [8,9,
18] we characterize the interdependence of PageRank and
CheiRank vectors by the correlator

κ = N

N
∑

i=1

P (K(i))P ∗(K∗(i))− 1 . (3)

We find the following values of the correlator at vari-
ous time slots: κ = 2.837(2003), 3.894(2005), 4.121(2007),
4.084(200908), 6.629(2009), 5.391(2011). During that pe-
riod the size of the network increased almost by 10 times
while κ increased less than 2 times. This confirms the sta-
bility of the correlator κ during the time evolution of the
Wikipedia network.

In the next two Sections we analyze the time variation
of ranking of personalities and universities.

3 Ranking of personalities

To analyze the time evolution of ranking of Wikipedia
personalities (persons or humans) we chose the top 100
persons appearing in the ranking list of Wikipedia 200908
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Fig. 2. Density of Wikipedia articles in the CheiRank ver-
sus PageRank plane at different years. Color is proportional to
logarithm of density changing from minimal nonzero density
(dark) to maximal one (white), zero density is shown by black
(distribution is computed for 100×100 cells equidistant in log-
arithmic scale; bar shows color variation of natural logarithm
of density); left column panels are for years 2003, 2007, 200908
and right column panels are for 2005, 2009, 2011 (from top to
bottom).

given in [8] in order of PageRank, CheiRank and 2DRank.
We remind that 2DRankK2 is obtained by counting nodes
in order of their appearance on ribs of squares in (K,K∗)
plane with their size growing from K = 1 to K = N [8].

The distributions of personalities in PageRank-CheiRank
plane is shown at various time slots in Fig. 3. There are
visible fluctuations of distribution of nodes for years 2003,
2005 when the Wikipedia size has rapid growth. For other
years the distribution of top 100 nodes of PageRank and
2DRank is stable even if individual nodes change their
ranking. For top 100 of CheiRank the fluctuations remain
strong during all years. Indeed, the number of outgoing
links is more easy to be modified by authors writing a
given article, while a modification of ingoing links depends
on authors of other articles.

In Fig. 3 we also show the distribution of top 100 per-
sonalities from Hart’s book [22] (the list of names is also
available at the web page [8]). This distribution also re-
mains stable in years 2007-2011. It is interesting to note
that while top PageRank and 2DRank nodes form a kind

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

K
*

K

(a)

2003
2005
2007

200908
2009
2011

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

K
*

K

(b)

2003
2005
2007

200908
2009
2011

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

K
*

K

(c)

2003
2005
2007

200908
2009
2011

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

K
*

K

(d)

2003
2005
2007

200908
2009
2011

Fig. 3. Change of locations of top-rank persons of Wikipedia
in K-K* plane. Each list of top ranks is determined by data
of top 100 personalities of time slot 200908 in corresponding
rank. Data sets are shown for (a) PageRank, (b) CheiRank, (c)
2DRank, (d) rank from Hart [22].

of droplet in (K,K∗) plane, the distribution of Hart’s per-
sonalities approximately follows the ridge along the line
lnK∗ ≈ lnK + 4.6.

The time evolution of top 10 personalities of slot 200908
is shown in Fig. 4 for PageRank and 2DRank. For PageR-
ank the main part of personalities keeps their rank posi-
tion in time, e.g. G.W.Bush remains at first-second po-
sition. B.Obama significantly improves his ranking as a
result of president elections. There are strong variations
for Elizabeth II which we relate to modification of arti-
cle name during the considered time interval. We also see
a steady improvement of ranking of C.Linnaeus that we
attribute to a growth of various botanic descriptions and
listings at Wikipedia articles which quote his name. For
2DRank we observe stronger variations of K2 index with
time. Such a politician as R.Nixon has increasing K2 in-
dex with time since the period of his presidency goes in
the past. At the same time singers and artists remain at
approximately constant level of K2.

In [8] it was pointed out that the top personalities of
PageRank are dominated by politicians while for 2DRank
the dominant component of human activity is represented
by artists. We analyze the time evolution of the distri-
bution of top 30 personalities over 6 categories of human
activity (politics, arts, science, religion, sport and etc (or
others)). The category etc contains only C.Columbus. The
results are presented in Fig. 5. They clearly show that
the PageRank personalities are dominated by politicians
whose percentage increases with time, while the percent
of arts decreases. For 2DRank we see that the arts are
dominant even if their percentage decreases with time.
We also see the appearance of sport which is absent in
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Fig. 4. Time evolution of top 10 personalities of year 200908
in indexes of PageRank K (a) and 2DRank K2 (b); B.Obama
is added in panel (a).

PageRank. The mechanism of the qualitative ranking dif-
ferences between two ranks is related to the fact that
2DRank takes into account via CheiRank a contribution
of outgoing links. Due to that singers, actors, sportsmen
increase their ranking since they are listed in various mu-
sic albums, movies sport competition results. Due to that
the component of arts gets higher positions in 2DRank in
contrast to politics dominance in PageRank. Thus the two-
dimensional ranking on PageRank-CheiRank plane allows
to select qualities of nodes according to their popularity
and communicativity.

4 Ranking of universities

The local ranking of top 100 universities is shown in Fig. 6
for years 2003, 2005, 2007 and in Fig. 7 for 2009, 200908,
2011. The local ranking is obtained by selecting top 100
universities appearing in PageRank listing so that they get
their university ranking K from 1 to 100. The same proce-
dure is done for CheiRank listing of universities obtaining
their local CheiRank index K∗ from 1 to 100. Those uni-
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Fig. 5. Left panel: distribution of top 30 PageRank personal-
ities over 6 activity categories at various years of Wikipedia.
Right panel: distribution of top 30 2DRank personalities over
the same activity categories at same years. Categories are pol-
itics, art, science, religion, sport, etc (other). Color shows the
number of personalities for each activity expressed in percents.

versities which enter inside 100× 100 square on the local
index plane (K,K∗) are shown in Figs. 6, 7.

The data show that the top PageRank universities are
rather stable in time, e.g. U Harvard is always on the first
top position. At the same time the positions in K∗ are
strongly changing in time. To understand the origin of this
variations in CheiRank we consider the case of U Cam-
bridge. Its Wikipedia article in 2003 is rather short but it
contains the list of all 31 Colleges with direct links to their
corresponding articles. This leads to a high position of U
Cambridge with university K∗ = 4 in 2003 (Fig. 8). How-
ever, with time the direct links remain only to about 10
Colleges while the whole number of Colleges are presented
by a list of names without links. This leads to a significant
increase of index up to K∗ ≈ 40 at Dec 2009. However,
at Dec 2011 U Cambridge again improves significantly its
CheiRank obtaining K∗ = 2. The main reason of that
is the appearance of section of “Notable alumni and aca-
demics” which provides direct links to articles about out-
standing scientists studied and/or worked at U Cambridge
that leads to second position at K∗ = 2 among all uni-
versities. We note that in 2011 the top CheiRank Univer-
sity is George Mason University with university K∗ = 1.
The main reason of this high ranking is the presence of
detailed listings of alumni in politics, media, sport with
direct links to articles about corresponding personalities
(including former director of CIA). These two examples
show that the links, kept with a large number of univer-
sity alumni, significantly increase CheiRank position of
university. We note that artistic and politically oriented
universities usually preserve more links with their alumni.

The time evolution of global ranking of top 10 univer-
sities of year 200908 for PageRank and 2DRank is shown
in Fig. 8. The results show the stability of PageRank or-
der with a clear tendency of top universities (e.g. Harvard)
to go with time to higher and higher top positions of K.
Thus for U Harvard the global value of K changes from
K ≈ 300 in 2003 to K ≈ 100 in 2011, while the whole size
N of the Wikipedia network increases almost by a fac-
tor 10 during this time interval. Since Wikipedia ranks all
human knowledge, the stable improvement of PageRank
indexes of universities reflects the global growing impor-
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tance of universities in the world of human activity and
knowledge.

The time evolution of the same universities in 2DRank
remains stable in time showing certain interchange of their
ranking order. We think that an example of U Cambridge
considered above explains the main reasons of these fluc-
tuations. In view of 10 times increase of the whole network
size during the period 2003 - 2011 the average stability of
2DRank of universities also confirms the significant im-
portance of their place in human activity.

Finally we compare the Wikipedia ranking of universi-
ties in their local PageRank index K with those of Shang-
hai university ranking [23]. In the top 10 of Shanghai uni-
versity rank the Wikipedia PageRank recovers 9 (2003), 9
(2005), 8 (2007), 7 (2009), 7 (2011). This shows that the
Wikipedia ranking of universities gives the results being
very close to the real situation. A small decrease of overlap
with time can be attributed to earlier launched activity of
leading universities on Wikipedia.

5 Google matrix spectrum

Finally we discuss the time evolution of the spectrum of
Wikipedia Google matrix taken at α = 1. We perform the
numerical diagonalization based on the Arnoldi method
[12,13] using the additional improvements described in
[14,15] with the Arnold dimension nA = 6000. The Google
matrix is reduced to the form

S =

(

Sss Ssc

0 Scc

)

(4)

where Sss describes disjoint subspaces Vj of dimension dj
invariant by applications of S; Scc depicts the remaining
part of nodes forming the wholly connected core space.
We note that Sss is by itself composed of many small di-
agonal blocks for each invariant subspace and hence those
eigenvalues can be efficiently obtained by direct (“exact”)
numerical diagonalization. The total subspace size Ns, the
number of independent subspaces Nd, the maximal sub-
space dimension dmax and the number N1 of S eigenvalues
with λ = 1 are given in Table 2 (See also Appendix). The
spectrum and eigenstates of the core space Scc are de-
termined by the Arnoldi method with Arnoldi dimension
nA giving the eigenvalues λi of Scc with largest modulus.
Here we restrict ourselves to the statistical analysis of the
spectrum λi. The analysis of eigenstates ψi (Gψi = λiψi),
which has been done in [11] for the slot 200908, is left for
future studies.

The spectrum for all Wikipedia time slots is shown
in Fig. 9 for G and in Fig. 10 for G∗. We see that the
spectrum remains stable for the period 2007 - 2001 even if
there is a small difference of slot 200908 due to a slightly
different cleaning link procedure (see Appendix). For the
spectrum of G∗ in 2007 - 2001 we observe a well pro-
nounced 3-6 arrow star structure. This structure is very
similar to those found in random unistochastic matrices of
side 3-4 [24] (see Fig.4 therein). This fact has been pointed
in [11] for the slot 200908. Now we see that this is a generic
phenomenon which remains stable in time. This indicates
that there are dominant groups of 3-4 nodes which have
structure similar to random unistochastic matrices with
strong ties between 3-4 nodes and various random permu-
tations with random hidden complex phases. The spectral
arrow star structure is significantly more pronounce for
the case of G∗ matrix. We attribute this to more signif-
icant fluctuations of outgoing links that probably makes
sectors of G∗ to be more similar to elements of unistochas-
tic matrices. A further detailed analysis will be useful to
understand these arrow star structure and its links with
various communities inside Wikipedia.

As it is shown in [11] the eigenstates of G and G∗

select certain well defined communities of the Wikipedia
network. Such an eigenvector detection of the communi-
ties provides a new method of communities detection in
addition to more standard methods developed in network
science and described in [25]. However, the analysis of
eigenvectors represents a separate detailed research and in
this work we restrict ourselves to PageRank and CheiRank
vectors.
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Fig. 9. Spectrum of eigenvalues λ of the Google matrix G of
Wikipedia at different years. Red dots are core space eigen-
values, blue dots are subspace eigenvalues and the full green
curve shows the unit circle. The core space eigenvalues were
calculated by the projected Arnoldi method with Arnoldi di-
mensions nA = 6000.

Finally we note that the fraction of isolated subspaces
is very small for G matrix. It is increased approximately
by a factor of order 10 forG∗ but still it remains very small
compared to the networks of UK universities analyzed in
[15]. This fact reflects a strong connectivity of network of
Wikipedia articles.

6 Discussion

In this work we analyzed the time evolution of ranking of
network of English Wikipedia articles. Our study demon-
strates the stability of such statistical properties as PageR-
ank and CheiRank probabilities, the article density distri-
bution in PageRank-CheiRank plane during the period
2007 - 2011. The analysis of human activities in different
categories shows that PageRank gives main accent to pol-
itics while the combined 2DRank gives more importance
to arts. We find that with time the number of politicians
in the top positions increases. Our analysis of ranking of
universities shows that on average the global ranking of
top universities goes to higher and higher positions. This
clearly marks the growing importance of universities for
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Fig. 10. Same as in Fig. 9 but for the spectrum of matrix G
∗.

the whole range of human activities and knowledge. We
find that Wikipedia PageRank recovers 70 - 80 % of top
10 universities from Shanghai ranking [23]. This confirms
the reliability of Wikipedia ranking.

We also find that the spectral structure of the Wikipedia
Google matrix remains stable during the time period 2007
-2011 and show that its arrow star structure reflects cer-
tain features of small size unistochastic matrices.
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7 Appendix

The tables with all network parameters used in this work
are given in the text of the paper. The notations used in
the tables are: N is network size, Nℓ is the number of
links, nA is the Arnoldi dimension used for the Arnoldi
method for the core space eigenvalues, Nd is the number
of invariant subspaces, dmax gives a maximal subspace di-
mension, Ncirc. notes number of eigenvalues on the unit
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N Nℓ nA

2003 455436 2033173 6000
2005 1635882 11569195 6000
2007 2902764 34776800 6000
2009 3484341 52846242 6000
200908 3282257 71012307 6000
2011 3721339 66454329 6000

Table 1. Parameters of all Wikipedia networks at different
years considered in the paper.

Ns Nd dmax Ncirc. N1

2003 15 7 3 11 7
2003∗ 940 162 60 265 163
2005 152 97 4 121 97
2005∗ 5966 1455 1997 2205 1458
2007 261 150 6 209 150
2007∗ 10234 3557 605 5858 3569
2009 285 121 8 205 121
2009∗ 11423 4205 134 7646 4221
200908 515 255 11 381 255
200908∗ 21198 5355 717 8968 5365
2011 323 131 8 222 131
2011∗ 14500 4637 1323 8591 4673

Table 2. G and G
∗ eigespectrum parameters for all Wikipedia

networks, year marks spectrum of G, year with star marks
spectrum of G∗.

circle with |λi| = 1, N1 notes number of unit eigenvalues
with λi = 1. We remark that Ns ≥ Ncirc. ≥ N1 ≥ Nd and
Ns ≥ dmax. The data for G are marked by the correspond-
ing year of the time slot, the data forG∗ are marked by the
year with a star. Links cleaning procedure eliminates all
redirects (nodes with one outgoing link), this procedure is
slightly different from the one used for the slot 200908 in
[8]. All data sets and high resolution figures are available
at the web page [26].
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Introduction

Wikipedia, the online collaborative encyclopedia, is an amazing

example of human collaboration for knowledge description,

characterization and creation. Like the Library of Babel, described

by Jorge Luis Borges [1], Wikipedia goes to accumulate the whole

human knowledge. Since every behavioral ‘footprint’ (log) is

recorded and open to anyone, Wikipedia provides great oppor-

tunity to study various types of social aspects such as opinion

consensus [2,3], language complexity [4], and collaboration

structure [5–7]. A remarkable feature of Wikipedia is its existence

in various language editions. In a first approximation we can

attribute each language to an independent culture, leaving for

future refinements of cultures inside one language. Although

Wikipedia has a neutral point of view policy, cultural bias or

reflected cultural diversity is inevitable since knowledge and

knowledge description are also affected by culture like other

human behaviors [8–11]. Thus the cultural bias of contents [12]

becomes an important issue. Similarity features between various

Wikipedia editions has been discussed at [13]. However, the cross-

cultural difference between Wikipedia editions can be also a

valuable opportunity for a cross-cultural empirical study with

quantitative approach. Recent steps in this direction, done for

biographical networks of Wikipedia, have been reported in [14].

Here we address the question of how importance (ranking) of an

article in Wikipedia depends on cultural diversity. In particular, we

consider articles about persons. For instance, is an important

person in English Wikipedia is also important in Korean

Wikipedia? How about French? Since Wikipedia is the product

of collective intelligence, the ranking of articles about persons is a

collective evaluation of the persons by Wikipedia users. For the

ranking of Wikipedia articles we use PageRank algorithm of Brin

and Page [15], CheiRank and 2Drank algorithms used in [16–18],

which allow to characterize the information flows with incoming

and outgoing links. We also analyze the distribution of top ranked

persons over main human activities attributed to politics, science,

art, religion, sport, etc (all others), extending the approach

developed in [17,19] to multiple cultures (languages). The

comparison of different cultures shows that they have distinct

dominance of these activities.

We attribute belongings of top ranked persons at each

Wikipedia language to different cultures (native languages) and

in this way construct the network of cultures. The Google matrix

analysis of this network allows us to find interconnections and

entanglement of cultures. We believe that our computational and

statistical analysis of large-scale Wikipedia networks, combined

with comparative distinctions of different languages, generates

novel insights on cultural diversity.

Methods

We consider Wikipedia as a network of articles. Each article

corresponds to a node of the network and hyperlinks between

articles correspond to links of the network. For a given network,

we can define adjacency matrix Aij . If there is a link (one or more

quotations) from node (article) j to node (article) i then Aij~1,

otherwise, Aij~0. The out-degree kout(j) is the number of links

from node j to other nodes and the in-degree kin(j) is the number

of links to node j from other nodes.
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Google matrix
The matrix Sij of Markov chain transitions is constructed from

adjacency matrix Aij by normalizing sum of elements of each

column to unity (Sij~Aij=
P

i Aij ,
P

i Sij~1) and replacing

columns with only zero elements ( dangling nodes) by 1=N, with N
being the matrix size. Then the Google matrix of this directed

network has the form [15,20]:

Gij~aSijz(1{a)=N: ð1Þ

In the WWW context the damping parameter a describes the

probability (1{a) to jump to any article (node) for a random

walker. The matrix G belongs to the class of Perron-Frobenius

operators, it naturally appears in dynamical systems [21]. The

right eigenvector at l~1, which is called the PageRank, has real

non-negative elements P(i) and gives a probability P(i) to find a

random walker at site i. It is possible to rank all nodes in a

decreasing order of PageRank probability P(K(i)) so that the

PageRank index K(i) sorts all N nodes i according their ranks. For

large size networks the PageRank vector and several other

eigenvectors can be numerically obtained using the powerful

Arnoldi algorithm as described in [22]. The PageRank vector can

be also obtained by a simple iteration method [20]. Here, we use

here the standard value of a~0:85 [20].

To rank articles of Wikipedia, we use three ranking algorithms

based on network structure of Wikipedia articles. Detail descrip-

tion of these algorithms and their use for English Wikipedia

articles are given in [17–19,22].

PageRank algorithm
PageRank algorithm is originally introduced for Google web

search engine to rank web pages of the World Wide Web (WWW)

[15]. Currently PageRank is widely used to rank nodes of network

systems including scientific papers [23], social network services

[24] and even biological systems [25]. Here we briefly outline the

iteration method of PageRank computation. The PageRank vector

P(i,t) of a node i at iteration t in a network of N nodes is given by

P(i,t)~
X

j

Gij P(j,t{1) , P(i,t)

~(1{a)=Nza
X

j

Aij P(j,t{1)=kout(j):
ð2Þ

The stationary state P(i) of P(i,t) is the PageRank of node i.
More detail information about PageRank algorithm is described in

[20]. Ordering all nodes by their decreasing probability P(i) we

obtain the PageRank index K(i).

The essential idea of PageRank algorithm is to use a directed

link as a weighted ‘recommendation’. Like in academic citation

network, more cited nodes are considered to be more important.

In addition, recommendations by highly ranked articles are more

important. Therefore high PageRank nodes in the network have

many incoming links from other nodes or incoming links from

high PageRank nodes.

CheiRank algorithm
While the PageRank algorithm uses information of incoming

links to node i, CheiRank algorithm considers information of

outgoing links from node i [16–18]. Thus CheiRank is comple-

mentary to PageRank in order to rank nodes in directed networks.

The CheiRank vector P�(i,t) of a node at iteration time t is given

by

P�(i)~(1{a)=Nza
X

j

Aji P�(j)=kin(j) ð3Þ

We also point out that the CheiRank is the right eigenvector with

maximal eigenvalue l~1 satisfying the equation P�(i)~P
j G�ij P�(j), where the Google matrix G� is built for the network

with inverted directions of links via the standard definition of G

given above.

Like for PageRank, we consider the stationary state P�(i) of

P�(i,t) as the CheiRank probability of node i at a~0:85. High

CheiRank nodes in the network have a large out-degree. Ordering

all nodes by their decreasing probability P�(i) we obtain the

CheiRank index K�(i).
We note that PageRank and CheiRank naturally appear in the

world trade network corresponding to import and export in a

commercial exchange between countries [26].

The correlation between PageRank and CheiRank vectors can

be characterized by the correlator k [16–18] defined by

k~N
X

i

P(i) P�(i){1 ð4Þ

The value of correlator for each Wikipedia edition is represented

in Table 1. All correlators are positive and distributed in the

interval (1,8).

2DRank algorithm
With PageRank P(i) and CheiRank P�(i) probabilities, we can

assign PageRank ranking K(i) and CheiRank ranking K�(i) to

each article, respectively. From these two ranks, we can construct

2-dimensional plane of K and K�. The two dimensional ranking

K2 is defined by counting nodes in order of their appearance on

ribs of squares in (K ,K�) plane with the square size growing from

K~1 to K~N [17]. A direct detailed illustration and description

of this algorithm is given in [17]. Briefly, nodes with high

PageRank and CheiRank both get high 2DRank ranking.

Table 1. Considered Wikipedia networks from language
editions: English (EN), French (FR), German (DE), Italian (IT),
Spanish (ES), Dutch (NL), Russian (RU), Hungarian (HU), Korean
(KO).

Edition NA NL k Date

EN 3920628 92878869 3.905562 Mar. 2012

FR 1224791 30717338 3.411864 Feb. 2012

DE 1396293 32932343 3.342059 Mar. 2012

IT 917626 22715046 7.953106 Mar. 2012

ES 873149 20410260 3.443931 Feb. 2012

NL 1034912 14642629 7.801457 Feb. 2012

RU 830898 17737815 2.881896 Feb. 2012

HU 217520 5067189 2.638393 Feb. 2012

KO 323461 4209691 1.084982 Feb. 2012

Here NA is number of articles, NL is number of hyperlinks between articles, k is
the correlator between PageRank and CheiRank. Date represents the time in
which data are collected.
doi:10.1371/journal.pone.0074554.t001
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Figure 1. PageRank probability P(K) as function of PageRank index K (a) and CheiRank probability P�(K�) as function of CheiRank
index K� (b). For a better visualization each PageRank P and CheiRank P� curve is shifted down by a factor 100 (EN), 101 (FR), 102 (DE), 103 (IT), 104

(ES), 105 (NL), 106 (RU), 107 (HU), 108 (KO).
doi:10.1371/journal.pone.0074554.g001

Figure 2. Density of Wikipedia articles in the PageRank ranking K versus CheiRank ranking K� plane for each Wikipedia edition. The
red points are top PageRank articles of persons, the green points are top 2DRank articles of persons and the cyan points are top CheiRank articles of
persons. Panels show: English (top-left), French (top-center), German (top-right), Italian (middle-left), Spanish (middle-center), Dutch (middle-left),
Russian (bottom-left), Hungarian (bottom-center), Korean (bottom-right). Color bars shown natural logarithm of density, changing from minimal
nonzero density (dark) to maximal one (white), zero density is shown by black.
doi:10.1371/journal.pone.0074554.g002
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Data Description

We consider 9 editions of Wikipedia including English (EN),

French (FR), German (DE), Italian (IT), Spanish (ES), Dutch (NL),

Russian (RU), Hungarian (HU) and Korean (KO). Since

Wikipedia has various language editions and language is a most

fundamental part of culture, the cross-edition study of Wikipedia

can give us insight on cultural diversity. The overview summary of

parameters of each Wikipedia is represented in Table 1.

The corresponding networks of these 9 editions are collected

and kindly provided to us by S.Vigna from LAW, Univ. of Milano.

The first 7 editions in the above list represent mostly spoken

European languages (except Polish). Hungarian and Korean are

additional editions representing languages of not very large

population on European and Asian scales respectively. They

allow us to see interactions not only between large cultures but also

to see links on a small scale. The KO and RU editions allow us to

compare views from European and Asian continents. We also note

that in part these 9 editions reflect the languages present in the EC

NADINE collaboration.

We understand that the present selection of Wikipedia editions

does represent a complete view of all 250 languages present at

Wikipedia. However, we think that this selection allows us to

perform the quantitative statistical analysis of interactions between

cultures making a first step in this direction.

To analyze these interactions we select the fist top 30 persons (or

articles about persons) appearing in the top ranking list of each of 9

editions for 3 ranking algorithms of PageRank, CheiRank and

2DRank. We select these 30 persons manually analyzing each list.

We attribute each of 30 persons to one of 6 fields of human

activity: politics, science, art, religion, sport, and etc (here ‘‘etc’’

includes all other activities). In addition we attribute each person

to one of 9 selected languages or cultures. We place persons

belonging to other languages inside the additional culture WR

(world) (e.g. Plato). Usually a belonging of a person to activity field

Table 2. Example of list of top 10 persons by PageRank for
English Wikipedia with their field of activity and native
language.

REN,PageRank Person Field Culture Locality

1 Napoleon Politics FR Non-local

2 Carl Linnaeus Science WR Non-local

3 George W. Bush Politics EN Local

4 Barack Obama Politics EN Local

5 Elizabeth II Politics EN Local

6 Jesus Religion WR Non-local

7 William Shakespeare Art EN Local

8 Aristotle Science WR Non-local

9 Adolf Hitler Politics DE Non-local

10 Bill Clinton Politics EN Local

doi:10.1371/journal.pone.0074554.t002

Figure 3. Distribution of top 30 persons in each rank over activity fields for each Wikipedia edition. Panels correspond to (a) PageRank,
(b) 2DRank, (3) CheiRank. The color bar shows the values in percents.
doi:10.1371/journal.pone.0074554.g003

Figure 4. Distributions of top 30 persons over different cultures corresponding to Wikipedia editions, ‘‘WR’’ category represents all
other cultures which do not belong to considered 9 Wikipedia editions. Panels show ranking by (a) PageRank, (b) 2DRank, (3) CheiRank. The
color bar shows the values in percents.
doi:10.1371/journal.pone.0074554.g004
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and language is taken from the English Wikipedia article about

this person. If there is no such English Wikipedia article then we

use an article of a Wikipedia edition language which is native for

such a person. Usually there is no ambiguity in the distribution

over activities and languages. Thus Christopher Columbus is

attributed to IT culture and activity field etc, since English

Wikipedia describes him as ‘‘italian explorer, navigator, and

colonizer’’. By our definition politics includes politicians (e.g.

Barak Obama), emperors (e.g. Julius Caesar), kings (e.g.

Charlemagne). Arts includes writers (e.g. William Shakespeare),

singers (e.g. Frank Sinatra), painters (Leonardo da Vinci),

architects, artists, film makers (e.g. Steven Spielberg). Science

includes physicists, philosophers (e.g. Plato), biologists, mathema-

ticians and others. Religion includes such persons as Jesus, Pope

John Paul II. Sport includes sportsmen (e.g. Roger Federer). All

other activities are placed in activity etc (e.g. Christopher

Columbus, Yuri Gagarin). Each person belongs only to one

language and one activity field. There are only a few cases which

can be questioned, e.g. Charles V, Holy Roman Emperor who is

attributed to ES language since from early long times he was the

king of Spain. All listings of person distributions over the above

categories are presented at the web page given at Supporting

Information (SI) file and in 27 tables given in File S1.

Unfortunately, we were obliged to construct these distributions

manually following each person individually at the Wikipedia

ranking listings. Due to that we restricted our analysis only to top

30 persons. We think that this number is sufficiently large so that

the statistical fluctuations do not generate significant changes.

Indeed, we find that our EN distribution over field activities is

close to the one obtained for 100 top persons of English Wikipedia

dated by Aug 2009 [17].

To perform additional tests we use the database of about

250000 person names in English, Italian and Dutch from the

research work [14] provided to us by P.Aragón and A.Kalten-

brunner. Using this database we were able to use computerized

(automatic) selection of top 100 persons from the ranking lists and

to compare their distributions over activities and languages with

our case of 30 persons. The comparison is presented in figures

S1,S2,S3 in File S1. For these 3 cultures we find that our top 30

persons data are statistically stable even if the fluctuations are

larger for CheiRank lists. This is in an agreement with the fact that

the CheiRank probabilities. related to the outgoing links, are more

fluctuating (see discussion at [19]).

Of course, it would be interesting to extend the computerized

analysis of personalities to a larger number of top persons and

larger number of languages. However, the database of persons in

various languages still should be cleaned and checked and also

attribution of persons to various activities and languages still

requires a significant amount of work. Due to that we present here

our analysis only for 30 top persons. But we note that by itself it

represents an interesting case study since here we have the most

important persons for each ranking. May be the top 1000 persons

would be statistically more stable but clearly a person at position

30 is more important than a one at position 1000. Thus we think

that the top 30 persons already give an interesting information on

links and interactions between cultures. This information can be

used in future more extended studies of a larger number of persons

and languages.

Finally we note that the language is the primary element of

culture even if, of course, culture is not reduced only to language.

In this analysis we use in a first approximation an equivalence

between language and culture leaving for future studies the

refinement of this link which is of course much more complex. In

this approximation we consider that a person like Mahatma

Gandhi belongs to EN culture since English is the official language

of India. A more advanced study should take into account Hindi

Table 3. PageRank contribution per link and in-degree of
PageRank local and non-local heroes i for each edition.

Edition NLocal ½P(j)=k(j)out�L ½P(j)=k(j)out�NL ½k(L)in� ½k(NL)in�

EN 16 1:43|10{8 v 2:18|10{8 5:3|103 w 3:1|103

FR 15 3:88|10{8
v 5:69|10{8 2:6|103

w 2:0|103

DE 14 3:48|10{8
v 4:29|10{8 2:6|103

w 2:1|103

IT 11 7:00|10{8
v 7:21|10{8 1:9|103

w 1:5|103

ES 4 5:44|10{8 v 8:58|10{8 2:2|103 w 1:2|103

NL 2 7:77|10{8 v 14:4|10{8 1:0|103 w 6:7|102

RU 18 6:67|10{8 v 10:2|10{8 1:7|103 w 1:5|103

HU 12 21:1|10{8 v 32:3|10{8 8:1|102 w 5:3|102

KO 17 16:6|10{8 v 35:5|10{8 4:7|102 w 2:3|102

½P(j)=k(j)out�L and ½P(j)=k(j)out�NL are median PageRank contribution of a local

hero L and non-local hero NL by a article j which cites local heroes L and non-
local heroes NL respectively. ½k(L)in� and ½k(NL)in� are median number of in-
degree k(L)in and k(NL)in of local hero L and non-local hero NL, respectively.
NLocal is number local heroes in given edition.
doi:10.1371/journal.pone.0074554.t003

Table 4. List of local heroes by PageRank for each Wikipedia edition.

Edition 1st 2nd 3rd

EN George W. Bush Barack Obama Elizabeth II

FR Napoleon Louis XIV of France Charles de Gaulle

DE Adolf Hitler Martin Luther Immanuel Kant

IT Augustus Dante Alighieri Julius Caesar

ES Charles V, Holy Roman Emperor Philip II of Spain Francisco Franco

NL William I of the Netherlands Beatrix of the Netherlands William the Silent

RU Peter the Great Joseph Stalin Alexander Pushkin

HU Matthias Corvinus Szentágothai János Stephen I of Hungary

KO Gojong of the Korean Empire Sejong the Great Park Chung-hee

All names are represented by article titles in English Wikipedia. Here ‘‘William the Silent’’ is the third local hero in Dutch Wikipedia but he is out of top 30 persons.
doi:10.1371/journal.pone.0074554.t004
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Wikipedia edition and attribute this person to this edition.

Definitely our statistical study is only a first step in Wikipedia

based statistical analysis of network of cultures and their

interactions.

We note that any person from our top 30 ranking belongs only

to one activity field and one culture. We also define local heros as

those who in a given language edition are attributed to this

language, and non-local heros as those who belong in a given

edition to other languages. We use category WR (world) where we

Table 5. List of local heroes by CheiRank for each Wikipedia edition.

Edition 1st 2nd 3rd

EN C. H. Vijayashankar Matt Kelley William Shakespeare (inventor)

FR Jacques Davy Duperron Jean Baptiste Eblé Marie-Magdeleine Aymé de La Chevrelière

DE Harry Pepl Marc Zwiebler Eugen Richter

IT Nduccio Vincenzo Olivieri Mina (singer)

ES Che Guevara Arturo Mercado Francisco Goya

NL Hans Renders Julian Jenner Marten Toonder

RU Aleksander Vladimirovich Sotnik Aleksei Aleksandrovich Bobrinsky Boris Grebenshchikov

HU Csernus Imre Kati Kovács Pléh Csaba

KO Lee Jong-wook (baseball) Kim Dae-jung Kim Kyu-sik

All names are represented by article titles in English Wikipedia.
doi:10.1371/journal.pone.0074554.t005

Table 6. List of local heroes by 2DRank for each Wikipedia edition.

Edition 1st 2nd 3rd

EN Frank Sinatra Paul McCartney Michael Jackson

FR François Mitterrand Jacques Chirac Honoré de Balzac

DE Adolf Hitler Otto von Bismarck Ludwig van Beethoven

IT Giusppe Garibaldi Raphael Benito Mussolini

ES Simón Bolı́var Francisco Goya Fidel Castro

NL Albert II of Belgium Johan Cruyff Rembrandt

RU Dmitri Mendeleev Peter the Great Yaroslav the Wise

HU Stephen I of Hungary Sándor Petöfi Franz Liszt

KO Gojong of the Korean Empire Sejong the Great Park Chung-hee

All names are represented by article titles in English Wikipedia.
doi:10.1371/journal.pone.0074554.t006

Table 7. List of global heroes by PageRank and 2DRank for all 9 Wikipedia editions.

Rank PageRank global heroes HPR NA 2DRank global heroes H2D NA

1st Napoleon 259 9 Micheal Jackson 119 5

2nd Jesus 239 9 Adolf Hitler 93 6

3rd Carl Linnaeus 235 8 Julius Caesar 85 5

4th Aristotle 228 9 Pope Benedict XVI 80 4

5th Adolf Hitler 200 9 Wolfgang Amadeus Mozart 75 5

6th Julius Caesar 161 8 Pope John Paul II 71 4

7th Plato 119 6 Ludwig van Beethoven 69 4

8th Charlemagne 111 8 Bob Dylan 66 4

9th William Shakespeare 110 7 William Shakespeare 57 3

10th Pope John Paul II 108 6 Alexander the Great 56 3

All names are represented by article titles in English Wikipedia. Here, HA is the ranking score of the algorithm A (5); NA is the number of appearances of a given person
in the top 30 rank for all editions.
doi:10.1371/journal.pone.0074554.t007
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place persons who do not belong to any of our 9 languages (e.g.

Pope John Paul II belongs to WR since his native language is

Polish).

Results

We investigate ranking structure of articles and identify global

properties of PageRank and CheiRank vectors. The detailed

analysis is done for top 30 persons obtained from the global list of

ranked articles for each of 9 languages. The distinctions and

common characteristics of cultures are analyzed by attributing top

30 persons in each language to human activities listed above and

to their native language.

General ranking structure
We calculate PageRank and CheiRank probabilities and

indexes for all networks of considered Wikipedia editions. The

PageRank and CheiRank probabilities as functions of ranking

indexes are shown in Fig. 1. The decay is compatible with an

approximate algebraic decrease of a type P*1=Kb, P�*1
�

K�b

with b*1 for PageRank and b*0:6 for CheiRank. These values

are similar to those found for the English Wikipedia of 2009 [17].

The difference of b values originates from asymmetric nature

between in-degree and out-degree distributions, since PageRank is

based on incoming edges while CheiRank is based on outgoing

edges. In-degree distribution of Wikipedia editions is broader than

out-degree distribution of the same edition. Indeed, the CheiRank

probability is proportional to frequency of outgoing links which

has a more rapid decay compared to incoming one (see discussion

in [17]). The PageRank (CheiRank) probability distributions are

similar for all editions. However, the fluctuations of P� are

stronger that is related to stronger fluctuations of outgoing edges

[19].

The top article of PageRank is usually USA or the name of

country of a given language (FR, RU, KO). For NL we have at the

top beetle, species, France. The top articles of CheiRank are various

listings.

Figure 5. Network of cultures obtained from 9 Wikipedia languages and the remaining world (WR) selecting 30 top persons of
PageRank (a) and 2DRank (b) in each culture. The link width and darkness are proportional to a number of foreign persons quoted in top 30 of
a given culture, the link direction goes from a given culture to cultures of quoted foreign persons, quotations inside cultures are not considered. The
size of nodes is proportional to their PageRank.
doi:10.1371/journal.pone.0074554.g005

Figure 6. Google matrix of network of cultures from Fig. 5, shown respectively for panels (a),(b). The matrix elements Gij are shown by
color at the damping factor a~0:85, index j is chosen as the PageRank index K of PageRank vector so that the top cultures with K~K ’~1 are
located at the top left corner of the matrix.
doi:10.1371/journal.pone.0074554.g006
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Since each article has its PageRank ranking K and CheiRank

ranking K�, we can assign two dimensional coordinates to all the

articles. Fig. 2 shows the density of articles in the two dimensional

plane (K ,K�) for each Wikipedia edition. The density is computed

for 100|100 logarithmically equidistant cells which cover the

whole plane (K ,K�). The density plot represents the locations of

articles in the plane. We can observe high density of articles

around line K~K�zconst that indicates the positive correlation

between PageRank and CheiRank. However, there are only a few

articles within the region of top both PageRank and CheiRank

indexes. We also observe the tendency that while high PageRank

articles (Kv100) have intermediate CheiRank (102
vK�v104),

high CheiRank articles (K�v100) have broad PageRank rank

values.

Ranking of articles for persons
We choose top 30 articles about persons for each edition and

each ranking. In Fig. 2, they are shown by red circles (PageRank),

green squares (2DRank) and cyan triangles (CheiRank). We assign

local ranking RE,A (1 . . . 30) to each person in the list of top 30

persons for each edition E and ranking algorithm A. An example

of E~EN and A~PageRank are given in Table 2.

From the lists of top persons, we identify the ‘‘fields’’ of activity

for each top 30 rank person in which he/she is active on. We

categorize six activity fields - politics, art, science, religion, sport

and etc (here ‘‘etc’’ includes all other activities). As shown in Fig. 3,

for PageRank, politics is dominant and science is secondarily

dominant. The only exception is Dutch where science is the almost

dominant activity field (politics has the same number of points). In

case of 2DRank, art becomes dominant and politics is secondarily

dominant. In case of CheiRank, art and sport are dominant fields.

Thus for example, in CheiRank top 30 list we find astronomers

who discovered a lot of asteroids, e.g. Karl Wilhelm Reinmuth

(4th position in RU and 7th in DE), who was a prolific discoverer

of about 400 of them. As a result, his article contains a long listing

of asteroids discovered by him giving him a high CheiRank.

The change of activity priority for different ranks is due to the

different balance between incoming and outgoing links there.

Usually the politicians are well known for a broad public, hence,

the articles about politicians are pointed by many articles.

However, the articles about politician are not very communicative

since they rarely point to other articles. In contrast, articles about

persons in other fields like science, art and sport are more

communicative because of listings of insects, planets, asteroids they

discovered, or listings of song albums or sport competitions they

gain.

Next we investigate distributions over ‘‘cultures’’ to which

persons belong. We determined the culture of person based on the

language the person mainly used (mainly native language). We

consider 10 culture categories - EN, FR, DE, IT, ES, NL, RU,

HU, KO and WR. Here ‘‘WR’’ category represents all other

cultures which do not belong to considered 9 Wikipedia editions.

Figure 7. Dependence of probabilities of PageRank P (red) and CheiRank P� (blue) on corresponding indexes K and K�. The
probabilities are obtained from the network and Google matrix of cultures shown in Fig. 5 and Fig. 6 for corresponding panels (a),(b). The straight
lines indicate the Zipf law P*1=K; P�*1=K� .
doi:10.1371/journal.pone.0074554.g007

Figure 8. PageRank versus CheiRank plane of cultures with corresponding indexes K and K� obtained from the network of cultures
for corresponding panels (a),(b).
doi:10.1371/journal.pone.0074554.g008
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Comparing with the culture of persons at various editions, we can

assign ‘‘locality’’ to each 30 top rank persons for a given Wikipedia

edition and ranking algorithm. For example, as shown in Table 2,

George W. Bush belongs to ‘‘Politics’’, ‘‘English’’ and ‘‘Local’’ for

English Wikipedia and PageRank, while Jesus belongs to

‘‘Religion’’, ‘‘World’’ WR and ‘‘Non-local’’.

As shown in Fig. 4, regardless of ranking algorithms, main part

of top 30 ranking persons of each edition belong to the culture of

the edition (usually about 50%). For example, high PageRank

persons in English Wikipedia are mainly English (53:3%). This

corresponds to the self-focusing effect discussed in [6]. It is notable

that top ranking persons in Korean Wikipedia are not only mainly

Korean (56:7%) but also the most top ranking non Korean persons

in Korean Wikipedia are Chinese and Japanese (20%). Although

there is a strong tendency that each edition favors its own persons,

there is also overlap between editions. For PageRank, on average,

23:7 percent of top persons are overlapping while for CheiRank ,

the overlap is quite low, only 1:3 percent. For 2DRank, the

overlap is 6:3 percent. The overlap of list of top persons implies the

existence of cross-cultural ‘heroes’.

To understand the difference between local and non-local top

persons for each edition quantitatively, we consider the PageRank

case because it has a large fraction of non-local top persons. From

Eq. (2), a citing article j contributes SP(j)=kout(j)T to PageRank of

a node i. So the PageRank P(i) can be high if the node i has many

incoming links from citing articles j or it has incoming links from

high PageRank nodes j with low out-degree kout(j). Thus we can

identify origin of each top person’s PageRank using the average

PageRank contribution SP(j)=kout(j)T by nodes j to person i and

average number of incoming edges (in-degree) kin(i) of person i .

As represented in Table 3, considering median, local top

persons have more incoming links than non-local top persons but

the PageRank contribution of the corresponding links are lower

than links of non-local top persons. This indicates that local top

persons are cited more than non-local top persons but non-local

top persons are cited more high weighted links (i.e. cited by

important articles or by articles which don’t have many citing

links).

Global and local heroes
Based on cultural dependency on rankings of persons, we can

identify global and local heroes in the considered Wikipedia

editions. However, for CheiRank the overlap is very low and our

statistics is not sufficient for selection of global heroes. Hence we

consider only PageRank and 2DRank cases. We determine the

local heroes for each ranking and for each edition as top persons of

the given ranking who belongs to the same culture as the edition.

Top 3 local heroes for each ranking and each edition are

represented in Table 4 (PageRank), Table 5 (CheiRank) and

Table 6 (2DRank), respectively.

In order to identify the global heroes, we define ranking score

HP,A for each person P and each ranking algorithm A. Since every

person in the top person list has relative ranking RP,E,A for each

Wikipedia edition E and ranking algorithm A (For instance, in

Table 2, RNapoleon,EN,PageRank~1). The ranking score HP,A of a

person P is give by

HP,A~
X

E

(31{RP,E,A) ð5Þ

According to this definition, a person who appears more often

in the lists of editions and has top ranking in the list gets high

ranking score. We sort this ranking score for each algorithm. In

this way obtain a list of global heroes for each algorithm. The

result is shown in Table 7. Napoleon is the 1st global hero by

PageRank and Micheal Jackson is the 1st global hero by 2DRank.

Network of cultures
To characterize the entanglement and interlinking of cultures

we use the data of Fig. 4 and from them construct the network of

cultures. The image of networks obtained from top 30 persons of

PageRank and 2DRank listings are shown in Fig. 5 (we do not

consider CheiRank case due to small overlap of persons resulting

in a small data statistics). The weight of directed Markov

transition, or number of links, from a culture A to a culture B is

given by a number of persons of a given culture B (e.g FR)

appearing in the list of top 30 persons of PageRank (or 2DRank) in

a given culture A (e.g. EN). Thus e.g. for transition from EN to FR

in PageRank we find 2 links (2 French persons in PageRank top 30

persons of English Wikipedia); for transition from FR to EN in

PageRank we have 3 links (3 English persons in PageRank top 30

persons of French Wikipedia). The transitions inside each culture

(persons of the same language as language edition) are omitted

since we are analyzing the interlinks between cultures. Then the

Google matrix of cultures is constructed by the standard rule for

the directed networks: all links are treated democratically with the

same weight, sum of links in each column is renormalized to unity,

a~0:85. Even if this network has only 10 nodes we still can find

for it PageRank and CheiRank probabilities P and P� and

corresponding indexes K and K�. The matrix elements of G
matrix, written in order of index K , are shown in Fig. 6 for the

corresponding networks of cultures presented in Fig. 5. We note

that we consider all cultures on equal democratic grounds.

The decays of PageRank and CheiRank probabilities with the

indexes K ,K� are shown in Fig. 7 for the culture networks of Fig. 5.

On a first glance a power decay like the Zipf law [27] P*1=K
looks to be satisfactory. The formal power law fit

P*1=Kz,P�*1=(K�)z� , done in log–log-scale for 1ƒK ,K�¡
q10, gives the exponents z~0:85+0:09,z�~0:45+0:09 (Fig. 7a),

z~0:88+0:10,z�~0:77+0:16 (Fig. 7b). However, the error bars

for these fits are relatively large. Also other statistical tests (e.g. the

Kolmogorov-Smirnov test, see details in [28]) give low statistical

accuracy (e.g. statistical probability p&0:2; 0:1 and p&0:01; 0:01
for exponents z,z�~0:79,0:42 and 0:75,0:65 in Fig. 7a and Fig. 7b

respectively). It is clear that 10 cultures is too small to have a good

statistical accuracy. Thus, a larger number of cultures should be

used to check the validity of the generalized Zipf law with a certain

exponent. We make a conjecture that the Zipf law with the

generalized exponents z,z� will work in a better way for a larger

number of multilingual Wikipedia editions which now have about

250 languages.

The distributions of cultures on the PageRank - CheiRank

plane (K ,K�) are shown in Fig. 8. For the network of cultures

constructed from top 30 PageRank persons we obtain the

following ranking. The node WR is located at the top PageRank

K~1 and it stays at the last CheiRank position K�~10. This

happens due to the fact that such persons as Carl Linnaeus, Jesus,

Aristotle, Plato, Alexander the Great, Muhammad are not native for our 9

Wikipedia editions so that we have many nodes pointing to WR

node, while WR has no outgoing links. The next node in

PageRank is FR node at K~2,K�~5, then DE node at

K~3,K�~4 and only then we find EN node at K~4,K�~7.

The node EN is not at all at top PageRank positions since it has

many American politicians that does not count for links between

cultures. After the world WR the top position is taken by French

(FR) and then German (DE) cultures which have strong links

inside the continental Europe.

Entanglement of Cultures via Wikipedia Ranking
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However, the ranking is drastically changed when we consider

top 30 2DRank persons. Here, the dominant role is played by art

and science with singers, artists and scientists. The world WR here

remains at the same position at K~1,K�~10 but then we obtain

English EN (K~2,K�~1) and German DE (K~3,K�~5)

cultures while FR is moved to K~K�~7.

Discussion

We investigated cross-cultural diversity of Wikipedia via ranking

of Wikipedia articles. Even if the used ranking algorithms are

purely based on network structure of Wikipedia articles, we find

cultural distinctions and entanglement of cultures obtained from

the multilingual editions of Wikipedia.

In particular, we analyze raking of articles about persons and

identify activity field of persons and cultures to which persons

belong. Politics is dominant in top PageRank persons, art is

dominant in top 2DRank persons and in top CheiRank persons

art and sport are dominant. We find that each Wikipedia edition

favors its own persons, who have same cultural background, but

there are also cross-cultural non-local heroes, and even ‘‘global

heroes’’. We establish that local heroes are cited more often but

non-local heroes on average are cited by more important articles.

Attributing top persons of the ranking list to different cultures

we construct the network of cultures and characterize entangle-

ment of cultures on the basis of Google matrix analysis of this

directed network.

We considered only 9 Wikipedia editions selecting top 30

persons in a ‘‘manual’’ style. It would be useful to analyze a larger

number of editions using an automatic computerized selection of

persons from prefabricated listing in many languages developing

lines discussed in [14]. This will allow to analyze a large number of

persons improving the statistical accuracy of links between

different cultures.

The importance of understanding of cultural diversity in

globalized world is growing. Our computational, data driven

approach can provide a quantitative and efficient way to

understand diversity of cultures by using data created by millions

of Wikipedia users. We believe that our results shed a new light on

how organized interactions and links between different cultures.
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Figure S1: Probability distributions of activity fields and languages of top 30 persons and top 100
persons in English Wikipedia EN (total probability is normalized to unity): (a) Distribution of
activity fields of PageRank top persons (b) Distribution of langauge of PageRank top persons. (c)
Distribution of activity fields of CheiRank top persons (d) Distribution of langauge of CheiRank
top persons. (e) Distribution of activity fields of 2DRank top persons (f) Distribution of langauge
of 2DRank top persons.
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Figure S2: Same as in Fig.SI1 for Italian Wikipedia IT.
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Figure S3: Same as in Fig.SI1 for Dutch Wikipedia NL.
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Table S1: Top 30 persons by PageRank for English Wikipedia with their field of activity and
native language.

REN,PageRank Person Field Culture
1 Napoleon Politics FR
2 Carl Linnaeus Science WR
3 George W. Bush Politics EN
4 Barack Obama Politics EN
5 Elizabeth II Politics EN
6 Jesus Religion WR
7 William Shakespeare Art EN
8 Aristotle Science WR
9 Adolf Hitler Politics DE
10 Bill Clinton Politics EN
11 Franklin D. Roosevelt Politics EN
12 Ronald Reagan Politics EN
13 George Washington Politics EN
14 Plato Science WR
15 Richard Nixon Politics EN
16 Abraham Lincoln Politics EN
17 Joseph Stalin Politics RU
18 Winston Churchill Politics EN
19 John F. Kennedy Politics EN
20 Henry VIII of England Politics EN
21 Muhammad Religion WR
22 Thomas Jefferson Politics EN
23 Albert Einstein Science DE
24 Alexander the Great Politics WR
25 Augustus Politics IT
26 Charlemagne Politics FR
27 Karl Marx Science DE
28 Charles Darwin Science EN
29 Elizabeth I of England Politics EN
30 Julius Caesar Politics IT



6

Table S2: Top 30 persons by 2DRank for English Wikipedia with their field of activity and
native language.

REN,2DRank Person Field Culture
1 Frank Sinatra Art EN
2 Paul McCartney Art EN
3 Michael Jackson Art EN
4 Steven Spielberg Art EN
5 Pope Pius XII Religion IT
6 Vladimir Putin Politics RU
7 Mariah Carey Art EN
8 John Kerry Politics EN
9 Isaac Asimov Art EN
10 Stephen King Art EN
11 Dolly Parton Art EN
12 Prince (musician) Art EN
13 Robert Brown (botanist) Science EN
14 Vincent van Gogh Art NL
15 Lady Gaga Art EN
16 Beyoncé Knowles Art EN
17 Pope John Paul II Religion WR
18 Lord Byron Art EN
19 Muhammad Religion WR
20 Johnny Cash Art EN
21 Alice Cooper Art EN
22 Catherine the Great Politics RU
23 14th Dalai Lama Religion WR
24 Christina Aguilera Art EN
25 Marilyn Monroe Art EN
26 David Bowie Art EN
27 John McCain Politics EN
28 Bob Dylan Art EN
29 Johann Sebastian Bach Art DE
30 Jesus Religion WR
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Table S2: Top 30 persons by CheiRank for English Wikipedia with their field of activity and
native language.

REN,CheiRank Person Field Culture
1 Roger Calmel Art FR
2 C. H. Vijayashankar Politics EN
3 Matt Kelley ETC EN
4 Alberto Cavallari ETC IT
5 Yury Chernavsky Art RU
6 William Shakespeare (inventor) ETC EN
7 Kelly Clarkson Art EN
8 Park Ji-Sung Sport KO
9 Mithun Chakraborty Art EN
10 Olga Sedakova Sport RU
11 Sara Garćıa Art ES
12 Pope Pius XII Religion IT
13 Andy Kerr Politics EN
14 Joe-Max Moore Sport EN
15 Josef Kemr Art WR
16 Darius Milhaud Art FR
17 Jan Crull, Jr. ETC EN
18 Farshad Fotouhi Science EN
19 Swaroop Kanchi Art EN
20 Jacques Lancelot Art FR
21 Frantǐsek Martin Pecháček Art DE
22 George Stephanekoulosech ETC EN
23 Chano Urueta Art ES
24 Franz Pecháček Art DE
25 Nicolae Iorga Politics WR
26 Arnold Houbraken Art NL
27 August Derleth Art EN
28 Javier Solana Politics ES
29 Drew Barrymore Art EN
30 Kevin Bloody Wilson Art EN
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Table S4: Top 30 persons by PageRank for French Wikipedia with their field of activity and
native language.

RFR,PageRank Person Field Culture
1 Napoleon Politics FR
2 Carl Linnaeus Science WR
3 Louis XIV of France Politics FR
4 Jesus Religion WR
5 Aristotle Science WR
6 Julius Caesar Politics IT
7 Charles de Gaulle Politics FR
8 Pope John Paul II Religion WR
9 Adolf Hitler Politics DE
10 Plato Science WR
11 Charlemagne Politics FR
12 Joseph Stalin Politics RU
13 Charles V, Holy Roman Emperor Politics ES
14 Napoleon III Politics FR
15 Nicolas Sarkozy Politics FR
16 Franois Mitterrand Politics FR
17 Victor Hugo Art FR
18 Jacques Chirac Politics FR
19 Honore de Balzac Art FR
20 Mary (mother of Jesus) Religion WR
21 Voltaire Art FR
22 George W. Bush Politics EN
23 Elizabeth II Politics EN
24 Muhammad Religion WR
25 Francis I of France Politics FR
26 William Shakespeare Art EN
27 Louis XVI of France Politics FR
28 Rene Descartes Science FR
29 Karl Marx Science DE
30 Louis XV of France Politics FR
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Table S5: Top 30 persons by 2DRank for French Wikipedia with their field of activity and native
language.

RFR,2DRank Person Field Culture
1 Franois Mitterrand Politics FR
2 Jacques Chirac Politics FR
3 Honore de Balzac Art FR
4 Nicolas Sarkozy Politics FR
5 Napoleon III Politics FR
6 Otto von Bismarck Politics DE
7 Michael Jackson Art EN
8 Adolf Hitler Politics DE
9 Ludwig van Beethoven Art DE
10 Johnny Hallyday Art FR
11 Napoleon Politics FR
12 Leonardo da Vinci Art IT
13 Jules Verne Art FR
14 Jacques-Louis David Art FR
15 Thomas Jefferson Politics EN
16 Sigmund Freud Science DE
17 Madonna (entertainer) Art EN
18 Serge Gainsbourg Art FR
19 14th Dalai Lama Religion WR
20 Alfred Hitchcock Art EN
21 Georges Clemenceau Politics FR
22 Carl Linnaeus Science WR
23 Steven Spielberg Art EN
24 J. R. R. Tolkien Art EN
25 Arthur Rimbaud Art FR
26 Charles Darwin Science EN
27 Maximilien de Robespierre Politics FR
28 Nelson Mandela Politics WR
29 Henry IV of France Politics FR
30 Charles de Gaulle Politics FR
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Table S6: Top 30 persons by CheiRank for French Wikipedia with their field of activity and
native language.

RFR,CheiRank Person Field Culture
1 John Douglas Lynch Science EN
2 Roger Federer Sport DE
3 Richard Upjohn Light Science EN
4 Jacques Davy Duperron Art FR
5 Rafael Nadal Sport ES
6 Martina Navratilova Sport EN
7 Michael Ilmari Saaristo Science WR
8 Kevin Bacon Art EN
9 Jean Baptiste Eble Etc FR
10 Marie-Magdeleine Ayme de La Chevreliere Politics FR
11 Nataliya Pyhyda Sport RU
12 Max Wolf Science DE
13 14th Dalai Lama Religion WR
14 Francoise Hardy Art FR
15 Ghislaine N. H. Sathoud Etc FR
16 Frank Glaw Science DE
17 Johnny Hallyday Art FR
18 Juan A. Rivero Science ES
19 Valentino Rossi Sport IT
20 Sheila (singer) Art FR
21 Franois Mitterrand Politics FR
22 Christopher Walken Art EN
23 Georges Clemenceau Politics FR
24 Elgin Loren Elwais Sport WR
25 Otto von Bismarck Politics DE
26 Edward Drinker Cope Science EN
27 Rashidi Yekini Sport WR
28 Tofiri Kibuuka Sport WR
29 Paola Espinosa Sport ES
30 Aksana Drahun Sport RU
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Table S7: Top 30 persons by PageRank for German Wikipedia with their field of activity and
native language.

RDE,PageRank Person Field Culture
1 Napoleon Politics FR
2 Carl Linnaeus Science WR
3 Adolf Hitler Politics DE
4 Aristotle Science WR
5 Johann Wolfgang von Goethe Art DE
6 Martin Luther Religion DE
7 Jesus Religion WR
8 Immanuel Kant Science DE
9 Charlemagne Politics FR
10 Plato Science WR
11 Pope John Paul II Religion WR
12 Karl Marx Science DE
13 Julius Caesar Politics IT
14 Augustus Politics IT
15 Louis XIV of France Politics FR
16 Friedrich Schiller Art DE
17 Wolfgang Amadeus Mozart Art DE
18 William Shakespeare Art EN
19 Josef Stalin Politics RU
20 Pope Benedict XVI Religion DE
21 Otto von Bismarck Politics DE
22 Cicero Politics IT
23 Wilhelm II, German Emperor Politics DE
24 Johann Sebastian Bach Art DE
25 Max Weber Science DE
26 Charles V, Holy Roman Emperor Politics ES
27 Frederick the Great Politics DE
28 Georg Wilhelm Friedrich Hegel Science DE
29 Mary (mother of Jesus) Religion WR
30 Augustine of Hippo Religion WR
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Table S8: Top 30 persons by 2DRank for German Wikipedia with their field of activity and
native language.

RDE,2DRank Person Field Culture
1 Adolf Hitler Politics DE
2 Otto von Bismarck Politics DE
3 Pope Paul VI Religion IT
4 Ludwig van Beethoven Art DE
5 Franz Kafka Art DE
6 George Frideric Handel Art DE
7 Gerhart Hauptmann Art DE
8 Bob Dylan Art EN
9 Johann Sebastian Bach Art DE
10 Alexander the Great Politics WR
11 Martin Luther Religion DE
12 Julius Caesar Politics IT
13 Joseph Beuys Art DE
14 Pope Leo XIII Religion IT
15 Carl Friedrich Gauss Science DE
16 Andy Warhol Art EN
17 Alfred Hitchcock Art EN
18 Thomas Mann Art DE
19 John Lennon Art EN
20 Augustus II the Strong Politics DE
21 Pope Benedict XVI Religion DE
22 Ferdinand II of Aragon Politics ES
23 Arthur Schnitzler Art DE
24 Martin Heidegger Science DE
25 Albrecht Dürer Art DE
26 Carl Linnaeus Science WR
27 Pablo Picasso Art ES
28 Rainer Werner Fassbinder Art DE
29 Wolfgang Amadeus Mozart Art DE
30 Historical Jesus Religion WR
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Table S9: Top 30 persons by CheiRank for German Wikipedia with their field of activity and
native language.

RDE,CheiRank Person Field Culture
1 Diomede Carafa Religion IT
2 Harry Pepl Art DE
3 Marc Zwiebler Sport DE
4 Eugen Richter Politics DE
5 John of Nepomuk Religion WR
6 Pope Marcellus II Religion IT
7 Karl Wilhelm Reinmuth Science WR
8 Johannes Molzahn Art DE
9 Georges Vanier ETC FR
10 Arthur Willibald Königsheim ETC DE
11 Thomas Fitzsimons Politics EN
12 Nelson W. Aldrich Politics EN
13 Ma Jun ETC WR
14 Michael Psellos Religion WR
15 Adolf Hitler Politics DE
16 Edoardo Fazzioli ETC IT
17 Ray Knepper Sport EN
18 Frédéric de Lafresnaye Science FR
19 Joan Crawford Art EN
20 Stephen King Art EN
21 Gerhart Hauptmann Art DE
22 Paul Moder Politics DE
23 Erni Mangold Art DE
24 Robert Stolz Art DE
25 Otto von Bismarck Politics DE
26 Christine Holstein Art DE
27 Pope Paul VI Religion IT
28 Franz Buxbaum Science DE
29 Gustaf Gründgens Art DE
30 Ludwig van Beethoven Art DE
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Table S10: Top 30 persons by PageRank for Italian Wikipedia with their field of activity and
native language.

RIT,PageRank Person Field Culture
1 Napoleon Politics FR
2 Jesus Religion WR
3 Aristotle Science WR
4 Augustus Politics IT
5 Pope John Paul II Religion WR
6 Dante Alighieri Art IT
7 Adolf Hitler Politics DE
8 Julius Caesar Politics IT
9 Benito Mussolini Politics IT
10 Charlemagne Politics FR
11 Mary (mother of Jesus) Religion WR
12 Plato Science WR
13 Isaac Newton Science EN
14 Charles V, Holy Roman Emperor Politics ES
15 Galileo Galilei Science IT
16 Louis XIV of France Politics FR
17 Constantine the Great Politics IT
18 Cicero Politics IT
19 Alexander the Great Politics WR
20 Paul the Apostle Politics WR
21 Albert Einstein Science DE
22 Joseph Stalin Politics RU
23 George W. Bush Politics EN
24 Silvio Berlusconi Politics IT
25 William Shakespeare Art EN
26 Augustine of Hippo Religion WR
27 Pope Paul VI Religion IT
28 Pope Benedict XVI Religion DE
29 Giuseppe Garibaldi Politics IT
30 Leonardo da Vinci Science IT
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Table S11: Top 30 persons by 2DRank for Italian Wikipedia with their field of activity and
native language.

RIT,2DRank Person Field Culture
1 Pope John Paul II Religion WR
2 Pope Benedict XVI Religion DE
3 Giuseppe Garibaldi Politics IT
4 Raphael Art IT
5 Jesus Religion WR
6 Benito Mussolini Politics IT
7 Michelangelo Art IT
8 Leonardo da Vinci Art IT
9 Pier Paolo Pasolini Art IT
10 Michael Jackson Art EN
11 Martina Navratilova Sport EN
12 Saint Peter Religion WR
13 Pope Paul III Religion IT
14 Wolfgang Amadeus Mozart Art DE
15 John Lennon Art EN
16 Bob Dylan Art EN
17 Mina (singer) Art IT
18 William Shakespeare Art EN
19 Julius Caesar Politics IT
20 Titian Art IT
21 Silvio Berlusconi Politics IT
22 Alexander the Great Politics WR
23 Pablo Picasso Art ES
24 Antonio Vivaldi Art IT
25 Ludwig van Beethoven Art DE
26 Napoleon Politics FR
27 Madonna (entertainer) Art EN
28 Roger Federer Sport DE
29 Johann Sebastian Bach Art DE
30 Walt Disney Art EN
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Table S12: Top 30 persons by CheiRank for Italian Wikipedia with their field of activity and
native language.

RIT,CheiRank Person Field Culture
1 Ticone di Amato Religion WR
2 John the Merciful Religion WR
3 Nduccio Art IT
4 Vincenzo Olivieri Art IT
5 Leo Baeck Religion DE
6 Karl Wilhelm Reinmuth Science DE
7 Freimut Börngen Science DE
8 Nikolai Chernykh Science RU
9 Edward L. G. Bowell Science EN
10 Roger Federer Sport DE
11 Michel Morganella Sport WR
12 Rafael Nadal Sport ES
13 Robin Söderling Sport WR
14 Iván Zamorano Sport ES
15 Martina Navratilova Sport EN
16 Venus Williams Sport EN
17 Goran Ivanǐsević Sport WR
18 Javier Pastore Sport ES
19 Stevan Jovetić Sport WR
20 Mina (singer) Art IT
21 George Ade Art EN
22 Kazuro Watanabe Sport WR
23 Andy Roddick Sport EN
24 Johann Strauss II Art DE
25 Max Wolf Science DE
26 Isaac Asimov Art EN
27 Georges Simenon Art FR
28 Alice Joyce Art EN
29 Pietro De Sensi Sport IT
30 Noemi (singer) Art IT
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Table S13: Top 30 persons by PageRank for Spanish Wikipedia with their field of activity and
native language.

RES,PageRank Person Field Culture
1 Carl Linnaeus Scinece WR
2 Napoleon Politics FR
3 Jesus Religion WR
4 Aristotle Science WR
5 Charles V, Holy Roman Emperor Politics ES
6 Adolf Hitler Politics DE
7 Julius Caesar Politics IT
8 Philip II of Spain Politics ES
9 William Shakespeare Art EN
10 Plato Science WR
11 Albert Einstein Science DE
12 Augustus Politics IT
13 Pope John Paul II Religion WR
14 Christopher Columbus ETC IT
15 Karl Marx Science DE
16 Alexander the Great Politics WR
17 Isaac Newton Science EN
18 Francisco Franco Politics ES
19 Charlemagne Politics FR
20 Immanuel Kant Science DE
21 Charles Darwin Science EN
22 Louis XIV of France Politics FR
23 Mary (mother of Jesus) Religion WR
24 Wolfgang Amadeus Mozart Art DE
25 Galileo Galilei Science IT
26 Cicero Politics IT
27 Homer Art WR
28 Paul the Apostle Religion WR
29 René Descartes Science FR
30 Miguel de Cervantes Art ES
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Table S14: Top 30 persons by 2DRank for Spanish Wikipedia with their field of activity and
native language.

RES,2DRank Person Field Culture
1 Wolfgang Amadeus Mozart Art DE
2 Julius Caesar Politics IT
3 Simón Boĺıvar Politics ES
4 Francisco Goya Art ES
5 Madonna (entertainer) Art EN
6 Bob Dylan Art EN
7 Barack Obama Politics EN
8 Fidel Castro Politics ES
9 Michael Jackson Art EN
10 Richard Wagner Art DE
11 Augusto Pinochet Politics ES
12 Trajan Politics IT
13 Jorge Luis Borges Art ES
14 Juan Perón Politics ES
15 Porfirio Dı́az Politics ES
16 Michelangelo Art IT
17 J. R. R. Tolkien Art EN
18 Paul McCartney Art EN
19 Adolf Hitler Politics DE
20 John Lennon Art EN
21 Hugo Chávez Politics ES
22 Elizabeth II Politics EN
23 Lope de Vega Art ES
24 Francisco Franco Politics ES
25 Christopher Columbus ETC IT
26 Diego Velázquez Art ES
27 Pablo Picasso Art ES
28 Edgar Allan Poe Art EN
29 Charlemagne Politics FR
30 Juan Carlos I of Spain Politics ES
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Table S15: Top 30 persons by CheiRank for Spanish Wikipedia with their field of activity and
native language.

RES,CheiRank Person Field Culture
1 Max Wolf Science DE
2 Monica Bellucci Art IT
3 Che Guevara Politics ES
4 Steve Buscemi Art EN
5 Johann Palisa Science DE
6 Auguste Charlois Science FR
7 José Flávio Pessoa de Barros Science WR
8 Arturo Mercado Art ES
9 Francisco Goya Art ES
10 Bob Dylan Art EN
11 Jorge Luis Borges Art ES
12 Brian May Art EN
13 Virgilio Barco Vargas Politics ES
14 Mariano Bellver ETC ES
15 Demi Lovato Art EN
16 Joan Manuel Serrat Art ES
17 Mary Shelley Art EN
18 Ana Belén Art ES
19 Aki Misato Art WR
20 Carl Jung Science DE
21 Roger Federer Sport DE
22 Antoni Gaud́ı Art ES
23 Rafael Nadal Sport ES
24 Hans Melchior Science DE
25 Paulina Rubio Art ES
26 Paul McCartney Art EN
27 Julieta Venegas Art ES
28 Fermin Muguruza Art ES
29 Belinda (entertainer) Art ES
30 Patricia Acevedo Art ES
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Table S16: Top 30 persons by PageRank for Dutch Wikipedia with their field of activity and
native language.

RNL,PageRank Person Field Culture
1 Carl Linnaeus Science WR
2 Pierre Andre Latreille Science FR
3 Napoleon Politics FR
4 Eugene Simon Science FR
5 Jesus Religion WR
6 Charles Darwin Science EN
7 Julius Caesar Politics IT
8 Adolf Hitler Politics DE
9 Aristotle Science WR
10 Charlemagne Politics FR
11 Plato Science WR
12 Jean-Baptiste Lamarck Science FR
13 Ernst Mayr Science DE
14 Alexander the Great Politics WR
15 Louis XIV of France Politics FR
16 Pope John Paul II Religion WR
17 Alfred Russel Wallace Science EN
18 Charles V, Holy Roman Emperor Politics ES
19 Thomas Robert Malthus Science EN
20 Augustus Politics IT
21 William I of the Netherlands Politics NL
22 Joseph Stalin Politics RU
23 Albert Einstein Science DE
24 Beatrix of the Netherlands Politics NL
25 Christopher Columbus Etc IT
26 Elizabeth II Politics EN
27 Isaac Newton Science EN
28 Wolfgang Amadeus Mozart Art DE
29 J. B. S. Haldane Science EN
30 Cicero Politics IT
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Table S17: Top 30 persons by 2DRank for Dutch Wikipedia with their field of activity and
native language.

RNL,2DRank Person Field Culture
1 Pope Benedict XVI Religion DE
2 Elizabeth II Politics EN
3 Charles Darwin Science EN
4 Albert II of Belgium Politics NL
5 Albert Einstein Science DE
6 Pope John Paul II Religion WR
7 Michael Jackson Art EN
8 Johann Sebastian Bach Art DE
9 Saint Peter Religion WR
10 Johan Cruyff Sport NL
11 William Shakespeare Art EN
12 Christopher Columbus Etc IT
13 Augustus Politics IT
14 Frederick the Great Politics DE
15 Rembrandt Art NL
16 Eddy Merckx Sport NL
17 Ludwig van Beethoven Art DE
18 Pope Pius XII Religion IT
19 Peter Paul Rubens Art NL
20 Napoleon Politics FR
21 Wolfgang Amadeus Mozart Art DE
22 Igor Stravinsky Art RU
23 Martin of Tours Religion FR
24 Geert Wilders Politics NL
25 J.R.R. Tolkien Art EN
26 Pierre Cuypers Art NL
27 Charles V, Holy Roman Emperor Politics ES
28 Pope Pius IX Religion IT
29 Juliana of the Netherlands Politics NL
30 Elvis Presley Art EN
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Table S18: Top 30 persons by CheiRank for Dutch Wikipedia with their field of activity and
native language.

RNL,CheiRank Person Field Culture
1 Pier Luigi Bersani Politics IT
2 Francesco Rutelli Politics IT
3 Hans Renders Science NL
4 Julian Jenner Sport NL
5 Marten Toonder Art NL
6 Uwe Seeler Sport DE
7 Stefanie Sun Art WR
8 Roger Federer Sport DE
9 Theo Janssen Sport NL
10 Zazie Art FR
11 Albert II of Belgium Politics NL
12 Denny Landzaat Sport NL
13 Paul Biegel Art NL
14 Guido De Padt Politics NL
15 Jan Knippenberg Sport NL
16 Michael Schumacher Sport DE
17 Hans Werner Henze Art DE
18 Lionel Messi Sport ES
19 Johan Cruijff Sport NL
20 Eva Janssen (actrice) Art NL
21 Marion Zimmer Bradley Art EN
22 Graham Hill Sport EN
23 Rick Wakeman Art EN
24 Mihai Nesu Sport NL
25 Freddy De Chou Politics NL
26 Rubens Barrichello Sport WR
27 Ismail Aissati Sport NL
28 Marco van Basten Sport NL
29 Paul Geerts Art NL
30 Ibrahim Afellay Sport NL
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Table S19: Top 30 persons by PageRank for Russian Wikipedia with their field of activity and
native language.

RRU,PageRank Person Field Culture
1 Peter the Great Politics RU
2 Napoleon Politics FR
3 Carl Linnaeus Science WR
4 Joseph Stalin Politics RU
5 Alexander Pushkin Art RU
6 Vladimir Lenin Politics RU
7 Catherine the Great Politics RU
8 Jesus Religion WR
9 Aristotle Science WR
10 Vladimir Putin Politics RU
11 Julius Caesar Politics IT
12 Adolf Hitler Politics DE
13 Boris Yeltsin Politics RU
14 William Shakespeare Art EN
15 Ivan the Terrible Politics RU
16 Alexander II of Russia Politics RU
17 Nicholas II of Russia Politics RU
18 Karl Marx Science DE
19 Louis XIV of France Politics FR
20 Nicholas I of Russia Politics RU
21 Alexander I of Russia Politics RU
22 Alexander the Great Politics WR
23 Charlemagne Politics FR
24 William Herschel Science EN
25 Mikhail Gorbachev Politics RU
26 Paul I of Russia Politics RU
27 Leo Tolstoy Art RU
28 Nikolai Gogol Art RU
29 Dmitry Medvedev Politics RU
30 Lomonosov Science RU
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Table S20: Top 30 persons by 2DRank for Russian Wikipedia with their field of activity and
native language.

RRU,2DRank Person Field Culture
1 Dmitri Mendeleev Science RU
2 Peter the Great Politics RU
3 Justinian I Politics WR
4 Yaroslav the Wise Politics RU
5 Elvis Presley Art EN
6 Yuri Gagarin Etc RU
7 William Shakespeare Art EN
8 Albert Einstein Science DE
9 Adolf Hitler Politics DE
10 Christopher Columbus Etc IT
11 Catherine the Great Politics RU
12 Vladimir Vysotsky Art RU
13 Louis de Funes Art FR
14 Lomonosov Science RU
15 Alla Pugacheva Art RU
16 Viktor Yanukovych Politics RU
17 Nikolai Gogol Art RU
18 Felix Dzerzhinsky Politics RU
19 Aleksandr Solzhenitsyn Art RU
20 Pope Benedict XVI Religion DE
21 Maxim Gorky Art RU
22 Julius Caesar Politics IT
23 George Harrison Art EN
24 Bohdan Khmelnytsky Politics RU
25 Rembrandt Art NL
26 John Lennon Art EN
27 Jules Verne Art FR
28 Benito Mussolini Politics IT
29 Nicholas Roerich Art RU
30 Niels Bohr Science WR
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Table S21: Top 30 persons by CheiRank for Russian Wikipedia with their field of activity and
native language.

RRU,CheiRank Person Field Culture
1 Aleksander Vladimirovich Sotnik Etc RU
2 Aleksei Aleksandrovich Bobrinsky Politics RU
3 Boris Grebenshchikov Art RU
4 Karl Wilhelm Reinmuth Science DE
5 Ronnie O’Sullivan Sport EN
6 Max Wol Science DE
7 Ivan Egorovich Sizykh Etc RU
8 Vladimir Mikhilovich Popkov Art RU
9 Sun Myung Moon Religion KO
10 Mikhail Pavlovich Tolstoi Etc RU
11 Perry Como Art EN
12 John Heenan Religion EN
13 Petr Aleksandrovich Ivaschenko Art RU
14 Andrey Vlasov Etc RU
15 Christian Heinrich Friedrich Peters Science DE
16 Auguste Charlois Science FR
17 Damian (Marczhuk) Religion RU
18 Yuri Gagarin Etc RU
19 Stephen Hendry Sport EN
20 Ivan Grigorevich Donskikh Etc RU
21 Anna Semenovna Kamenkova-Pavlova Art RU
22 Ivan Nikolaevich Shulga Art RU
23 George Dwyer Religion EN
24 William Wheeler (bishop) Religion EN
25 Vladimir Vladimirovitsch Antonik Art RU
26 Leonid Parfyonov Art RU
27 Vincent Nichols Religion EN
28 Dmitri Mendeleev Science RU
29 Boris Vladimirovich Bakin Etc RU
30 George Harrison Art EN
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Table S22: Top 30 persons by PageRank for Hungarian Wikipedia with their field of activity
and native language.

RHU,PageRank Person Field Culture
1 Carl Linnaeus Science WR
2 Jesus Religion WR
3 Napoleon Politics FR
4 Aristotle Science WR
5 Julius Caesar Politics IT
6 Matthias Corvinus Politics HU
7 Szentagothai Janos Science HU
8 William Shakespeare Art EN
9 Adolf Hitler Politics DE
10 Stephen I of Hungary Politics HU
11 Augustus Politics IT
12 Michael Schumacher Sport DE
13 Miklos Rethelyi Politics HU
14 Sigismund, Holy Roman Emperor Politics HU
15 Lajos Kossuth Politics HU
16 Charles I of Hungary Politics HU
17 Bela IV of Hungary Politics HU
18 Maria Theresa Politics DE
19 Joseph Stalin Politics RU
20 Franz Joseph I of Austria Politics DE
21 Louis I of Hungary Politics HU
22 Francis II Rakoczi Politics HU
23 Mary (mother of Jesus) Religion WR
24 Sandor Petofi Art HU
25 Pope John Paul II Religion WR
26 Johann Wolfgang von Goethe Art DE
27 Alexander the Great Politics WR
28 Bela Bartok Art HU
29 Charlemagne Politics FR
30 Louis XIV of France Politics FR
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Table S23: Top 30 persons by 2DRank for Hungarian Wikipedia with their field of activity and
native language.

RHU,2DRank Person Field Culture
1 Stephen I of Hungary Politics HU
2 Sandor Petofi Art HU
3 Franz Liszt Art HU
4 Kati Kovacs Art HU
5 Alexander the Great Politics WR
6 Attila Jozsef Art HU
7 Aristotle Science WR
8 Kimi Raikkonen Sport WR
9 Rubens Barrichello Sport WR
10 Lajos Kossuth Politics HU
11 Bela Bartok Art HU
12 Charlemagne Politics FR
13 Sandor Weores Art HU
14 Mariah Carey Art EN
15 Wolfgang Amadeus Mozart Art DE
16 Josip Broz Tito Politics WR
17 Charles I of Hungary Politics HU
18 Isaac Asimov Art EN
19 Napoleon Politics FR
20 Bonnie Tyler Art EN
21 Miklos Radnoti Art HU
22 Jay Chou Art WR
23 Janos Kodolanyi Art HU
24 Louis I of Hungary Politics HU
25 Zsuzsa Koncz Art HU
26 Adolf Hitler Politics HU
27 Stephen King Art EN
28 Mor Jokai Art HU
29 Ferenc Erkel Art HU
30 Franz Joseph I of Austria Politics DE
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Table S24: Top 30 persons by CheiRank for Hungarian Wikipedia with their field of activity
and native language.

RHU,CheiRank Person Field Culture
1 Edward L. G. Bowell Science EN
2 Karl Wilhelm Reinmuth Science DE
3 Max Wolf Science DE
4 Benjamin Boukpeti Sport FR
5 Urata Takesi Science WR
6 Wilfred Bungei Sport WR
7 Henri Debehogne Science FR
8 Lee ”Scratch” Perry Art WR
9 Karl Golsdorf Etc DE
10 Johann Palisa Science DE
11 Dirk Kuijt Sport NL
12 Roger Federer Sport DE
13 Csernus Imre Etc HU
14 Kati Kovacs Art HU
15 Rafael Nadal Sport ES
16 Venus Williams Sport EN
17 Sebastien Loeb Sport FR
18 Pleh Csaba Science HU
19 Tibor Antalpeter Sport HU
20 Serena Williams Sport EN
21 Csore Gabor Art HU
22 Pirmin Schwegler Sport DE
23 Olivia Newton-John Art EN
24 Petter Solberg Sport WR
25 Orosz Anna Art HU
26 Zsambeki Gabor Art HU
27 Vera Igorevna Zvonarjova Sport RU
28 Sandor Petofi Art HU
29 Roberta Vinci Sport IT
30 Flavia Pennetta Sport HU
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Table S25: Top 30 persons by PageRank for Korean Wikipedia with their field of activity and
native language.

RKO,PageRank Person Field Culture
1 Carl Linnaeus Science WR
2 Gojong of the Korean Empire Politics KO
3 Jesus Religion WR
4 John Edward Gray Science EN
5 Aristotle Science WR
6 Napoleon Politics FR
7 Sejong the Great Politics KO
8 Park Chung-hee Politics KO
9 Emperor Wu of Han Politics WR
10 Seonjo of Joseon Politics KO
11 Taejong of Joseon Politics KO
12 Syngman Rhee Politics KO
13 Kim Dae-jung Politics KO
14 Roh Moo-hyun Politics KO
15 Yeongjo of Joseon Politics KO
16 Adolf Hitler Politics DE
17 Taejo of Joseon Politics KO
18 Sukjong of Joseon Politics KO
19 Kim Il-sung Politics KO
20 Qianlong Emperor Politics WR
21 Kim Jong-il Politics KO
22 Kangxi Emperor Politics WR
23 Emperor Gaozu of Han Politics WR
24 Chun Doo-hwan Politics KO
25 Taejo of Goryeo Politics KO
26 George W. Bush Politics EN
27 Qin Shi Huang Politics WR
28 Jeongjo of Joseon Politics KO
29 Sunjo of Joseon Politics KO
30 Cao Cao Politics WR
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Table S26: Top 30 persons by 2DRank for Korean Wikipedia with their field of activity and
native language.

RKO,2DRank Person Field Culture
1 Gojong of the Korean Empire Politics KO
2 Sejong the Great Politics KO
3 Park Chung-hee Politics KO
4 Taejong of Joseon Politics KO
5 Kim Dae-jung Politics KO
6 Roh Moo-hyun Politics KO
7 Syngman Rhee Politics KO
8 Kim Il-sung Politics KO
9 Qianlong Emperor Politics WR
10 Kangxi Emperor Politics WR
11 Taejo of Goryeo Politics KO
12 Seonjo of Joseon Politics KO
13 Jeongjo of Joseon Politics KO
14 Kim Young-sam Politics KO
15 Julius Caesar Politics IT
16 Chun Doo-hwan Politics KO
17 Injo of Joseon Politics KO
18 Tokugawa Ieyasu Politics WR
19 Lee Myung-bak Politics KO
20 Seongjong of Joseon Politics KO
21 Cao Cao Politics WR
22 Confucius Science WR
23 Mao Zedong Politics WR
24 Taejo of Joseon Politics KO
25 Toyotomi Hideyoshi Politics WR
26 Heungseon Daewongun Politics KO
27 Liu Bei Politics WR
28 Yeongjo of Joseon Politics KO
29 Pope John Paul II Religion WR
30 Adolf Hitler Politics DE
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Table S27: Top 30 persons by CheiRank for Korean Wikipedia with their field of activity and
native language.

RKO,CheiRank Person Field Culture
1 Lee Jong-wook (baseball) Sport KO
2 Kim Dae-jung Politics KO
3 Lionel Messi Sport ES
4 Kim Kyu-sik Politics KO
5 Johannes Kepler Science DE
6 Yun Chi-young Politics KO
7 Michael Jackson Art EN
8 Yi Sun-sin ETC KO
9 Chang Myon Politics KO
10 IU (singer) Art KO
11 Kim Seo-yeong Art KO
12 Tokugawa Ieyasu Politics WR
13 Jeremy Renner Art EN
14 Zhao Deyin Politics WR
15 Yang Joon-Hyu Sport KO
16 Zhang Gui (Tang Dynasty) Politics WR
17 Zinedine Zidane Sport FR
18 Park Chung-hee Politics KO
19 Heungseon Daewongun Politics KO
20 Ahn Ji-hwan Art KO
21 Lee Seung-Yeop Sport KO
22 Roh Moo-hyun Politics KO
23 Britney Spears Art EN
24 Kim Young-sam Politics KO
25 Jeong Hyeong-don Art KO
26 Kim Yu-Na Sport KO
27 Park Jong-Seol Art KO
28 Lim Taekyoung Art KO
29 Park Ji-Sung Sport KO
30 Yuh Woon-Hyung Politics KO
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Abstract
Mixing patterns in large self-organizing networks, such as the Internet, the World Wide Web, social

and biological networks are often characterized by degree-degree dependencies between neighbouring

nodes. In this paper we propose a new way of measuring degree-degree dependencies. One of

the problems with the commonly used assortativity coefficient is that in disassortative networks

its magnitude decreases with the network size. We mathematically explain this phenomenon and

validate the results on synthetic graphs and real-world network data. As an alternative, we suggest

to use rank correlation measures such as Spearman’s rho. Our experiments convincingly show that

Spearman’s rho produces consistent values in graphs of different sizes but similar structure, and

it is able to reveal strong (positive or negative) dependencies in large graphs. In particular, we

discover much stronger negative degree-degree dependencies in Web graphs than was previously

thought. Rank correlations allow us to compare the assortativity of networks of different sizes, which

is impossible with the assortativity coefficient due to its genuine dependence on the network size. We

conclude that rank correlations provide a suitable and informative method for uncovering network

mixing patterns.
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I. INTRODUCTION

This paper proposes a new way of measuring mixing patterns in large self-organizing
networks, such as the Internet, the World Wide Web, social and biological networks. Most
of these real-world networks are scale-free, i.e., their degree distribution has huge variability
and closely follows a power law (the fraction of nodes with degree k is roughly proportional
to k−γ−1, γ > 0). We study correlations between degrees of two nodes connected by an edge.
This problem, first posed in [1, 2], has received vast attention in the networks literature, in
particular in physics, sociology, biology and computer science. We show however, analytically
and on the data, that the presence of power laws makes currently used measures inadequate
for comparison of mixing patterns in networks of different sizes, and provide an alternative
that is free from this disadvantage.

Adequate measuring and comparison of degree-degree correlations is important because
mixing patterns define many of the network’s properties. For instance, the Internet topology
is not sufficiently specified by the degree distribution; the negative degree-degree correlations
in the Internet graph have a great influence on the robustness to failures [3], efficiency of
Internet protocols [4], as well as distances and betweenness [5]. This is totally different from
the mixing patterns in networks of bank transactions [6] where the core of 25 most important
banks is entirely connected. The correlation between in- and out-degree of tasks plays and
important role in the dynamics of production and development systems [7]. Mixing patterns
affect epidemic spread [8, 9] and Web ranking [10].

In his seminal papers, Newman [1, 2] proposed to measure degree-degree correlations using
the assortativity coefficient, which is, in fact, an empirical estimate of the Pearson’s correlation
coefficient between the degrees at either ends of a random edge. A network is assortative

when neighbouring nodes are likely to have a similar number of connections. In disassortative

networks, high-degree nodes mostly have neighbours with small number of connections. The
empirical data in [1, Table I] suggest that social networks tend to be assortative (which is
indicated by the positive assortativity coefficient), while technological and biological networks
tend to be disassortative.

In [1, Table I], it is striking that larger disassortative networks typically have an assorta-
tivity coefficient that is closer to 0 and therefore appear to have approximately uncorrelated

degrees across edges. Similar conclusions can be drawn from [2, Table II]. In recent literature
[11, 12] the issue was raised that the Pearson’s correlation coefficient in scale-free networks
decreases with the network size. In this paper we demonstrate analytically and on the data
that in all scale-free disassortative networks with a realistic value of the power-law exponent,
the assortativity coefficient decreases in magnitude with the size of the graph. In assortative
networks, on the other hand, the assortativity coefficient can show two types of behaviour. It
either decreases with graph size, or it shows a considerable dispersion in values, even if large
networks are constructed by the same mechanism.

We suggest an alternative solution based on the classical Spearman’s rho measure [13] that
is the correlation coefficient computed on the ranks of degrees. The huge advantage of such
dependency measures is that they work well independently of the degree distribution, while
the assortativity coefficient, despite the fact that it is always in [−1, 1], suffers from a strong
dependence on the extreme values of the degrees. The usefullness of the rank correlation
approach to discover dependencies in skewed distributions has already been postulated in the
1936 paper by H. Hotelling and M.R. Pabst [14]: ‘Certainly where there is complete absence

of knowledge of the form of the bivariate distribution, and especially if it is believed not to be

normal, the rank correlation coefficient is to be strongly recommended as a means of testing

the existence of relationship.’

We compute Spearman’s rho on artificially generated random graphs and on real data
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from web and social networks. Our results agree with [1] concerning the presence of positive
or negative correlations, but Spearman’s rho has two important advantages: (1) it is able to
reveal strong disassortativity in large networks; (2) it produces consistent values on the graphs
created by the same mechanism, e.g. on preferential attachment graphs [15] of different sizes.
Thus, Spearman’s rho correctly and consistently captures the underlying connection patterns
and tendencies. We conclude that when networks are large, or two networks of difference sizes
must be compared (e.g. in web crawls or social networks from different countries), Spearman’s
rho is a preferred method for measuring and comparing degree-degree correlations.

The closing section discusses further challenges in the evaluation of network mixing pat-
terns.

II. NO DISASSORTATIVE SCALE-FREE RANDOM GRAPH SEQUENCES

In this section we present a simple analytical argument that in disassortative networks
the assortativity coefficient always decreases in magnitude with the size of the graph. Formal
proofs can be found in [16].

Assortativity in networks is usually measured using the assortativity coefficient, which is
in fact a statistical estimator of a Pearson’s correlation coefficient for the degrees on the two
ends of an arbitrary edge in a graph. Let G = (V,E) be a graph with vertex set V , where
|V | = n denotes the size of the network, and edge set E. The assortativity coefficient of G is
equal to (see, e.g., [1, (4)])

ρn =

1
|E|

∑

ij∈E didj −
(

1
|E|

∑

ij∈E
1
2
(di + dj)

)2

1
|E|

∑

ij∈E
1
2
(d2i + d2j)−

(

1
|E|

∑

ij∈E
1
2
(di + dj)

)2 , (II.1)

where the sum is over directed edges of G, i.e., ij and ji are two distinct edges, and di is the
degree of vertex i. We compute that
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Thus, ρn can be written as

ρn =
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∑

i∈V d2i

)2

∑

i∈V d3i − 1
|E|

(

∑

i∈V d2i

)2 . (II.2)

In practice, all quantities in (II.2) are finite, and ρn can always be computed. However,
since many real-life networks are very large, a relevant question is how ρn behaves when n
becomes large.

In the literature, many examples are reported of real-world networks where the degree
distribution obeys a power law [17, 18]. In particular, for scale-free networks, the observed
proportion of vertices of degree k is close to f(k) = c0k

−γ−1, and most values of γ found
in real-world networks are in (1, 3), see e.g., [17, Table I] or [18, Table I]. For p < γ, let
µp =

∑

k k
pf(k), and note that the series diverges if p ≥ γ; let a ∼ b denote that a/b → 1.

Then we can expect that, as n grows large,

|E| =
∑

i∈V

di ∼ µ1n,
∑

i∈V

dpi ∼ µpn, p < γ,

3



while maxi∈V di is of the order n1/γ . As a direct consequence,

cn ≤ |E| ≤ Cn, (II.3)

cn1/γ ≤ max
i∈[n]

di ≤ Cn1/γ , (II.4)

cnmax{p/γ,1} ≤
∑

i∈[n]

dpi ≤ Cnmax{p/γ,1}, p = 2, 3, (II.5)

for γ ∈ (1, 3) and some constants 0 < c < C < ∞. We emphasize that conditions (II.3) –
(II.5) are very general and hold for any scale-free network of growing size, independently of
its mixing patterns. From (II.2) we simply write

ρn ≥ ρ−n ≡ −
1
|E|

(

∑

i∈V d2i

)2

∑

i∈V d3i − 1
|E|

(

∑

i∈V d2i

)2 ,

and notice that
∑

i∈V

d3i ≥ (max
i∈[n]

di)
3 ≥ c3n3/γ ,

whereas
1

|E|
(

∑

i∈V

d2i

)2

≤ (C2/c)n2max{2/γ,1}−1 = (C2/c)nmax{4/γ−1,1}.

Since γ ∈ (1, 3) we have max{4/γ − 1, 1} < 3/γ, so that

∑

i∈V d3i

1
|E|

(

∑

i∈V d2i

)2 → ∞ as t → ∞.

Hence, the lower bound ρ−n is of the order nmax{1/γ−1,1−3/γ}. It is now easy to check that if
γ ∈ (1, 3), then ρ−n converges to zero when the graph size increases. This means that any limit
point of the assortativity coefficients ρn is non-negative. Note also that ρ−n is defined by the
degree sequence, and it does not depend on the mixing pattern at all. We conclude that by
looking only at the value of ρn one cannot discover even very strong disassortativity in large
scale-free graphs. We will confirm this finding in Section IV on artificially generated random
graphs, and in Section V on real-world networks.

We note that if γ > 3, then all terms in (II.1) converge to a number, and ρn does not
scale with the network size. In practice this means that the dependence of ρn on the graph
size is observed when node degrees have a broad distribution, and this range increases when
the network gets bigger. This is the case in most real-life networks and models for them, as
is e.g. obviously the case for preferential attachment models.

We further notice that (II.3)–(II.5) imply that

∑

ij∈E

didj ≤
(

max
i∈[n]

di

)

∑

ij∈En

di = max
i∈[n]

di

(

∑

i∈Vn

d2i

)

≤ C2n1/γ+max{2/γ,1}. (II.6)

Mathematically, an interesting case is when
∑

ij∈E didj and
∑

i∈V d3i are of the same order of
magnitude. Then the network is assortative but, formally, ρn converges to a random variable.
In practice this means that ρn can result in very different values on two very large graphs
constructed by the same mechanism. We will give such an example in Section IV.
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III. RANK CORRELATIONS

We propose an alternative measure for the degree-degree dependencies, based on the
rank correlations. For two-dimensional data ((Xi, Yi))

n
i=1, let rXi and rYi be the rank of an

observation Xi and Yi, respectively, when the sample values (Xi)
n
i=1 and (Yi)

n
i=1 are arranged in

a descending order. The rank correlation measures evaluate statistical dependences on the data
((rXi , r

Y
i ))

n
i=1, rather than on the original data ((Xi, Yi))

n
i=1. Rank transformation is convenient,

in particular because (rXi ) and (rYi ) are samples from the same uniform distribution, which
implies many nice mathematical properties.

The statistical correlation coefficient for the rank is known as Spearman’s rho [13]:

ρrankn =

∑n
i=1(r

X
i − (n + 1)/2)(rYi − (n+ 1)/2)

√

∑n
i=1(r

X
i − (n + 1)/2)2

∑n
i (r

Y
i − (n + 1)/2)2

. (III.1)

The mathematical properties of the Spearman’s rho have been extensively investigated. In
particular, if ((Xi, Yi))

n
i=1 consists of independent realizations of (X, Y ), and the joint distribu-

tion function of X and Y is differentiable, then ρrankn is a consistent statistical estimator, and
its standard deviation is of the order 1/

√
n independently of the exact form of the underlying

distributions, see e.g. [19].
For a graph G of size n, we propose to compute ρrankn using (III.1) as follows. We define

the random variables X and Y as the degrees on two ends of a random undirected edge in a
graph (that is, when rank correlations are computed, ij and ji represent the same edge). For
each edge, when the observed degrees are a and b, we assign [X = a, Y = b] or [X = b, Y = a]
with probability 1/2. Many values of X and Y will be the same making their rank ambiguous.
We resolve this by we adding independent uniformly distributed random variables on [0, 1] to
each value of X and Y . In the setting when the realisations (Xi, Yi) are independent, this
way of resolving ties preserves the original value of the Spearman’s rho on the population,
see e.g. [20]. We refer to [21] for a general treatment of rank correlations for non-continuous
distributions.

In the remainder of the paper we will demonstrate that the measure ρrankn gives consistent
results for different n, and it is able to reveal strong negative degree-degree correlations in
large networks.

IV. RANDOM GRAPH DATA

We consider four random graph models to highlight our results.
The configuration model. The configuration model was invented by Bollobás in [22], in-

spired by [23]. It was popularized by Newman, Strogatz and Watts [24], who realized that it
is a useful and simple model for real-world networks. In the configurations model a node i
has a given number di of half-edges, with ℓn =

∑

i∈V di assumed to be even. Each half-edge is
connected to a randomly chosen other half-edge to form an edge in the graph. We chose γ = 2,
thus, the maximum degree is of the order n1/2, which corresponds to the case of uncorrelated
random networks, such that the probability that two vertices are directly connected is close
to didj/ℓn [25, 26]. Although self-loops and multiple edges can occur these become rare as
n → ∞, see e.g. [27] or [28]. In simulations, we collapse multiple edges to a single edge, and
remove self-loops. This changes the degree distribution slightly, and intuitively should yield
negative dependencies. In Figure 1(a) we observe that, on average, ρn and ρrankn are indeed
negative in smaller networks but then they converge to zero showing that the degrees on two
ends of a random edge are uncorrelated.
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Configuration model with intermediate vertices. In order to construct a strongly disassor-
tative graph, we first generate a configuration model as described above, and then we replace
every edge by two edges that meet at a middle vertex. In this model, there are n + ℓn/2
vertices and 2ℓn edges (recall that ij and ji are two different edges). Now, if E, V , and di,
i = 1, . . . , n denote, respectively, the edge set, the vertex set, and the degrees of the original
configuration model, then in the model with intermediate edges the assortativity coefficient is
as follows:

ρn =
2
∑

i∈V 2di − 1
2ℓn

(

∑

i∈V d2i+2ℓn

)2

∑

i∈V d3i + 4ℓn − 1
2ℓn

(

∑

i∈V d2i+2ℓn

)2 .

When γ < 3 we have µ3 = ∞, and thus ρn → 0 as n → ∞. Furthermore, the lower bound ρ−n
also converges to zero as n grows. It is clear that this particular random graph, of any size,
is equally and strongly disassortative, however, ρn fails to capture this. In Figure 1(b) it is
clearly seen that both ρn and ρ−n quickly decrease in magnitude as n grows. It is striking that
ρrankn shows a totally different and very appropriate behavior. Its values remain around −0.75
identifying the strong negative dependencies, and the dispersion across different realizations
of the graph decreases as n → ∞.

Preferential attachment model. We consider the basic version of the undirected prefer-
ential attachment model (PAM), where each new vertex adds only one edge to the network,
connecting to the existing nodes with probability proportional to their degrees [15]. In this
case, it is well known that γ = 2 (see e.g. [29]). Newman [1] noticed the counterintuitive fact
that the Preferential Attachment graph has asymptotically neutral mixing, ρn → 0 as n → ∞.
This phenomenon has been studied in detail by Dorogovtsev et al. [11], and it can be clearly
observed in Figure 1(c). The reason for this behavior is not the genuine neutral mixing in
the PAM but rather the unnatural dependence of ρn on the graph size. Indeed, we see that
PAMs of small sizes have ρn < 0, and then the magnitude of ρn decreases with the graph size.
Again, Spearman’s rho consistently shows that the degrees are negatively dependent. This
can be understood by noting that the majority of edges of vertices with high degrees, which
are old vertices, come from vertices which are added late in the graph growth process and
thus have small degree. On the other hand, by the growth mechanism of the PAM, vertices
with low degree are more likely to be connected to vertices having high degree, which indeed
suggests negative degree-degree dependencies.

A collection of complete bipartite graphs. We next present an example where the assor-
tativity coefficient has a nonvanishing dispersion. Take ((Xi, Yi))

n
i=1 to be a sample of inde-

pendent realizations of the vector (X, Y ). We assume that X = bU1+ bU2 and Y = bU1+aU2,
where b > 0, a > 1, and U1, U2 are independent identically distributed (i.i.d.) random vari-
ables with power law tail, and tail exponent γ. Then, for i = 1, . . . , n, we create a complete
bipartite graph of Xi and Yi vertices, respectively. These n complete bipartite graphs are not
connected to one another. We denote such a collection of n bipartite graphs by Gn. This
is an extreme scenario of a network consisting of highly connected clusters of different size.
Such networks can serve as models for physical human contacts and are used in epidemic
modelling [9].

The graph Gn has |V | = ∑n
i=1(Xi + Yi) vertices and |E| = 2

∑n
i=1XiYi edges. Further,

∑

i∈V

dpi =
n

∑

i=1

(Xp
i Yi + Y p

i Xi),
∑

ij∈E

didj = 2
n

∑

i=1

(XiYi)
2.

Assume that P(Uj > x) = c0x
−γ, where c0 > 0, x ≥ x0, and γ ∈ (3, 4), so that E[U3] < ∞, but

E[U4] = ∞. As a result, |E|/n P−→ 2E[XY ] < ∞ and 1
n

∑

i∈V d2i
P−→ E[XY (X + Y )] < ∞.

6



Further,

n−4/γb−4
n

∑

i=1

(X3
i Yi + Y 3

i Xi)
d−→ (a3 + a)Z1 + 2Z2, n−4/γb−4

N
∑

i=1

(XiYi)
2 d−→ a2Z1 + Z2,

where Z1 and Z2 and two independent stable distributions with parameter γ/4. As a result,

ρn
d−→ 2a2Z1 + 2Z2

(a+ a3)Z1 + 2Z2
, as n → ∞,

which is a proper random variable taking values in (2a/(1+a2), 1), see [16] for detailed proof.
Note that in this model there is a genuine dependence between the correlation measure

and the graph size. Indeed, if n = 1 then the assortativity coefficient equals −1 because
nodes with larger degrees are connected to nodes with smaller degrees. However, when the
graph size grows, the positive linear dependence between X and Y starts dominating, thus,
larger graphs of this structure are strongly assortative. While the example we present is quite
special, we believe that the effect described is rather general.

In Figure 1(d) we again see that ρrankn captures the relation faster and gives consistent
results with decreasing dispersion. On a contrary, ρn has a persistent dispersion in its values,
and we know from the result above that this dispersion will not vanish as n → ∞. In the
limit, ρn has a non-zero density on (0.8, 1). However, the convergence is too slow to observe
it at n = 100, 000, because the vanishing terms are of the order n−1/γ , which is only n−1/3.1 in
our example.

V. WEB SAMPLES AND SOCIAL NETWORKS

We computed ρn, ρrankn and ρ−n on several Web samples (disassortative networks) and
social network samples (assortative networks). We used the compressed graph data from the
Laboratory of Web Algorithms (LAW) at the Università degli studi di Milano [30, 31]. We
used the bvgraph MATLAB package [32]. The stanford-cs database [33] is a 2001 crawl that
includes all pages in the cs.stanford.edu domain. In datasets (iv), (vii), (viii) we evaluate ρn,
ρrankn and ρ−n over 1000 random edges, and present the average over 10 such evaluations (in 10
samples of 1000 edges, the observed dispersion of the results was small).

The results are presented in Table I. We clearly see that the assortativity coefficient ρn and
Spearman’s ρrankn always agree about whether dependencies are positive or negative. They also
agree in magnitude of correlations when graph size is small or the lower bound ρ−n is sufficiently
far from zero. However, ρn is not consistent for graphs of similar structure but different sizes.
This is especially apparent on the two .uk crawls (iii) and (iv). Here ρn is significantly smaller
in magnitude on a larger crawl. Intuitively, mixing patterns should not depend on the crawl
size. This is indeed confirmed by the value of Spearman’s rho, which consistently shows strong
negative correlations in both crawls. We could not observe a similar phenomenon so sharply
in (vi) and (vii), probably because a larger co-authorship network incorporates articles from
different areas of science, and the culture of scientific collaborations can vary greatly from one
research field to another.

We also notice that, as predicted by our results, the assortativity coefficient tends to take
smaller values than ρrankn if ρ−n is small in magnitude. This is clearly seen in the data sets
(ii), (iv) and (v). Again, (ii) and (iv) are the largest among the analyzed web crawls.

The observed behaviour of the assortativity coefficient is explained by the above stated
results that ρn is influenced greatly by the large dispersion in the degree values. The latter
increases with graph size because of the scale-free phenomenon. As a result, ρn becomes
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FIG. 1. (Color online) Scatter plots for samples of 20 graphs. For each size we plot the 20 realizations

of ρn (blue asterisks) and ρrankn (red diamonds) in random graphs of different sizes. Solid lines connect

the averages of the samples. In (c), (d) the circles connected by the solid line are the averages of

ρ−n in the samples. (a) Configuration model, P(d ≥ x) = x−2, x ≥ 1. (b) Configuration model with

intermediate vertices. (c) Preferential attachment model. (d) A collection of bi-partite graphs, where

b = 1/2, a = 2, and U has a generalized Pareto distribution P(U > x) = ((2.1 + x)/3.1)−3.1, x > 1.

nr Dataset Description # nodes # edges max degree ρn ρrank
n

ρ−
n

(i) stanford-cs web domain 9,914 54,854 340 -.1656 -.1627 -.4648

(ii) eu-2005 .eu web domain 862,664 5,477,938 68,963 -.0562 -.2525 -.0670

(iii) uk@100,000 .uk web crawl 100,000 5,559,150 55,252 -.6536 -.5676 -1.117

(iv) uk@1,000,000 .uk web crawl 1,000,000 77,123,940 403,441 -.0831 -.5620 -.0854

(v) enron e-mail exchange 69,244 506,898 1,634 -.1599 -.6827 -.1932

(vi) dblp-2010 co-authorship 326,186 1,615,400 238 .3018 .2604 -.7736

(vii) dblp-2011 co-authorship 986,324 6,707,236 979 .0842 .1351 -.2963

(viii) hollywood-2009 co-starring 1,139,905 113,891,327 11,468 .3446 .4689 -0.6737

TABLE I. (i)–(iv) Web crawls: nodes are web pages, and an (undirected) edge means that there

is a hyperlink from one of the two pages to another; (iii),(iv) are breadth-first crawls around one

page. (v) e-mail exchange by Enron employees (mostly part of the senior management): node are

employees, and an edge means that an e-mail message was sent from one of the two employees to

another. (vi), (vii) scientific collaboration networks extracted from the DBLP bibliography service:

each vertex represents a scientist and an edge means a co-authorship of at least one article. (viii)

vertices are actors, and two actors are connected by an edge if they appeared in the same movie.
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smaller in magnitude, which makes it impossible to compare graphs of different sizes. In
contrast, the ranks of the degrees are drawn from a uniform distribution on [0, 1], scaled by
the factor n. Clearly, when a correlation coefficient is computed, the scaling factor cancels,
and therefore Spearman’s rho provides consistent results in the graphs of different sizes.

VI. DISCUSSION

The assortativity coefficient ρn proposed in [1, 2] has been the first dependency measure
introduced to describe degree-degree correlations in networks. The assortativity coefficient
has provided many interesting insights. It has been successfully used for comparison of de-
pendencies in graphs with the same degree sequences [34, 35], and to generate graphs with
given degrees and desired mixing patterns [36]. An important drawback of ρn is its depen-
dence on the network size n. It has been noticed by many authors, and shown in this paper
for disassortative networks, that ρn converges to zero as n grows. In particular, the decay with
network size of the assortativity coefficient ρn implies that it cannot be used for comparing
dependencies in networks of different sizes. Therefore, it prohibits the investigation whether
growing networks become more or less assortitative over time.

This paper suggests to use rank-correlation measures such as Spearman’s rho. Our ex-
periments convincingly show that Spearman’s rho does not suffer from the size-dependence
deficiency. In networks of different sizes but similar structure, Spearman’s rho yields consistent
results, and it is able to reveal strong (positive or negative) correlations in large networks. We
conclude that rank correlations are a suitable and informative method for uncovering network
mixing patterns.

For the correct interpretation of degree-degree dependencies, it is important to realise
that positive or negative correlations can be pre-defined by the degree sequence itself. For
instance, there is only one simple graphs with degrees (3, 1, 1, 1), and the result ρ4 = −1
is not informative in this case. It has been discussed in the literature that, conditioned
on not having self-loops and multiple edges, random networks with given degrees exhibit
disassortative patterns [25, 35, 37], also called structural correlations. In order to filter out
the structural correlations, one needs to compare the real-world networks to their null-models –
graphs with the same degree sequences but random connections. This null-model is a uniform
simple random graph with the same degree sequence. Here a network is called simple when
it has no self-loops nor multiple edges. Such a graph can be obtained by randomly pairing
half-edges, as in Section IV, and taking the first realization that is simple. This is especially
problematic when (maxi di)

2 > |E|, which is the case in many examples, since then one needs
a prohibitingly large number of attempts before a simple graph is generated [28, 38].

A widely accepted method for constructing a null-model, is the random rewiring of the
connections in a given graph [34, 35]. The disadvantage is the unknown running time before
a graph is produced that is close enough to being uniform. Recent work [39] presents a
sequential algorithm, where, at each step, the remaining unconnected edges maintain the
ability to generate a simple graph. This method always produces the desired outcome but its
worst-case running time O(n2

∑

i di) is infeasible for large networks. The recently introduced
grand-canonical model [40] computes the probability of connection between two nodes in a
maximum entropy graph with given degree sequence, and enables the evaluation of many
characteristics of the graph. To the best of our knowledge, efficient implementation of this
method for large networks has not been developed yet.

Constructing a null-model and filtering out the structural correlations in large networks is
an interesting and demanding computational task that is beyond the scope of this paper. We
believe that structural correlations will affect ρn to a larger extent than the rank correlation
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ρrankn because it is usually the nodes with largest degrees that produce self-loops and multiple
edges, and thus the relative contribution of these edges in the cross-products will be larger for
ρn than for ρrankn . This conjecture requires a further investigation.

We conclude by stating that rank correlation measures deserve to become a standard
tool in the analysis of complex networks. The use of rank correlation measures has become
common ground in the area of statistics for analysing heavy-tailed data. We hope to have
provided a sufficient evidence that this method is preferred for analysing network data with
heavy-tailed degrees as well.
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Degree-degree dependencies in random graphs

with heavy-tailed degrees

Remco van der Hofstad∗and Nelly Litvak†

August 9, 2013

Abstract

Mixing patterns in large self-organizing networks, such as the Internet, the World Wide Web,
social and biological networks are often characterized by degree-degree dependencies between
neighbouring nodes. In assortative networks, the degree-degree dependencies are positive (nodes
with similar degrees tend to connect to each other), while in disassortative networks, these depen-
dencies are negative. One of the problems with the commonly used Pearson correlation coefficient,
also known as the assortativity coefficient is that its magnitude decreases with the network size in
disassortative networks. This makes it impossible to compare mixing patterns, for example, in two
web crawls of different sizes. As an alternative, we have recently suggested to use rank correlation
measures, such as Spearman’s rho. Numerical experiments have confirmed that Spearman’s rho
produces consistent values in graphs of different sizes but similar structure, and it is able to reveal
strong (positive or negative) dependencies in large graphs.

In this paper we analytically investigate degree-degree dependencies for scale-free graph se-
quences. In order to demonstrate the ill behaviour of the Pearson’s correlation coefficient, we first
study a simple model of two heavy-tailed highly correlated random variables X and Y , and show
that the sample correlation coefficient converges in distribution either to a proper random variable
on [−1, 1], or to zero, and the limit is non-negative a.s. if X,Y ≥ 0. We next adapt these results
to the degree-degree dependencies in networks as described by the Pearson correlation coefficient,
and show that it is non-negative in the large graph limit when the asymptotic degree distribution
has an infinite third moment. Furthermore, we provide examples where the Pearson’s correlation
coefficient converges to zero in a network with strong negative degree-degree dependencies, and
another example where this coefficient converges in distribution to a random variable. We sug-
gest the alternative degree-degree dependency measure, based on Spearman’s rho, and prove that
this statistical estimator converges to an appropriate limit under quite general conditions. These
conditions are proved to hold in common network models, such as the configuration model and
the preferential attachment model. We conclude that rank correlations provide a suitable and
informative method for uncovering network mixing patterns.

Keywords. Dependencies of heavy-tailed random variables, Power-laws, Scale-free graphs, Assor-
tativity, Degree-degree correlations

1 Introduction

In this paper we present an analytical study of degree-degree correlations in graphs with power law
degree distribution. In simple words, a random variable X has a power-law distribution with tail
exponent γ > 0 if its tail probability P(X > x) is roughly proportional to x−γ , for large enough
x. Large self-organizing networks, such as the Internet, the World Wide Web, social and biological
networks, usually exhibit high variation in the values of the degrees. Such networks are called scale
free indicating that there is no typical scale for the degrees, and the high degree vertices are called
hubs. This phenomenon is often modelled by using power-law degree distributions.
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Power-law distributions are heavy tailed since the tail probability decreases much more slowly
than a negative exponential, and thus one observes extremely large values of X much more frequently
than in the case of light tails. Statistical analysis of scale-free complex networks has received massive
attention in recent literature, see e.g. [33, 40] for excellent surveys. Nevertheless, there still are
many fundamental open problems. One of them is how to measure dependencies between network
parameters.

An important characteristic of networks is the dependency between the degrees of direct neigh-
bours. A network is usually called assortative when nodes with similar degrees are often connected,
thus, the degree-degree dependencies are positive, while in a disassortative network these depen-
dencies are negative. The degree-degree dependencies define many of the network’s properties. For
instance, the negative degree-degree correlations in the Internet graph have a great influence on the
robustness to failures [15], efficiency of Internet protocols [29], as well as distances and between-
ness [30]. The correlation between in- and out-degree of tasks plays and important role in the dy-
namics of production and development systems [11]. Mixing patterns affect epidemic spread [17, 18]
and Web ranking [19].

Often, degree-degree dependence is characterized by the assortativity coefficient of the network,
introduced by Newman in [38]. The assortativity coefficient is in fact the Pearson correlation co-
efficient between the vector of degrees on each side of an edge, as a function of all edges. See [38,
Table I] for a list of assortativity coefficients for various real-world networks. The empirical data
suggest that social networks tend to be assortative (the assortativity coefficient is positive), while
Internet, World Wide Web, and biological networks tend to be disassortative. In [38, Table I], it is
striking that, typically, larger disassortative networks have an assortativity coefficient that is closer
to 0 and therefore appear to have approximate uncorrelated degrees across edges. Similar conclusions
can be drawn from [39], see in particular [39, Table II]. This phenomenon arises because Pearson’s
correlation coefficient in scale-free networks with realistic parameters decreases with the network
size, as was pointed out in several recent papers [14, 42, 24]. In this paper, we prove that Pearson’s
correlation coefficient in scale-free networks shows several types of pathological behavior, in partic-
ular, its infinite volume limit, when it exists, is non-negative, independently of the mixing pattern,
and in fact this limit can even be random.

In [24] we propose an alternative measure for the degree-degree dependencies, based on the ranks
of degrees. This rank correlation approach is in fact classical in multivariate analysis, falling under
the category of ‘concordance measures’ - dependency measures based on order rather than exact
values of two stochastic variables. The huge advantage of such dependency measures is that they
work well independently of the number of finite moments of the degrees, while Pearson’s coefficient
suffers from a strong dependence on the extreme values of the degrees. Recent applications of rank
correlation measures, such as Spearman’s rho [44] and the closely related Kendall’s tau [27], include
the concordance between two rankings for a set of documents in web search. In this application field
many other measures for rank distances have been proposed, see e.g. [28] and the references therein.

We show mathematically that statistical estimators for degree-degree dependencies based on rank
correlations are consistent. That is, for graphs of different sizes but similar structure (e.g. preferential
attachment graphs of increasing size), these estimators converge to their ‘true’ or limiting value that
describes the degree-degree dependence in an infinitely large graph (in particular, the variance of
the estimator decreases as the size of the graph grows). We also show that Pearson’s correlation
coefficient does not have this basic property when degree distributions are heavy-tailed. In particular,
as explained in more detail in [24], this implies that the assortativity coefficient as suggested in [38]
does not allow one to compare the degree-degree dependencies in graphs of different sizes, such as they
arise when studying a network at different time stamps, or comparing two different networks, e.g. web
crawls of different domains or Wikipedia graphs from different languages. On the other hand, such
a comparison is possible using Spearman’s rho. This paper forms the mathematical justification of
our paper [24], where similar results were predicted on a less formal level and confirmed by numerical
experiments.
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The paper is organized as follows. In Section 2 we start with the analysis of the sample Pearson
correlation coefficient and the sample rank correlation, Spearman’s rho, for a two-dimensional vector
with heavy-tailed marginals. In Section 2.3 we present a simple model with an explicit linear depen-
dence and show that, when the sample size grows to infinity, then Pearson’s correlation coefficient
does not converge to a constant but rather to a random variable involving stable distributions. We
also verify analytically and numerically that the rank correlation provides a consistent statistical
estimator for this model. Next, in Section 2.4 we prove that if random variables are heavy-tailed
with infinite second moment and non-negative, then the sample Pearson correlation coefficient never
converges to a negative value. Thus, such sequence will never be classified as ‘disassortative’. This
result is extended to sequences of graphs in Section 3, where we also obtain quite general convergence
criteria in the infinite volume limit for the Pearson’s correlation coefficient and the Spearman’s rho.
In Section 4 analytical results are provided for Pearson’s correlation coefficient and rank correlations
in the configuration model and the Preferential Attachment model. We also present an adaptation of
the configuration model that has strong negative degree-degree dependencies and prove that Spear-
man’s rho converges to the theoretically justified negative value while Pearson’s coefficient converges
to zero. Furthermore, we construct an example, where Pearson’s correlation coefficient converges to
a random variable. Numerical results are presented in Section 5. We close the paper in Section 6
with a discussion on our results and possible extensions thereof.

2 Correlations between random variables

In this section we introduce the dependency measures studied in this paper. We start with a general
description of dependency measures for random vectors (X,Y ). This will provide the necessary
intuition and framework in order to understand what happens when X and Y are the degrees of
neighboring nodes in a network graph. We present Pearson’s sample correlation coefficient in Section
2.1, and introduce Spearman’s rho in Section 2.2. In Section 2.3 we demonstrate an ill behaviour of
Pearson’s sample coefficient in a simple model with linear dependencies, and in Section 2.4 we show
that if X and Y are non-negative then the Pearson’s sample coefficient cannot converge to a negative
value.

2.1 Sample Pearson’s correlation coefficient

The Pearson correlation coefficient ρ for two random variables X and Y with cumulative distribution
functions FX(·) and FX(·), joint cumulative distribution function FX,Y (·, ·), and Var(X),Var(Y ) <∞
is defined by

ρ =
E[XY ]− E[X]E[Y ]√

Var(X)
√

Var(Y )
. (2.1)

By Cauchy-Schwarz, ρ ∈ [−1, 1], and ρ measures the linear dependence between the random variables
X and Y . We can approximate ρ from a sample by computing the sample correlation coefficient

ρn =
1

n−1

∑n
i=1(Xi − X̄n)(Yi − Ȳn)

Sn(X)Sn(Y )
, (2.2)

where

X̄n =
1

n

n∑
i=1

Xi, Ȳn =
1

n

n∑
i=1

Yi (2.3)

denote the sample averages of (Xi)
n
i=1 and (Yi)

n
i=1, while

S2
n(X) =

1

n− 1

n∑
i=1

(Xi − X̄n)2, S2
n(Y ) =

1

n− 1

n∑
i=1

(Yi − Ȳn)2 (2.4)
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denote the sample variances. For i.i.d. sequences of random vectors ((Xi, Yi))
n
i=1 under the assump-

tion of finite-variance random variables, i.e., Var(X),Var(Y ) <∞, it is well known that the estimator
ρn of ρ is consistent, i.e.,

ρn
P−→ ρ, (2.5)

where
P−→ denotes convergence in probability. In practice, however, we tend not to know whether

Var(X),Var(Y ) <∞, since S2
n(X) <∞ and S2

n(Y ) <∞ clearly hold for any sample, and, therefore,
one might be tempted to always use ρn. Furthermore, by the Cauchy-Schwarz inequality, ρn ∈ [−1, 1]
for every n ≥ 1, which is part of the problem, because, for any sample, a value in [−1, 1] is produced,
and no alarm bells start rinkling when ρn is used inappropriately. In this paper we investigate the
case Var(X),Var(Y ) = ∞, and show that the use of ρn in this case, and in particular in scale-free
random graphs, is uninformative. For example, in case of negative correlations ρn converges to
zero when n → ∞, which makes it impossible to compare the data of different sizes. Moreover,
if correlations are positive, ρn may even converge to a random variable, thus it can produce very
different numbers for two random structures of the same size created by the same mechanism. We
provide such examples for linearly dependent random variables in Section 2.3 and for random graphs
in Section 4.4.

2.2 Rank correlations

For two-dimensional data ((Xi, Yi))
n
i=1, let rXi and rYi be the rank of an observation Xi and Yi,

respectively, when the sample values (Xi)
n
i=1 and (Yi)

n
i=1 are arranged in a descending order. The

idea of rank correlations is in evaluating statistical dependences on the data ((rXi , r
Y
i ))ni=1, rather

than on the original data ((Xi, Yi))
n
i=1. Rank transformation is convenient, in particular because, for

continuous random variables, the two marginals of the resulting vector (rXi , r
Y
i ) are realizations of

identical uniform distributions, implying many nice mathematical properties.
The statistical correlation coefficient for the ranks is known as Spearman’s rho [44]:

ρrank
n =

∑n
i=1(rXi − (n+ 1)/2)(rYi − (n+ 1)/2)√∑n

i=1(rXi − (n+ 1)/2)2
∑n

i (rYi − (n+ 1)/2)2
=

1
n

∑n
i=1 r

X
i r

Y
i − ((n+ 1)/2)2)

1
12 (n2 − 1)

. (2.6)

The mathematical properties of Spearman’s rho have been extensively investigated in the literature.
It is well known that if ((Xi, Yi))

n
i=1 consists of independent realizations of (X,Y ), and the joint

distribution cumulative function of X and Y is continuous, then ρrank
n converges to a number that

can be interpreted as its population value, see [26, Chapter 9], [10]:

ρrank
n

P−→ ρrank = 12E(FX(X)FY (Y ))− 3. (2.7)

For completeness, we give a brief explanation of this formula. Observe that FX(X) is the random
variable that takes the value FX(x) when X = x. If X is continuous then FX(X) has a uniform
distribution on [0, 1]:

FX(x) = P(X ≤ x) = P(FX(X) ≤ FX(x)). (2.8)

Now take FX(x) = t to obtain P(FX(X) ≤ t) = t, where t can take any value in [0, 1]. We note that
this derivation holds for any continuous random variable X. We will use this many times throughout
the paper. In particular, it follows that E(FX(X)) = E(FY (Y )) = 1/2. Next, note that rXi /n is an
empirical estimator of 1− FX(xi), where xi is the realized value of Xi. Moreover,

E((1− FX(X))(1− FY (Y ))) = 1− E(FX(X))− E(FY (Y )) + E(FX(X)FY (Y )) = E(FX(X)FY (Y )).

Hence, the right-hand side of (2.6) is a statistical estimator of the last expression in (2.7).
For discrete random variables, the situation is more delicate, as the same values of X and Y

may occur more than once. We resolve the ties randomly, using uniformisation as suggested in [31].
Formally, we replace the ranks of ((Xi, Yi)

n
i=1 by the ranks of the random variables

((X∗i , Y
∗
i ))ni=1 = ((Xi + Ui, Yi + U ′i))

n
i=1,
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where ((Ui, U
′
i))

n
i=1 is a sequence of 2n i.i.d. uniform variables on (0, 1). The random variables X∗i

and Y ∗i now are continuous. We denote their cumulative distribution functions by F ∗X and F ∗Y . Note
that if X takes non-negative integer values then F ∗X can be seen as a linear interpolation of the
cumulative probability P(X < x), x = 0, 1, 2, . . . because P(X = x) = P(X∗ ∈ [x, x+ 1)).

Since (X∗, Y ∗) has a continuous distribution, the convergence result in (2.7) remains valid.
Moreover, [31, Proposition 3.1] states that the population value ρrank is the same for (X,Y ) en
(X∗, Y ∗):

E(F ∗X(X∗)F ∗Y (Y ∗)) = E(FX(X)FY (Y )). (2.9)

The comparison of different ways for resolving ties, and their effect on the resulting computation is
an interesting topic, which is outside the scope of this work. We refer to [36] for a general treatment
of rank correlations for non-continuous distributions.

2.3 Linear dependencies

It is well known that ρ in general measures linear dependence between two random variables. There-
fore, before analyzing the behavior of ρn in networks, we wish to illustrate that ρn fails to cap-
ture the linear dependence between X and Y when the variances of X and Y are infinite, i.e.,
Var(X),Var(Y ) = ∞, even in a very straightforward case when the linear relation between X and
Y is explicitly defined. With this goal in mind, below we analyze the behavior of ρn in the following
linear model:

X = α1ξ1 + · · ·+ αmξm, Y = β1ξ1 + · · ·+ βmξm, (2.10)

where ξj , j = 1, . . . ,m, are independent identically distributed (i.i.d.) non-negative random variables
with regularly varying tail, and tail exponent γ. By definition, the non-negative random variable ξ
is regularly varying with index γ > 0, if

P(ξ > x) = L(x)x−γ , x ≥ 0, (2.11)

where x 7→ L(x) is a slowly varying function, that is, for u > 0, L(ux)/L(x) → 1 as x → ∞, for
instance, L(x) may be equal to a constant or log(x). Note that the random variables X and Y have
the same distribution when (β1, . . . , βm) is a permutation of (α1, . . . , αm).

When we take an i.i.d. sample of random variables ((Xi, Yi))
n
i=1 of random variables with the

above linear dependence, then Spearman’s rho is consistent by (2.7), with a variance that converges
to zero as 1/n. For the sample correlation coefficient, consistency follows from (2.5) in the case where
Var(ξi) < ∞, but not when the ξi’s have infinite variance as we show below in detail. Our main
result in this section is the following theorem:

Theorem 2.1 (Weak convergence of the sample Pearson’s coefficient). Let ((Xi, Yi))
n
i=1 be i.i.d.

copies of the random variables (X,Y ) in (2.10), and where (ξj)
m
j=1 are i.i.d. random variables satis-

fying (2.11) with γ ∈ (0, 2), so that Var(ξj) =∞. Then,

ρn
d−→ ρ ≡

∑m
j=1 αjβjZj√∑m

j=1 α
2
jZj
√∑m

j=1 β
2
jZj

, (2.12)

where (Zj)
m
j=1 are i.i.d. random variables having stable distributions with parameter γ/2 ∈ (0, 1), and

d−→ denotes convergence in distribution. In particular, ρ has a density on [−1, 1]. This density is
strictly positive on (−1, 1) when there exist k, l such that αkβk < 0 < αlβl. Furthermore, the density
is positive on (a, 1) when αkβk ≥ 0 for every k, and on (−1,−a) when αkβk ≤ 0 for every k, where

a = inf
z1,...,zm∈R

∑m
j=1 |αjβj |zj√∑m

j=1 α
2
jzj
√∑m

j=1 β
2
j zj
∈ (0, 1). (2.13)
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Theorem 2.1 states that the sample correlation coefficient converges in distribution to a proper
random variable, contrary to Spearman’s rank correlation which converges in probability to a con-
stant. In particular, this implies that when we have two independent samples, the sample correlation
coefficient will give two rather distinct values, while Spearman’s rank correlation will give two similar
values. We prove Theorem 2.1 in the remainder of this section. In its proof, we need the following
technical result:

Lemma 2.2 (Asymptotics of sums in stable domain). Let (ξi,j)i=1,2,...,n,j=1,2 be i.i.d. random vari-
ables satisfying (2.11) for some γ ∈ (0, 2). Then there exists a sequence an with an = n2/γ`(n), where
n 7→ `(n) is slowly varying, such that

1

an

n∑
i=1

ξ2
i,1

d−→ Z1,
1

an

n∑
i=1

ξi,1ξi,2
P−→ 0, (2.14)

where Z1 is stable with parameter γ/2 and
P−→ denotes convergence in probability.

Proof. Let F (x) = P(ξ ≤ x) be the cumulative distribution function of ξ. In order to prove the
first statement in (2.14) we only need to note that the cumulative distribution function of ξ2 equals
x 7→ F (

√
x), which, by (2.11), implies that ξ2 is regularly varying. Thus, the first statement in

(2.14) is in fact the classical convergence of infinite variance random variables with slowly varying
distribution functions to stable laws (see e.g. [21]), where Z1 is a stable γ/2 random variable. In
particular, denoting [1 − F ](x) = 1 − F (x), x ≥ 0, we can identify an = [1 − F ]−1(1/n2) [4]. Since
x 7→ [1−F ](x) is regularly varying with index γ, [1−F ]−1(1/n) is regularly varying with index 1/γ
[4], so that an = [1 − F ]−1(1/n2) is regularly varying with index 2/γ. To prove the second part of
(2.14), we write

1− F (x) = P(ξ > x) ≤ c′x−γ′ , x ≥ 0, (2.15)

which is valid for any γ′ ∈ (1, γ) by (2.11) and Potter’s theorem. We next study the cumulative
distribution function of ξ1ξ2 which we denote by H, where ξ1 and ξ2 are two independent copies of
the random variable ξ. When F satisfies (2.15), then it is not hard to see that there exists a C > 0
such that

1−H(u) ≤ C(1 + log u)u−γ
′
. (2.16)

Indeed, assume that F has a density f(w) = cw−(γ′+1), for w ≥ 1. Then,

1−H(u) =

∫ ∞
1

f(w)[1− F ](u/w)dw.

Clearly, 1− F (w) = c′w−γ
′

for w ≥ 1 and 1− F (w) = 1 otherwise. Substitution of this yields

1−H(u) ≤ cc′
∫ u

1
w−(γ′+1)(u/w)−γ

′
dw + c

∫ ∞
u

w−(γ′+1) dw ≤ C(1 + log u)u−γ
′
.

When F satisfies (2.15), then ξ1 and ξ2 are stochastically upper bounded by ξ̂1 and ξ̂2 with cumulative
distribution function F̂ satisfying 1− F̂ (w) = c′w−γ

′ ∨ 1, where (x ∨ y) = max{x, y}, and the claim
in (2.16) follows from the above computation.

By the bound in (2.16), the random variables ξi,1ξi,2 are stochastically bounded from above by
random variables Pi that are in the domain of attraction of a stable γ′ random variable. As a result,
there exists bn = n1/γ′`′(n), where n 7→ `′(n) is slowly varying, such that

1

bn

n∑
i=1

Pi
d−→W,

where W is stable γ′. By choosing γ′ > γ/2, we get bn/an → 0, so we obtain the second statement
in (2.14).
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Proof of Theorem 2.1. We start by noting that

ρn =
1

n−1

∑n
i=1(XiYi − X̄nȲn)

Sn(X)Sn(Y )
, (2.17)

and

S2
n(X) =

1

n− 1

n∑
i=1

(X2
i − X̄2

n), S2
n(Y ) =

1

n− 1

n∑
i=1

(Y 2
i − Ȳ 2

n ). (2.18)

We continue to identify the asymptotic behavior of
n∑
i=1

X2
i ,

n∑
i=1

Y 2
i ,

n∑
i=1

XiYi.

Let [n] denote the set of integers {1, 2, . . . , n}. The distribution of ((Xi, Yi))
n
i=1 is described in terms

of an array (ξi,j)i∈[n],j∈[m], which are i.i.d. copies of a random variable ξ. In terms of these random
variables, we can identify

n∑
i=1

XiYi =
m∑
j=1

αjβj

( n∑
i=1

ξ2
i,j

)
+

m∑
j1 6=j2=1

αj1βj2

( n∑
i=1

ξi,j1ξi,j2

)
. (2.19)

The sums
∑n

i=1 ξ
2
i,j are i.i.d. for different j ∈ {1, . . . ,m}, and by Lemma 2.2,

∑n
i=1 ξi,j1ξi,j2 is of a

smaller order. Hence, from (2.19) we obtain that

1

an

n∑
i=1

XiYi
d−→

m∑
j=1

αjβjZj . (2.20)

Therefore, by taking α = β, we also obtain

1

an

n∑
i=1

X2
i

d−→
m∑
j=1

α2
jZj ,

1

an

n∑
i=1

Y 2
i

d−→
m∑
j=1

β2
jZj , (2.21)

and the convergence holds simultaneously. As a result, (2.12) follows. It remains to establish the
properties of the limiting random variable ρ in (2.12).

The density of Zi is strictly positive on (0,∞). Note that rescaling zj = czj j = 1, . . . ,m, in
(2.13), does not change the value of a. In particular, we can choose c = (max{z1, z2, . . . , zm})−1. If
there exist k and l such that αkβk < 0 < αlβl then the density of ρ is strictly positive on (−1, 1).
Indeed, with positive probability ρ can be arbitrarily close to−1 if Zk = max{Z1, . . . , Zm} and Zj/Zk,
j 6= k are sufficiently small. Similarly, if Zl = max{Z1, . . . , Zm} then with positive probability, ρ can
be arbitrarily close to 1. Now assume that αkβk ≥ 0 for every k. In this case, the density of ρ is
strictly positive on the support of ρ, which is (a, 1), with a as in (2.13). Analogously, when αkβk ≤ 0
then ρ cannot be positive, and has a density on (−1,−a).

Numerical example. In order to illustrate the result of Theorem 2.1, consider the example with
ξj ’s from a Pareto distribution satisfying P(ξ > x) = 1/x1.1, x ≥ 1, so L(x) = 1 and γ = 1.1 in (2.11).
The exponent γ = 1.1 is as observed for the World Wide Web [12]. In (2.10), we choose m = 3 and
αi, βi, i = 1, 2, 3, as specified in Table 1. We generate N data samples ((Xi, Yi))

n
i=1 and compute

ρn and ρrank
n for each of the N samples. Thus, we obtain the vectors (ρn,j)

N
j=1 and (ρrank

n,j )Nj=1 of N

independent realizations for ρn and ρrank
n , respectively, where the sub-index j = 1, . . . , N denotes the

jth realization of ((Xi, Yi))
n
i=1. We then compute

EN (ρn) =
1

N

N∑
j=1

ρn,j , EN (ρrank
n ) =

1

N

N∑
j=1

ρrank
n,j ; (2.22)

σN (ρn) =

√√√√ 1

N − 1

N∑
j=1

(ρn,j − EN (ρn))2, σN (ρrank
n ) =

√√√√ 1

N − 1

N∑
j=1

(ρrank
n,j − EN (ρrank

n ))2. (2.23)
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The results are presented in Table 1. We clearly see that ρn has a significant standard deviation,
of which estimators are similar for different values of n. This means that in the limit as n → ∞,
ρn is a random variable with a significant spread in its values, as stated in Theorem 2.1. Thus, by
evaluating ρn for one sample ((Xi, Yi))

n
i=1 we will obtain a random number, even when n is huge.

The convergence to a non-trivial distribution is directly seen in Figure 1 because the plots for the two
values of n almost coincide. Note that in all cases, the density is fairly uniform, ensuring a comparable
probability for all feasible values and rendering the value obtained in a specific realization even more
uninformative.

N 103 102

Model parameters n 102 103 104 105

EN (ρn) 0.4395 0.4365 0.4458 0.4067
α = (1/2, 1/2, 0) σN (ρn) 0.3399 0.3143 0.3175 0.3106
β = (0, 1/2, 1/2) EN (ρrankn ) 0.4508 0.4485 0.4504 0.4519

σN (ρrankn ) 0.0922 0.0293 0.0091 0.0033
EN (ρn) 0.8251 0.7986 0.8289 0.8070

α = (1/2, 1/3, 1/6) σN (ρn) 0.1151 0.1125 0.1108 0.1130
β = (1/6, 1/3, 1/2) EN (ρrankn ) 0.8800 0.8850 0.8858 0.8856

σN (ρrankn ) 0.0248 0.0073 0.0023 0.0007
EN (ρn) -0.3052 -0.3386 -0.3670 -0.3203

α = (1/2,−1/3, 1/6) σN (ρn) 0.6087 0.5841 0.5592 0.5785
β = (1/6, 1/2,−1/3) EN (ρrankn ) -0.3448 -0.3513 -0.3503 -0.3517

σN (ρrankn ) 0.1202 0.0393 0.0120 0.0034

Table 1: Estimated mean and standard deviation of ρn and ρrankn in N samples with linear dependence (2.10),
P(ξ > x) = x−1.1, x ≥ 1.

Figure 1: The empirical distribution function FN (x) = P(ρn ≤ x) for the N = 1.000 observed values of ρn
(n = 1.000, n = 10.000), in the case of linear dependence (2.10).

On the other hand, from Table 1 we clearly see that the behaviour of the rank correlation is
exactly as we can expect from a good statistical estimator. The obtained average values are consistent
while the standard deviation of ρrank

n decreases approximately as 1/
√
n as n grows large. Therefore,

ρrank
n converges to a deterministic number.

2.4 Sample Pearson’s correlation coefficient for non-negative variables

We proceed by investigating correlations between non-negative heavy-tailed random variables. Our
main result in this section shows that the correlation coefficient is asymptotically non-negative:

Theorem 2.3 (Asymptotic non-negativity of the sample Pearson’s coefficient for positive r.v.’s).
Let ((Xi, Yi))

n
i=1 be i.i.d. copies of non-negative random variables (X,Y ), where X and Y satisfy

P(X > x) = LX(x)x−γX , P(Y > y) = LY (y)y−γY , x, y ≥ 0, (2.24)

with γX , γY ∈ (0, 2), so that Var(X) = Var(Y ) = ∞. Then, any limit point of the sample Pearson
correlation coefficient is non-negative.
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N 103 102

n 10 102 103 104 105

EN (ρn) -0.4833 -0.1363 -0.0342 -0.0077 -0.0015
σN (ρn) 0.1762 0.0821 0.0245 0.0064 0.0011
EN (ρrankn ) -0.6814 -0.4508 -0.4485 -0.4504 -0.4519
σN (ρrankn ) 0.1580 0.0283 0.0082 0.0024 0.0007

Table 2: The mean and standard deviation of ρn and ρrankn in N simulations of ((Xi, Yi))
n
i=1, where X = 2ξI,

Y = 2ξ(1− I), I is a Bernoulli(1/2) random variable, P(ξ > x) = x−1.1, x ≥ 1.

We illustrate Theorem 2.3 with a useful example. Let (ξi)
n
i=1 be a sequence of i.i.d. random

variables satisfying (2.11) for some γ ∈ (0, 2), and where ξ ≥ 0 a.s. Let (X,Y ) = (0, 2ξ) with
probability 1/2 and (X,Y ) = (2ξ, 0) with probability 1/2. Then, XY = 0 a.s., while E[X] = E[Y ] =

E[ξ] and Var(X) = Var(Y ) = 2E[ξ2] − E[ξ]2 = 2Var(ξ) + E[ξ]2. By Theorem 2.3, ρn
P−→ 0 when

(ξi)
n
i=1 is a sequence of i.i.d. non-negative random variables satisfying (2.11) for some γ ∈ (0, 2),

which is not appropriate as (X,Y ) are highly negatively dependent. When γ > 2, this anomaly does
not arise, since, if Var(ξ) <∞,

ρn
P−→ ρ = − E[ξ]2

2Var(ξ) + E[ξ]2
∈ (−1, 0). (2.25)

The asymptotics in (2.25) are quite reasonable, since the random variables (X,Y ) are highly nega-
tively dependent: When X > 0, Y must be equal to 0, and vice versa.

Table 2 shows the empirical mean and standard deviation of the estimators ρn and ρrank
n . Here

P(ξ > x) = x−1.1, x ≥ 1, as in Table 1. As predicted by Theorem 2.3, the sample correlation
coefficient (assortativity) converges to zero as n grows large, while ρrank

n consistently shows a clear
negative dependence, and the precision of the estimator improves as n → ∞. This explains why
strong disassortativity is not observed in large samples of non-negative power-law data.

We next prove Theorem 2.3:
Proof of Theorem 2.3. Clearly

∑n
i=1XiYi ≥ 0 when Xi ≥ 0, Yi ≥ 0, so that

ρn ≥ −
1

n−1

∑n
i=1 X̄nȲn

Sn(X)Sn(Y )
= − n

n− 1

X̄n

Sn(X)

Ȳn
Sn(Y )

.

It remains to show that if Var(X) = ∞, then X̄n/Sn(X)
P−→ 0. Indeed, if γ ∈ (1, 2) then X̄n

P−→
E[X] <∞ by the strong law of large numbers. When γ ∈ (0, 1], instead, then X is in the domain of
attraction of a γ stable random variable, hence X̄n, loosely speaking, it scales as n1/γX−1. Further,
from (2.24) and Lemma 2.2 it follows that Sn(X) scales as n2/γX−1, in particular, X̄n/Sn(X)

P−→ 0
for all γ ∈ (0, 2).

3 Applications to networks

In real-world networks it is particularly important to measure degree-degree dependencies for neigh-
boring vertices. We refer to [37] for an extensive introduction to networks, their empirical properties
and models for them. In Section 3.1 below, we start with the formal definition of Pearson’s cor-
relation coefficient (which was termed the assortativity coefficient in [38]), and Spearman’s rho in
the network context. Next, in Section 3.2 we show that all limit points of Pearson’s coefficients for
sequences of growing scale-free random graphs with power-law exponent γ < 3 are non-negative, a
result that is similar in spirit to Theorem 2.3. In Section 3.3, we state general convergence conditions
for both Pearson’s correlation coefficient as well as Spearman’s rho.
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3.1 Definitions and notations

We start by introducing some notation. Let G = (V,E) be an undirected random graph. For a
directed edge e = (u, v), we write e = u, e = v and we denote the set of directed edges in E by E′

(so that |E′| = 2|E|), and Dv is the degree of vertex v ∈ V . In general, Dv is a random variable.
The assortativity coefficient of G is equal to (see, e.g., [38, (4)])

ρ(G) =

1
|E′|
∑

(u,v)∈E′ DuDv −
(

1
|E′|
∑

(u,v)∈E′
1
2(Du +Dv)

)2

1
|E′|
∑

(u,v)∈E′
1
2(D2

u +D2
v)−

(
1
|E′|
∑

(u,v)∈E′
1
2(Du +Dv)

)2 . (3.1)

Note that the assortativity coefficient in (3.1) is equal to the sample correlation coefficient, where
((Du, Dv))(u,v)∈E′ represent a sequence of non-negative random variables, as studied in Theorem 2.3.
However, ((Du, Dv))(u,v)∈E′ are not independent, so that we may not immediately apply the previous
theory. Theorem 3.1 below is the analogue of Theorem 2.3 in the network context, and we give a
formal proof of it below.

Let us now introduce Spearman’s rho in G that we denote by ρrank(G). In accordance to the
original definition of Spearman’s rho, ρrank(G) is the correlation coefficient of the sequence of random
variables (Re, Re), where e is a uniformly chosen directed edge (u, v) from E′n. We let Re and Re be
the rank of respectively De + Ue and De + U ′e in the sequences (De + Ue)e∈E′n and (De + U ′e)e∈E′n .
Here, as discussed on page 4, (Ue)e∈E′n and (U ′e)e∈E′n are i.i.d. sequences of uniform (0, 1) random
variables. Then, Spearman’s rank correlation coefficient is defined as follows:

ρrank(G) =

1
|E′|
∑

e∈E′ ReRe − (|E′|+ 1)2/4

(|E′|2 − 1)/12
. (3.2)

3.2 No disassortative scale-free random graph sequences

We compute that

1

|E′|
∑

(u,v)∈E′

1
2(Du +Dv) =

1

|E′|
∑
v∈V

D2
v ,

1

|E′|
∑

(u,v)∈E′

1
2(D2

u +D2
v) =

1

|E′|
∑
v∈V

D3
v . (3.3)

Thus, ρ(G) can be written as

ρ(G) =

∑
(u,v)∈E′ DuDv − 1

|E′|

(∑
v∈V D

2
v

)2

∑
v∈V D

3
v − 1

|E′|

(∑
v∈V D

2
v

)2 . (3.4)

Consider a sequence of graphs (Gn)n≥1, where Gn = (Vn, En) and n denotes the number of
vertices n = |Vn| in the graph. Since many real-world networks are quite large, we are interested in
the behavior of ρ(Gn) as n → ∞. Note that this discussion applies both to sequences of real-world
networks of increasing size, as well as to graph sequences of random graphs. We start by generalizing
Theorem 2.3 to this setting:

Theorem 3.1 (Asymptotic non-negativity of Pearson’s coefficient in scale-free graphs). Let (Gn)n≥1

be a sequence of graphs of size n satisfying that there exist γ ∈ (1, 3) and 0 < c < C <∞ such that
cn ≤ |E| ≤ Cn, cn1/γ ≤ maxv∈Vn Dv ≤ Cn1/γ and cn(2/γ)∨1 ≤

∑
v∈Vn D

2
v ≤ Cn(2/γ)∨1. Then, any

limit point of Pearson’s correlation coefficient ρ(Gn) is non-negative.

In the next section, we give several examples where Theorem 3.1 applies and yields results that
are not sensible. The powerful feature of Theorem 3.1 is that it applies to all graphs, not just
realizations of certain random graphs.
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Proof. We note that Dv ≥ 0 for every v ∈ V , so that, from (3.4)

ρ(Gn) ≥ ρ−(Gn) ≡ −
1
|E′|

(∑
v∈V D

2
v

)2

∑
v∈V D

3
v − 1

|E′|

(∑
v∈V D

2
v

)2 . (3.5)

By assumption,
∑

v∈V D
3
v ≥ (maxv∈[n]Dv)

3 ≥ c3n3/γ , whereas 1
|E′|

(∑
v∈V D

2
v

)2
≤ (C2/c)n2(2/γ∨1)−1 =

(C2/c)n[(4/γ−1)∨1]. Since γ ∈ (1, 3) we have (4/γ − 1) ∨ 1 < 3/γ, so that∑
v∈V D

3
v

1
|E′|

(∑
v∈V D

2
v

)2 →∞.

Hence, ρ−(Gn)→ 0 as n→∞. This proves the claim.

In the literature, many examples are reported of real-world networks where the degree distribu-
tion closely follows a power law with γ in (1, 3), see e.g., [1, Table I] or [40, Table I]. Let D be such a
power-law random variable, and denote µp = E[Dp] for p ∈ (0, γ). In that case one can expect that

|E′| =
∑
v∈V

Dv ∼ µ1n,

while maxv∈V Dv ∼ n1/γ , and

1

n

∑
v∈V

Dp
v ∼

{
µp when γ > p,

Cpn
p/γ−1 when γ < p.

(3.6)

Of course, the convergence in (3.6) depends sensitively on the occurrence of large degrees. However,
intuitively it can be explained as follows. When

1

n

∑
v∈V

1{Dv≥k} = C ′k−γ(1 + o(1))

for all k for which k−γ � 1/n so that k � n1/γ , then

1

n

∑
v∈V

Dp
v =

∑
k≥1

(kp − (k − 1)p)
1

n

∑
v∈V

1{Dv≥k} ≈ C
′′
n1/γ∑
k=1

kp−1−γ = Cpn
p/γ−1,

where C ′′ and Cp are appropriately chosen constants. In particular, the conditions of Theorem 3.1
hold and ρ−(Gn) → 0 when γ < 3. Thus, the asymptotic degree-degree correlation of the graph
sequence (Gn)n≥1 is non-negative. As a result, when the power-law exponent satisfies γ < 3 there
exist no scale-free graph sequences that will be identified as disassortative by Pearson’s coefficient.
We next investigate a general theorem that allows us to identify the limit of Spearman’s rho and
Pearson’s coefficient for many random graph models.

3.3 Convergence conditions for degree-degree dependency measures

Let (Gn)n≥1 be again a sequence of graphs of size n, where Gn = (Vn, En), |Vn| = n. We write En
for the conditional expectation given the graph Gn (which in itself is random, so that we are not
taking the expectation w.r.t. Gn). Consider a random vector (X,Y ) = (De, De) where e is chosen
uniformly at random from E′. Recall that for a discrete random variableX, FX denotes its cumulative
distribution function, and F ∗X denotes the cumulative distribution function of X∗ = X + U , where
U is an independent uniform random variable on (0, 1). Then F ∗X(X∗) has a uniform distribution
on (0, 1), see (2.8). Our main result to identify the limits of Spearman’s rho as given by (3.2) and
Pearson’s coefficient is the following theorem:
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Theorem 3.2 (Convergence criteria for degree-degree dependency measures). Let (Gn)n≥1 be a
sequence of random graphs of size n, where Gn = (Vn, En), |Vn| = n. Let (Xn, Yn) be the degrees on
both sides of a uniform directed edge e ∈ E′n. Suppose that for every bounded continuous h : R2 → R,

En[h(Xn, Yn)]
P−→ E[h(X,Y )], (3.7)

where the r.h.s. is non-random. Then
(a)

ρrank(Gn)
P−→ ρrank = 12E(F ∗X(X∗)F ∗X(Y ∗))− 3 = 12E(FX(X)FX(Y ))− 3, (3.8)

where X∗ = X + U , Y ∗ = Y + U ′, U and U ′ are independent random variables on (0, 1), also
independent of X and Y , and F ∗X(·) is the cumulative distribution function of X∗;

(b) when we further suppose that En[X2
n]

P−→ E[X2] <∞, and Var(X) > 0, then also

ρ(Gn)
P−→ ρ =

Cov(X,Y )

Var(X)
. (3.9)

We remark that when Gn is a random graph, then ρrank(Gn) and ρ(Gn) are random variables.
Equation (3.7) implies that the distribution of the degrees on either side of an edge converges in
probability to a deterministic limit, which can be interpreted as the statement that the degree
distribution converges to a deterministic limit. The limits of ρrank(Gn) and ρ(Gn) only depend on
the limiting degree distribution, where ρrank(Gn) always converges, while ρ(Gn) can only be proved
to converge when its limit is well defined. We further note that (3.7) is equivalent to showing that

#{e = (u, v) ∈ E′n : (Du, Dv) = (k, l)}/|E′n|
P−→ P(X = k, Y = l). (3.10)

Condition (3.10) will be simpler to verify in practice. We emphasize that we study undirected graphs
but we work with directed edges e = (u, v), which we vary over the whole set of edges, in such a way
that (u, v) and (v, u) contribute as different edges. In particular, the marginal distributions of Xn

and Yn and consequently of X and Y , are the same. We next prove Theorem 3.2:

Proof. We start with part (a). The sequence (Re/|E′n|, Re/|E′n|) is a bounded sequence of two-
dimensional random variables. Let Fn,X denote the empirical cumulative distribution function of
(De)e∈E′n (which equals that of (De)e∈E′n), and let F ∗n,X denote the empirical cumulative distribution
functions of (De + Ue)e∈E′n (which equals that of (De + U ′e)e∈E′n), where (Ue)e∈E′n , (U ′e)e∈E′n are
independent sequences of i.i.d uniform (0, 1) random variables. Then, we can rewrite, with `n = |E′n|,

(Re, Re) =
(
(d`nF ∗n,X(De + Ue)e, d`nF ∗n,X(De + U ′e)e

)
. (3.11)

In particular,

(Re/`n, Re/`n) =
(
d`nF ∗n,X(De + Ue)e/`n, d`nF ∗n,X(De + U ′e)e/`n

)
. (3.12)

Thus,
(Re/`n, Re/`n) =

(
F ∗n,X(De + Ue), F

∗
n,X(De + U ′e)

)
+O(1/`n). (3.13)

By (3.7), the fact that Xn
d−→ X and the fact that F ∗X is continuous, F ∗n,X(x)

P−→ F ∗X(x) for every x ≥
0. Moreover, we claim that this convergence holds uniformly in x, i.e., supx∈R |F ∗n,X(x)−F ∗X(x)| P−→ 0.
To see this, note that (3.7) implies that the distribution functions of Xn and Yn converge to those of
X and Y . Since all these random variables take on only integer values, this convergence is uniform,
i.e., supk≥0 |Fn,X(k) − FX(k)| P−→ 0. We obtain F ∗n,X by linearly interpolating between Fn,X(k − 1)
and Fn,X(k) for every k, so also F ∗n,X converges uniformly, as we claimed.
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By this uniform convergence, for every bounded continuous function g : [0, 1]2 → R,

En[g(Re/`n, Re/`n)] = En[g(F ∗n,X(De + Ue), F
∗
n,X(De + U ′e))] (3.14)

= En[g(F ∗X(De + Ue), F
∗
X(De + U ′e))] + oP(1)

= En[g(F ∗X(Xn + U), F ∗X(Yn + U ′))] + oP(1)
P−→ E[g(F ∗X(X + U), F ∗X(Y + U ′))] = E[g(F ∗X(X∗), F ∗X(Y ∗))],

again by (3.7) and the fact that (x, y) 7→ E[g(F ∗X(x + U), F ∗X(y + U ′))] is continuous and bounded.
Applying this to g(x, y) = xy, g(x, y) = x2 and g(x, y) = y2 yields the required convergence.
Moreover, since F ∗X(X∗) and F ∗X(Y ∗) are uniform random variables, Var(F ∗X(X∗)) = Var(F ∗X(Y ∗)) =
1/12. This completes the proof of convergence and the first equality in (a). The second equality is
just [31, Proposition 3.1], see (2.9).

For part (b), we note that

ρ(Gn) =
Covn(Xn, Yn)

Varn(Xn)
. (3.15)

Since En[X2
n]

P−→ E[X2] < ∞, also En[Xn]
P−→ E[X] < ∞, so that Varn(Xn)

P−→ Var(X). Since
these limits are positive, by Slutzky’s theorem,

ρ(Gn) =
Covn(Xn, Yn)

Var(X)
(1 + oP(1)). (3.16)

Furthermore, the random variables (XnYn)n≥1 converge in distribution, and are uniformly integrable

(since both (X2
n)n≥1 and (Y 2

n )n≥1 are, which again follows from the fact that En[X2
n]

P−→ E[X2] <∞
and the fact that Xn and Yn have the same marginals). Therefore, also En[XnYn]

P−→ E[XY ], so
that the convergence follows.

4 Random graph examples

In this section we consider four random graph models to highlight our result: the configuration
model, the configuration model with intermediate vertices, the preferential attachment model and a
model of complete bipartite random graphs. In Section 5, we present the numerical results for these
models.

4.1 The configuration model

The configuration model (CM) was invented by Bollobás in [7], inspired by [3]. Its connectivity
structure was first studied by Molloy and Reed [34, 35]. It was popularized by Newman, Srogatz and
Watts [41], who realized that it is a useful and simple model for real-world networks.

Given a degree sequence, namely a sequence of n positive integers d = (d1, d2, . . . , dn) with
`n =

∑
i∈[n] di assumed to be even, the configuration model (CM) on n vertices and degree sequence

d is constructed as follows. Start with n vertices, labelled 1, 2, . . . , n, and dv half-edges adjacent to
vertex v. The graph is constructed by randomly pairing each half-edge to some other half-edge to
form an edge. Number the half-edges from 1 to `n in some arbitrary order. Then, at each step,
two half-edges that are not already paired are chosen uniformly at random among all the unpaired
half-edges and are paired to form a single edge in the graph. These half-edges are removed from the
list of unpaired half-edges. We continue with this procedure of choosing and pairing two unpaired
half-edges until all the half-edges are paired. In the resulting graph Gn = (Vn, En) we have |Vn| = n,
`n = 2|En|. Although self-loops and double edges may occur, these become rare as n → ∞ (see
e.g. [8] or [25] for more precise results in this direction). In the analysis we keep the self-loops and
multiple edges, so that `n = |E′n|. In the numerical simulation we also consider the case where

13



the self-loops are removed, and we collapse multiple edges to a single edge. As we will see in the
simulations, these two cases are qualitatively similar.

We investigate the CM where the degrees are i.i.d. random variables, and note that the proba-
bility that two vertices u and v are directly connected is close to dudv/`n. Since this is of product
form in u and v, the degrees at either end of an edge are close to being independent, and in fact are
asymptotically independent. Therefore, one expects the assortativity coefficient of the configuration
model to converge to 0 in probability, irrespective of the degree distribution.

We now make this argument precise. We make the following assumptions on our degree sequence
(dv)v∈Vn :

Condition 4.1 (Degree regularity).
(a) There exists a probability distribution (pk)k≥0 such that nk/n → pk for every k ≥ 1, where
nk = #{v : dv = k} denotes the number of vertices of degree k.
(b) E[D(n)]→ E[D], where P(D(n) = k) = nk/n and P(D = k) = pk.

See [23, Chapter 7] for an extensive discussion of the CM under Condition 4.1.

Theorem 4.2 (Convergence of the degree-degree dependency measures for CM). Let (Gn)n≥1 be a
sequence of configuration models of size n, for which the degree sequence (dv)v∈Vn satisfies Condition
4.1. Then

ρrank(Gn)
P−→ 0,

and
ρ(Gn)

P−→ 0.

Proof. We apply Theorem 3.2, for which we start by investigating (3.10). We note that a uniform
edge can be constructed by taking two half-edges uniformly at random. Indeed, we can first draw
the first half edge uniformly at random, and this will be paired to another half edge uniformly at
random by construction of the CM. We perform a second moment argument on Nk,l = #{e = (u, v) ∈
E′n : (du, dv) = (k, l)}, and will prove that

Nk,l/`n
P−→ kpk

E[D]

lpl
E[D]

,

For this, it suffices to prove that

E[Nk,l]/`n →
kpk
E[D]

lpl
E[D]

, E[N2
k,l]/`

2
n →

( kpk
E[D]

lpl
E[D]

)2
,

since then Var(Nk,l/`n) = o(1).
We note that

E[Nk,l] =
klnknl
`n − 1

,

where `n =
∑

v∈Vn dv = 2|En| and nk = #{v : dv = k} is the number of vertices with degree k.
Therefore, also using that `n = nE[D(n)], Condition 4.1 implies that

E[Nk,l]/`n →
kpk
E[D]

lpl
E[D]

.

Further,

E[N2
k,l]/`

2
n =

1

`2n

∑
(u1,v1),(u2,v2)

P(du1 = k, dv1 = l, du2 = k, dv2 = l).

There are four different cases, depending on a = #{u1, u2, v1, v2}. When a = 4, the contribution is

k2nk(nk − 1)l2nl(nl − 1)

`2n(`n − 1)(`n − 3)
=

(knklnl)
2

`4n
(1 +O(1/n))→

( kpk
E[D]

lpl
E[D]

)2
.
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Therefore, we are left to show that the contributions due to a ≤ 3 vanish.
When a = 3, either one of the edges (u1, v1) and (u2, v2) is a self-loop, while the other joins two

other vertices (which only contributes when k = l), or both edges start in the same vertex v, so that
this contribution is at most

k2nk(nk − 1)l2nl
`2n(`n − 1)(`n − 3)

= O(1/n) = o(1).

When a = 2, similar computations show that the contribution is at most O(1/n2). When a = 1, the
edges (u1, v1) and (u2, v2) are self-loops from the same vertex v, so that this contributes only when
k = l, and then at most

k(k − 1)(k − 2)(k − 3)nk
`2n(`n − 1)(`n − 3)

= O(1/n3) = o(1).

We conclude that (3.10) holds with

P(X = k, Y = l) =
kpk
E[D]

lpl
E[D]

.

In particular, X and Y are independent, so that ρrank = 0. This proves the first part of Theorem 4.2.
For the second part, we note that when the degrees (dv)v∈Vn are fixed, the only random part in

ρ(Gn) is

Mn =
1

`n

∑
e∈E′n

dede.

We perform a second moment method on this quantity. We use that an edge e is a pair of two
specified half-edges incident to two specific vertices. Thus, we can denote e by e = (u, s), e = (v, t),
where u, v are the vertices to which the specific half-edges are incident, while s ∈ {1, . . . , du} is the
label of the half-edge incident to vertex u and t ∈ {1, . . . , dv} is the label of the half-edge incident
to vertex v, that are paired together. The probability of pairing them together equals 1/(`n − 1).
Therefore,

E[Mn] =
1

`n

∑
u,v,s,t

dudv
`n − 1

=
∑

u,v∈Vn

d2
ud

2
v/`n(`n − 1) =

∑
u,v∈Vn

d2
ud

2
v/`

2
n(1 +O(1/n)),

where we note that we count multiple edges as frequently as they occur. Further, and in a similar
way,

E[M2
n] = (1 + o(1))

∑
u,v,u′,v′∈Vn

d2
ud

2
u′d

2
vd

2
v′/`

4
n,

so that
Mn(∑

v∈Vn d
2
v/`n

)2

P−→ 1.

In particular,

ρ(Gn) =
Mn −

(∑
u,v∈Vn d

2
u/`n

)2

∑
u∈Vn d

3
u/`n −

(∑
u∈Vn d

2
u/`n

)2

P−→ 0,

both when
∑

u∈Vn d
3
u/`n �

(∑
u∈Vn d

2
u/`n

)2
, as well as when

∑
u∈Vn d

3
u/`n = Θ

(∑
u∈Vn d

2
u/`n

)2
.
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4.2 Configuration model with intermediate vertices

We now give an example of a strongly disassortative graph to demonstrate that ρ(Gn) fails to capture
obvious negative degree-degree dependencies when the degree distribution is heavy tailed. In order
to do that we adapt the configuration model slightly, by replacing every edge by two edges that
meet at a middle vertex. Denote this graph by Ḡn = (V̄n, Ēn), while the configuration model is
Gn = (Vn, En). In this model, there are n + `n/2 vertices and |Ē′n| = 2`n directed edges. For
(u, v) ∈ Ē′n, the degree of either vertex u or vertex v equals 2, and the degree of the other vertex
in the edge is equal to ds, where s is the unique vertex in the original configuration model that
corresponds to u or v.

Theorem 4.3 (Convergence of degree-degree dependency measures for CM with intermediate ver-
tices). Let (Ḡn)n≥1 be a sequence of configuration models with intermediate vertices, where the degree
sequence (dv)v∈Vn satisfies Condition 4.1. Then

ρrank(Ḡn)
P−→ 12E(FX(X)FX(Y ))− 3 = −3

4
+ 3

(
p̃1 +

1

2
p̃2

)(
1− p̃1 −

1

2
p̃2

)
, (4.1)

where (X,Y ) = (2I + (1 − I)D̃1, 2(1 − I) + ID̃2) with D̃1, D̃2 i.i.d. random variables with P(D̃ =
k) = kpk/E[D] := p̃k and I an independent Bernoulli(1/2) random variable. Further,

ρ(Gn)
P−→

{
Cov(X,Y )

Var(X) if E[D3
(n)]→ E[D3] <∞;

0 if E[D3
(n)]→∞,

and, for E[D3
(n)]→ E[D3] <∞, and writing µp = E[Dp],

Cov(X,Y )

Var(X)
=

2µ2/µ1 − (1 + µ2/(2µ1))2

(2 + µ3/(2µ1))− (1 + µ2/(2µ1))2
< 0.

The fact that the degree-degree correlation is negative is quite reasonable, since in this model,
vertices of high degree are label only connected to vertices of degree 2, so that there is a negative
dependence between the degrees at either end of an edge. When E[D3

(n)] → ∞, on the other hand,

ρ(Ḡn)
P−→ 0, which is inappropriate, as the negative dependence of the degrees persists.

Proof. The first part follows directly from Theorem 3.2, since the collection of values (d̄e, d̄e)e∈Ē′n
only depends on the degrees (dv)v∈Vn and

#{e : d̄e = l, d̄e = k}/|Ē′n| = (knkδ2,l + lnlδ2,k − 2n21{k=l=2})/(2`n),

which converges to P(X = k, Y = 2). Now, consider the possible values of X, and notice that

P(X = 1) = p̃1/2, (4.2)

P(X = 2) = 1/2 + p̃2/2, (4.3)

P(X ≥ 3) = 1/2− p̃1/2− p̃2/2. (4.4)

Then we obtain

F ∗X(x+ U) =


1
2 p̃1U, if x = 1,
p̃1
2 +

(
p̃2
2 + 1

2

)
U, if x = 2,

1
2 +

∑x−1
k=1

p̃k
2 + p̃x

2 U, if x ≥ 3.

(4.5)

Since either X or Y equals 2 and corresponds to the intermediate node, we further condition on D̃:

E(F ∗X(X∗)F ∗X(Y ∗)) = E(F ∗X(D̃ + U)F ∗X(2 + U ′)) (4.6)

= E(F ∗X(2 + U ′))

×
[
(E(F ∗X(1 + U))P(D̃ = 1) + E(F ∗X(2 + U))P(D̃ = 2) + E(D̃ + U |D̃ ≥ 3)P(D̃ ≥ 3)

]
.
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Now, using (4.5) and substituting (4.2–4.4), from the last expression we readily obtain

E(F ∗X(X∗)F ∗X(Y ∗)) =

(
p̃1

2
+
p̃2

4
+

1

4

)
×
[

1

4
(p̃1)2 +

( p̃1

2
+
p̃2

4
+

1

4

)
p̃2 +

( p̃1

4
+
p̃2

4
+

3

4

)
(1− p̃1 − p̃2)

]
=

3

16
+

1

4

(
p̃1 +

1

2
p̃2

)(
1− p̃1 −

1

2
p̃2

)
.

Substituting this in (3.8) and again using (2.9) we obtain (4.1).
For the second part, we compute

1

|Ē′n|
∑

(u,v)∈Ē′n

d̄ud̄v =
2

`n

∑
v∈Vn

d2
v,

and for p ≥ 2,
1

|Ē′n|
∑
s∈V̄n

d̄ps =
1

2`n
2p(`n/2) +

1

2`n

∑
v∈Vn

dpv = 2p−2 +
1

2`n

∑
v∈Vn

dpv,

As a result, when E[D3
(n)]→ E[D3] <∞, we have

ρ(Ḡn)
P−→ 2µ2/µ1 − (1 + µ2/(2µ1))2

(2 + µ3/(2µ1))− (1 + µ2/(2µ1))2
< 0,

where µp = E[Dp].

4.3 Preferential attachment model

We discuss the general Preferential Attachment model (PAM), as formulated, for example, in [23,
Chapter 8] or [16, Chapter 4]. The PAM is a dynamical random graph model, and thus models a
growing network. It is defined in terms of two parameters, m, which denotes the number of edges of
newly added vertices, and δ > −m, which quantifies the tendency to attach to vertices that already
have a high degree. We start by defining the model for m = 1.

We start with one vertex having one self-loop. Suppose we have the graph of size t, which we
denote by G(1)

t . Let i label the vertex that appeared at time i = 1, 2, . . .. Then, G(1)

t+1 is constructed
by adding one extra vertex that has one edge, which forms a self-loop with probability (1 + δ)/((2 +
δ)t+ 1 + δ) and, conditionally on G(1)

t , attaches to a vertex v ∈ [t] with probability (Di(t) + δ)/((2 +
δ)t + 1 + δ), where Di(t) is the random degree of vertex i in G(1)

t . As a result, vertices with high
degree have a higher probability to be attached to, which explains the name preferential attachment
model.

The model with m ≥ 2 is obtained from the model with m = 1 as follows. Collapse vertices
m(s− 1) + 1, . . . ,ms, and all of their edges, in (G(1)

t )t≥1 with δ replaced by δ′ = δ/m to form vertex
s in (G(m)

t )t≥1 with parameter δ. It is well known (see e.g., [9] where this was first derived for δ = 0
and [23, Theorem 8.3] as well as the references in [23] for a more detailed literature overview) that
the resulting graph has an asymptotic degree sequence pk, i.e.,

Nk(t)/t = #{i ∈ [t] : Di(t) = k}/t P−→ pk, (4.7)

where, for k ≥ m,

pk = (2 + δ/m)
Γ(k + δ)Γ(m+ 2 + δ + δ/m)

Γ(m+ δ)Γ(k + 3 + δ + δ/m)
. (4.8)

In particular, the PAM is scale free with power-law exponent γ = 2 + δ/m. See [23, Section 8.2] for
more details on the scale-free behavior of the PAM. The next theorem investigates the behaviour of
Pearson’s correlation coefficient as well as Spearman’s rho for the PAM:
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Theorem 4.4 (Convergence of degree-degree dependency measures for PAM). Let (G(m)

t )t≥1 be the
PAM. Then

ρrank(G(m)

t )
P−→ ρrank, (4.9)

while

ρ(G(m)

t )
P−→

{
0 if δ ≤ m,
ρ if δ > m,

(4.10)

where, abbreviating a = δ/m,

ρ =
(m− 1)(a− 1)[2(1 +m) + a(1 + 3m)]

(1 +m)[2(1 +m) + a(5 + 7m) + a2(1 + 7m)].
(4.11)

The value of ρ in (4.11) was predicted in [14], and we make this analysis mathematically rigorous.
The remainder of the section is the proof of Theorem 4.4. It involves intermediate technical results
formulated as Lemma’s 4.5–4.9 below.

For the PAM, it will be convenient to direct the edges from young to old, so that there are mt
directed edges. Let Nk,l(t) denote the number of directed edges e for which De(t) = k, De(t) = l.
We will prove that there exists a probability distribution (qk,l)k,l≥m such that

Nk,l(t)/(mt)
P−→ qk,l. (4.12)

Since a uniform directed edge oriented from young to old can be obtained by taking a uniform vertex
and then a uniform edge coming out of this vertex, this proves (3.10) with

pkl = P(X = k, Y = l) = 1
2(qk,l + ql,k). (4.13)

In particular, by Theorem 3.2(a), this proves (4.9) in Theorem 4.4. We follow the proof of [23,
Theorem 8.2], which, in turn, is strongly inspired by the proof in [9].

Proofs for convergence of the degree sequence typically consist of two key steps. The first is a
martingale concentration argument in Lemma 4.5.

Lemma 4.5 (Convergence of degree-degree counts). For every k, l, there exists a C > 0 such that,

P
(

max
k,l
|Nkl(t)− E[Nkl(t)]| ≥ C

√
t log t

)
= o(1). (4.14)

Proof. The proof for the degree distribution in [23] applies almost verbatim (see, in particular, [23,
Proposition 8.4] and its proof). Indeed, the proof relies on a martingale argument. Define the
Doob-martingale, for t = 0, . . . , n,

Mn = E[Nkl(t) | G(m)
n ].

The crucial observation is that (Mn)tn=0 is a martingale with Mt = Nkl(t) and M0 = E[Nkl(t)] that
satisfies

|Mn −Mn−1| ≤ 4m. (4.15)

We prove (4.15) below. The Azuma-Hoeffding inequality [2, 22] then proves (4.14) for any C >
4[4m]2. Indeed,

P
(
|Nkl(t)− E[Nkl(t)]| ≥ A

)
= P

(
|Mt −M0| ≥ A

)
≤ e−A

2/(2t[4m]2).

Taking A = C
√
t log t with C2 > 4[4m]2 proves that

P
(
|Nkl(t)− E[Nkl(t)]| ≥ C

√
t log t

)
= o(1/t2),
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so that even

P
(

max
k,l
|Nkl(t)− E[Nkl(t)]| ≥ C

√
t log t

)
≤ (mt)2 max

k,l
P
(

max
k,l
|Nkl(t)− E[Nkl(t)]| ≥ C

√
t log t

)
= o(1).

This completes the proof of Lemma 4.5 assuming (4.15).
We complete the proof by deriving (4.15). For this, it will be convenient to introduce some

further notation. Let e ∈ [mt] label the edges. Let ve = de/me denote the vertex from which the eth
edge emanates, and Ve (which is a random variable) the vertex to which the eth edge points. Then,

Nk,l(t) =
∑
e∈[mt]

1{Dve (t)=k,DVe (t)=l}.

As a result,

Mn −Mn−1 =
∑
e∈[mt]

[
P(Dve(t) = k,DVe(t) = l | Gn)− P(Dve(t) = k,DVe(t) = l | Gn−1)

]
,

where we abbreviate Gn = G(m)
n . We let (G′l)l≥0 denote the PAM with G′n−1 = Gn−1, while the

evolution of (G′l)l≥0 after time n− 1 is the same in distribution as that of (Gl)l≥0, but conditionally
independent of it given Gn−1 = G′n−1. Let D′i(t) denote the degree of vertex i in G′t. Then,

P(Dve(t) = k,DVe(t) = l | Gn−1) = P(D′ve(t) = k,D′Ve(t) = l | Gn−1)

= P(D′ve(t) = k,D′Ve(t) = l | Gn−1, Gn \Gn−1),

where Gn \Gn−1 is shorthand for the edges of Gn that are not in Gn−1. The last step is due to the
conditional independence of the evolution after time n− 1 in (G′t)t≥0. Thus,

P(Dve(t) = k,DVe(t) = l | Gn−1) = P(D′ve(t) = k,D′Ve(t) = l | Gn).

We conclude that

Mn −Mn−1 =
∑
e∈[mt]

[
P(Dve(t) = k,DVe(t) = l | Gn)− P(D′ve(t) = k,D′Ve(t) = l | Gn)

]
.

When Ve > n, clearly P(Dve(t) = k,DVe(t) = l | Gn) = P(D′ve(t) = k,D′Ve(t) = l | Gn), as the
degrees of vertices i with i > n are independent of Gn. Thus, we can restrict to Ve ≤ n. Further,
when ve > n, then Dve(t) is independent of Gn, so that

P(Dve(t) = k,DVe(t) = l | Gn)− P(D′ve(t) = k,D′Ve(t) = l | Gn)

= P(Dve(t) = k)
[
P(DVe(t) = l | Gn)− P(D′Ve(t) = l | Gn)

]
.

Note that DVe(n−1) = D′Ve(n−1) a.s., P(DVe(t) = l | Gn, DVe(n) = j) = P(DVe(t) = l | DVe(n) = j),
and

P(D′Ve(t) = l | Gn, D′Ve(n) = j) = P(D′Ve(t) = l | D′Ve(n) = j) = P(DVe(t) = l | DVe(n) = j).

Thus, using that

P(DVe(t) = l | Gn) = E[P(D′Ve(t) = l | DVe(n)) | Gn],

P(D′Ve(t) = l | Gn) = E[P(D′Ve(t) = l | D′Ve(n)) | Gn],

we obtain at

|P(D′Ve(t) = l | DVe(n))− P(D′Ve(t) = l | D′Ve(n))| ≤ 1{DVe (n)6=D′Ve (n)}.
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Taking expectations yields∣∣∣P(Dve(t) = k,DVe(t) = l | Gn)− P(D′ve(t) = k,D′Ve(t) = l | Gn)
∣∣∣ ≤ P(DVe(n) 6= D′Ve(n) | Gn).

In a similar way, we see that for ve ≤ n,

|P(Dve(t) = k,DVe(t) = l | Gn)− P(D′ve(t) = k,D′Ve(t) = l | Gn)|
≤ P(DVe(n) 6= D′Ve(n) | Gn) + P(Dve(n) 6= D′ve(n) | Gn).

We conclude that

|Mn −Mn−1| ≤
∑
e∈[mt]

[
P(DVe(n) 6= D′Ve(n) | Gn) + P(Dve(n) 6= D′ve(n) | Gn)

]
≤ 4m.

We continue with the proof of (4.12). The second key step the proof of (4.12) is to prove that,
for each k, l,

lim
t→∞

E[Nkl(t)]/(mt) = qk,l. (4.16)

We sum over the vertex s that has degree l at time t, and condition on the degree r ≥ m of the
vertex to which the edge of vertex s is attached. This yields

E[Nkl(t)] = m

t∑
s=1

∑
r≥m

(r + δ)

(2m+ δ)s
E[Nr(s)]

[
P
(
Br+1[s+ 1, t] = k,Bm[s+ 1, t] = l

)
+O(1/s)

]
, (4.17)

where Bm[s + 1, t] is m plus the number of edges attached to vertex s between time s + 1 and
t, while Br+1[s + 1, t] is r plus the number of further edges attached to the vertex of degree r to
which the edge of vertex s is attached. The O(1/s) term is due to contributions where at least two
edges of vertex s are attached to the same vertex of degree r, and also due to the fact that the
probability of attaching the jth edge of vertex s to a vertex of degree r at time s is actually equal
to (r+δ)

(2m+δ)s+(j−1)(2+δ/m)+1+δ/m , which is (r+δ)
(2m+δ)s(1 +O(1/s)). Further,

P
(
Br+1[s+ 1, t] = k,Bm[s+ 1, t] = l

)
= P(Br+1[s+ 1, t] = k)P(Bm[s+ 1, t] = l) +O(1/t),

since the dependence between the two probabilities is entirely due to the fact that edges that con-
tribute to Br+1[s+1, t] cannot contribute to Bm[s+1, t]. Indeed, (Br+1[s+1, t], Bm[s+1, t]) is equal
in distribution to the number of balls in two urns at time m(t − s), where we start with r + 1 and
m balls at time 0, and in each draw, we draw a ball in each of the urns with probability equal to the
number of balls plus δ and then replace it with two balls. Knowing how many balls are put into the
first urn only gives us information about how many balls cannot be put into the second urn, so the
balls in the different urns are close to independent. We study these probabilities now:

Lemma 4.6 (Growth of degrees in PAM). For all k ≥ r ≥ m and a ∈ (0, 1),

lim
s→∞

P(Br[as, s] = k) = Pk(a; r),

where, for each r ≥ m and a ∈ (0, 1), (Pk(a; r))k≥r is a probability measure.

Proof. We note that (Br[s, ts])t≥1
d−→ (Zt)t≥1, as s → ∞, where (Zt)t≥0 is a pure birth process,

which increases by 1 at rate m(Zt + δ)/((2m+ δ)t) at time t. Indeed, when Br[s, ts] = k, then each
of the m edges of vertex st+ 1 has probability (k+ δ)/[(2m+ δ)(st)] +O(1/s2) of being attached to
the vertex that has degree k at time ts, and thus of increasing Br[s, ts] to k+1. Thus, within a short
time interval [t, t+dt] and conditionally on Br[s, ts] = k, the probability that Br[s, (t+dt)s] = k+ 1
is equal to

sdt
[
m(k + δ)/[(2m+ δ)(st)] +O(1/s2) + o(1)

]
→ dt

m(k + δ)

(2m+ δ)t
+ o(dt),
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as s→∞. This is the birth rate of the pure birth process (Zt)t≥1.
We next study the limiting birth process, for which is it useful to make a time change. With

bt = Ze(2+δ/m)t , (bt)t≥0 is a birth process that grows at rate bt + δ at time t. Define

fr,k(t) = P(bt = k | b0 = r).

Then,
∂

∂t
fr,k(t) = −(k + δ)fr,k(t) + (k − 1 + δ)fr,k−1(t).

This set of differential equations is solved by fr,r(t) = e−(r+δ)t and, for k ≥ r + 1,

fr,k(t) = (k − 1 + δ)e−(k+δ)t

∫ t

0
e(k+δ)sfr,k−1(s)ds.

This can be solved by, for k ≥ r + 1,

fr,k(t) = P(bt = i | b0 = r) =
Γ(k + δ)

Γ(r + δ)
e−(k+δ)t

k−r∑
j=0

αj,ke
jt,

where α0,k = −
∑k−1

j=0 αj,k−1/(j + 1), while, for j ≥ 1,

αj,k = αj−1,k−1/j.

As a result, for all a ∈ (0, 1),

lim
t→∞

P(Br[at, t] = k) = P(Z1/a = k | Z1 = r) = fr,k((2 + δ/m)−1 log(1/a)).

Note that Pr(a; r) is the probability that the birth process has no births. We thus compute that
Pr(a; r) = fr,r((2 + δ/m)−1 log(1/a)) = a(r+δ)/(2+δ/m) for k = r, while

Pk(a; r) = fr,k((2 + δ/m)−1 log(1/a)) =
Γ(k + δ)

Γ(r + δ)
a(k+δ)/(2+δ/m)

k−r∑
j=0

αj,ka
−j/(2+δ/m).

We continue from (4.17), and rewrite it as

E[Nkl(t)]/(mt) =
∑
r≥m

E
[ (r + δ)

(2m+ δ)Ut
E[Nr(Ut)]P(Br+1[Ut, t] = k | U)P(Bm[Ut, t] = l | U)

]
+O(log t/t),

(4.18)
where U has a uniform distribution, we interpret Ut = dUte, and the outer expectation is over U
only. Using that E[Nr(s)]/s = pr +O(1/s) (see [23, Proposition 8.4]), we further arrive at

E[Nkl(t)]/(mt) =
∑
r≥m

r + δ

2m+ δ
prE

[
P(Br+1[Ut, t] = k | U)P(Bm[Ut, t] = l | U)

]
+ o(1). (4.19)

By Lemma 4.6, this converges to

E[Nkl(t)]/(mt)→ qk,l ≡
∑
r≥m

r + δ

2m+ δ
prE[Pk(U ; r)Pl(U ;m)]. (4.20)

This proves (4.16), and thus, by Theorem 3.2(a), proves the convergence of the rank correlation in
(4.9) in Theorem 4.4.
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For the convergence of the correlation coefficient in (4.10) in Theorem 4.4, we aim to use Theorem
3.2(b) and thus start by investigating the convergence of moments of Xn. By (3.3), and letting En
denote the conditional expectation given Gn,

En[X2
n] =

1

n

∑
i∈[n]

Di(n)3.

Thus, we are lead to studying sums of powers of degrees. To analyze the limit of sums of powers of
degrees, we rely on the following lemma:

Lemma 4.7 (Sum of powers of degrees in PAM). For all p < γ = 2 + δ/m,

1

n

∑
i∈[n]

Di(n)p
P−→ µp =

∑
k≥m

kppk <∞.

Proof. We note that
∑

i∈[n]Di(n)p =
∑

k≥m k
pNk(n). Under the conditions stated, for every kn →

∞, ∑
k≥m

kpNk(n) =
∑

m≤k≤kn

kpNk(n) + oP(n).

This follows since, for any ε > 0, k > kn implies that kε/kεn > 1, so that∑
k>kn

kpNk(n) ≤ k−εn
∑
k≥m

kp+εNk(n) = k−εn
1

n

∑
i∈[n]

Di(n)p+ε.

By the analysis in [23, Section 8.1 and 8.6], when p+ ε < γ + 1 = 3 + δ/m,

lim sup
n→∞

E
[ 1

n

∑
i∈[n]

Di(n)p+ε
]
<∞.

Therefore, by the Markov inequality,
∑

k>kn
kpNk(n) = oP(n).

Now, since maxk |Nk(n)− pk| ≤
√
Cn log n whp by [23, Proposition 8.4],∑

m≤k≤kn

kpNk(n) = t
∑

m≤k≤kn

kppk +OP(k
p+1
n

√
n log n).

This proves the claim.

It follows from Lemma 4.7 that for 3 < γ = 2 + δ/m,

En[X2
n] =

1

n

∑
i∈[n]

Di(n)3 = B(1 + oP(1)).

where B is a constant. As a result,

ρ(Gn)
a.s.−→ ρ = Cov(X,Y )/Var(X) =

∑
k,l klqk,l − E[X]2

E[X2]− E[X]2
. (4.21)

This proves (4.10) in Theorem 4.4 when δ > m. For γ < 3, instead, D1(n)/n1/γ a.s.−→ ξ, for
some strictly positive random variable ξ (see e.g., [23, Sections 8.1 and 8.6]). Therefore, En[X2

n] ≥
ξ3n3/γ−1(1 + o(1)). Further, the majority of edges of high degree vertices is young, so that

En[XnYn] = oP(n
3/γ−1). (4.22)

Indeed, fix Tn such that Tn →∞ and Tn = o(n). There are at most mTn edges between vertices with
index at most Tn, and, since the maximal degree is OP(n

1/γ), these contribute at most OP(n
2/γ−1Tn).
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For the other edges, one of the vertices involved was born after time Tn. Since maxi≥Tn Di(n) =
oP(n

1/γ), the contribution of these edges is at most

oP(n
1/γ)En[Xn + Yn].

In turn, En[Xn + Yn] = OP(n
(2/γ−1)∧1), which completes the proof of (4.22). This implies that

ρ(Gn)
P−→ 0, which proves (4.10) in Theorem 4.4 when δ < m. For δ = m, so that γ = 3,∑

i∈[n]Di(n)3 = ΘP(n log n)(1 + oP(1)). As a result, also in this case ρ(Gn)
a.s.−→ 0 for δ ≤ m.

We continue with the proof of (4.11) in Theorem 4.4. To compute expectations involving X, we
often rely on the following lemma:

Lemma 4.8 (Degree on one side of uniform edge). For every function f : N→ R,

E[f(X)] =
∑
k≥m

f(k)
kpk
2m

.

Proof. Let f be bounded, and let Xn be the degree at the bottom of a uniform edge. Then,

E[f(Xn) | G(m)
n ] =

1

|E′n|
∑
e∈E′n

f(De(n)) =
1

2mn

∑
v∈[n]

f(Dv(n))Dv(n) =
1

2m

∑
k≥m

f(k)kNk(n)/n.

Taking the limit of n→∞ and using that Nk(n)/n
P−→ pk, as well as Xn

d−→ X proves the claim.

Lemma 4.8 allows us to identify the r.h.s. of (4.21) as

ρ = Cov(X,Y )/Var(X) =
(2m)2

∑
k,l klqk,l − λ2

2

2mλ3 − λ2
2

,

where λa =
∑

k≥m k
apk. To identify the limit, we follow [14]. Recall the definition of pkl in (4.13).

Lemma 4.9 (Asymptotic degree-degree distribution for PAM). For all k, l ≥ m,

pkl = P(X = k, Y = l) (4.23)

= (2 + δ/m)
Γ(m+ 2 + δ + δ/m)

Γ(m+ δ)2

Γ(l + δ)Γ(k + δ)

Γ(k + 2 + δ)Γ(l + k + 2 + 2δ + δ/m)

×
[ k∑
j=m+1

(
k + l − j −m

l −m

)(
j + k + 2 + 2δ + δ/m

k + 1 + δ

)
+

l∑
j=m+1

(
k + l − j −m

k −m

)(
j + l + 2 + 2δ + δ/m

l + 1 + δ

)]
.

Consequently, (4.11) follows.

Proof. To compute P(X = k, Y = l), we let Mkl(t) denote the number of edges at time t where one
side has degree k and the other side degree l, so that

pkl = lim
t→∞

E[Mkl(t)]/(2mt).

We note that Mkl(t) satisfies the recursion relation

E[Mkl(t+ 1)]− E[Mkl(t)] = m
(k ∨ l)− 1 + δ

(2m+ δ)t
E[Nk∨l−1(t)]1{k∧l=m}

+m
k − 1 + δ

(2m+ δ)t
E[Mk−1,l(t)] +m

l − 1 + δ

(2m+ δ)t
E[Mk,l−1(t)]

−m k + δ

(2m+ δ)t
E[Mk,l(t)]−m

l + δ

(2m+ δ)t
E[Mk,l(t)] +O(1/t2).
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It is not clear that the left-hand side converges since we only know that E[Mk,l(t)]/(2mt)→ pkl, and
we will show this now. Indeed, since E[Mk,l(t)]/(2mt) → pkl and E[Nk(t)]/t → pk, we arrive at the
claim that, for all k, l with k ∨ l ≥ m+ 1,

lim
t→∞

E[Mkl(t+ 1)]− E[Mkl(t)]

= 2m2 (k ∨ l)− 1 + δ

2m+ δ
pk−11{k∧l=m} + 2m2k − 1 + δ

2m+ δ
pk−1,l + 2m2 l − 1 + δ

2m+ δ
pk,l−1 − 2m2k + l + 2δ

2m+ δ
pk,l.

Since limt→∞ E[Mkl(t)]/(2mt) = pkl, we must therefore have that limt→∞ E[Mkl(t+1)]−E[Mkl(t)] =
2mpkl, so that

pkl = m
(k ∨ l)− 1 + δ

2m+ δ
pk∨l−11{k∧l=m} +m

k − 1 + δ

2m+ δ
pk−1,l +m

l − 1 + δ

2m+ δ
pk,l−1 −m

k + l + 2δ

2m+ δ
pk,l,

and

(k+ l+2+2δ+δ/m)pkl = ((k∨ l)−1+δ)pk∨l−11{k∧l=m}+(k−1+δ)pk−1,l+(l−1+δ)pk,l−1. (4.24)

This is equivalent to [14, (12)]. This can be worked out to yield

pkl =

k∑
j=m+1

(
k + l − j −m

k − j

)
Γ(k + δ)

Γ(j − 1 + δ)

Γ(l + δ)

Γ(m+ δ)

Γ(j + k + 2 + 2δ + δ/m)

Γ(l + k + 3 + 2δ + δ/m)
pj−1

+

l∑
j=m+1

(
k + l − j −m

l − j

)
Γ(k + δ)

Γ(j − 1 + δ)

Γ(l + δ)

Γ(m+ δ)

Γ(j + l + 2 + 2δ + δ/m)

Γ(l + k + 3 + 2δ + δ/m)
pj−1.

Substituting (4.8), we arrive at (4.23).
The computation to go from (4.24) to (4.11) is performed in [14, (12)], and applies verbatim.

4.4 Asymptotically random Pearson’s coefficient: collection of complete bipar-
tite graphs

In this section, we present an example where ρ(Gn) in (3.4) converges to a random variable when the
number of vertices tends to infinity. For |Vn| = n, under the assumptions of Theorem 3.1, we have∑

(u,v)∈E′n

DuDv ≤ max
v∈Vn

dv
∑

(u,v)∈E′n

Du = max
v∈Vn

Dv

( ∑
v∈Vn

D2
v

)
≤ C2n1/γ+(2/γ∨1), (4.25)

∑
(u,v)∈E′n

DuDv ≥ max
v∈Vn

Dv ≥ cn1/γ , (4.26)

∑
(u,v)∈E′n

DuDv ≥
∑
v∈Vn

D2
v ≥ cn2/γ∨1. (4.27)

Further, from the proof of Theorem 3.1, we know that∑
v∈Vn

D3
v ≥ (max

v∈Vn
Dv)

3 ≥ c3n3/γ , (4.28)

and

1

|E′n|

( ∑
v∈Vn

D2
v

)2
≤ (C2/c)n(4/γ−1)∨1, (4.29)

where we see that (4.29) is vanishing compared to (4.28). The convergence of (3.4) to a random
variable can only take place if the crossproducts on the left-hand side of (4.25 – 4.27) are of the same
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order of magnitude as the left-hand side of (4.28). As we see from the above, this is possible for
γ ∈ (1, 3).

Below we present an example where ρ(Gn) indeed converges to a random variable. However, due
to slow convergence, a substantially larger computational capacity is needed in order to approximate
the limiting distribution.

Take ((Xi, Yi))
n
i=1 to be an i.i.d. sample of integer random variables as in (2.10), where α1 =

α2 = β1 = b, β2 = ab for some b > 0 and a > 1. Then, for i = 1, . . . , n, we create a complete
bipartite graph of Xi and Yi vertices, respectively. These n complete bipartite graphs are not
connected to one another. We denote such a collection of n bipartite graphs by Gn. The graph Gn
has |Vn| =

∑n
i=1(Xi+Yi) vertices and |E′n| = 2

∑n
i=1XiYi directed edges. Further, if Dv denotes the

random degree of vertex v, then we obtain

∑
v∈Vn

Dp
v =

n∑
i=1

(Xp
i Yi + Y p

i Xi),
∑

(u,v)∈E′n

DuDv = 2
n∑
i=1

(XiYi)
2.

Assume that the ξj ’s in (2.10) satisfy (2.11) with γ ∈ (2, 4), so that E[ξ2] < ∞, but E[ξ4] = ∞. As

a result, |E′n|/n
P−→ 2E[XY ] <∞ and 1

n

∑
v∈V D

2
v

P−→ E[XY (X + Y )] <∞ when γ ∈ (3, 4), while,
for γ ∈ (2, 3),

n−3/γ
∑
v∈V

D2
v = n−3/γ

n∑
i=1

(X2
i Yi + Y 2

i Xi)
d−→ Z, (4.30)

for some random variable Z. [For γ = 3, this sum grows as a slowly varying function in n, but this
case is very similar and will thus be omitted.] Further,

n−4/γb−4
n∑
i=1

(X3
i Yi + Y 3

i Xi)
d−→ (a3 + a)Z1 + 2Z2, n−4/γb−4

N∑
i=1

(XiYi)
2 d−→ a2Z1 + Z2,

where Z1 and Z2 and two independent stable distributions with parameter γ/4. Therefore, using
(3.4) and the fact that 4/γ > (6/γ − 1) ∧ 1, we arrive at

ρ(Gn)
d−→ 2a2Z1 + 2Z2

(a+ a3)Z1 + 2Z2
, as n→∞.

which is a proper random variable taking values in (2a/(1 + a2), 1).
For convergence of the rank correlation, we note that

P(Xn = k, Yn = l)→ P(X = k, Y = l) =
kl

E[X1Y1]
P(X1 = k, Y1 = l),

where we recall that (X1, Y1) is as in (2.10), while (X,Y ) are the degrees at either side of a uniformly
chosen edge. Thus, convergence of the rank correlation follows from Theorem 3.2(a).

5 Numerical results

In this section, we present numerical examples that illustrate our results.

5.1 Numerical results for configuration models and preferential attachment model

We have generated random graphs of different sizes using the configuration model in Section 4.1,
the configuration model with intermediate vertices in Section 4.2, and the Preferential Attachment
model (PAM) in Section 4.3. For the undirected preferential attachment model, we use the basic
version with m = 1 and δ = 0, which implies γ = 2. In both configuration models (without and with
intermediate vertices) we generate the degree sequences by rounding up i.i.d. values of a continuous
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random variable η with Pareto distribution: P(η > x) = 4x−2, x > 2. The exponent γ = 2 is chosen
for a fair comparison to PAM, and all degrees are at least three for the strongest disassortativity
in the model with intermediate in the model with intermediate vertices, see (4.1). In case of the
configuration graph in Section 4.1, we consider two versions: the original model with self-loops and
double edges present, and the model where self-loops and double-edges are removed. The rank
correlation coefficient ρrank(G) is computed as in (3.2). The results are presented in Table 3.

n
Model Characteristic 102 103 104 105

EN (ρ(Gn)) -0.0070 -0.0018 -0.0011 0.0006
Configuration model σN (ρ(Gn)) 0.0735 0.0221 0.0077 0.0017

with self-loops and double edges EN (ρrank(Gn)) 0.0056 -0.0098 -0.0036 0.0005
σN (ρrank(Gn)) 0.0504 0.0150 0.0046 0.0019
EN (ρ(Gn)) -0.0713 -0.0226 -0.0150 -0.0032

Configuration model σN (ρ(Gn)) 0.0546 0.0188 0.0092 0.0029
without self-loops and double edges EN (ρrank(Gn)) -0.0409 -0.0094 -0.0032 -0.0006

σN (ρrank(Gn)) 0.0700 0.0201 0.0083 0.0021
EN (ρ(Ḡn)) -0.2804 -0.1346 -0.0572 -0.0291

Configuration model σN (ρ(Ḡn)) 0.0742 0.0517 0.0279 0.0147

with intermediate vertices EN (ρrank(Ḡn)) -0.7523 -0.7498 -0.7498 -0.7500
σN (ρrank(Ḡn)) 0.0081 0.0025 0.0008 0.0003
EN (ρ(Gn)) -0.2682 -0.1282 -0.0608 -0.0272

Preferential attachment σN (ρ(Gn)) 0.0575 0.0271 0.0132 0.0064
EN (ρrank(Gn)) -0.4347 -0.4263 -0.4288 -0.4289
σN (ρrank(Gn)) 0.0627 0.0272 0.0065 0.0020

Table 3: Estimated mean and standard deviation of ρ(Gn) and ρrank(Gn) obtained from 20 realizations of
Gn for random graph models in Sections 4.1–4.3.

The results for the configuration model with intermediate vertices confirm our findings in Sec-
tion 4.2: Pearson’s coefficient converges to zero, while Spearman’s rho quickly converges to −0.75
revealing the strong negative dependence. For the PAM, Pearson’s coefficient converges to zero, as
indicated in Theorem 3.1, while Spearman’s rank correlation clearly indicates a negative dependence.
This can be understood by noting that the majority of edges of vertices with high degrees, which are
old vertices, come from vertices which are added late in the graph growth process and thus have small
degree. On the other hand, by the growth mechanism of the PAM, vertices with low degree are more
likely to be connected to vertices having high degree, which indeed suggests negative degree-degree
dependencies.

We emphasize that under given model assumptions, the graphs of different sizes have been
constructed by the same algorithm. Thus, their mixing patterns are exactly the same. As we
predicted, the Pearson correlation coefficient fails to reflect the intrinsic properties of the model
because its absolute value decreases with the graph size, and converges to zero for all models. On
the contrary, Spearman’s rho consistently shows neutral mixing for the classical configuration model,
moderately disassortative mixing for the Preferential Attachment graph, and strongly disassortative
mixing for the configuration model with intermediate vertices.

5.2 Numerical results for collections of bipartite graphs

We next compute the degree-degree dependencies in the collection of bipartite graphs discussed in
Section 4.4. In Table 4 we present numerical results for ρ(Gn) and ρrank(Gn). Here we choose
b = 1/2, a = 2, ξ has a generalized Pareto distribution P(ξ > x) = (1 + (x− 1)/2.8)−2.8, x > 1, and
the degrees X and Y are obtained by rounding up the values in (2.10).

Note that in this model there is a genuine dependence between the correlation measure and
the graph size. Indeed, if n = 1 then the assortativity coefficient equals −1 because nodes with
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n 102 103 104 105

EN (ρ(Gn)) 0.6554 0.7247 0.8042 0.8265
σN (ρ(Gn)) 0.1145 0.1406 0.0689 0.0654
EN (ρrank(Gn)) 0.7575 0.7950 0.8526 0.8615
σN (ρrank(Gn)) 0.0735 0.1377 0.0218 0.0074

Table 4: Estimated mean and standard deviation of ρ(Gn) and ρrank(Gn) for the collection of n complete
bipartite graphs. The number of realizations for each graph size is 20.

larger degrees are connected to nodes with smaller degrees. However, when the graph size grows, the
positive correlations start dominating because of the positive linear dependence between X and Y .
We see that again the rank correlation captures the relation faster and gives consistent results with
decreasing dispersion of values. Finally, Figure 2 shows the changes in the empirical distribution of
ρ(Gn) as n grows. It is clear that a part of the probability mass is spread over the interval (0.8, 1).

Figure 2: The empirical distribution function P(ρ(Gn) ≤ x) for 100 observed values of ρ(Gn), where Gn is a
collection of n complete bipartite graphs.

In the limit, ρ(Gn) has a non-zero density on this interval. The difference between the crossproducts
and the expectation squared in ρ(Gn) is only of the order n1−2/γ , which is about n0.29 in our example,
thus, the convergence is too slow to be observed at n = 100.000.

5.3 Web samples and social networks

For completeness, we present the numerical results for web samples and social networks from [24],
see in Table 5. We used the compressed graph data from the Laboratory of Web Algorithms (LAW)
at the Università degli studi di Milano [6, 5] with bvgraph MATLAB package [20]. The stanford-cs
database [13] is a 2001 crawl that includes all pages in the cs.stanford.edu domain. In datasets (iv),
(vii), (viii) we evaluate ρ(Gn), ρrank(Gn) and ρ−(Gn) (see (3.5)) over 1000 random edges, and present
the average over 10 such evaluations (in 10 samples of 1000 edges, the observed dispersion of the
results was small).

We note that ρrank(Gn) here is an approximation of (3.2) computed as described in [24]: we
define the random variables X and Y as the degrees on two ends of a random undirected edge in
a graph (that is, here (u, v) and (v, u) represent the same edge); for each edge, when the observed
degrees are a and b, we assign [X = a, Y = b] or [X = b, Y = a] with probability 1/2; the ties are
resolved randomly as in (3.2). The experiments on random graphs show that the values obtained by
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nr Dataset Description # nodes # edges max degree ρ(Gn) ρrank(Gn) ρ−(Gn)

(i) stanford-cs web domain 9,914 54,854 340 -.1656 -.1627 -.4648

(ii) eu-2005 .eu web domain 862,664 5,477,938 68,963 -.0562 -.2525 -.0670

(iii) uk@100,000 .uk web crawl 100,000 5,559,150 55,252 -.6536 -.5676 -1.117

(iv) uk@1,000,000 .uk web crawl 1,000,000 77,123,940 403,441 -.0831 -.5620 -.0854

(v) enron e-mail exchange 69,244 506,898 1,634 -.1599 -.6827 -.1932

(vi) dblp-2010 co-authorship 326,186 1,615,400 238 .3018 .2604 -.7736

(vii) dblp-2011 co-authorship 986,324 6,707,236 979 .0842 .1351 -.2963

(viii) hollywood-2009 co-starring 1,139,905 113,891,327 11,468 .3446 .4689 -0.6737

Table 5: (i)–(iv) Web crawls: nodes are web pages, and an (undirected) edge means that there
is a hyperlink from one of the two pages to another; (iii),(iv) are breadth-first crawls around one
page. (v) e-mail exchange by Enron employees (mostly part of the senior management): node are
employees, and an edge means that an e-mail message was sent from one of the two employees to
another. (vi), (vii) scientific collaboration networks extracted from the DBLP bibliography service:
each vertex represents a scientist and an edge means a co-authorship of at least one article. (viii)
vertices are actors, and two actors are connected by an edge if they appeared in the same movie.

this algorithm are very close to those computed by (3.2).
The most remarkable result here is obtained on the two .uk crawls (iii) and (iv). Here ρ(Gn) is

significantly smaller in magnitude on a larger crawl. Intuitively, mixing patterns should not depend
on the crawl size. This is indeed confirmed by the value of Spearman’s rho, which consistently shows
strong negative correlations in both crawls. We could not observe a similar phenomenon so sharply
in (vi) and (vii), probably because a larger co-authorship network incorporates articles from different
areas of science, and the culture of scientific collaborations can vary greatly from one research field
to another.

We also notice that, as predicted by our results, the small in magnitude values of ρ−(Gn) result
in profound difference in magnitude between ρ(Gn) and ρrank(Gn). This is clearly seen in the data
sets (ii), (iv) and (v). Again, (ii) and (iv) are the largest among the analyzed web crawls.

The observed behaviour of Pearson’s coefficient is explained by the results proved in this paper
in that ρ(Gn) is strongly influenced by the large dispersion in the degree values, and particularly
by the presence of hubs. The latter increases with graph size because of the scale-free phenomenon.
As a result, ρ(Gn) becomes smaller in magnitude when n increases, which makes it impossible to
compare graphs of different sizes. In contrast, the ranks of the degrees are drawn from a uniform
distribution on [0, 1], scaled by the factor |E′|. Clearly, when a correlation coefficient is computed,
the scaling factor cancels, and therefore Spearman’s rho provides consistent results in the graphs of
different sizes.

6 Discussion

In this paper, we have investigated dependency measures for power-law random variables. We have
argued that Pearson’s correlation coefficient, despite its appealing feature that it is always in [−1, 1],
is inappropriate to describe dependencies between heavy-tailed random variables. Indeed, the two
main problems with the sample correlation coefficient are that (a) it can converge to a proper
random variable when the sample size tends to infinity, indicating that it fluctuates tremendously as
the sample size increases, and (b) that it is always asymptotically non-negative when dealing with
non-negative random variables (even when these are obviously negatively dependent). In the context
of random graphs, the first deficiency means that Pearson’s coefficient can have a non-vanishing
variance even when the size of the graph is huge, the second mistakenly suggests that there do not
exist asymptotically disassortative scale-free graphs. We give proofs for the facts stated above, and
illustrate the results using simulations.

Rank correlations are a special case of the broader concept of copulas that are widely used in
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multivariate analysis, in particular in applications in mathematical finance and risk management.
There is a heated discussion in this area about the adequacy and informativeness of such measures, see
e.g. [32] and consequent reactions. There are several points of criticism. In particular, Spearman’s rho
uses rank transformation, which changes the observed values of the degrees. Then, first of all, what
exactly does Spearman’s rho tell us about the dependence between the original values? Second of all,
no substantial justification exists for the rank transformation, besides its mathematical convenience.
We thus do not claim that Spearman’s rho is the solution to the problem. Nevertheless, compared
to the Pearson’s coefficient, Spearman’s rho has a significant advantage that it is free from the
undesirable size-dependency, and converges to meaningful value in the infinite volume limit.

We note that Spearman’s rho has computational complexity O(n log(n)) because the values of
the random variables must be ranked first. Pearson’s correlation coefficient is easier to evaluate
because it uses the values of the degrees directly, and has computational complexity O(n). Efficient
methods for computing Spearman’s rho in large graphs is an interesting topic for future research.

Raising the discussion to a higher level, random variables X and Y are positively dependent
when a large realization of X typically implies a large realization of Y . A strong form of this
notion is when P(X > x, Y > y) ≥ P(X > x)P(Y > y) for every x, y ∈ R, but for many purposes
this notion is too restrictive. The covariance for non-negative random variables is obtained by
integrating the above inequality over x, y ≥ 0, so that it is true for ‘typical’ values of x, y. In many
cases, however, we are particularly interested in certain values of x, y. Another class of methods for
measuring rank correlations is based on the angular measure, a notion originating in the theory of
multivariate extremes, for which the above inequality is investigated for large x and y, so that it
describes the tail dependence for a random vector (X,Y ), that is, the dependence between extremely
large values of X and Y , see e.g. [43]. Such tail dependence is characterized by an probability-like
measure, or, the angular measure, on [0, 1]. Informally, a concentration of the angular measure
around the points 0 and 1 indicates independence of large values, while concentration around some
other number a ∈ (0, 1) suggests that a certain fraction of large values of Y comes together with
large values of X. In [45, 46] a first attempt was made to compute the angular measure between
in-degree of a node and its importance measured by the Google PageRank algorithm. Strikingly,
completely different dependence structures were discovered in Wikipedia (independence), Preferential
Attachment networks (complete dependence) and the Web (intermediate case).
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Détection Rapide de Noeuds à Degrés Élevés

Résumé : Notre objectif est de trouver rapidement dans les grands réseaux complexes top
k listes de noeuds avec les plus grands degrés. Si la liste d’adjacence du réseau est connu (pas
souvent le cas dans les réseaux complexes), un algorithme déterministe pour trouver un noeud
avec le plus grand degré nécessite une complexité moyenne de O(n), où n est le nombre de noeuds
dans le réseau. Même cette complexité modeste peut être très élevé pour les grands réseaux
complexes. Nous proposons d’utiliser une méthode basé sur le marche aléatoire. Nous montrons
théoriquement et par expérimentations numériques que pour les grands réseaux la méthode de
marche aléatoire trouve top k listes de bonne qualité avec une forte probabilité de réussite et
avec des économies de calcul de plusieurs ordres de grandeur. Nous proposons également des
critères d’arrêt pour la méthode de marche aléatoire qui ne nécessite pas de connaissance de la
structure du réseau.

Mots-clés : réseaux complexes, détection de noeuds avec les plus grands degrés, top k liste,
marche aléatoire, critères d’arrêt
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1 Introduction

We are interested in quickly detecting nodes with large degrees in very large networks. Firstly,
node degree is one of centrality measures used for the analysis of complex networks. Secondly,
large degree nodes can serve as proxies for central nodes corresponding to the other centrality
measures as betweenness centrality or closeness centrality [8, 9]. In the present work we restrict
ourself to undirected networks or symmetrized versions of directed networks. In particular,
this assumption is well justified in social networks. Typically, friendship or acquaintance is
a symmetric relation. If the adjacency list of the network is known (not often the case in
complex networks), the straightforward method that comes to mind is to use one of the standard
sorting algorithms like Quicksort or Heapsort. However, even their modest average complexity,
O(n log(n)), can be very high for very large complex networks. In the present work we suggest
using random walk based methods for detecting a small number of nodes with the largest degree.
The main idea is that the random walk very quickly comes across large degree nodes. In our
numerical experiments random walks outperform the standard sorting procedures by orders of
magnitude in terms of computational complexity. For instance, in our experiments with the web
graph of the UK domain (about 18 500 000 nodes) the random walk method spends on average
only about 5 400 steps to detect the largest degree node. Potential memory savings are also
significant since the method does not require knowledge of the entire network. In many practical
applications we do not need a complete ordering of the nodes and even can tolerate some errors
in the top list of nodes. We observe that the random walk method obtains many nodes in the top
list correctly and even those nodes that are erroneously placed in the top list have large degrees.
Therefore, as typically happens in randomized algorithms [12, 13], we trade off exact results for
very good approximate results or for exact results with high probability and gain significantly in
computational efficiency.

The paper is organized as follows: in the next section we introduce our basic random walk
with uniform jumps and demonstrate that it is able to quickly find large degree nodes. Then,
in Section 3 using configuration model we provide an estimate for the necessary number of steps
for the random walk. In Section 4 we propose stopping criteria that use very little information
about the network. In Section 5 we show the benefits of allowing few erroneous elements in the
top k list. Finally, we conclude the paper in Section 6.

2 Random walk with uniform jumps

Let us consider a random walk with uniform jumps which serves as a basic algorithm for quick
detection of large degree nodes. The random walk with uniform jumps is described by the
following transition probabilities [1]

pij =

{

α/n+1
di+α , if i has a link to j,
α/n
di+α , if i does not have a link to j,

(1)

where di is the degree of node i. The random walk with uniform jumps can be regarded as a
random walk on a modified graph where all the nodes in the graph are connected by artificial
edges with a weight α/n. The parameter α controls the rate of jumps. Introduction of jumps
helps in a number of ways. As was shown in [1], it reduces the mixing time to stationarity. It also
solves a problem encountered by a random walk on a graph consisting of two or more components,
namely the inability to visit all nodes. The random walk with jumps also reduces the variance
of the network function estimator [1]. This random walk resembles the PageRank random walk.
However, unlike the PageRank random walk, the introduced random walk is reversible. One
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important consequence of the reversibility of the random walk is that its stationary distribution
is given by a simple formula

πi(α) =
di + α

2|E|+ nα
∀i ∈ V, (2)

from which the stationary distribution of the original random walk can easily be retrieved. We
observe that the modification preserves the order of the nodes’ degrees, which is particularly
important for our application.

We illustrate on several network examples how the random walk helps us quickly detect large
degree nodes. We consider as examples one synthetic network generated by the preferential
attachment rule and two natural large networks. The Preferential Attachment (PA) network
combines 100 000 nodes. It has been generated according to the generalized preferential attach-
ment mechanism [6]. The average degree of the PA network is two and the power law exponent
is 2.5. The first natural example is the symmetrized web graph of the whole UK domain crawled
in 2002 [4]. The UK network has 18 520 486 nodes and its average degree is 28.6. The second
natural example is the network of co-authorships of DBLP [5]. Each node represents an author
and each link represents a co-authorship of at least one article. The DBLP network has 986 324
nodes and its average degree is 6.8.

We carry out the following experiment: we initialize the random walk (1) at a node chosen
according to the uniform distribution and continue the random walk until we hit the largest
degree node. The largest degrees for the PA, UK and DBLP networks are 138, 194 955, and
979, respectively. For the PA network we have made 10 000 experiments and for the UK and
DBLP networks we performed 1 000 experiments (these networks were too large to perform more
experiments).

In Figue 1 we plot the histograms of hitting times for the PA network. The first remarkable
observation is that when α = 0 (no restart) the average hitting time, which is equal to 123 000,
is nearly three orders of magnitude larger than 3 720, the hitting time when α = 2. The second
remarkable observation is that 3 720 is not too far from the value

1/πmax(α) = (2|E|+ nα)/(dmax + α) = 2 857,

which corresponds to the average return time to the largest degree node in the random walk with
jumps.
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Figure 1: Histograms of hitting times in the PA network.

We were not able to collect a representative number of experiments for the UK and DBLP
networks when α = 0. The reason for this is that the random walk gets stuck either in disconected
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or weakly connected components of the networks. For the UK network we were able to make
1 000 experiments with α = 0.001 and obtain the average hitting time 30 750. Whereas if we take
α = 28.6 for the UK network, we obtain the average hitting time 5 800. Note that the expected
return time to the largest degree node in the UK network is given by

1/πmax(α) = (2|E|+ nα)/(dmax + α) = 5 432.

For the DBLP graph we conducted 1 000 experiments with α = 0.00001 and obtained an average
hitting time of 41 131. Whereas if we take α = 6.8, we obtain an average hitting time of 14 200.
The expected return time to the largest degree node in the DBLP network is given by

1/πmax(α) = (2|E|+ nα)/(dmax + α) = 13 607.

The two natural network examples confirm our guess that the average hitting time for the largest
degree node is fairly close to the average return time to the largest degree node. Let us also
confirm our guess with asymptotic analysis.

Theorem 1 Without loss of generality, index the nodes such that node 1 has the largest degree,
(1, i) ∈ E, i = 2, ..., s, s = d1+1, and let ν denote the initial distribution of the random walk with
jumps. Then, the expected hitting time to node 1 starting from any initial distribution ν is given
by

Eν [T1] =

∑n
i=2 di + (n− 1)α

d1 + 2α(1− 1/n)
+ o

(

min
i=2,...,s

{(di + α), n}

)

, (3)

Proof: The expected hitting time from distribution ν to node 1 is given by the formula

Eν [T1] = ν[I − P−1]
−11, (4)

where P−1 is a taboo probability matrix (i.e., matrix P with the 1-st row and 1-st column
removed). The matrix P−1 is substochastic but is very close to stochastic. Let us represent it as
a stochastic matrix minus some perturbation term:

P−1 = P̃ − εQ = P̃ −

























1+2α/n
d2+α 0 0

0
. . .

1+2α/n
ds+α

2α/n
ds+1+α

. . . 0

0 0 2α/n
dn+α

























We add missing probability mass to the diagonal of P̃ , which corresponds to an increase in the
weights for self-loops. The matrix P̃ represents a reversible Markov chain with the stationary
distribution

π̃j =
dj + α

∑n
i=2 di + (n− 1)α

.

Now we can use the following result from the perturbation theory (see Lemma 1 in [2]):

[I − P̃ + εQ]−1 =
1π̃

π̃(εQ)1
+X0 + εX1 + ... , (5)
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6 K. Avrachenkov & N. Litvak & M. Sokol & D. Towsley

where π̃ is the stationary distribution of the stochastic matrix P̃ . In our case, the quantity
maxi=2,...,s{1/(di + α), 1/n} will play the role of ε. We apply the series (5) to approximate the
expected hitting time. Towards this goal, we calculate

π̃(εQ)1 =

n
∑

j=2

π̃jεqjj

=

s
∑

j=2

dj + α
∑n

i=2 di + (n− 1)α

1 + 2α/n

dj + α
+

n
∑

j=s+1

dj + α
∑n

i=2 di + (n− 1)α

2α/n

dj + α

=
d1(1 + 2α/n) + (n− d1 − 1)(2α/n)

∑n
i=2 di + (n− 1)α

=
d1 + 2α(1− 1/n)
∑n

i=2 di + (n− 1)α
.

Observing that ν1π̃1 = 1, we obtain (3).
�

Indeed, the asymptotic expression (3) is very close to (2|E| + nα)/(d1 + α), which is the
expected return time to node 1.

Based on the notion of the hitting time we propose an efficient method for quick detection of
the top k list of largest degree nodes. The algorithm maintains a top k candidate list. Note that
once one of the k nodes with the largest degrees appears in this candidate list, it remains there
subsequently. Thus, we are interested in hitting events. We propose the following algorithm for
detecting the top k list of largest degree nodes.

Algorithm 1 Random walk with jumps and candidate list

1. Set k, α and m.

2. Execute a random walk step according to (1).

3. Check if the current node has a larger degree than one of the nodes in the current top k
candidate list. If it is the case, insert the new node in the top-k candidate list and remove
the worst node out of the list.

4. If the number of random walk steps is less than m, return to Step 2 of the algorithm. Stop,
otherwise.

The value of parameter α is not crucial. In our experiments, we have observed that as long as
the value of α is neither too small nor not too big, the algorithm performs well. A good option
for the choice of α is a value slightly smaller than the average node degree. Let us explain this
choice by calculating a probability of jump in the steady state

n
∑

j=1

πj(α)
α

dj + α
=

n
∑

j=1

dj + α

2|E|+ nα

α

dj + α
=

nα

2|E|+ nα
=

α

2|E|/n+ α
.

If α is equal to 2|E|/n, the average degree, the random walk will jump in the steady state on
average every two steps. Thus, if we set α to the average degree or to a slightly smaller value,
on one hand the random walk will quickly converge to the steady state and on the other hand
we will not sample too much from the uniform distribution.

The number of random walk steps, m, is a crucial parameter. Our experiments indicate that
we obtain a top k list with many correct elements with high probability if we take the number
of random walk steps to be twice or thrice as large as the expected hitting time of the nodes in
the top k list. From Theorem 1 we know that the hitting time of the large degree node is related
to the value of the node’s degree. Thus, the problem of choosing m reduces to the problem of
estimating the values of the largest degrees. We address this problem in the following section.

Inria



Quick Detection of Nodes with Large Degrees 7

3 Estimating the largest degrees in the configuration net-
work model

The estimations for the values of the largest degrees can be derived in the configuration network
model [7] with a power law degree distribution. In some applications the knowledge of the power
law parameters might be available to us. For instance, it is known that web graphs have power
law degree distribution and we know typical ranges for the power law parameters.

We assume that the node degrees D1, . . . , Dn are i.i.d. random variables with a power law
distribution F and finite expectation E[D]. Let us determine the number of links contained in
the top k nodes. Denote

F (x) = P [D ≤ x], F̄ (x) = 1− F (x), x ≥ 0.

Further let D(1) ≥ . . . ≥ D(n) be the order statistics of D1, . . . , Dn. Under the assumption that
Dj ’s obey a power law, we use the results from the extreme value theory as presented in [11], to
state that there exist sequences of constants (an) and (bn) and a constant δ such that

lim
n→∞

nF̄ (anx+ bn) = (1 + δx)−1/δ. (6)

This implies the following approximation for high quantiles of F , with exceedance probability
close to zero [11]:

xp ≈ an
(pn)−δ − 1

δ
+ bn.

For the jth largest degree, where j = 2, . . . , k, the estimated exceedance probability equals
(j−1)/n, and thus we can use the quantile x(j−1)/n to approximate the degree D(j) of this node:

D(j) ≈ an
(j − 1)−δ − 1

δ
+ bn. (7)

The sequences (an) and (bn) are easy to find for a given shape of the tail of F . Below we
derive the corresponding results for the commonly accepted Pareto tail distribution of D, that
is,

F̄ (t) = Cx−γ for x > x′, (8)

where γ > 1 and x′ is a fixed sufficiently large number so that the power law degree distribution
is observed for nodes with degree larger than x′. In that case we have

lim
n→∞

nF̄ (anx+ bn) = lim
n→∞

nC(anx+ bn)
−γ = lim

n→∞
(C−1/γn−1/γanx+ C−1/γn−1/γbn)

−γ ,

which directly gives (6) with

δ = 1/γ, an = δCδnδ, bn = Cδnδ. (9)

Substituting (9) into (7) we obtain the following prediction for D(j), j = 2, . . . , k, in the case of
the Pareto tail of the degree distribution:

D(j) ≈ n1/γ [C1/γ(j − 1)−1/γ − C1/γ + 1]. (10)

It remains to find an approximation for D(1), the maximal degree in the graph. From the
extreme value theory it is well known that if D1, . . . , Dn obey a power law then

lim
n→∞

P

(

D(1) − bn

an
≤ x

)

= Hδ(x) = exp(−(1 + δx)−1/δ),

RR n° 7881



8 K. Avrachenkov & N. Litvak & M. Sokol & D. Towsley

where, for Pareto tail, an, bn and δ are defined in (9). Thus, as an approximation for the maximal
node degree we can choose anx + bn where x can be chosen as either an expectation, a median
or a mode of Hδ(x). If we choose the mode, ((1+ δ)−δ − 1)/δ, then we obtain an approximation,
which is smaller than the one for the 2nd largest degree. Further, the expectation (Γ(1−δ)−1)/δ
is very sensitive to the value of δ = 1/γ, especially when γ is close to one, which is often the case
in complex networks. Besides, the parameter γ is hard to estimate with high precision. Thus,
we choose the median (log(2))−δ − 1)/δ, which yields

D(1) ≈ an
(log(2))−δ − 1

δ
+ bn = n1/γ [C1/γ(log(2))−1/γ − C1/γ + 1]. (11)

For instance, in the PA network γ = 2.5 and C = 3.7, which gives according to (11) D(1) ≈
127. (This is a good prediction even though the PA network is not generated according to the
configuration model. We also note that even though the extremum distribution in the preferential
attachment model is different from that of the configuration model their ranges seem to be very
close [10].) This in turn suggests that for the PA network m should be chosen in the range
6 000-18 000 if α = 2. As we can see from Figure 2 this is indeed a good range for the number
of random walk steps. In the UK network γ = 1.7 and C = 90, which gives D(1) ≈ 82 805 and
suggests a range of 20 000-30 000 for m if α = 28.6. Figure 3 confirms that this is a good choice.
The degree distribution of the DBLP network does not follow a power law so we cannot apply
the above reasoning to it.

4 Stopping criteria

Suppose now that we do not have any information about the range for the largest k degrees. In
this section we design stopping criteria that do not require knowledge about the structure of the
network. As we shall see, knowledge of the order of magnitude of the average degree might help,
but this knowledge is not imperative for a practical implementation of the algorithm.

Let us now assume that node j can be sampled independently with probability πj(α) as in
(2). There are at least two ways to achieve this practically. The first approach is to run the
random walk for a significant number of steps until it reaches the stationary distribution. If
one chooses α reasonably large, say the same order of magnitude as the average degree, then
the mixing time becomes quite small [1] and we can be sure to reach the stationary distribution
in a small number of steps. Then, the last step of a run of the random walk will produce an
i.i.d. sample from a distribution very close to (2). The second approach is to run the random
walk uninterruptedly, also with a significant value of α, and then perform Bernoulli sampling
with probability q after a small initial transient phase. If q is not too large, we shall have nearly
independent samples following the stationary distribution (2). In our experiment, q ∈ [0.2, 0.5]
gives good results when α has the same order of magnitude as the average degree.

We now estimate the probability of detecting correctly the top k list of nodes after m i.i.d.
samples from (2). Denote by Xi the number of hits at node i after m i.i.d. samples. We note
that if we use the second approach to generate i.i.d. samples, we spend approximately m/q
steps of the random walk. We correctly detect the top k list with the probability given by the
multinomial distribution

P [X1 ≥ 1, ..., Xk ≥ 1] =

∑

i1≥1,...,i1≥1

m!

i1! · · · ik!(m− i1 − ...− ik)!
πi1
1 · · ·πik

k (1−

k
∑

i=1

πi)
m−i1−...−ik

Inria



Quick Detection of Nodes with Large Degrees 9

but it is not feasible for any realistic computations. Therefore, we propose to use the Pois-
son approximation. Let Yj , j = 1, ..., n be independent Poisson random variables with means
πjm. That is, the random variable Yj has the following probability mass function P [Yj = r] =
e−mπj (mπj)

r/r!. It is convenient to work with the complementary event of not detecting cor-
rectly the top k list. Then, we have

P [{X1 = 0} ∪ ... ∪ {Xk = 0}] ≤ 2P [{Y1 = 0} ∪ ... ∪ {Yk = 0}]

= 2(1− P [{Y1 ≥ 1} ∩ ... ∩ {Yk ≥ 1}]) = 2(1−

k
∏

j=1

P [{Yj ≥ 1}])

= 2(1−

k
∏

j=1

(1 − P [{Yj = 0}])) = 2(1−

k
∏

j=1

(1− e−mπj )) =: a, (12)

where the first inequality follows from [12, Thm 5.10]. In fact, in our numerical experiments we
observed that the factor 2 in the first inequality is very conservative. For large values of m, the
Poisson bound works very well as proper approximation.

For example, if we would like to obtain the top 10 list with at most 10% probability of error,
we need to have on average 4.5 hits per each top element. This can be used to design the stopping
criteria for our random walk algorithm. Let ā ∈ (0, 1) be the admissible probability of an error
in the top k list. Now the idea is to stop the algorithm after m steps when the estimated value
of a for the first time is lower than the critical number ā. Clearly,

âm = 2(1−

k
∏

j=1

(1− e−Xj ))

is the maximum likelihood estimator for a, so we would like to choose m such that âm ≤ ā. The
problem, however, is that we do not know which Xj ’s are the realisations of the number of visits
to the top k nodes. Then let Xj1 , ..., Xjk be the number of hits to the current elements in the
top k candidate list and consider the estimator

âm,0 = 2(1−

k
∏

i=1

(1 − e−Xji )),

which is the maximum likelihood estimator of the quantity

2(1−

k
∏

i=1

(1 − e−mπji )) ≥ a.

(Here πji is a stationary probability of the node with the score Xji , i = 1, . . . , k). The estimator
âm,0 is computed without knowledge of the top k nodes or their degrees, and it is an estimator
of an upper bound of the estimated probability that there are errors in the top k list. This leads
to the following stopping rule.
Stopping rule 0. Stop at m = m0, where

m0 = argmin{m : âm,0 ≤ ā}.

RR n° 7881



10 K. Avrachenkov & N. Litvak & M. Sokol & D. Towsley

The above stopping criterion can be simplified even further to avoid computation of âm,0.
Since

âm,1 := 2(1− (1− e−Xjk )k) ≥ âm,0 ≥ â,

where Xjk is the number of hits of the worst element in the candidate list. The inequality
âm ≤ ā is guaranteed if âm,1 ≤ ā. This leads to the following stopping rule for the random walk
algorithm.
Stopping rule 1. Compute x0 = argmin{x ∈ N : (1− e−x)k ≥ 1− ᾱ/2.} Stop at

m1 = argmin{m : Xjk = x0}.

We have observed in our numerical experiments that we obtain the best trade off between the
number of steps of the random walk and the accuracy if we take α around the average degree and
the sampling probability q around 0.5. Specifically, if we take ā/2 = 0.15 (x0 = 4) in Stopping
rule 1 for top 10 list, we obtain 87% accuracy for an average of 47 000 random walk steps for the
PA network; 92% accuracy for an average of 174 468 random walk steps for the DBLP network;
and 94% accuracy for an average of 247 166 random walk steps for the UK network. We have
averaged over 1000 experiments to obtain tight confidence intervals.

5 Relaxation of top k lists

In the stopping criteria of the previous section we have strived to detect all nodes in the top k
list. This costs us a lot of steps of the random walk. We can significantly gain in performance by
relaxing this strict requirement. For instance, we could just ask for list of k nodes that contains
80% of top k nodes [3]. This way we can take an advantage of a generic 80/20 rule that 80% of
result can be achieved with 20% of effort.

Let us calculate the expected number of top k elements observed in the candidate list up to
trial m. Define by Xj the number of times we have observed node j after m trials and

Hj =

{

1, node j has been observed at least once,
0, node j has not been observed.

Assuming we sample in i.i.d. fashion from the distribution (2), we can write

E[

k
∑

j=1

Hj ] =

k
∑

j=1

E[Hj ] =

k
∑

j=1

P [Xj ≥ 1] =

k
∑

j=1

(1 − P [Xj = 0]) =

k
∑

j=1

(1 − (1− πj)
m). (13)

In Figure 2 we plot E[
∑k

j=1 Hj ] (the curve “I.I.D. sample”) as a function of m for k = 10 for

the PA network with α = 0 and α = 2. In Figure 3 we plot E[
∑k

j=1 Hj ] as a function of m for
k = 10 for the UK network with α = 0.001 and α = 28.6. The results for the UK and DBLP
networks are similar in spirit.

Here again we can use the Poisson approximation

E[

k
∑

j=1

Hj ] ≈

k
∑

j=1

(1 − e−mπj).

In fact, the Poisson approximation is so good that if we plot it on Figures 2 and 3, it nearly covers
exactly the curves labeled “I.I.D. sample”, which correspond to the exact formula (13). Similarly
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Figure 2: Average number of correctly detected elements in top-10 for PA.
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Figure 3: Average number of correctly detected elements in top-10 for UK.

to the previous section, we can propose stopping criteria based on the Poisson approximation.
Denote

bm =

k
∑

i=1

(1− e−Xji ).

Stopping rule 2. Stop at m = m2, where

m2 = argmin{m : bm ≥ b̄}.

Now if we take b̄ = 7 in Stopping rule 3 for top-10 list, we obtain on average 8.89 correct
elements for an average of 16 725 random walk steps for the PA network; we obtain on average
9.28 correct elements for an average of 66 860 random walk steps for the DBLP network; and
we obtain on average 9.22 correct elements for an average of 65 802 random walk steps for the
UK network. (We have averaged over 1000 experiments for each network.) This makes for the
UK network the gain of more than two orders of magnitude in computational complexity with
respect to the deterministic algorithm.

RR n° 7881



12 K. Avrachenkov & N. Litvak & M. Sokol & D. Towsley

6 Conclusions and future research

We have proposed the random walk method with the candidate list for quick detection of largest
degree nodes. We have also supplied stopping criteria which do not require knowledge of the
graph structure. In the case of large networks, our algorithm finds top k list of largest degree
nodes with few mistakes with the running time orders of magnitude faster than the deterministic
sorting algorithm. In future research we plan to obtain estimates for the required number of
steps for various types of complex networks.
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Alpha current flow betweenness centrality?
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Abstract. A class of centrality measures called betweenness centralities
reflects degree of participation of edges or nodes in communication be-
tween different parts of the network. The original shortest-path between-
ness centrality is based on counting shortest paths which go through a
node or an edge. One of shortcomings of the shortest-path betweenness
centrality is that it ignores the paths that might be one or two steps
longer than the shortest paths, while the edges on such paths can be
important for communication processes in the network. To rectify this
shortcoming a current flow betweenness centrality has been proposed.
Similarly to the shortest path betwe has prohibitive complexity for large
size networks. In the present work we propose two regularizations of
the current flow betweenness centrality, α-current flow betweenness and
truncated α-current flow betweenness, which can be computed fast and
correlate well with the original current flow betweenness.

1 Introduction

A class of centrality measures called betweenness centralities reflects degree of
participation of edges or nodes in communication between different parts of the
network. The first notion of betweenness centrality was introduced by Freeman
[8]. Let s, t ∈ V be a pair of nodes in an undirected network G = (V,E). We
denote |V | = n, |E| = m, and let dv be the degree of node v. Let σs,t be
the number of shortest paths connecting nodes s and t and denote σs,t(e) the
number of shortest path connecting nodes s and t passing through edge e. Then
betweenness centrality of edge e is calculated as follows:

CB(e) =
1

n(n− 1)

∑
s,t∈V

σs,t(e)

σs,t
(1)

Computational complexity of the best known algorithm for computing the be-
tweenness in (1)is O(mn) [4]. This limits its applicability for large graphs.

One of shortcomings of the betweenness centrality in (1)is that it takes into
accounts only the shortest paths, ignoring the paths that might be one or two

? This research is partially funded by Inria Alcatel-Lucent Joint Lab, by the European
Commission within the framework of the CONGAS project FP7-ICT-2011-8-317672,
see www.congas-project.eu, and by the EU-FET Open grant NADINE (288956).
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steps longer, while the edges on such paths can be important for communication
processes in the network. In order to take such paths into account, Newman [11]
and Brandes and Fleischer [5] introduced the current flow betweenness centrality
(CF-betweenness). In [11,5] the graph is regarded as an electrical network with
edges being unit resistances. The CF-betweenness of an edge is the amount of
current that flows through it, averaged over all source-destination pairs, when one
unit of current is induced at the source, and the destination (sink) is connected
to the ground. This exploits the well known relation between electrical networks
and reversible Markov chains, see e.g. [1,7].

The computational difficulty of Betweenness and the CF-betweenness is that
the computations must be done over the set of all source-destination pairs.
The best previously known computational complexity for the CF-betweenness
is O(I(n − 1) + mn log n) where I(n − 1) is the complexity of the inversion of
matrix of dimension n− 1.

In the present work we introduce new betweenness centrality measures: α-
current flow betweenness (α-CF betweenness) and its truncated version. The
main purpose of these new measures is to bring down the high cost of the CF-flow
betweenness computation. Our proposed measures are very close in performance
to the CF-betweenness, but they are comparable to the PageRank algorithm [6]
in their modest computational complexity. Our goal is to provide and analyze
efficient algorithms for α-CF betweenness and truncated α-CF betweenness, to
compare the α-CF betweenness to other centrality measures.

2 Alpha current flow betweenness

We view the graph G as an electrical network where each edge has resistance
1/α, and each node is connected to ground node n+1 by an edge with resistance
1/(1−α). This is in the spirit of the PageRank, indeed, the current (probability
flow) is inversely proportional to the resistance, and thus the fraction α of the
current from a node flows to the network, while the fraction (1−α) of the current
is directed to the sink. Since the graph is undirected, we use a convention that
(v, w) and (w, v) represent the same arc in E, but depending on the chosen
direction the current along this arc is considered to be positive or negative.

Assume that a unit of current is supplied to a source node s ∈ V , and there is

a destination node t ∈ V connected to the ground. Let ϕ
(s,t)
v denote the absolute

potential of node v ∈ V , if s is a source s, and t is the destination. Assume

without loss of generality that s = 1 and t = n (ϕ
(1,n)
n = ϕ

(1,n)
n+1 = 0). The vector

of absolute potentials of the other nodes ϕ(1,n) = [ϕ
(1,n)
1 , ..., ϕ

(1,n)
n−1 ]T is a solution

of the following system of equations (Kirchhoff’s current law):

[D̃ − αÃ]ϕ(1,n) = b̃, (2)

where D̃ and Ã are the degree and adjacency matrices of the graph without node
n and b̃ = [1, 0, ..., 0]T , see [5].

Obviously, we would not like to solve a separate linear system for each source-
destination pair with different left hand side coefficient matrix [D̃− αÃ]. In the



following theorem we demonstrate that we need to only invert the coefficient
matrix [D − αA].

Theorem 1 The voltage drop along the edge (v, w) is given by

ϕ(s,t)
v − ϕ(s,t)

w = (cs,v − cs,w) +
cs,t
ct,t

(ct,w − ct,v), (3)

where (cv,w)v,w∈V , are the elements of the matrix C = [D − αA]−1.

Proof: Assume again without loss of generality that s = 1 and t = n. The
matrix [D − αA] can be written in the following block structure

D − αA =

[
D̃ − αÃ −αã
−αãT dn

]
, with ã =


a1,n
a2,n

...
an−1,n

 .
Then, divide accordingly the elements of the inverse matrix

C = [D − αA]−1 =

[
C̃ c̃
c̃T cn,n

]
.

Writing the relation [D − αA]C = I in the block form yields

[D̃ − αÃ]C̃ − αãc̃T = I, (4)

[D̃ − αÃ]c̃− αãc̃n,n = 0. (5)

Premultiplying equation (4) by [D̃ − αÃ]−1, we obtain

[D̃ − αÃ]−1 = C̃ − α[D̃ − αÃ]−1ãc̃T . (6)

And premultiplying (5) by [D̃ − αÃ]−1, we obtain

α[D̃ − αÃ]−1ã =
1

cn,n
c̃. (7)

Combining both equations (6) and (7) gives

[D̃ − αÃ]−1 = C̃ − 1

cn,n
c̃c̃T ,

and hence ϕ(1,n) = [D̃ − αÃ]−1b̃ = C̃·,1 − c1,n
cn,n

c̃. Thus, we can write

ϕ(1,n)
v − ϕ(1,n)

w = (cv,1 − cw,1) +
c1,n
cn,n

(cw,n − cv,n)

The above expression is symmetric and can be rewritten for any source-target
pair (s, t). That is,

ϕ(s,t)
v − ϕ(s,t)

w = (cv,s − cw,s) +
cs,t
ct,t

(cw,t − cv,t).



Furthermore, since matrix C is symmetric for symmetric graphs, we can rewrite
the above equation as

ϕ(s,t)
v − ϕ(s,t)

w = (cs,v − cs,w) +
cs,t
ct,t

(ct,w − ct,v),

which completes the proof. �

The current I
(s,t)
e through edge e = (v, w) is equal to α(ϕ

(s,t)
v − ϕ(s,t)

w ). Let

x(s,t)e = |ϕ(s,t)
v − ϕ(s,t)

w |, (v, w) ∈ E

be the difference of potentials, that determines the absolute value of the current
on the edge. The α-CF betweenness of edge e is defined by

xαe =
1

n(n− 1)

∑
s,t∈V,s 6=t

x(s,t)e , e ∈ E. (8)

Further, for each node v ∈ V its α-CF betweenness is defined as the sum of the
α-CF betweenness scores of its adjacent edges:

α-CF betweenness(v) =
∑

(v,w)∈E

xα(v,w), v ∈ V. (9)

With this definition, the node is central if a relatively large amount of current
flows from this node to the network. This is in accordance to the original CF-
betweenness of [11,5], except we introduced the additional sink ground node
n + 1. This mitigates the computational complexity because the original CF-
betweenness require the inversion of the ill-conditioned matrix [D̃ − Ã], while
for computing α-CF betweenness we need to invert the matrix [D− αA], which
is a well posed problem, and has many possible efficient solutions, for example,
power iteration and Monte Carlo methods. In fact, as we shall show below, we
need to obtain just a few rows of the inverse matrix [D − αA]−1. In the rest
of the paper we will discuss the computations and the properties of the α-CF
betweenness.

3 Computation of α-CF betweenness

Due to the presence of the auxiliary node n+ 1, the value of x
(s,t)
e on the right-

hand side of (8) can be computed efficiently with high precision for any source-
destination pair. However, the summation over all n(n − 1) pairs is a problem
of prohibitive computational complexity even for graphs of a modest size. The
solution is to perform the computations for sufficiently many source-destination
pairs. This presents two problems: how to sample the source-destination pairs
and how many such pairs we need to achieve a good precision.

Ideally, we would like to choose the most representative source-destination

pairs. In particular, we can expect large values of x
(s,t)
e if the sum of all potentials



∑
v∈V ϕ

(s,t)
v is maximal. Let us take again s = 1, t = n. Then we obtain∑

v∈V
ϕ(1,n)
v = 1T [D̃ − αÃ]−1b̃ = 1T [I − αP̃ ]−1D̃−1b̃, (10)

where 1 is a column vector of ones, and P̃ is the transition probability matrix for
a simple random walk on G with absorption in n. Compare this to the well-known
expression for PageRank vector π = (π1, . . . , πn) with uniform teleportation and
damping factor α:

π =
1− α
n

1T [I − αP ]−1.

Note that the vector 1T [I−αP̃ ]−1 in (10) is very similar to PageRank, except it
nullifies the contribution of node n. We denote this vector by π̃ and recall that
b̃ = (1, 0, . . . , 0)T to obtain ∑

v∈V
ϕ(1,n)
v = π̃1d

−1
1 .

It is well-known and is also confirmed by our experiments that the PageRank
of a node in an undirected graph is strongly correlated to the degree of the
node. Thus, with any choice of the source, the sum of the potentials is of similar
magnitude, except for the cases when the contribution of the destination node is
defining for the PageRank mass of the source. However, the destination node will
mainly affect the PageRank of its close neighbours. Thus, we propose to choose
the source-destination pair uniformly at random, so that there is no preference
on the source, and the probability of choosing neighbour nodes is small. This
results in the next algorithm for computing the α-CF betweenness.

Algorithm 1.

1. Select a set of pairs of nodes (si, ti), i = 1, ..., N , uniformly at random;
2. For each si or ti, i = 1, ..., N compute the rows csi,·, cti,·. (this can be done

either by power iteration or by Monte Carlo algorithm);
3. For each edge e = (v, w) and each pair (si, ti), use (3) to compute

x(si,ti)e = |ϕv − ϕw|.

4. Average over source-destination pairs

x̄αe =
1

N

N∑
i=1

x(si,ti)e .

Since we chose the pairs (si, ti) uniformly at random then for every edge
e, x̄αe is just a sample average where all values are between zero and one. Then
using the standard approach for the analysis of the series of independent random
variables we have the following result.



Theorem 2 Algorithm 1 approximates the alpha current flow betweenness in
O(m log(n)ε−2 log(ε)/ log(α)) time and O(m) space to within an absolute error
of ε with arbitrarily high fixed probability.

Proof: In addition to the proof of Theorem 3 in [5] we just need to note that we
can compute Personalized PageRank with precision ε in O(log(ε)/ log(α)) power
iterations. �

4 Truncated α-CF betweenness

In the experiments we noticed that the values x
(s,t)
e have a high variance, which

results in poor precision when evaluating xαe . A closer analysis revealed that the

edges adjacent to the source s receive large values of x
(s,t)
e . This is especially

apparent when e = (v, s), where v has degree 1, so (v, s) is its only edge, and s
has a large degree. This can be explained using the random walk interpretation.
Consider a PageRank-type random walk on G. At each node, with probability
α, the random walk traverses a randomly chosen edge of this node, and with
probability 1− α it jumps to the sink n+ 1. Denote by TB the number of steps
of the random walk needed to hit set B. Then it follows from Proposition 10

of [1, Chapter 3] that ϕ
(s,t)
v /ϕ

(s,t)
s = Pv(T{s} < T{t,n+1}), where Pv(·) is a

conditional probability given that the random walk starts at v. Hence, if s is

the only neighbor of v then ϕ
(s,t)
v /ϕ

(s,t)
s = α, the probability of no absorption

before reaching s. Thus, |ϕ(s,t)
s − ϕ(s,t)

v | = (1 − α)ϕ
(s,t)
s , which can be large if

e.g. α = 0.8 because ϕ
(s,t)
s is the largest potential in the network. Furthermore,

the original CF-betweenness corresponds to α = 1, implying that the current in
(v, s) is zero.

This motivates for the truncated version of α-CF betweenness where for each
edge (v, w) we only take into account the scores x

(s,t)
(v,w) if v, w 6= s. In Figure 1

we present log-linear plots of the empirical complementary distribution function

of x
(s,t)
(v,w) over all pairs (s, t) (solid line), and its truncated version (dashed line).

The plots are given for two edges in the Dolphin social network described in
Section 5 below. Nodes 1 and 36 are central in the network, so the high α-CF
betweenness of (1,36) is expected. Node 60 has degree 1, so edge (32,60) gains
an unwanted high betweenness in the non-truncated version.

Since the truncated α-CF betweenness gives lower scores to the edges con-
nected to nodes of degree 1, one can expect that it has a higher correlation
with CF-betweenness, especially for not very large α. This is confirmed below in
Figure 2. Moreover, the truncated version removes outliers, and does not have
large spread in values, thus standard statistical procedures, based on the Central
Limit Theorem can be applied. Also, because of the smaller variance, Algorithm 1
achieves a desired precision with a smaller sample of source-destination pairs.

5 Datasets

We consider the four graphs described below.



Fig. 1. The number of pairs s, t with x
(s,t)

(v,w) > x over all pairs (s, t) (solid line) and

only pairs with v, w 6= s. (dashed line)

Dolphin social network. This small graph represents a social network of
frequent associations between 62 dolphins in a community living off Doubtful
Sound, New Zealand [10].

Graph of VKontakte social network. We have collected data from a
popular Russian social network VKontakte. We were considering subgraph rep-
resenting one of the connected components of people who stated that they were
studying at Applied Mathematics - Control Processes Faculty at the St. Peters-
burg State University in different years. We ran the breadth-first search (BFS)
algorithm starting at one specific node on the network and then anonymized
the obtained users’ data leaving only information about connections between
people. Collected network consists of 2092 individuals out of total 8859 denoted
the specified faculty in the Education field.

Watts-Strogatz model. As an artificial example, we used a random graph
generated by the Watts-Strogatz model. We have chosen this model as it com-
bines high clustering and short average path length, thus different centrality
measures give very different results on this graph. For other random models
considered (Erdos-Renyi and Barabasi-Albert) all measures are highly correlated
and behave very similar to each other.

Enron graph. Enron email communication network is a well known test
dataset. It covers all the email communication within a dataset of around half
million emails between Enron’s employees. The node are e-mail addresses, and
the edges appears if an e-mail message was sent from one e-mail to another.
Although this graph is small compared to, say, web or Twitter samples, it is
already prohibitively large for computing the CF-betweenness in its original
form.

6 Numerical results for α-CF betweenness

To begin with, we compare the two versions of α-CF betweenness (truncated and
without truncation) to the CF-betweenness scores defined as in [11,5]. Figure 2
presents the results for the three smaller graphs, in which the latter measure



|V | |E| 〈deg(v)〉 diam(G) Cclustering 〈d(u, v)〉

Dolphin social network 62 159 5.13 8 0.259 3.357
VKontakte AMCP social graph 2092 14816 14.16 14 0.338 4.598
Watts-Strogatz 1000 6000 12.00 6 0.422 3.713
(n = 1000, k = 12, p = 0.150)
Enron 36692 183831 10.02 11 0.4970 ≈ 4.8

Table 1. Datasets characteristics

could be computed. As a correlation measure we use the Kendall tau rank cor-
relation. We observe that the truncated version is better correlated with the

Fig. 2. Correlations between α-CF betweenness and truncated α-CF betweenness with
CF-betweenness as a function of α.

CF-betweenness when α is not very close to one. As explained above, this is
because the high probability of absorption results in a relatively high current in
the edges connected to the source, which is not necessarily the case if absorption
is only possible in the destination node.

Next, we demonstrate that that we can compute α-CF betweenness in the
Enron graph, where the computation of CF-centrality is infeasible. We have
evaluated α-CF betweenness, non-truncated and truncated, with α = 0.98. We
have run Algorithm 1 using with N = 20 · 106 source-destination pairs. In the
plot below we show the complementary distribution function in log-linear scale,
of the score x0.98e across the edges.

Note that distribution over edges (the left plot in Figure 3) does not have a
large spread of values, except one outlier edge that connects two most important
hubs. Since the weights of the edges are comparable, it is to be expected that in
this graph the nodes of large degrees are also the ones with highest betweenness.
Indeed, the Kendall’s tau correlation between α-CF betweenness and degree of



Fig. 3. Distribution of α-CF betweenness scores in the Enron graph, truncated (dashed
line) and not truncated (solid line). Left: x0.98e for edges e ∈ E. Right: α-CF betweenness
(v) for v ∈ V . On the x-axis are the values of α-CF betweenness, on the y-axis the
number of edges/nodes with the score larger than x.

the nodes turns out to be 0.808, which is higher than in small examples below.
The reason can be either the graph size or its structure. In future research we
will investigate how the CF-betweenness score, e.g. its maximum value across
the edges, scales with the graph size in graphs with power law degrees.

We further present correlations between our proposed measures and other
measure of betweenness. These are computed on smaller graphs where we could
obtain exact values of all presented measures, see Tables 2–4. For completeness,
we also include one distance-base centrality measure - the Closeness Centrality:

CC(v) =
n− 1∑

w∈V,w 6=v d(v, w)
,

where d(v, w) is the graph distance between v and w. Betweenness (Between.)
is computed as in (1), and PageRank(PR) is computed with α = 0.85.

Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.930 0.548 0.665 0.737 0.864 0.855 0.769
PageRank 0.930 1.000 0.458 0.658 0.733 0.872 0.827 0.757
Closeness 0.548 0.458 1.000 0.578 0.575 0.515 0.573 0.591
Betweenness 0.665 0.658 0.578 1.000 0.829 0.749 0.759 0.828
CF 0.737 0.733 0.575 0.829 1.000 0.798 0.820 0.939
αCF(0.8) 0.864 0.872 0.515 0.749 0.798 1.000 0.925 0.838
αCF-tr(0.8) 0.855 0.827 0.573 0.759 0.820 0.925 1.000 0.876
αCF(0.98) 0.769 0.757 0.591 0.828 0.939 0.838 0.876 1.000

Table 2. Kendall tau for centrality measures in Dolphin social network.

Note that α-CF betweenness is strongly correlated with CF-betweenness.
The Closeness Centrality does not agree well with the CF-betweenness, even the
PageRank and the degrees have a higher correlations with the CF-betweenness
in real graphs. Recent paper [2] suggests more measures based on distance, and



Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.655 0.679 0.521 0.545 0.659 0.668 0.599
PageRank 0.655 1.000 0.375 0.662 0.717 0.833 0.811 0.766
Closeness 0.679 0.375 1.000 0.382 0.356 0.424 0.445 0.395
Betweenness 0.521 0.662 0.382 1.000 0.761 0.760 0.749 0.778
Current Flow 0.545 0.717 0.356 0.761 1.000 0.812 0.833 0.917
αCF(0.8) 0.659 0.833 0.424 0.760 0.812 1.000 0.938 0.878
αCF-tr(0.8) 0.668 0.811 0.445 0.749 0.833 0.938 1.000 0.903
αCF(0.98) 0.599 0.766 0.395 0.778 0.917 0.878 0.903 1.000

Table 3. Kendall tau for centrality measures in the social graph VKontakte AMCP.

Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.891 0.462 0.526 0.610 0.643 0.581 0.612
PageRank 0.891 1.000 0.415 0.485 0.565 0.610 0.546 0.567
Closeness 0.462 0.415 1.000 0.655 0.613 0.647 0.666 0.628
Betweenness 0.526 0.485 0.655 1.000 0.853 0.819 0.852 0.857
Current Flow 0.610 0.565 0.613 0.853 1.000 0.910 0.914 0.979
αCF(0.8) 0.643 0.610 0.647 0.819 0.910 1.000 0.935 0.923
αCF-tr(0.8) 0.581 0.546 0.666 0.852 0.914 0.935 1.000 0.930
αCF(0.98) 0.612 0.567 0.628 0.857 0.979 0.923 0.930 1.000

Table 4. Kendall tau for centrality measures in the Watts-Strogatz graph (n=1000,
k=12, p=0.150).

efficient computation method for such measures is presented in [3]. In future it
will be interesting to compare these new measures to α-CF betweenness.

7 Centrality measures and network vulnerability

We now consider how well the CF-betweenness and α-CF betweenness can indi-
cate the nodes responsible for maintaining the network connectivity. We follow
the methodology in [9]. As measures of connectivity we choose the average in-
verse distance

< d−1 >=
1

n(n− 1)

∑
u,v∈V,u 6=v

1

d(u, v)

and the size of the largest connected component. In the experiment, we remove
the top nodes one by one, according to different betweenness measures, and
observe how the connectivity of the network changes. In Figure 4 the results are
presented for the inversed average distance.

The results for the social graph VKontakte are especially interesting, because
this network turns out to be less vulnerable to the removal of nodes with large de-
gree than nodes with large betweenness and its modifications (CF-betweenness,
α-CF betweenness, and truncated α-CF betweenness). On the small Dolphin



Fig. 4. Inverse average distance as a function of the fraction of removed top-nodes
according to different betweenness centrality measures.

social network there is no much difference in vulnerability with respect to dif-
ferent centrality measures. Finally, on the artificial Watts-Strogatz graph the
CF-betweenness and our proposed two versions of α-CF betweenness find the
nodes that are most essential for the network connectivity.

Another connectivity measure of the network is the size of its larges con-
nected component. In Figure 5 we plot the size of the largest connected com-
ponents against the fraction of removed top-nodes. We do not present the plot
for the Watts-Strogatz graph because it remains entirely connected, so the size
of its largest connected component equals to the number of remaining nodes
irrespectively of which nodes are removed first. For the two real graphs, the
CF-betweenness is most efficient in reducing the size of the giant component.
On the Dolphin graph, α-CF betweenness performs closely to CF-betweenness,
except the interval when 13-18% of nodes are removed. On the graph VKon-
takte, α-CF betweenness and its truncated version perfom comparably to the
CF-betweenness. Again, on this graph, degree and Closeness centrality fail to re-
veal the nodes responsible for the network connectivity. The α-CF betweenness
with α = 0.98 appears to be a better measure for betweenness of a node than
the truncated α-CF betweenness with α = 0.8. The latter however also gives
gives good results, and can be computed easier on large graphs due to the faster
convergence of the power iteration algorithm.

We conclude that both α-CF betweenness and truncated α-CF betweenness
provide an adequate measure for the role of a node in network’s connectivity.
Furthermore, their computational costs are lower than for known measures of
betweenness, and the computations can be done in parallel easily. Thus, α-CF
betweenness can be applied in large graphs, for which computations of other
measures of betweenness are merely infeasible.



Fig. 5. The size of the largest connected component as a function of the fraction of
removed top-nodes according to different betweenness centrality measures.
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Quick detection of popular entities
in large directed networks

ABSTRACT
In this paper, we address a problem of quick detection of
popular entities in large online social networks. Practical
importance of the problem is attested by a large number
of companies that continuously collect and update statistics
about popular entities. We suggest an efficient two-stage
algorithm for solving this problem. For instance, our al-
gorithm needs only one thousand API requests in order to
find the top-50 most popular users in Twitter, a network
with more than a billion of registered users. Our algorithm
is easy to implement, it outperforms existing methods, and
serves many different purposes, such as finding most popular
users or most popular interest groups in social networks. An
important contribution of this work is the analysis of the pro-
posed algorithm using the Extreme Value Theory – a branch
of probability that studies extreme events and properties of
largest order statistics in random samples. Using this the-
ory, we derive accurate predictions for the algorithm’s per-
formance and show that the number of API requests for find-
ing top-k most popular entities is sublinear in the number
of entities. Moreover, we formally show that the high vari-
ability among the entities, expressed through heavy-tailed
distributions, is the reason for the algorithm’s efficiency. We
quantify this phenomenon in a rigorous mathematical way.

1. INTRODUCTION
In this paper, we propose a randomized algorithm for

quick detection of popular entities in large online social net-
works. The entities can be, for example, users or interest
groups, user categories, geographical locations, etc. For in-
stance, one can be interested in finding out a list of Twit-
ter users with many followers or Facebook interest groups
with many members. Practical importance of the prob-
lem is attested by a large number of companies that con-
tinuously collect and update statistics about popular enti-
ties (twittercounter.com, followerwonk.com, twitaholic.com,
www.insidefacebook.com, yavkontakte.ru just to name a few).

The problem at hand may seem trivial, if one assumes
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that the network structure and the relation between entities
are known. However, even then finding, for example, top-k
in-degree nodes in a directed graph G of size N takes the
time O(N). For large networks, such linear complexity is al-
ready too high. In fact, for any practical purpose, it is much
more valuable to find an approximate result in a sublinear
time than an exact result in a linear time. Furthermore,
the data of current social graphs is typically available only
to the owners of the social network, and can be obtained
by other interested parties only through API requests. The
rate of allowed API requests is usually quite small. For in-
stance, Twitter has the limit of one access per minute for
one standard API account. Then, in order to crawl the en-
tire network with more than 500 million users one need more
than 950 years. Clearly, we would like to find most popular
entities using only a small number of API requests.

Formally, the problem addressed in this paper is as follows.
Let V be a set of entities, usually users, that can be accessed
using API requests. Let W also be another set of entities
(possibly equal to V ). We represent V and W as vertices of a
bipartite graph (V,W,E), where a directed edge (v, w) ∈ E,
with v ∈ V , w ∈ W , represents a relation between v and
w. For instance, if V = W is a set of Twitter users, then
(v, w) ∈ E may mean that v follows w, or that v retweeted a
tweet from w. Note that any directed graph G = (V,E) can
be represented equivalently by the bi-partite graph (V, V,E).
One can also suppose that V is a set of users and W is a set
of interest groups, while the edge (v, w) represents that user
v belongs to group w. Our goal is to quickly find top-k in-
degree entities in W . In this setting, throughout the paper,
we use the terms ‘nodes’ and ‘entities’ interchangeably.

The algorithm proposed in this paper can detect popu-
lar entities with high precision using very small number of
API requests. Most of our experiments are performed on
the Twitter graph, because it is a good example of a huge
network (billion of registered users) and very limited rate of
requests to API. We use only 1000 API request to find top-
50 Twitter users with very high precision. We also demon-
strate the efficacy of our approach on the example of online
social network (to be specified in the camera-ready version)
which had, at the time of article preparation, more than 200
million registered users. We use our algorithm to quickly
detect most popular interest groups in this social network.
Experiments on random graph models show that our algo-
rithm outperforms the baselines algorithms from [4] and [14].
Moreover, our algorithm can be used in a very general set-
tings for finding most popular entities, while the baseline
algorithms can only be use for finding nodes of largest de-



grees in directed ([14]) or undirected ([4]) graphs.
An important contribution of this work is the novel anal-

ysis of proposed algorithm using classical results of the Ex-
treme Value Theory (EVT) – a branch of probability that
studies extreme events and properties of largest order statis-
tics in random samples. We refer to [8] for a comprehensive
introduction to EVT. Specifically, we treat the largest in-
degrees in W as high order statistics of a heavy-tailed dis-
tribution, and use EVT to obtain the limiting properties of
these order statistics. This way we obtain statistical estima-
tion of the magnitude of the largest in-degrees in W . Using
these mathematical tools, we can, for instance, accurately
predict the average fraction of correctly identified top-100
most followed users in Twitter using only the knowledge of
top-20 degrees, which can be detected by our algorithm very
quickly with practically 100% accuracy.

We derive the complexity of our algorithm in terms of the
number of entities in W show that the complexity is sublin-
ear if the in-degree distribution in W is heavy tailed. Intu-
itively, this should be the case because the high variability
of the in-degrees implies that the largest entities have ex-
tremely large number of in-links and thus are easy to find.
We formalize this argument using the EVT results.

The algorithm consists of two stages. The parameters of
the algorithm, n1 and n2, are the number of API requests
used on the first and the second stage, respectively. The
performance of the algorithm is very robust with respect
of the parameters’ values. We find the optimal scaling for
n1 and n2 with respect to three measures of the algorithm
performance: the average fraction of correctly identified top-
k entities, the first-error index (the number of the highest
statistics within top-k that was not included in the identified
top-k list), and the the sum of incoming degrees of identified
n2 entities. Notice that for fixed n, the latter performance
measure does not monotonically grows with n2 because with
small n1 the number of links received from n1 random users
is a poor indication of the node’s actual degree. This can be
clearly seen in Figure 2 for the Twitter graph.

The rest of the paper is organized as follows. In Section 2,
we give a short overview of the related work. In Section 3,
we formally describe our algorithm. We empirically show
the efficiency of our algorithm and compare it to baseline
strategies in Section 4. We present a detailed analysis of the
algorithm in Section 5 and evaluate its optimal parameters
with respect to the above mentioned performance character-
istics. Section 6 concludes the paper.

2. RELATED WORK
Over the last years data sets have become increasingly

massive. For such large data any complexity higher than
linear (in dataset size) is unacceptable, and even linear com-
plexity may be too high. It is also well understood that
an algorithm, which runs in sublinear time, cannot return
an exact answer. In fact, such algorithms often use ran-
domization, and then errors occur with positive probability.
Nevertheless, in practice, a rough but quick answer is often
more valuable than exact but computationally demanding
solution. Therefore, sublinear time algorithms become in-
creasingly important, and many studies of such algorithms
have appeared in recent years (see, e.g., [10, 13, 15, 16]).

An essential assumption of this work is that the network
structure is not available, and has to be discovered using
the API requests. This setting is similar to on-line compu-

tations, when information is obtained and immediately pro-
cessed while crawling the network graph (for instance the
World Wide Web). There is a large body of literature where
such on-line algorithms are developed and analyzed. Many
of these algorithms are developed for computing and updat-
ing the PageRank vector [1, 6]. In particular, the algorithm
recently proposed in [6] computes the PageRank vector in
sublinear time. Furthermore, the probabilistic Monte Carlo
methods [2, 11] allow to continuously update the PageRank
as the structure of the Web changes.

Randomized algorithms are also used for discovering the
structure of social networks. Often random walks are de-
signed in such a way that the desired nodes are easily found.
For example, in [12] an unbiased random walk, where each
node is visited with equal probability, is constructed in or-
der to find the degree distribution on Facebook. A different
random walk is designed in [4] for finding nodes with largest
degrees in undirected graphs. This random walk has jumps,
so that it does not get stuck around just one hub, but unlike
PageRank, its a stationary distribution completely defined
by the nodes’ degrees.

The problem of finding the most popular entities in large
networks has been analyzed in several papers. In Section 4.3
we show that our algorithm outperforms two baselines: the
random walk algorithm in [4], and the crawling algorithm in
[14]. The latter algorithm [14] is designed to efficiently dis-
cover the correct set of pages with largest incoming degrees
in a fixed network, and to track these pages over time when
the network is changing. Their setting is different from ours
in several aspects. For example, in our case we can use API
to get indegree of any given item, while in the World Wide
Web this information is not available. On the other hand,
the algorithm in [14] is designed to discover the graph struc-
ture, and cannot be easily adopted for other tasks, such as
finding most popular use categories or interest groups.

To the best our knowledge, this is the first work that
presents and analyzes an efficient algorithm for retrieving
most popular entities under realistic API constraints.

3. ALGORITHM DESCRIPTION
Recall that we consider a bipartite graph (V,W,E), where

V and W are sets of entities, and (v, w) ∈ E represents a
relation between the entities.

Let n = n1 +n2. Our algorithm has two stages, described
below. See Algorithm 1 for the pseudocode.

First stage. We start by sampling uniformly at random
a set A of n1 entities (users, or nodes) v1, . . . , vn1 ∈ V . The
nodes are sampled independently, so the same node may
appear in A more than once, in which case we regard each
copy of this node as a different node. Since multiplicities
occur with very small probability this does not affect the
efficiency of the algorithm but simplifies the implementation.
For each node in A we record its out-neighbors in W . In
practice, we bound the number of recorded out-links by the
maximal number of id’s that can be retrieved within one API
request, thus the first stage uses exactly n1 API requests.

Second stage. Let Sw, w ∈ W , be the number of nodes
in A that have a (recorded) edge to w, and let wi be the node
in W with i-th largest values of Sw, so that Sw1 > Sw2 >
· · · > SwN . Then we use another n2 API requests to retrieve
the actual in-degrees of the n2 top-nodes w1, . . . , wn2 .

The set {w1, w2, . . . , wn2} is supposed to contain nodes
from W with large in-degrees. For example, if we are inter-



ested in top-k in-degree nodes in a directed graph, we hope
to identify these nodes with high precision if k is significantly
smaller than n2.

Algorithm 1: Find entities with large incoming de-
grees

input : Set of entities V of size M , set of entities
W of size N , number of random nodes n1,
number of candidate nodes n2

output: Nodes w1, . . . wn2 ∈W , their degrees
d1, . . . , dn2

for i← 1 to N do
S[i]← 0;

for i← 1 to n1 do
v ← random(M);
F ← OutNeighbors(v);
foreach j in F do

S[j]← S[j] + 1;

w1, . . . , wn2 ← Top n2(S) // S[w1], . . . , S[wn2 ] are
top n2 values in S;
for i← 1 to n2 do

di ← InDegree(wi);

4. EXPERIMENTS

4.1 Twitter graph
First, we show that our algorithm quickly finds the most

popular users in Twitter graph. Formally, V is a set of
Twitter users, W = V , and (v, w) ∈ E iff v is a follower of w.
Twitter is an example of a huge network with limited access
to its structure. Information on the Twitter graph can be
obtained via Twitter API. The standard rate of requests to
API is one per minute. Every vertex has an id, which is an
integer number starting from 12. The largest id of a user is
∼ 1460M (at the time when we performed the experiments).
Due to such id assignment, a random user in Twitter can be
easily chosen. The only problem is that some users in this
range have been deleted, some are suspended, and therefore
errors occur when addressing the id’s of these pages. In our
implementation we usually skip errors and assume that we
do not spend resources on such nodes. The fraction of errors
is ≈ 20%.

Given an id of a user, a request to API can return one
of the following: i) the number of followers (indegree), ii)
the number of followees (outdegree), or iii) at most 5000
id’s of followers or followees. If a user has more than 5000
followees, then all their id’s can be retrieved only by using
several API requests. Instead, as described above, we record
only the first 5000 of the followees and ignore the rest. This
does not affect the performance of the algorithm because we
record followees of randomly sampled users, and the fraction
of Twitter users with more than 5000 followees, is small.

In order to obtain the ground truth, we first took n1 =
n2 = 500 000 and found top-1000 users with a very high
precision. We used the obtained list for evaluating the per-
formance of our algorithm.

Figure 1 shows the average fraction of correctly identified
users from top-k for different k over 100 experiments, as a

function of n2, when n = 1000. Remarkably, we can find
top-50 users with very high precision.
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Figure 1: The number of correctly identified top-k most
followed Twitter users as a function of n2, with n = 1000.

We have also looked at the first-error index – the position
of the first mistake in the top-k list. Formally, if we correctly
identified top-(i−1) users, but did not find the ith user, then
the first-error index is i. Again, we have averaged the results
over 100 experiments. Results are shown in Figure 4 below
(red line). Note that with only 1000 API requests we can
correctly identify more than 50 users without any omission.

The sums of the degrees of the identified top-n2 entities,
with n = 1000, are depicted in Figure 2. Observe that
here the optimal value of n2 is larger than in two previously
discussed metrics. Thus, in order to to discover as many true
in-links as possible, we may want to check more incoming
degrees in the second stage of the algorithm, so that we have
a large output list, but with less precision. We will discuss
this in more detail in Section 5.3.

4.2 Finding largest interest groups
Let V be a set of users, W be a set of interest groups, and

(v, w) ∈ E iff v is a member of w.
We will demonstrate that our algorithm can find the most

popular groups in a large social network with more than
200M registered users (to be specified in the camera-ready
version). As for Twitter, information on the network under
consideration can be obtained via API. Again, all users have
ids: integer numbers starting from 1. Due to this id assign-
ment, a random user in this network can be easily chosen.
In addition, all interest groups also have their own id’s.

We are interested in the following requests to API: i) given
id of a user, return his or her interest groups, ii) given id of
a group return its number of members. If a user decide to
hide the list of groups, then an error occurs. The portion of
such errors is ≈ 30%.

As before, first we used our algorithm with n1 = n2 =
50000 in order to find the most popular groups with high
precision. Table 1 presents some statistics on the most pop-
ular groups. Then, we took n1 = 700, n2 = 300 and com-
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Figure 2: The sum of incoming degrees of identified users as
a function of n2, n = 1000.

Table 1: The most popular groups

Rank Number of participants Topic

1 4,35M humor
2 4,1M humor
3 3,76M movies
4 3,69M humor
5 3,59M humor
6 3,58M facts
7 3,36M cookery
8 3,31M humor
9 3,14M humor
10 3,14M movies

100 1,65M success

puted the fraction of correctly identified groups from top-
100. Using only 1000 API requests, our algorithm identifies
on average 73.2 from the top-100 interest groups (averaged
over 25 experiments). The standard deviation is 4.6.

4.3 Comparison with baseline algorithms
In this section we compare our algorithm with the algo-

rithms suggested in [4] and [14]. We start with the descrip-
tion of these algorithms.

Random walk based algorithm [4]. The algorithm
in [4] is a randomized algorithm for undirected graphs that
finds a top-k list of nodes with largest degrees in sublinear
time. It is based on the random walk with uniform jumps,
described by the following transition probabilities [5]:

pij =

{
α/N+1
di+α

, if i has a link to j,
α/N
di+α

, if i does not have a link to j,
(1)

where N is the number of nodes in the graph and di is
the degree of node i. The parameter α controls how often
the random walk makes an artificial jump. In [4] it is sug-
gested to take the parameter α equal to the average degree

Algorithm 2: Random walk based algorithm

input : Graph G with N nodes, E edges, number
of steps n, size of output list k, parameter α

output: Nodes v1, . . . vk, their degrees d1, . . . , dk

v ← random(N);
F ← Neighbors(v);
D[v]← size(F );
for i← 2 to n do

r
sample←−−−− U [0, 1];

if r < D[v]
D[v]+α

then

v ← random from F ;

else
v ← random(N);

F ← Neighbors(v);
D[v]← size(F );

v1, . . . , vk ← Top k(D) // D[v1], , D[vk] are top k
values in D;

in order to maximize the number of independent samples.
Interestingly, this implies that the random walk, in station-
arity, makes on average just one step between the jumps.
With such choice of α the random walk method of [4] mim-
ics most closely the suggested algorithm with independent
sampling and exactly one step from entity in V to entity in
W . We should note that the random walk method could
be very valuable when the independent uniform sampling is
expensive, for example, when the id space is very sparse.

The random walk keeps a candidate list of k nodes. Once
a new node is discovered according to the transition proba-
bility (1), we check its degree and compare it with degrees
of the nodes in the candidate list. If this newly discovered
node has a degree larger than degrees of some nodes in the
candidate list, the newly discovered node is inserted in the
candidate list and a node with the smallest degree in the
candidate list is pushed out. See Algorithm 2 for more de-
tailed description. The algorithm can be run for a predefined
number of steps or can be terminated according to one of
the stopping criteria provided in [4].

Crawl-Al and Crawl-GAI [14]. At each step we con-
sider one node and ask for its outgoing edges. At step n any
node j has its apparent indegree Sj , j = 1, . . . , N : the num-
ber of discovered edges pointing to this node. In Crawl-Al
the next node to consider is a random node, with probability
proportional to the apparent indegree. In Crawl-GAI, the
next node is the node with the highest apparent indegree.
After n steps we get a list of nodes with largest apparent
indegrees. See Algorithm 3 for the pseudocode of the algo-
rithm Crawl-GAI.

In the experiments of the present paper we take the same
budget for all tested algorithms to compare their perfor-
mance.

Note that we cannot compare the algorithms on the Twit-
ter graph for several reasons. First, Algorithm 2 works only
on undirected graphs. Second, in order to choose a random
edge of a node, we need at least two request to API, to ask
for followees and followers. Also, the random walk often hits
nodes of high degree, and then many additional requests are
needed to retrieve their followers and followees, because the



Algorithm 3: Crawl-GAI

input : Graph G with N nodes, number of steps n,
size of output list k

output: Nodes v1, . . . vk

for i← 1 to N do
S[i]← 0;

for i← 1 to N do
v ← argmax(S[i]);
F ← OutNeighbors(v);
foreach j in F do

S[j]← S[j] + 1;

v1, . . . , vk ← Top k(S) // S[w1], . . . , S[wk] are top k
values in S;

Table 2: Number of correctly identified nodes from top-100
averaged over 100 experiments, n = 1000.

Algorithm mean standard deviation

Our (directed) 91.9 4.88
Crawl GAI (directed) 81.9 2.42
Crawl AI (directed) 82.9 2.38

Our (undirected) 97.9 1.71
Random walk (undirected) 60.7 4.76

number of id’s that can be obtained in one request is lim-
ited (5000 in Twitter). For example, we need 6K request to
get the followers of a user with 30M followers. Algorithm 3
crawls only out-degrees, that are usually much smaller, but
it can potentially suffer from the API constraints, for exam-
ple, when in-degrees and out-degrees are dependent.

Therefore, in order to compare Algorithms 1–3, we have
generated a random directed graph according to the config-
uration model (see [7]). Our artificial graph has 1M nodes,
6M edges, and the parameter of the power law degree dis-
tribution is 2. This directed graph is used to compare our
algorithm to Crawl-Al and Crawl-GAI. In order to compare
our method to the random walk based algorithm, we treat
the generated graph as undirected. As prescribed by [4], we
took α slightly smaller than the average degree in the graph
(in our case α = 10) and we considered a random walk with
1000 steps.

For the algorithm suggested in this paper we took n1 =
700, n2 = 300. The results of comparison can be seen in
Table 2.

We expect our algorithm with n1 = 1000 to be close to
Crawl-GAI. Indeed, in the directed case our algorithm with
n1 = 1000 identifies 81.4 nodes from top-100 on average (this
number is not presented in the table). Further improvement
of our algorithm over the baselines is obtained because of
the right balance between n1 and n2.

5. ANALYSIS OF THE ALGORITHM
In this section, we present the theoretical analysis of Al-

gorithm 1. The goal of this analysis is: 1) to mathematically
justify our suggested two-steps procedure; 2) to prove that
the total number of API requests, n, scales sublinearly with
the network size, N ; 3) to find the optimal scaling of n1 and
n2 (the number of API requests in the first and the second

stage of the algorithm) with respect to n.
We number the nodes in W by 1, 2, . . . , N according to

the number of incoming links, from most popular to least
popular. As prescribed by Algorithm 1, we pick n1 nodes
in V uniformly at random. The first important observation
is that Sj follows a binomial distribution. Indeed, let Fj
be the unknown random in-degree of node j ∈ W , so that
F1 > F2 > . . . > FN . Then, if we label all nodes from V
that have a edge to j (we call such nodes followers of j),
then Sj is exactly the number of labeled nodes in a random

sample of n1 nodes, so its distribution is Binomial
(
n1,

Fj
N

)
.

Hence, we have

E(Sj |Fj) = n1
Fj
N
, Var(Sj) = n1

Fj
N

(
1− Fj

N

)
. (2)

For the top nodes with large Fj this distribution can be ap-

proximated with the Poisson distribution Poisson
(
n1Fj
N

)
.

5.1 Candidate list
The quality of the top-k lists produced by Algorithm 1

is defined by the events whether or not the value of Sj ,
j = 1, . . . , k, is among the top-n2 values of S1, S2, . . . , SN ,
obtained in the first stage of the algorithm. This is justified
by the intuition that if Fj > Fl, then we are likely to see
Sj > Sl. Note, however, that the case when Sj is as small
as 1, the event 1 = Sj > Sl = 0 is not informative.

Example 1. Let us take n1 = n2 = 500 in the case of the
Twitter graph. Then the average number of nodes i among
the top-10000 with Si = 1 is already

104∑
i=1

P (Si = 1) ≈
104∑
i=1

500Fi
5 · 108

e−500Fi/5·108 = 2539.1,

hence, many more than n2 nodes will have Si = 1 and can
make it to the top n2 values of S1, S2, . . . , SN only with a
small probability.

Motivated by the above considerations, we formulate our
approach in terms of a statistical test as follows. Let our
data be S1, S2, . . . , SN . We assume that the observations are
realizations of independent Poisson random variables with
parameters n1F1/N, n1F2/N, . . . , n1FN/N . For the two num-
bers j, l ∈ 1, . . . , N , we test the null-hypothesis H0 : Fj 6 Fl
against the alternative H1 : Fj > Fl. Let Si1 > Si2 > · · · >
Sin2

be the top-n2 order statistics of S1, . . . , SN obtained by
Algorithm 1. Then the first stage of the algorithm is equiv-
alent to rejecting H0 : Fij 6 Fin2

for j = 1, . . . , n2 − 1 such
that

Sij > max{Sin2
, 1}. (3)

Here the strict inequality is necessary to guarantee that ij
is on the top-n2 list after the first stage of the algorithm.
If H0 is rejected, then the actual degree of entity ij will be
retrieved in the second stage of the algorithm.

Note that in contrast to the classical hypothesis testing,
here we do not draw the conclusions solely from the observed
random data S1, S2, . . ., SN but we obtain the true values of
the parameters in the second stage of the algorithm. Hence,
if we use Sin2

as a proxy for Sn2 , then, given F1, F2, . . .,
FN , the quality of the top-k list is expressed as the power of



the test as follows:

P (node j is found|Fj , Fn2)

= P (Sj > max{Sin2
, 1}|Fj , Fin2

) (4)

≈ P (Sj > max{Sn2 , 1}|Fj , Fn2)

≈
∞∑
s=0

e−
n1Fn2
N

(n1Fn2)s

Nss!

∑
r>max{s,1}

e−
n1Fj
N

(n1Fj)
r

Nrr!

=: Pj(n1), j = 1, . . . , k. (5)

5.2 Performance criteria
The main constraint of Algorithm 1 is the number of API

requests that we can use. In order to measure the perfor-
mance of the algorithm, we propose three objectives, de-
scribed formally in this section.

The first objective is the average number of correctly iden-
tified top-k nodes. This is defined in the same way as in [3]:

E[fraction of correctly indentified top-k entities]

=
1

k

k∑
j=1

P (node j is found|Fj , Fn2) ≈ 1

k

k∑
j=1

Pj(n1). (6)

The second objective is the first-error index, which is equal
to i if the top (i − 1) entities are identified correctly, but
the top-i entity is not identified. If all top-n2 entities are
identified correctly, we set the first-error index equal to n+1.
Using that for a discrete random variable X with values
1, 2, . . . , k + 1 holds E(X) =

∑k
l=0 P (X > l), we obtain the

average first-error index as follows:

E[1st-error index] =

n2∑
l=0

P (1st-error index > l)

=

n2+1∑
j=1

j−1∏
l=1

P (Sj > max{Sin2
, 1}|Fj , . . . , Fin2

)

≈
n2∑
j=1

j−1∏
l=1

Pl(n1). (7)

Finally, our last objective is the sum of the identified top-
n2 degrees, that can be written in a very simple form:

U := [sum of identified n2 degrees] =

n2∑
l=1

Fil . (8)

5.3 EVT performance predictions
In order to compute the values in (6), (7), we need to make

assumptions on the top-n2 in-degrees of entities in W : F1,
F2, . . ., Fn2 . To this end, we employ the quantile estimation
techniques from the Extreme Value Theory (EVT).

In most social networks the degrees of the entities show
a great variability. This is often modeled using power laws,
although it has been often argued that classical Pareto dis-
tribution does not always fit the observed data. In our anal-
ysis we assume that the incoming degrees of the entities in
W are independent random variables following a regularly
varying distribution G:

1−G(x) = L(x)x−1/γ , x > 0, (9)

where L(·) is a slowly varying function, that is,

lim
x→∞

L(tx)/L(x) = 1, t > 0

(L(·) can be, for example, a constant or a logarithm). We
note that (9) describes a broad class of heavy-tailed distri-
butions, for which the EVT arguments presented below are
valid, without imposing the rigid Pareto assumption.

Observe that F1, F2, . . . , FN are the order statistics of G.
Assume now that we know the correct values of the top-
m nodes, m < k. This is plausible because, for instance,
in Twitter, with n = 1000, the top-50 nodes are identified
with a very high precision, see Figure 1. Then, in order
to estimate the value of γ, we can use the classical Hill’s
estimator γ̂, based on the top-m order statistics:

γ̂ =
1

m− 1

m−1∑
i=1

log(Fi)− log(Fm). (10)

Next, we use the quantile estimator, given by formula (4.3)
in [9], but we replace their two-moment estimator by the
Hill’s estimator in (10). This is possible because both esti-
mators are consistent (under slightly different conditions).
Under the assumption γ > 0, we have the following estima-
tor fj for the (j − 1)/N -th quantile of G:

fj = Fm

(
m

j − 1

)γ̂
, j > 1, j << N. (11)

We propose to use fj as a prediction of Fj .
Note that our argument is inspired but not entirely justi-

fied by [9] because the consistency of the proposed quantile
estimator (11) is only proved for j < m, while we want to use
it for j > m. However, in the experiments we observe that
expressions (6) and (7) are very robust with respect to the
estimated values F1, . . . , Fn2 . Moreover, γ̂ increases with m,
and it is easy to see that with smaller γ̂ the predictions of
the algorithm performance are more conservative.

In Figure 3 we compare the true fraction of the correctly
identified top-k followed Twitter users to the performance
prediction (6) for n = 1000 and k = 100. The magenta
line shows the prediction for the fraction of correctly iden-
tified nodes in (6), where we used the correct values of
F1, F2, . . . , Fn2 . The green line represents the results for the
estimated values of F1, . . . , Fk and Fn2 , based on the true
values of the top-20 degrees. We see that it is very close to
the magenta line, which is based on the true values of the
degrees.

Similarly, we use formula (7) and the estimator (11) in
order to provide the prediction of the first-error index. The
results are given in Figure 4. We see again that the EVT
predictions are more pessimistic than the experimental re-
sults, so we find the lower bound for the algorithm’s actual
performance. Note also that the shape of the plot and the
optimal value of n2 have been captures correctly by both
predictors.

It is also clear that there is a principal difficulty in finding
similar analytical predictions for the objective U in (8) be-
cause is it is based not on the actual degrees F1, F2, . . ., but
on the degrees Fi1 , Fi2 , . . . , Fin2

, where Si1 > Si2 > · · · >
SiN are the order statistics of the Sj ’s. The exact expres-
sions for such order statistics are rather messy. However,
we can get some insight in the behavior of U in Figure 2.
Indeed, clearly, the sum of correct top-n2 degrees,

∑n2
i=1 Fi,

is an increasing function of n2. Moreover, if we use the esti-
mator (11), then we observe that the largest values of Fj ’s
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Figure 3: Fraction of correctly predicted nodes out of top-
100 as a function of n2, with n = 1000: experiments (red);
prediction (5) based on the true values of the degrees (ma-
genta); prediction (5) based on top-m degrees and estimator
(11) with m = 20, γ̂ = 2.2 (green).

are of the same order of magnitude:

Fj/Fl ≈
(
l − 1

j − 1

)γ̂
.

Thus, as long as n1 large enough so that a large entity j
receives large Sj , we have that U is comparable to

∑n2
i=1 Fi,

and hence U increases in n2. However, as n1 becomes smaller,
then small entities will constitute a large proportion of the
set {i1, i2, . . . , in2 . For example, if n2 = 800, n1 = 200, then
we obtain, for the true values of in-degrees in Twitter graph
with N ≈ 500M:

800∑
i=1

P (Si > 1) ≈ 280.9,

thus on average about 520 out of the top-800 nodes will
be undistinguishable from other, much smaller nodes (see
Example 1). Moreover, in this case

105∑
i=1

P (Si > 1) ≈ 485.18,

thus, on average, more than 300 nodes will be included into
{i1, . . . , i800} essentially on a random basis. Since large ma-
jority of the nodes has very small degrees, this will drasti-
cally affect the magnitude of U . This is exactly what we
observe in Figure 2.

5.4 Optimal scaling for n1 and n2

In this section our goal is to find the ratio n2 to n1 which
maximizes the performance of the Algorithm 1. For sim-
plicity, as a performance criterion we consider the fraction
of correctly identified nodes from top-k in (6):

1

k

k∑
j=1

Pj(n1)→ max .
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Figure 4: The position of first error as a function of n2, with
n = 1000.

We start with analyzing the optimal scaling for n1. Intu-
itively, after the first stage of the algorithm, only O(n1)
nodes j will have Sj > 1, and thus there is no need to check
more than n2 = O(n1) nodes in the second stage, which im-
plies that n1 should grow at least proportionally to n. This
is formalized in the next proposition.

Proposition 1. It is optimal to choose n = O(n1).

Proof. Let J be a randomly chosen node, and Jl, l =
1, . . . , n1 be independent realizations of J in the first stage
of Algorithm 1. Denote by M the maximal number of neigh-
bors that a given API allows to retrieve. The first stage of
the algorithm returns a list of candidate nodes, for which we
require Sj > 1. Observe that the number of such nodes is
bounded by

U :=
1

2

n1∑
l=1

max{M, out-degree(Jl)}.

Assuming that the out-degrees of each node are independent,
we obtain that

E(U) =
1

2
n1E(max{M, out-degree(J)}),

V ar(U) =
1

4
n1Var(max{M, out-degree(J)}).

Note that the API restriction simplifies the derivation be-
cause the variance of max{M, out-degree(J)} is finite. The
formal argument for M = ∞ and infinite variance of out-
degrees will be similar but requires some more work. Using,
e.g. Chernoff bound or Chebyshev bound we obtain that
P (U > E(U)(1 + ε))→ 0 as n1 →∞. Thus, the number of
nodes j with Sj > 1 is at most O(n1) with high probability,
so we choose n2 = O(n1) which results in n = O(n1).

Note that if n is large enough, then the top nodes (first,
second, etc.) can be found with very high probability. Fig-
ure 1 shows that if n = 1000, then for a wide range of n2

the fraction of correctly identified nodes from top-50 is the



same. As k grows, the optimization becomes much more
important. Motivated by this observation, we maximize the
value Pk(n1). We prove the following theorem.

Theorem 1. Assume that k = o(n) as n → ∞. The
maximizer n∗2 of probability Pk(n− n2) is close to the max-
imal root of the equation

1

3γkγ
xγ+1 + x− n = 0, (12)

that is,

n∗2 = x(1 + o(1)), as k/n∗2 → 0.

If in addition n∗2 = o(n) as n→∞, then n∗2 can be given in
a closed-form asymptotic expression

n2 = (3γkγn)
1
γ+1 + o(n

1
γ+1 ).

Proof. Consider first an extreme regime: x = O(k).
Thus, we exclude the regime n − x = o(n). Consequently,
n1 → ∞ as n → ∞ and we can apply the following normal
approximation

Pk(n1) ≈ P
(
N

(
n1(Fk − Fn2)

N
,
n1(Fk + Fn2)

N

)
> 0

)
= P

(
N(0, 1) > −

√
n1

N

Fk − Fn2√
Fk + Fn2

)
. (13)

(A completely formal justification can be given by the Berry-
Esseen theorem.) Thus, in order to maximize the above

probability, we need to maximize
√

n1
N

Fk−Fn2√
Fk+Fn2

. From EVT

it follows that Fk decays as k−γ . So, we can maximize
√
n1

(
k−γ − n−γ2

)√
k−γ + n−γ2

. (14)

Now if x = O(k),
√
n− x =

√
n(1 + o(1)), and the maxi-

mization of (14) mainly depends on the remaining term in
the product, which is an increasing function of n2. This sug-
gests that n2 has to be chosen considerably greater than k.
Hence, we proceed assuming the only interesting asymptotic
regime where k = o(n2). In this asymptotic regime, we can
simplify (14) as follows:

√
n− x

(
k−γ − x−γ

)
√
k−γ + x−γ

=

1

kγ/2
√
n− x

(
1− 3

2

(
k

x

)γ)
+ o

((
k

x

)γ)
.

Next, we differentiate the function

f(x) :=
√
n− x

(
1− 3

2

(
k

x

)γ)
and set the derivative to zero. This results in equation (12).
If we assume further that n∗2 = o(n), then only the highest
order term will remain in (12) and we immediately obtain
the following approximation

n2 = (3γkγn)
1
γ+1 + o(n

1
γ+1 ).

For example, for n = 1000, k = 100, and γ = 0.35 we get
n2 ≈ 570.

5.5 Sublinear complexity
The normal approximation (13) immediately implies the

following proposition.

Proposition 2. For large enough n1, the inequality√
n1

N

Fk − Fn2√
Fk + Fn2

> x1−ε

guarantees that on average we can find the fraction 1− ε of
top-k nodes in W .

For the inequality in (2) to hold, it is necessary that√
n1(Fk−Fn2) is at least of the same order of magnitude as

N
√
Fk + Fn2 . Moreover, it follows from Proposition 1 that

n = O(n1), and thus the complexity n of the algorithm is
defined by n1. In the theorem below we use the results from
Extreme Value Theory to show that n1 scales sublinearly
with N .

Theorem 1, and estimator (11), we can already provide a
rough indication of the number of API request we need to
use. Indeed, k > m, rough estimation with n− n2 ≈ n and
Fk >> Fn2 gives

n >
Nx21−εk

γ̂

Fmmγ
. (15)

For finding top-100 most followed users on Twitter with
good precision, this will result in about 5000 of API requests
(with N = 500M , m = 20, k = 100, x1−ε ≈ 2, γ̂ = 2.2).

For a better result, we may take into account the value of

n2, and substitute the value n2 =
(
3kγ̂nγ̂

) 1
γ+1 obtained in

Proposition 2:

k−γ̂/2

2
√
n

(
2n−

(
3kγ̂nγ̂

) 1
γ+1

)(
1− 3

2

(
3kγ̂nγ̂

) −γ̂
γ+1

kγ̂
)

> x1−ε

√
N

Fmmγ
.

From (15) we can also already anticipate that n is sublin-
ear in N because Fmm

γ grows with N . This argument is
formalized in Theorem 2 below.

Notice that, interestingly, the obtained complexity is in
terms of the cardinality of W , not V . In particular, this
makes the problem of finding popular groups easier than
the problem of finding popular users.

Theorem 2. If the in-degrees of the nodes are indepen-
dent realizations of a regularly varying distribution G with
exponent 1/γ as defined in (9), and F1 > F2 > · · · > FN are
their order statistics. Let (aN )N>1, (bN )N>1 be sequences
such that

lim
N→∞

N(1−G(aNx+ bN )) = (1 + γx)−1/γ .

Then Algorithm 1 finds (1− ε) of the top-k nodes with high
probability in

n1 = O(N/aN ),

of API requests. In particular, n scales sublinearly in N ,
and

log(n1) = (1− γ) log(N).

Proof. For a regularly varying G, Theorem 2.1.1 in [8]
can be applied, and thus for any finite m(

F1 − bN
aN

, · · · Fm − bN
aN

)



converges in distribution, as N →∞, to(
E−γ1 − 1

γ
, · · · , (E1 + · · ·+ Em)−γ − 1

γ

)
,

where Ei’s are independent exponential random variables
with parameter 1. This implies, in particular, that aN/bN =
O(1) and that for large enough N and any ε > 0, there exist
li, ui such that P [liaN 6 Fi 6 uiaN ] > 1−ε. It follows that
for fixed k √

n1

N

√
Fk = O(1)

with high probability when n1 = O(N/aN ), and the first
statement of the theorem follows because k = o(n2) implying
that Fn2 = o(Fk). In particular, ifG is a Pareto distribution,

1−G(x) = Cx−1/γ , x > x0, then

aN = γCγNγ , bN = Cγnγ .

For a general regularly varying distribution in (9) the slowly
varying function will influence aN but the logarithmic asymp-
totics of aN will be still determined by the power law:

log(aN ) = γ log(N),

which gives the result.

6. CONCLUSION
We proposed a randomized algorithm for quick detection

of popular entities in large online social networks whose ar-
chitecture has underlying directed graphs. Examples of so-
cial network entities are users and interest groups. We have
analyzed the algorithm with respect to three criteria and
compared with two baseline methods. Our analysis demon-
strates that the algorithm has nonlinear complexity on net-
works with heavy-tailed in-degree distribution and that the
performance of the algorithm is robust with respect to the
values of its few parameters. The algorithm outperforms
the two baseline methods and has much wider applicability.
An important ingredient of our analysis is substantial use of
the extreme value theory. The extreme value theory is not
so well know in computer science and sociology but appears
to be a very useful tool in the analysis of social networks.
We feel that our work could be a good reference point for
other researchers to start applying EVT in social network
analysis. We have validated our theoretical results on two
very large online social networks.

We see several extensions of the present work. A top list
of popular entities is just one type of properties of social
networks. We expect that our approach based on extreme
value theory and using referral links can be extended to infer
and to analyze other properties such as power law index
and the tail, network functions and network motifs, degree-
degree correlation. It will be very interesting and useful
to develop quick and effective statistical tests to check for
network assortativity and presence of heavy tails.

Since our approach requires very small numbers of API ac-
cesses, we believe that it will trace well network changes. Of
course, a formal justification of the algorithm applicability
for dynamic networks is needed.
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survey. Randomization Methods in Algorithm Design,
DIMACS Ser. Discrete Math. Theoret. Comput. Sci.,
pages 45–60, 1998.

[14] R. Kumar, K. Lang, C. Marlow, and A. Tomkins.
Efficient discovery of authoritative resources. IEEE
24th International Conference on Data Engineering,
pages 1495–1497, 2008.

[15] R. Rubinfeld and A. Shapira. Sublinear time
algorithms. SIAM J. Discrete Math., 25(4):1562–1588,
2011.

[16] M. Sudan. Invariance in property testing. Property
Testing: Current Research and Surveys, O. Goldreich,
ed., Lecture Notes in Comput. Sci., pages 211–227,
2010.



ar
X

iv
:1

31
0.

65
28

v1
  [

m
at

h.
PR

] 
 2

4 
O

ct
 2

01
3

Degree-degree correlations in directed networks with

heavy-tailed degrees

Pim van der Hoorn, Nelly Litvak

University of Twente

October 25, 2013

Abstract

In network theory, Pearson’s correlation coefficients are most commonly used to
measure the degree assortativity of a network. We investigate the behavior of these
coefficients in the setting of directed networks with heavy-tailed degree sequences.
We prove that for graphs where the in- and out-degree sequences satisfy a power law,
Pearson’s correlation coefficients converge to a non-negative number in the infinite
network size limit. We propose alternative measures for degree-degree correlations
in directed networks based on Spearman’s rho and Kendall’s tau. Using examples
and calculations on the Wikipedia graphs for nine different languages, we show why
these rank correlation measures are more suited for measuring degree assortativity
in directed graphs with heavy-tailed degrees.

Keywords degree assortativity, degree-degree correlations, scale free directed networks,
power laws, rank correlations.

1 Introduction

In the analysis of the topology of complex networks a feature that is often studied is
the degree-degree correlation, also called degree assortativity of the network. A network
has positive degree-degree correlation, is called assortative, when nodes with high degree
have a preference to be connected to nodes of similar large degree. When nodes with
large degree have a connection preference for nodes with low degree the network is said
to have negative degree-degree correlation, it is disassortative. A measure for degree
assortativity was first given for undirected networks by Newman [15], which corresponds
to Pearson’s correlation coefficient of the degrees at the ends of a random edge in the net-
work. A similar definition for directed networks was introduced in [16] and later adopted
for analysis of directed complex networks in [18] and [8]. Analysis of the degree-degree
correlation has been applied to networks in a variety of scientific fields such as neuro-
science, molecular biology, information theory and social network sciences. In [10, 12]
degree-degree correlations are used to investigate the structure of collaboration networks
of a social news sharing website and Wikipedia discussion pages, respectively. Another
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example is [9], where the influence of the phenotopic viability of a family of plants on the
degree-degree correlations of their genetic network is investigated. Degree assortativity
has also been found to influence several properties of networks. For instance, neural
networks with high assortativity seem to behave more efficiently under the influence of
noise [7]. Information content has been shown to depend on the absolute value of the
degree assortativity [19] and networks with high degree assortativity have been shown
to be less stable [4].

Recently it has been shown [13, 14] that for undirected networks of which the degree
sequence satisfies a power law distribution with exponent γ ∈ (1, 3), Pearson’s correlation
coefficient scales with the network size, converging to a non-negative number in the
infinite network size limit. Because most real world networks have been reported to
be scale free with exponent in (1, 3), c.f. [1, 17, Table II], this could then explain why
large networks are rarely classified as disassortative. In the same paper a new measure,
corresponding to Spearman’s rho [20], has been proposed as an alternative.

In this paper we will extend the analysis in [13] to the setting of directed networks.
Here we have to consider four types of degree-degree correlations, depending on the
choice for in- or out-degree on either side of an edge. Our message is, similar to that
of [13], that Pearson’s correlation coefficients are size biased and produce undesirable
results, hence we should look for other means to measure degree-degree correlations.
Although these results give some insights into the workings of these correlations we still
do not fully understand the differences between the four correlation types or what they
mean for the structural properties of the network.

We consider networks where the in- and out-degree sequences have a power law dis-
tribution. We will give conditions on the exponents of the in- and out-degree sequences
for which the assortativity measures defined in [18] and [8] converge to a non-negative
number in the infinite network size limit. This result is a strong argument against the
use of Pearson’s correlation coefficients for measuring degree-degree correlations in such
directed networks. To strengthen this argument we also give examples which clearly
show that the values given by Pearson’s correlation coefficients do not represent the
correlation between the degrees, which it is suppose to measure. As an alternative we
propose correlation measures based on Spearman’s rho [20] and Kendall’s tau [11]. These
measures are based on the ranking of the degrees rather then their value and hence do
not exhibit the size bias observed in Pearson’s correlation coefficients. We will give
several examples where the difference between these three measures is shown. We also
include an example for which one of the four Pearson’s correlation coefficients converges
to a random variable in the infinite network size limit and therefore will obviously pro-
duce uninformative results. Finally we calculate all four degree-degree correlations on
the Wikipedia network for nine different languages using all the assortativity measures
proposed in this paper.

This paper is structured as follows. In Section 2 we introduce notations. Pearson’s
correlation coefficients are introduced in Section 3 and a convergence theorem is given
for these measures. We introduce the rank measures Spearman’s rho and Kendall’s tau
for degree-degree correlations in Section 4. Example graphs that illustrate the differ-
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ence between the three measures are presented in Section 5. Finally the degree-degree
correlations for the Wikipedia graphs are presented in Section 6.

2 Definitions and notations

We start with the formal definition of the problem and introduce the notations that will
be used throughout this paper.

2.1 Graphs, vertices and degrees

We will denote by G = (V,E) a directed graph with vertex set V and edge set E ⊆ V ×V .
For an edge e ∈ E, we denote its source by e∗ and its target by e∗. With each directed
graph we associate two functions D+,D− : V → N where D+(v) := |{e ∈ E|e∗ = v}|
is the out-degree of the vertex v and D−(v) := |{e ∈ E|e∗ = v}| the in-degree. When
considering sequences of graphs, we denote by Gn = (Vn, En) an element of the sequence
(Gn)n∈N. We will further use subscripts to distinguish between the different graphs in
the sequence. For instance, D+

n and D−
n will denote the out- and in-degree functions of

the graph Gn, respectively.

2.2 Four types of degree-degree correlations

In this paper we are interested in measuring the correlation between the degrees at both
sides of an edge. That is, we measure the correlation between two vectors X and Y as
function of the edges e ∈ E corresponding to the degrees of e∗ and e∗, respectively. In
the undirected case this is called the degree-degree correlation. In the directed setting
however, we can consider any combination of the two degree types resulting in four types
of degree-degree correlations, illustrated in Figure 1.

From Figure 1 one can already observe some interesting features of these correlations.
For instance, in the Out/In correlation the edge that we consider contributes to the
degrees on both sides. We will later see that the Out/In correlation actually generalizes
the degree-degree correlation in the undirected case. To be more precise, our result for
this correlation type generalizes the result obtained in [14] when we transform from the
undirected case by making every edge bi-directional.

For the other three correlation types we observe that there is always at least one side
where the considered edge does not contribute towards the degree on that side. We will
later see that for these correlation types the correlation of the in- and out-degree of a
vertex will play a role.

3 Pearson’s correlation coefficient

Among all correlation measures, the measure proposed by Newman [15, 16] has been
widely used. This measure is the statistical estimator for the Pearson correlation coeffi-
cient of the degrees on both sides of a random edge. However, for undirected networks
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Out/In In/Out

Out/Out In/In

Figure 1: Four degree-degree correlation types

with heavy tailed degrees with exponent γ ∈ (1, 3) it was proved [14] that this mea-
sure converges, in the infinite size network limit, to a non-negative number. Therefore,
in these cases, Pearson’s correlation coefficient is not able to correctly measure negative
degree-degree correlations. In this section we will extend this result to directed networks
proving that also here Pearson’s correlation coefficients are not the right tool to measure
degree-degree correlations.

Let us consider Pearson’s correlation coefficients as in [15, 16], adjusted to the setting
of directed graphs as in [8, 18]. This will constitute four formula’s which we combine
into one. Take α, β ∈ {+,−}, that is, we let α and β index the type of degree (out-
or in-degree). Then we get the following expression for the four Pearson’s correlation
coefficients:

rβα(G) =
1

σα(G)σβ(G)

(

1

|E|
∑

e∈E

Dα(e∗)D
β(e∗)− 1

|E|2
∑

e∈E

Dα(e∗)
∑

e∈E

Dβ(e∗)

)

, (1)

where

σα(G) =

√

√

√

√

1

|E|
∑

e∈E

Dα(e∗)2 −
1

|E|2

(

∑

e∈E

Dα(e∗)

)2

and (2)

σβ(G) =

√

√

√

√

1

|E|
∑

e∈E

Dβ(e∗)2 − 1

|E|2

(

∑

e∈E

Dβ(e∗)

)2

. (3)

Here we utilize the notations for the source and target of an edge by letting the super-
script index denote the specific degree type of the target e∗ and the subscript index the

4



degree type of the source e∗. For instance r−+ denotes the Pearson correlation coefficient
for the Out/In correlation.

It is convenient to rewrite the summations over edges to summations over vertices
by observing that

∑

e∈E

Dα(e∗)
k =

∑

v∈V

D+Dα(v)k

and similarly
∑

e∈E

Dα(e∗)k =
∑

v∈V

D−Dα(v)k

for all k > 0. Plugging this into (1)-(3) we arrive at the following definition.

Definition 3.1. Let G = (V,E) be a directed graph and let α, β ∈ {+,−}. Then the
Pearson’s α-β correlation coefficient on G is defined by

rβα(G) =
1

σα(G)σβ(G)

1

|E|
∑

e∈E

Dα(e∗)D
β(e∗)− r̂βα(G), (4)

where

r̂βα(G) =
1

σα(G)σβ(G)

1

|E|2
∑

v∈V

D+(v)Dα(v)
∑

v∈V

D−(v)Dβ(v), (5)

σα(G) =

√

√

√

√

1

|E|
∑

v∈V

D+(v)Dα(v)2 − 1

|E|2

(

∑

v∈V

D+(v)Dα(v)

)2

, (6)

σβ(G) =

√

√

√

√

1

|E|
∑

v∈V

D−(v)Dβ(v)2 − 1

|E|2

(

∑

v∈V

D−(v)Dβ(v)

)2

. (7)

Just as in the undirected case, c.f. [13, 14], the wiring of the network only contributes
to the positive part of (4). All other terms are completely determined by the in- and out-

degree sequences. This fact enables us to analyze the behavior of rβα(G), see Section 3.1.
Observe also that in contrast to undirected graphs in the directed case the correlation
between the in- and out-degrees of a vertex can play a role, take for instance α = − and
β = +.

Note that in general rβα(G) might not be well defined, for either σα(G) or σβ(G)
might be zero. For example, when G is a directed cyclic graph of arbitrary size. From
equations (2) and (3) it follows that σα(G) and σβ(G) are the variance ofX and Y , where
X = Dα(e∗) and Y = Dβ(e∗), e ∈ E, with probability 1/|E|. Thus, σα(G) 6= 0 is only
possible if Dα(v) 6= Dα(w) for some v,w ∈ V . Moreover, v and w must have non-zero
out-degree for at least one such pair v,w, so that Dα(v) and Dα(w) are counted when
we traverse over edges. This argument is formalized in the next lemma, which provides
necessary and sufficient conditions so that σα(G), σβ(G) 6= 0.
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Lemma 3.2. Let G = (V,E) be a graph and take α, β ∈ {+,−}. Then the following
holds:

1

|E|

(

∑

v∈V

Dα(v)Dβ(v)

)2

≤
∑

v∈V

Dα(v)Dβ(v)2 (8)

and strict inequality holds if and only if there exits distinct v,w ∈ V such that Dα(v),
Dα(w) > 0 and Dβ(v) 6= Dβ(w).

Proof. Recall that |E| =∑v∈V Dα(v) for any α ∈ {+,−}. Then we have:

|E|
∑

v∈V

Dα(v)Dβ(v)2 −
(

∑

v∈V

Dα(v)Dβ(v)

)2

=
∑

w∈V

∑

v∈V \w

Dα(w)Dα(v)Dβ(v)2 −Dα(w)Dβ(w)Dα(v)Dβ(v)

=
1

2

∑

w∈V

∑

v∈V \w

Dα(w)Dα(v)
(

Dβ(w)2 − 2Dβ(w)Dβ(v) +Dβ(v)2
)

=
1

2

∑

w∈V

∑

v∈V \w

Dα(w)Dα(v)
(

Dβ(w) −Dβ(v)
)2

≥ 0,

which proves (8). From the last line one easily sees that strict inequality holds if and only
if there exits distinct v,w ∈ V such that Dα(v), Dα(w) > 0 and Dβ(v) 6= Dβ(w).

3.1 Convergence of Pearson’s correlation coefficients

In this section we will prove that under rather general conditions Pearson’s correlation
coefficients (4) converges to a non-negative value. We start by recalling the definition of
big theta.

Definition 3.3. Let f, g : N → R>0 be positive functions. Then f = Θ(g) if there exist
k1, k2 ∈ R>0 and an N ∈ N such that for all n ≥ N

k1g(n) ≤ f(n) ≤ k2g(n).

When we have two sequences (an)n∈N and (bn)n∈N we write an = Θ(bn) for (an)n∈N =
Θ((bn)n∈N).

Next, we will provide the conditions that our sequence of graphs needs to satisfy and
prove the result. Then we will motivate the chosen conditions. From here on we denote
by x ∨ y and x ∧ y the maximum and minimum of x and y, respectively.
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Definition 3.4. For γ−, γ+ ∈ R>0 we denote by Gγ
−
γ+ the space of all sequences of

graphs (Gn)n∈N with the following properties:

G1 |Vn| = n.

G2 There exists and N ∈ N such that for all n ≥ N there exist v,w ∈ Vn with Dα
n(v),

Dα
n(w) > 0 and Dα

n(v) 6= Dα
n(w), for all α ∈ {+,−}.

G3 For all p, q ∈ R>0,

∑

v∈Vn

D+
n (v)

pD−
n (v)

q = Θ(np/γ+∨q/γ
−
∨1).

G4 For all p, q ∈ R>0, if p < γ+ and q < γ− then

lim
n→∞

1

n

∑

v∈Vn

D+
n (v)

pD−
n (v)

q := d(p, q) ∈ (0,∞).

Where the limits are such that for all a, b ∈ N, k,m > 1 with 1/k + 1/m = 1,
a+ p < γ+ and b+ q < γ− we have,

d(a, b)
1

m d(p, q)
1

k > d(
a

m
+

p

k
,
b

m
+

q

k
).

Now we are ready to give the convergence theorem for Pearson’s correlation coeffi-
cients, Definition 3.1.

Theorem 3.5. Let α, β ∈ {+,−}. Then there exists an area Aβ
α ⊆ R

2 such that for

(γ+, γ−) ∈ Aβ
α and (Gn)n∈N ∈ Gγ

−
γ+ ,

lim
n→∞

r̂βα(Gn) = 0

and hence any limit point of rβα(Gn) is non-negative.

Proof. Let (Gn)n∈N be an arbitrary sequence of graphs. It is clear that if r̂βα(Gn) → 0

then any limit point of rβα(Gn) is non-negative. Therefore we need only to prove the first
statement. To this end we define the following sequences,

an =
1

|En|

(

∑

v∈Vn

D+
n (v)D

α
n(v)

)2

, bn =
1

|En|

(

∑

v∈Vn

D−
n (v)D

β
n(v)

)2

,

cn =
∑

v∈Vn

D+
n (v)D

α
n (v)

2, dn =
∑

v∈Vn

D−
n (v)D

β
n(v)

2,

and observe that r̂βα(Gn)
2 = anbn/(cn − an)(dn − bn). Now if (Gn)n∈N ∈ Gγ

−
γ+ then

because of G2 and Lemma 3.2 there exists an N ∈ N such that for all n ≥ N we have
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cn > an and dn > bn, so r̂βα(Gn) is well-defined for all n ≥ N . Next, using G3, we get
that an = Θ(na), bn = Θ(nb), cn = Θ(nc) and dn = Θ(nd) for certain constants a, b, c
and d, which depend on γ−, γ+ and the degree-degree correlation type chosen. Because
r̂βα(Gn) → 0 if and only if r̂βα(Gn)

2 → 0, we need to find sufficient conditions for which
anbn/(cn − an)(dn − bn) → 0. It is clear that either a < c and bn/(dn − bn) is bounded
or b < d and an/(cn − an) is bounded are sufficient. It turns out that this is exactly the
case when either a < c and b ≤ d or a ≤ c and b < d. We will do the analysis for the
In/Out degree-degree correlation. The analysis for the other three correlation types is

similar. Figure 2 shows all four areas Aβ
α.

When α = − and β = + we get the following constants

a, b = 2

(

1

γ+
∨ 1

γ−
∨ 1

)

− 1

c =

(

1

γ+
∨ 2

γ−
∨ 1

)

d =

(

2

γ+
∨ 1

γ−
∨ 1

)

It is clear that when 1 < γ−, γ+ < 2 then a < c and b < d and hence r̂βα → 0.
Now if 1 < γ− < 2 and γ+ ≥ 2 then a = b = d = 1 < c. Using G4 we get that
limn→∞ dn/n = d(2, 1) and

lim
n→∞

bn
n

= lim
n→∞

(
∑

v∈Vn
D−

n (v)D
+
n (v)

)2

n2

n

|En|

= lim
n→∞

(

∑

v∈Vn
D−

n (v)D
+
n (v)

n

)2(∑

v∈Vn
D−

n (v)

n

)−1

=
d(1, 1)2

d(0, 1)
< d(2, 1) = lim

n→∞

dn
n
,

where, for the last part, we again used G4. From this it follows that bn/(dn − bn) is

bounded and so r̂βα → 0. A similar argument applies to the case γ− ≥ 2 and 1 < γ+ < 2,
where the only difference is that a = b = c = 1 < d, hence

A+
− = {(x, y) ∈ R|1 < x < 2, y > 1} ∪ {(x, y) ∈ R|1 < y < 2, x > 1}.

Using similar arguments, we obtain:

A−
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} ∪ {(x, y) ∈ R
2|1 < y < 3, x > 1},

A+
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} and

A−
− = {(x, y) ∈ R

2|1 < y < 3, x > 1}.
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Figure 2

Let us now provide an intuitive explanation for the areas Aβ
α, as depicted in Figure 2.

The key observation is that due to G3 the terms with the highest power of either D+
n

or D−
n will dominate in r̂βα(Gn). Therefore, if these moments do not exist, then the

denominator will grow at a larger rate then the numerator, hence r̂βα → 0.
Taking α = + = β, we see that D− only has terms of order one while D+ has terms

up to order three. This explains why A+
+ = {(x, y) ∈ R|1 < x ≤ 3, y > 1}. Area A−

− is
then easily explained by observing that the expression for r−−(G) is obtained from r++(G)
by interchanging D+ and D−.

For the Out/In correlation, i.e. α = + and β = −, we see from equations (5)-(7)
that r̂−+(G) splits into a product of two terms, each completely determined by either in-
or out-degrees,

1
|E|

∑

v∈V Dα(v)2

√

1
|E|

∑

v∈V Dα(v)3 − 1
|E|2

(
∑

v∈V Dα(v)2
)2

,

with α ∈ {+,−}. These terms are of the exact same form as the expression in [13] for
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the undirected degree-degree correlation. Because both D+ and D− have terms of order
three, one sees that

A−
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} ∪ {(x, y) ∈ R
2|1 < y < 3, x > 1}.

Now take a undirected network and make it directed by replacing each undirected edge
with a bi-directional edge. Then D+(v) = D−(v) for all v ∈ V and hence r−+(G) equals
the expression of equation (3.4) in [13] when we replace D by either D+ or D−.

Theorem 3.5 has several consequences. First of all, no matter what mechanism is
used for generating networks, if the conditions of the theorem are satisfied then for
large enough networks the degree-degree correlations will always be non-negative. This
could explain why most large networks are said not to have disassortative degree-degree
correlations. In Section 5 we will give examples where this behavior can be observed.
Second, if the underlying model that governs the topology of the network is in line with
the conditions of the theorem, then one cannot compare networks of different sizes that
arise from this model. For in this case, the degree-degree correlation coefficients rβα will
decrease with the network size.

3.2 Motivation for Gγ
−
γ+

In this section we will motivate Definition 3.4. G1 is easily motivated, for we want to
consider infinite network size limits. G2 combined with Lemma 3.2 ensures that from
a certain N , rβα(Gn) will always be well-defined. Conditions G3 and G4 are related to
heavy-tailed degree sequences that are modeled using regularly varying random variables.

A random variable X is called regularly varying with exponent γ if P(X > t) =
L(t)t−γ for some slowly varying function L, that is limt→∞ L(tx)/L(t) = 1 for all x. We
write R−γ for the space of all regularly varying random variables with exponent γ. For a
regularly varying random variable X ∈ R−γ we have that E [Xp] < ∞ for all 0 < p < γ.

Through experiments it has been shown that many real world networks, both directed
and undirected, have degree sequences whose distribution closely resembles a power
law distribution, c.f. Table II of [1] and [17]. Suppose we take two random variables
D+ ∈ Rγ+ , D− ∈ Rγ

−

and consider, for each n, the degree sequences (D±
n (v))v∈Vn

as
i.i.d. copies of these random variables. Then for all 0 < p < γ+ and 0 < q < γ−

lim
n→∞

1

n

∑

v∈Vn

D+
n (v)

pD−
n (v)

q = E
[

(D+)p(D−)q
]

.

Moreover, since D± is non-degenerate, we have E

[

(D±)
k
]

> E [D±]
k
, and thus by tak-

ing d(p, q) = E [(D+)p(D−)q], we get G4 where the second part follows from Hölder’s
inequality. Although i.i.d. sequences for the in- and out-degrees do not in general con-
stitute a graphical sequence, it is often the case that one can modify this sequence into
a graphical sequence preserving i.i.d. properties asymptotically. Consider for example
[5], where a directed version of the configuration model is introduced and it is proven
that the degree sequences are asymptotically independent.
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The property G3 is associated with the scaling of the sums
∑

v∈Vn
D+

n (v)
pD−

n (v)
q

and is related to the central limit theorem for regularly varying random variables. When
we model the degrees as i.i.d. copies of independent regularly varying random variables
D+ ∈ R−γ+ , D− ∈ R−γ

−

and take p ≥ γ+ or q ≥ γ− then
∑

v∈Vn
D+

n (v)
pD−

n (v)
q is in

the domain of attraction of a γ-stable random variable S(γ), where γ = (γ+/p ∧ γ−/q),
c.f. [6]. This means that

1

an

∑

v∈Vn

D+
n (v)

pD−
n (v)

q d→ S(γ+/p ∧ γ−/q), as n → ∞ (9)

for some sequence an = Θ(nq/γ
−
∨p/γ+), where

d→ denotes convergence in distribu-
tion. Informally, one could say that

∑

v∈Vn
D+

n (v)
pD−

n (v)
q scales as nq/γ

−
∨p/γ+ when

either the p or q moment does not exist and as n when both moments exist, hence,
∑

v∈Vn
D+

n (v)
pD−

n (v)
q scales as nq/γ

−
∨p/γ+∨1, which is what G3 states. For complete-

ness we include the next lemma, which shows that (9) implies that G3 holds with high
probability. We remark that although this motivation is based on results where the
regularly varying random variables are assumed to be independent the dependent case
can be included. For this one then needs to adjust the scaling parameters in G3 for the
specified dependence.

Lemma 3.6. Let (Xn)n∈N be a sequence of positive random variables such that

Xn

an

d→ X, as n → ∞,

for some sequence (an)n∈N and positive random variable X. Then for each 0 < ε < 1,
there exists an Nε ∈ N and κε ≥ ℓε > 0 such that for all n ≥ Nε

P(ℓεan ≤ Xn ≤ κεan) ≥ 1− ε.

Proof. Let 0 < ε < 1 and take δ > 0, 0 < ℓ ≤ κ such that

P(ℓ ≤ X ≤ κ) ≥ 1− ε+ δ.

Then, because Xn/an
d→ X as n → ∞, there exists an N ∈ N such that for all n ≥ N ,

|P(ℓ ≤ X ≤ κ)− P(ℓan ≤ Xn ≤ κan)| < δ.

Now we get for all n ≥ N ,

1− ε+ δ − P(ℓan ≤ Xn ≤ κan) ≤ P(ℓ ≤ X ≤ κ)− P(ℓan ≤ Xn ≤ κan) ≤ δ,

hence P(ℓan ≤ Xn ≤ κan) ≥ 1− ε.
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4 Rank correlations

In this section we consider two other measures for degree-degree correlations, Spearman’s
rho [20] and Kendall’s tau [11], which are based on the rankings of the degrees rather
then their actual value. We will define these correlation measures and argue that they
do not have unwanted behavior as we observed for Pearson’s correlation coefficients.
We will later use examples to enforce this argument and show that Spearman’s rho and
Kendall’s tau are better candidates for measuring degree-degree correlations.

4.1 Spearman’s rho

Spearman’s rho [20] is defined as the Pearson correlation coefficient of the vector of
ranks. Let G = (V,E) be a directed graph and α, β ∈ {+,−}. In order to adjust the
definition of Spearman’s rho to the setting of directed graphs we need to rank the vectors
(Dα(e∗))e∈E and (Dβ(e∗))e∈E . These will, however, in general have many tied values.
For instance, suppose that Dα(v) = m for some v ∈ V , then edges e ∈ E with e∗ = v
satisfy Dα(e∗) = Dα(v). Therefore, we will encounter the value Dα(v) at least m times
in the vector (Dα(e∗))e∈E . We will consider two strategies for resolving ties: uniformly
at random (Section 4.1.1), and using an average ranking scheme (Section 4.1.2).

4.1.1 Resolving ties uniformly at random

Given a sequence {xi}1≤i≤n of distinct elements in R we denote by R(xj) the rank of xj,
i.e. R(xj) = |{i|xi ≥ xj}|, 1 ≤ j ≤ n. The definition of Spearman’s rho in the setting of
directed graphs is then as follows.

Definition 4.1. Let G = (V,E) be a directed graph, α, β ∈ {+,−} and let (Ue)e∈E,
(We)e∈E be i.i.d. copies of independent uniform random variables U and W on (0, 1),
respectively. Then we define the α-β Spearman’s rho of the graph G as

ρβα(G) =
12
∑

e∈E Rα(e∗)R
β(e∗)− 3|E|(|E| + 1)2

|E|3 − |E| , (10)

where Rα(e∗) = R(Dα(e∗) + Ue) and Rβ(e∗) = R(Dβ(e∗) +We).

From (10) we see that the negative part of ρβα(G) depends only on the number of
edges

3(|E| + 1)2

(|E|2 − 1)
= 3 +

6|E|+ 4

|E|2 − 1
,

while for rβα(G) it depended on the values of the degrees, see Definition 3.1. When
(Gn)n∈N ∈ Gγ+,γ

−

, with γ+, γ− > 1 then it follows that |En| = θ(n) hence 3 + (6|E| +
4)/(|E|2−1) → 3, as n → ∞. Therefore we see that the negative contribution will always

be at least 3 and so ρβα(Gn) does not in general converge to a non-negative number while

rβα(Gn) does.
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When calculating ρβα(G) on a graph G one has to be careful, for each instance will
give different ranks of the tied values. This could potentionally give rise to very dif-
ferent results among several instances, see Section 5.1.2 for an example. Therefore, in
experiments, we will take an average of ρβα(G) over several instances of the uniform
ranking.

4.1.2 Resolving ties with average ranking

A different approach for resolving ties is to assign the same average rank to all tied
values. Consider, for example, the sequence (1, 2, 1, 3, 3). Here the two values of 3 have
ranks 1 and 2, but instead we assign the rank 3/2 to both of them. With this scheme
the sequence of ranks becomes (9/2, 3, 9/2, 3/2, 3/2). This procedure can be formalized
as follows.

Definition 4.2. Let (xi)1≤i≤n be a sequence in R then we define the average rank of an
element xi as

R(xi) = |{j|xj > xi}|+
|{j|xj = xi}|+ 1

2
.

Observe that in the above definition the total average rank is preserved:
∑n

i=1R(xi) =
n(n+1)/2. The difference with resolving ties uniformly at random is that we in general
do not know

∑n
i=1 R(xi)

2, for this depends on how many ties we have for each value.
We now define the average Spearman’s rho of graphs as follows.

Definition 4.3. let G = (V,E) be a directed graph, α, β ∈ {+,−} and denote by

R
α
(e∗) and R

β
(e∗) the average ranks of Dα(e∗) among (Dα(e∗))e∈E and Dβ(e∗) among

(Dβ(e∗))e∈E, respectively. Then we define the average α-β Spearman’s rho of the graph
G by

ρβα(G) =
4
∑

e∈E R
α
(e∗)R

β
(e∗)− |E|(|E| + 1)2

σα(G)σβ(G)
, (11)

where

σα(G) =

√

4
∑

e∈E

R
α
(e∗)2 − |E|(|E| + 1)2

and

σβ(G) =

√

4
∑

e∈E

R
β
(e∗)2 − |E|(|E| + 1)2.

4.2 Kendall’s Tau

Another common rank correlation measure is Kendall’s Tau [11], which measures the
weighted difference between the number of concordant and disconcordant pairs of the
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joint observations (xi, yi)1≤i≤n. More precisely, a pair (xi, yi) and (xj , yj) of joint obser-
vations is concordant if xi < xj and yi < yj or if xi > xj and yi > yj. They are called
disconcordant if xi < xj and yi > yj or if xi > xj and yi < yj.

Definition 4.4. Let G = (V,E) be a directed graph, α, β ∈ {−,+} and denote by Nc and
Nd, respectively, the number of concordant and disconcordant pairs among

(

Dα(e∗),D
β(e∗)

)

e∈E
.

Then we define the α-β Kendall’s tau of G by

τβα (G) =
2(Nc −Nd)

|E|(|E| − 1)
.

It might seem at first that τ does not suffer from ties. However, note that the
numerator of τ includes only strictly (dis)concordant pairs, while the denominator is
equal to the number of all possible pairs, irregardless of the presence of ties. Hence,
when the number of ties is large, the denominator may become much larger than the
numerator resulting in small, even vanishing in the graph size limit, values of τβα . We will
provide such example in Section 5. Since, as discussed above, the sequences (Dα(e∗))e∈E
and

(

Dβ(e∗)
)

e∈E
naturally have a large number of ties, we cannot expect τβα (G) to take

very large (positive or negative) values.

5 Bridge graph example

In this section we will provide a sequences of graphs to illustrate the difference be-
tween the four correlation measures in directed networks. We start with a deterministic
sequence and will later adapt this to a randomized sequence using regularly varying
random variables.

5.1 A deterministic in-out bridge graph

Let k,m ∈ N>0, then we define the bridge graph G(k,m) = (V (k,m), E(k,m)), displayed
in Figure 3a, as follows:

V (k,m) = v ∪ w ∪
k
⋃

i=1

vi ∪
m
⋃

j=1

wj, E(k,m) = g ∪
k
⋃

i=1

ei ∪
m
⋃

j=1

fj, where

ei = (vi, v), fj = (w,wj) and g = (v,w).

It follows that |E(k,m)| = m+ k + 1. For the degrees of G(k,m) we have:

D+(vi) = 1, D−(vi) = 0, for all 1 ≤ i ≤ k;

D+
n,a(wj) = 0, D−

n,a(wj) = 1, for all 1 ≤ j ≤ m;

D+(v) = 1, D−(v) = k,

D+(w) = m, D−(w) = 1.
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Figure 3: A graphical representation of the graphs G(k,m) (a) and Ĝ(k,m) (b).

Looking at the scatter plot of (D−(e∗),D
+(e∗))e∈E(k,m), Figure 4a, we see that the

point (k,m) contributes towards a positive correlations while the points (0, 1) and (1, 0)
contribute towards a negative correlation. Hence, depending on how much weight we
put on each of these points we could argue equally well that this graph has positive or
negative In/Out correlation. We can however extend the in-out bridge graph to a graph
for which we do have a clear expectation for the In/Out correlation.

We define the disconnected in-out bridge graph Ĝ(k,m) = (V̂ (k,m), Ê(k,m)) from
G(k,m) by adding a vertex u and replacing the edge g = (v,w) by the edges g1 = (v, u)
and g2 = (u,w), see Figure 3b. In this graph the node with the largest in-degree, v, is
connected to node u, of out-degree 1. Similarly u, which has in-degree 1, is connected to
the node with the highest out-degree, w. Therefore we would expect a negative In/Out
correlation. This intuition is supported by the scatter plot of (D+(e∗),D−(e∗))e∈Ê(k,m),
Figure 4b.

Now consider for a fixed a ∈ N the sequence of graphs Ga
n := G(n, an) and Ĝa

n :=
Ĝ(n, an). Then, following the above reasoning we would expect that any In/Out corre-
lation measure of Ĝa

n would converge to -1.
In Sections 5.1.1 – 5.1.3 we will show that limn→∞ r+−(Ĝ

a
n) = 0 while the other three

measures indeed yield negative results. Furthermore, we show that limn→∞ r+−(G
a
n) = 1

while limn→∞ ρ+−(G
a
n) = −1 reflecting the two possibilities for the In/Out correlation

represented in the scatter plot, Figure 4a.
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Figure 4: The scatter plots for the degrees of (a) G(k,m) and (b) Ĝ(k,m).

5.1.1 Pearson In/Out correlation

We start with the graph Ga
n. Basic calculations yield that
∑

e∈Ea
n

D−(e∗)D
+(e∗) = an2, (12)

∑

v∈V a
n

D−(v)D+(v) = (1 + a)n, (13)

∑

v∈V a
n

D−(v)2D+(v) = n2 + an, (14)

∑

v∈V a
n

D−(v)D+(v)2 = n+ a2n2, (15)

hence, using (6) and (7), we obtain:

|Ea
n|σ−(Ga

n) =
√

((1 + a)n+ 1)(n2 + an)− (1 + a)2n2

=
√

(1 + a)n3 − (n − 1)an

and

|Ea
n|σ+(Ga

n) =
√

((1 + a)n+ 1)(n + a2n2)− (1 + a)2n2

=
√

(1 + a)n3 − (an − 1)n.

When we plug this into (4) with α = − and β = + we get

r+−(G
a
n) =

|Ea
n|an2 − (1 + a)2n2

|Ea
n|σα(Ga

n)|Ea
n|σβ(Ga

n)

=
a(1 + a)n3 − (a2 + a+ 1)n2

a
√

(1 + a)n3 − (n− 1)an
√

(1 + a)n3 − (an− 1)n
. (16)
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From (16) it follows that if a ∈ N is fixed, then limn→∞ r+−(G
a
n) = 1, thus r+−(G

a
n) in

fact reflects the connection between v and w where the point (n, an) in the scatter plot
received the most mass. However, when we turn to Ĝa

n we get a less expected result.
Splitting the edge g in two adds one to equations (13)-(15), while equation (12) becomes
(a + 1)n which is linear in n instead of quadratic. Because all other terms keep their
scale with respect to n we easily deduce that for a fixed a ∈ N, limn→∞ r+−(Ĝ

a
n) = 0.

This is undesirable for we would expect any correlation measure on Ĝa
n to converge to

−1.

5.1.2 Spearman In/Out correlation

We start by calculation ρ+−(G
a
n). For this observe that by (11) and the definition of Ga

n

we have that,

R
+
((ei)

∗) = 1 +
n+ 1

2
, R

−
((ei)∗) = an+ 1 +

n+ 1

2
;

R
+
((fj)

∗) = n+ 1 +
an+ 1

2
, R

−
((fj)∗) = 1 +

an+ 1

2
;

R
+
(g∗) = 1, R

−
(g∗) = 1.

After some basic calculations we get

ρ+−(G
a
n) =

−(a2 + a)n3 + (a+ 1)2n2 + (a+ 1)n

(a2 + a)n3 + (a+ 1)2n2 + (a+ 1)n
→ −1 as n → ∞.

This result is in striking contrast to the one for r+−(G
a
n). Indeed, ρ

+
− places all the weight

on the points (0, 1) and (1, 0). However, based on the scatter plot, see Figure 4a, both
results could be plausible.

Let us now compute ρ+−(Ĝ
a
n). For the rankings we have

R
+
((ei)

∗) = 2 +
n

2
, R

−
((ei)∗) = an+ 2 +

n+ 1

2
;

R
+
((fj)

∗) = n+ 2 +
an+ 1

2
, R

−
((fj)∗) = 2 +

an

2
;

R
+
((g1)

∗) = 2 +
n

2
, R

−
((g1)∗) = 1;

R
+
((g2)

∗) = 1, R
−
((g2)∗) = 2 +

an

2
.

Filling this into equation (11) we get

ρ+−(Ĝ
a
n) =

−(a2 + a)n3 − (a2 + a)n2 + (a+ 1)n − 2

σ̄−(Ĝa
n)σ̄

+(Ĝa
n)

,

where

σ̄−(Ĝ
a
n) =

√

(a2 + a)n3 + (a2 + 4a+ 2)n2 + (3a+ 4)n − 2 and

σ̄+(Ĝa
n) =

√

(a2 + a)n3 + (2a2 + 4a+ 1)n2 + (4a+ 3)n+ 2.
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Because

lim
n→∞

1

n3
σ̄−(Ĝ

a
n)σ̄

+(Ĝa
n) = (a2 + a)

it follows that

lim
n→∞

ρ+−(Ĝ
a
n) = lim

n→∞

1/n3

1/n3

−(a2 + a)n3 − (a2 + a)n2 + (a+ 1)n− 2

σ̄−(Ĝa
n)σ̄

+(Ĝa
n)

= −1,

which equals limn→∞ ρ(Ga
n). We have already argued that based on the graph and the

scatter plot we would expect negative In/Out correlation for the sequence (Ĝa
n)n∈N.

This result is in agreement with what we would expect, while r+−(Ĝ
a
n) converges to 0 as

n → ∞.
Now we turn to ρ+−(G

a
n). We will show that the choice of ranking of the tied values

can have a great effect on the outcome of the In/Out correlation. In this example we
will pick two rankings, one will yield a positive correlation while the other will give a
negative correlation.

It is clear from the definition of Ga
n that the in- and out-degrees of all ei are the same

and similar for fj. Let us now impose the following ranking of the vectors (D+(e∗))e∈Ea
n

and (D−(e∗))e∈Ea
n
:

R+((ei)
∗) = an+ i, R−((ei)∗) = i, for all 1 ≤ i ≤ n;

R+((fj)
∗) = j, R−((fj)∗) = n+ j, for all 1 ≤ j ≤ an;

R+(g∗) = 1 + (a+ 1)n, R−(g∗) = 1 + (a+ 1)n.

Here we ordered the ties by the order of their indices. We calculate that

ρ+−(G
a
n) =

(a3 − 3a2 − 3a+ 1)n3 + 3(a+ 1)2n2 + 2(a+ 1)n

(a3 + 3a2 + 3a+ 1)n3 + 3(a+ 1)2n2 + 2(a+ 1)n
. (17)

Now let us now order (D+(e∗))e∈Ea
n
and (D−(e∗))e∈Ea

n
as follows:

R+((ei)
∗) = (a+ 1)n+ 1− i, R−((ei)∗) = i, for all 1 ≤ i ≤ n;

R+((fj)
∗) = an+ 1− j, R−((fj)∗) = n+ j, for all 1 ≤ j ≤ an;

R+(g∗) = 1 + (a+ 1)n, R−(g∗) = 1 + (a+ 1)n.

This order differs from the first one only on the vector (D+(e∗))e∈Ea
n
, where we now

ordered the ties based on the reversed order of their indices. Here we get, after some
calculations,

ρ+−(G
a
n) =

−(a+ 1)3n3 + 3(a + 1)2n2 + 2(a+ 1)n

(a+ 1)3n3 + 3(a+ 1)2n2 + 2(a + 1)n
(18)

When we compare (18) with (17) we see that for the former limn→∞ ρ+−(G
a
n) = −1 for all

a ∈ N while for the latter we have limn→∞ ρ+−(G
a
n) = (a3 − 3a2 − 3a+ 1)/(a+ 1)3. This

means that increasing a will actually increase the limit of (17), which becomes positive
when a ≥ 4. This indicates what was already mentioned in Section 4.1.1, that changing
the order of the ties can have a large impact on the value of ρβα(G).
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5.1.3 Kendall’s Tau In/Out correlation

The last correlation measure we compute is Kendall’s Tau. In order to do this we need
to determine the number of concordant and disconcordant pairs. Starting with Ga

n, we
observe that we have three kinds of joint observations, namely

I :
(

D−(ei∗),D
+(e∗i )

)

,

II :
(

D−(fj∗),D
+(f∗

j )
)

and

III :
(

D−(g∗),D
+(g∗)

)

.

The combinations I and III, and II and III are concordant while I and II are discon-
cordant. From this it follows that Nc = (a + 1)n while Nd = an2. Hence we get, see
Definition 4.4.

τ+− (Ga
n) =

2(a+ 1)n − 2an2

(a+ 1)2n2 + (a+ 1)n
,

which gives limn→∞ τ+− (Ga
n) = − 2a

(a+1)2
.

For the graph Ĝa
n we have four kinds of joint observations:

I :
(

D−(ei∗),D
+(e∗i )

)

,

II :
(

D−(fj∗),D
+(f∗

j )
)

,

III :
(

D−(g1∗),D
+(g∗1)

)

and

IV :
(

D−(g2∗),D
+(g∗2)

)

.

Again the combinations I and II are disconcordant, while now I and III, and II and IV
are concordant. Therefore we get Nc = (a+1)n and Nd = an2, hence limn→∞ τ+− (Ga

n) =
− 2a

(a+1)2
which equals the limit for τ+− (Ga

n).

Note that limn→∞ τ+− (Ga
n) decreases when we increase a. This is because the number

of tied values among the degrees increases with a. We already mentioned that τβα gives
smaller values when more ties are involved. Here this behavior is clearly present.

5.2 A collection of random In/Out bridge graphs

Let us now consider a collection of In/Out bridge graphs G(W,Z) as defined in Sec-
tion 5.1, where the values of W and Z are integer regularly varying random variables.

Let X,Y ∈ R−γ be independent and integer valued and fix a ∈ R>0. For each n ∈ N

take (Xi)1≤i≤n and (Yi)1≤i≤n to be i.i.d. copies of X and Y , respectively, and define
Wi = Xi + Yi and Zi = ⌊Xi + aYi⌋. Then we define the graph Ga

n as the disconnected
collection of the graphs (G(Wi, Zi))1≤i≤n. We will calculate r+−(Ga

n) and prove that it
converges to a random variable, which can have support on (ε, 1) for a specific choice of
a.
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Using the calculations in Section 5.1.1 we obtain:

∑

e∈Ea
n

D−(e∗)D
+(e∗) =

n
∑

i=1

(

X2
i + aY 2

i + (1 + a)XiYi

)

,

∑

v∈V a
n

D−(v)D+(v) =
n
∑

i=1

(2Xi + (1 + a)Yi) ,

∑

v∈V a
n

D−(v)2D+(v) =
n
∑

i=1

(

X2
i + Y 2

i + 2XiYi +Xi + aYi

)

,

∑

v∈V a
n

D−(v)D+(v)2 =

n
∑

i=1

(

X2
i + a2Y 2

i + 2aXiYi +Xi + Yi

)

and

|Ea
n| =

n
∑

i=1

(2Xi + (1 + a)Yi + 1) .

By the stable limit law we have a sequence (an)n∈N such that

1

an

n
∑

i=1

X2
i

d→ SX and
1

an

n
∑

i=1

Y 2
i

d→ SY as n → ∞,

where SX and SY are stable random variables. Further, due to Lemma 2.2 in [13] we
have

1

an

n
∑

i=1

XiYi
d→ 0,

1

an

n
∑

i=1

Xi
d→ 0 and

1

an

n
∑

i=1

Yi
d→ 0 as n → ∞.

Combining this we get

1√
an

σ−(Ga
n)

d→
√

SX + SY ,
1√
an

σ+(Ga
n)

d→
√

SX + a2SY as n → ∞,

and hence

r+−(Ga
n)

d→ SX + aSY
√

SX + SY

√

SX + a2SY

as n → ∞,

which has support on (0, 1). Now, take 0 < ε ≤ 1 and consider the function f(x) :
(0,∞) → R defined as

f(x) =
1 + ax

√

1 + x
√
1 + a2x

.

This function attains its minimum in 1/a and by solving f(1/a) = ε for a we get that
for

a =
2− ε2 ±

√
1− ε

ε2

this minimum equals ε. If we now introduce the random variable T = SY /SX we see
that for a defined as above 1+aT√

1+T
√

1+a2T
has support contained in (ε, 1).
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This example shows that Pearson’s correlation coefficients rβα can converge to a non-
negative random variable in the infinite size network limit. This behavior is undesirable
for if we consider two instances of the same model Ga

n then the values of r+− will be random
and hence could be very far apart. Therefore r+− is not suitable for measuring the In/Out
correlation if we would like to find one number (population value) that characterizes the
In/Out correlation in this model.

6 Experiments

In this section we present experimental results for the degree-degree correlations intro-
duced in Sections 3 and 4. For the calculations we used the WebGraph framework [2, 3]
and the fastutil package from The Laboratory for Web Algorithmics (LAW) at the Uni-
versit degli studi di Milano, http://law.di.unimi.it. The calculations where done
on the Wikepedia graphs, http://wikipedia.org, of nine different languages, obtained
from the LAW dataset database. For each Wikipedia graph we calculated all four degree-
degree correlations using the four measures introduced in this paper.

In an attempt to quantify the results we compared them to a randomized setting. For
this we did 20 reconfigurations of the degree sequences of each graph, using the scheme
decribed in Section 3 of [5]. More precisely, we used the erased directed configuration
model. In this scheme we first assign to each vertex v, D+(v) outbound stubs and D−(v)
inbound stubs. Then we randomly select an available outbound stub and combine it
with a inbound stub, selected uniformly at random from all available inbound stubs,
to make an edge. When this edge is a selfloop we remove it. When we end up with
multiple edges between two vertices we combine them into one edge. Proposition 3.7
of [5] now tells us that the distribution of the degrees of the resulting simple graph will,
with high probability, be the the same as the original distribution. For each of these
reconfigurations, all correlations where calculated using all four measures and then for
each correlation type and measure we took the average. The results are presented in
Table 1.

The first observation is that for each Wikipedia graph and correlation type, the
measures ρ, ρ and τ have the same sign while r in many cases has a different sign.
Furthermore, there are many cases where the absolute value of the three rank correlations
is at least an order of magnitute larger than that of Pearson’s correlation coefficients. See
for instance the Out/In correlations for DE, EN, FR and NL or the In/Out correlation
for KO and RU.

These examples illustrate the fact that Pearson’s correlation coefficients are scaled
down by the high variance in the degree sequences which in turn gave rise to Theorem 3.5,
while the rank correlations do not have this deficiency. Another interesting observation
is that the values for ρ and ρ are almost in full agreement with each other. This would
then suggest that one could freely change between these two when calculating degree-
degree correlations. Because for ρ both the average and the variance are known upfront,
it is computationally easier than ρ while the latter is easier to analyze in a non-random
setting.
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Finally, we notice that in the synthetic configuration model, all correlation measures
are close to zero, and the difference between different realizations of the model is re-
makarbly small (see the values of σ). However, at this point very little can be said about
statistical significance of these results because, as we proved above, r shows pathological
behaviour on large power law graphs and the setting of directed graphs is very different
from the setting of independent observations. This raises important and challenging
questions for future research: which magnitude of degree-degree dependencies should
be seen as significant and how to construct mathmatically sound statistical tests for
establishing such significant dependencies.
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Pearson Spearman uniform Spearman average Kendall
Randomized Randomized Randomized Randomized

Graph α/β Data µ σ Data µ σ Data µ σ Data µ σ

DE wiki

+/- -0.0552 -0.0178 0.0001 -0.1434 -0.0059 0.0002 -0.1435 -0.0059 0.0002 -0.0986 -0.0038 0.0008
-/+ 0.0154 -0.0030 0.0002 0.0481 -0.0008 0.0002 0.0484 -0.0008 0.0002 0.0.326 -0.0005 0.0001
+/+ -0.0323 -0.0091 0.0002 -0.0640 -0.0048 0.0002 -0.0640 -0.0048 0.0002 -0.0446 -0.0006 0.0001
-/- -0.0123 -0.0060 0.0001 0.0119 -0.0009 0.0002 0.0120 -0.0009 0.0002 0.0074 -0.0032 0.0001

EN wiki

+/- -0.0557 -0.0180 0 -0.1999 -0.0064 0.0001 -0.1999 -0.0064 0.0001 -0.1364 -0.0043 0.0001
-/+ -0.0007 -0.0015 0.0001 0.0239 -0.0011 0.0001 0.0240 -0.0011 0.0001 0.0163 -0.0008 0.0001
+/+ -0.0713 -0.0125 0.0001 -0.0855 -0.0053 0.0001 -0.0855 -0.0053 0.0001 -0.0581 -0.0035 0.0001
-/- -0.0074 -0.0024 0.0001 -0.0664 -0.0013 0.0001 -0.0666 -0.0013 0.0001 -0.0457 -0.0009 0.0001

ES wiki

+/- -0.1031 -0.0336 0.0002 -0.1429 -0.0186 0.0003 -0.1429 -0.0186 0.0003 -0.0972 -0.0126 0.0002
-/+ -0.0033 -0.0071 0.0002 -0.0407 -0.0047 0.0003 -0.0417 -00048 0.0003 -0.0294 -0.0034 0.0002
+/+ -0.0272 -0.0201 0.0002 0.0178 -0.0125 0.0003 0.0178 -0.0125 0.0003 0.0119 -0.0084 0.0002
-/- -0.0262 -0.0116 0.0001 -0.1627 -0.0071 0.0003 -0.1669 -0.0072 0.0003 -0.1174 -0.0051 0.0002

FR wiki

+/- -0.0536 -0.0252 0.0001 -0.1065 -0.0123 0.0002 -0.1065 -0.0123 0.0002 -0.0720 -0.0083 0.0002
-/+ 0.0048 -0.0031 0.0002 0.0119 -0.0016 0.0003 0.0121 -0.0016 0.0003 0.0085 -0.0011 0.0002
+/+ -0.0512 -0.0173 0.0002 -0.0126 -0.0093 0.0002 -0.0126 -0.0090 0.0015 -0.0087 -0.0063 0.0001
-/- -0.0094 -0.0054 0.0001 -0.0262 -0.0021 0.0003 -0.0267 -0.0025 0.0015 -0.0186 -0.0015 0.0002

HU wiki

+/- -0.1048 -0.0378 0.0003 -0.1280 -0.0220 0.0006 -0.1280 -0.0220 0.0006 -0.0877 -0.0148 0.0004
-/+ 0.0120 -0.0056 0.0005 0.0525 0.0002 0.0005 0.0595 0 0.0006 0.0442 0 0.0004
+/+ -0.0579 -0.0261 0.0005 -0.0207 -0.0157 0.0005 -0.0207 -0.0157 0.0004 -0.0140 -0.0107 0.0003
-/- -0.0279 -0.0084 0.0004 0.0051 0.0004 0.0005 0.0060 0.0002 0.0006 0.0050 -0.0001 0.0005

IT wiki

+/- -0.0711 -0.0319 0.0001 -0.0964 -0.0158 0.0002 -0.0964 -0.0158 0.0002 -0.0653 -0.0106 0.0002
-/+ 0.0048 -0.0031 0.0002 0.0468 -0.0013 0.0002 0.0469 -0.0013 0.0003 0.0319 -0.0009 0.0002
+/+ -0.0704 -0.0204 0.0002 -0.0277 -0.0121 0.0002 -0.0277 -0.0122 0.0002 -0.0189 -0.0081 0.0001
-/- -0.0115 -0.0050 0.0001 -0.0428 -0.0016 0.0002 -0.0429 -0.0016 0.0002 -0.0296 -0.0011 0.0002

KO wiki

+/- -0.0805 -0.0562 0.0004 -0.2696 -0.0476 0.0037 -0.2722 -0.0482 0.0038 -0.1985 -0.0328 0.0073
-/+ 0.0157 -0.0009 0.0030 0.1760 0.0019 0.0046 0.2323 0.0034 0.0046 0.1902 0.0031 0.0035
+/+ -0.1697 -0.0357 0.0035 0.0016 -0.0267 0.0041 0.0191 -0.0272 0.0040 0.0170 0.0298 0.0415
-/- -0.0138 -0.0034 0.0015 -0.0493 0.0062 0.0045 -0.0618 0.0083 0.0042 -0.0463 0.0065 0.0032

NL wiki

+/- -0.0585 -0.0346 0.0001 -0.3017 -0.0211 0.0002 -0.3018 -0.0211 0.0002 -0.2089 -0.0142 0.0002
-/+ 0.0100 -0.0025 0.0003 0.0727 -0.0007 0.0003 0.0730 -0.0007 0.0003 0.0504 -0.0004 0.0003
+/+ -0.0628 -0.0194 0.0001 0.0016 -0.0104 0.0003 0.0016 -0.0104 0.0003 0.0015 -0.0070 0.0002
-/- -0.0233 -0.0091 0.0001 -0.1498 -0.0019 0.0003 -0.1505 -0.0019 0.0003 -0.1048 -0.0013 0.0002

RU wiki

+/- -0.0911 -0.0225 0.0004 -0.1080 -0.0093 0.0015 -0.1084 -0.0093 0.0015 -0.0755 -0.0064 0.0010
-/+ 0.0398 -0.0006 0.0009 0.1977 0 0.0008 0.2200 0.0001 0.0009 0.1655 0.0001 0.0007
+/+ 0.0082 -0.0038 0.0010 0.2472 0.0002 0.0015 0.2480 0.0001 0.0015 0.1736 0.0001 0.0010
-/- -0.0242 -0.0030 0.0007 0.0236 0.0009 0.0011 0.0255 0.0007 0.0015 0.0187 0.0006 0.0007

Table 1: Degree-degree correlations for Wikipedia graphs.
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In-Core Computation of Geometric Centralities with
HyperBall:

A Hundred Billion Nodes and Beyond
Paolo Boldi Sebastiano Vigna

Dipartimento di Informatica, Università degli Studi di Milano, Italy

Abstract—Given a social network, which of its nodes are
more central? This question was asked many times in sociology,
psychology and computer science, and a whole plethora of
centrality measures (a.k.a. centrality indices, or rankings) were
proposed to account for the importance of the nodes of a network.
In this paper, we approach the problem of computing geometric
centralities, such as closeness [1] and harmonic centrality [2],
on very large graphs; traditionally this task requires an all-
pairs shortest-path computation in the exact case, or a number
of breadth-first traversals for approximated computations, but
these techniques yield very weak statistical guarantees on highly
disconnected graphs. We rather assume that the graph is accessed
in a semi-streaming fashion, that is, that adjacency lists are
scanned almost sequentially, and that a very small amount of
memory (in the order of a dozen bytes) per node is available in
core memory. We leverage the newly discovered algorithms based
on HyperLogLog counters [3], making it possible to approximate
a number of geometric centralities at a very high speed and with
high accuracy. While the application of similar algorithms for the
approximation of closeness was attempted in the MapReduce [4]
framework [5], our exploitation of HyperLogLog counters re-
duces exponentially the memory footprint, paving the way for in-
core processing of networks with a hundred billion nodes using
“just" 2 TiB of RAM. Moreover, the computations we describe
are inherently parallelizable, and scale linearly with the number
of available cores.

I. INTRODUCTION

In the last years, there has been an ever-increasing research
activity in the study of real-world complex networks. These
networks, typically generated directly or indirectly by human
activity and interaction, appear in a large variety of contexts
and often exhibit a surprisingly similar structure.

One of the most important notions that researchers have
been trying to capture in such networks is “node centrality”:
ideally, every node (often representing an individual) has some
degree of influence or importance within the social domain
under consideration, and one expects such importance to be
reflected in the structure of the social network. Centrality
in fact has a long history in the context of social sciences:
starting from the late 1940s [1] the problem of singling out
influential individuals in a social group has been a holy grail
that sociologists have been trying to capture for many decades.

The authors have been supported by the EU-FET grant NADINE (GA
288956).

Among the types of centrality that have been considered
in the literature (see [6] for a good survey), many have to
do with the distance to other nodes. If, for instance, the
sum of distances to all other nodes is large, the node is
peripheral, which is the starting point to define Bavelas’s
closeness centrality as the reciprocal of peripherality (i.e., the
reciprocal of the distances to all other nodes).

Interestingly, many of these indices can be recast in terms
of suitable calculations using the sizes of the balls of varying
radius around a node. In a previous work [3] we presented
HyperANF, a tool that can compute the distance distribution
of very large graphs. HyperANF has been used, for instance, to
show that Facebook has just four “degrees of separation" [7].
The goal of this paper is to extends the HyperANF approach
to compute a number of centrality indices based on distances.

Beside large-scale experiment using the full ClueWeb09
graph (almost five billion nodes), we provide an empirical
evaluation of the accuracy of our method through a comparison
with the exact centrality values on a snapshot of Wikipedia
(on larger graphs the exact computation would be infeasible).
We also provide comparisons with a MapReduce-based [4]
approach [5], showing that a careful combination of Hyper-
LogLog counters, compression and succinct data structure can
provide a speedup of two orders of magnitude, and in fact,
comparing costs, more scalability. We also show how to extend
our techniques to a class of weighted graphs with a tiny loss
in space.

The Java software implementing the algorithms described
in this paper is distributed as free software within the Web-
Graph framework.1 Moreover, all dataset we use are publicly
available.

Using our Java tool we are able, for the first time, to
approximate distance-based centrality indices on graphs with
billions of nodes using a standard workstation.

II. NOTATION

In this paper, we use the following notation: G D .V;E/ is
a directed graph with n D jV j nodes and m D jEj arcs; we
write x ! y as a shortcut for .x; y/ 2 E. The length of the
shortest path from x to y is denoted by d.x; y/ and called the
distance between x and y; we let d.x; y/ D1 if there is no

1http://webgraph.di.unimi.it/
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directed path from x to y. The nodes reachable from x are
the nodes y such that d.x; y/ < 1. The nodes coreachable
from x are the nodes y such that d.y; x/ < 1. We let GT
be the transpose of G (i.e., the graph obtained by reverting all
arc directions in G). The ball of radius r around x is

BG.x; r/ D fy j d.x; y/ � t g:

III. GEOMETRIC CENTRALITIES

We call geometric those centrality measures2 whose basic
assumption is that importance depends on some function of
the distances. These are actually some of the oldest measures
defined in the literature.

A. Closeness centrality

Closeness was introduced by Bavelas in the late forties [8];
the closeness of x is defined by

1P
y d.y; x/

: (1)

The intuition behind closeness is that nodes with a large sum of
distances are peripheral. By reciprocating the sum, nodes with
a smaller denominator obtain a larger centrality. We remark
that for the above definition to make sense, the graph needs
be strongly connected. Lacking that condition, some of the
denominators will be 1, resulting in a rank of zero for all
nodes which cannot coreach the whole graph.

In fact, it was not probably in Bavelas’s intentions to apply
the measure to non-connected graphs, but nonetheless the
measure is sometimes “patched” by simply not including pairs
with infinite distance, that is,

1P
d.y;x/<1 d.y; x/

I

for the sake of completeness, one further assumes that nodes
with an empty coreachable set have centrality 0 by definition.
These apparently innocuous adjustments, however, introduce a
strong bias toward nodes with a small coreachable set.

B. Lin’s centrality

Nan Lin [9] tried to patch the definition of closeness for
graphs with infinite distances by weighting closeness using
the square of the number of coreachable nodes; his definition
for the centrality of a node x with a nonempty coreachable set
is ˇ̌

fy j d.y; x/ <1g
ˇ̌2P

d.y;x/<1 d.y; x/
:

2Most centrality measures proposed in the literature were actually described
only for undirected, connected graphs. Since the study of web graphs and
online social networks has posed the problem of extending centrality concepts
to networks that are directed, and possibly not strongly connected, in the rest
of this paper we consider measures depending on the incoming arcs of a
node, so distances will be taken from all nodes to a fixed node. If necessary,
these measures can be called “negative”, as opposed to the “positive” versions
obtained by taking the transpose of the graph.

Nodes with an empty coreachable set have centrality 1 by
definition.

The rationale behind this definitions is the following: first,
we consider closeness not the inverse of a sum of distances,
but rather the inverse of the average distance, which entails a
first multiplication by the number of coreachable nodes. This
change normalizes closeness across the graph. Now, however,
we want nodes with a larger coreachable set to be more
important, given that the average distance is the same, so we
multiply again by the number of coreachable nodes.

Lin’s index was somewhat surprisingly ignored in the fol-
lowing literature. Nonetheless, it seems to provide a reasonable
solution for the problems caused by the definition of closeness.

C. Harmonic centrality

As we noticed, the main problem with closeness lies in
the presence of pairs of unreachable nodes. In [2], we have
proposed to replace the reciprocal of the sum of distances in the
definition of closeness with the sum of reciprocals of distances.
Conceptually, this corresponds to replacing the reciprocal of
a denormalized average of distances with the the reciprocal
of a denormalized harmonic mean of distances, analogously
to what Marchiori and Latora proposed to do with the notion
of average distance [10]. The harmonic mean has the useful
property of handling 1 cleanly (assuming, of course, that
1�1 D 0).

We thus obtain the harmonic centrality of x:X
y¤x

1

d.y; x/
D

X
d.y;x/<1;y¤x

1

d.y; x/
: (2)

The difference with (1) might seem minor, but actually it is
a radical change. Harmonic centrality is strongly correlated
to closeness centrality in simple networks, but naturally also
accounts for nodes y that cannot reach x. Thus, it can be
fruitfully applied to graphs that are not strongly connected.

IV. HYPERBALL

In this section, we present HyperBall, a general framework
for computations that depend on the number of nodes at
distance at most t or exactly t from a node. HyperBall uses
the same dynamic programming scheme of algorithms that
approximate neighborhood functions, such as ANF [11] or
HyperANF [3], but instead of aggregating at each step the
information about all nodes into a single output value (the
neighbourhood function at t ) HyperBall makes it possible to
perform a different set of operations (for example, depending
on the centrality to be computed). We have tried to make
the treatment self-contained, albeit a few details will be only
sketched here, when they can be deduced from the description
of HyperANF [3].
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A. HyperLogLog counters

HyperLogLog counters, as described in [12] (which is based
on [13]), are used to count approximately the number of
distinct elements in a stream. For the purposes of the present
paper, we need to recall briefly their behaviour. Essentially,
these probabilistic counters are a sort of approximate set
representation to which, however, we are only allowed to pose
questions about the (approximate) size of the set.

Let D be a fixed domain and h W D ! 21 be a fixed hash
function mapping each element of D into an infinite binary
sequence. For a given x 2 21, let ht .x/ denote the sequence
made by the leftmost t bits of h.x/, and ht .x/ be the sequence
of remaining bits of x; ht is identified with its corresponding
integer value in the range f 0; 1; : : : ; 2t � 1 g. Moreover, given
a binary sequence w, we let �C.w/ be the number of leading
zeroes in w plus one (e.g., �C.00101/ D 3). Unless otherwise
specified, all logarithms are in base 2.

Algorithm 1 The Hyperloglog counter as described in [12]:
it allows one to count (approximately) the number of distinct
elements in a stream. ˛p is a constant whose value depends
on p and is provided in [12]. Some technical details have been
simplified.

0 h W D ! 21, a hash function from the domain of items
1 MŒ�� the counter, an array of p D 2b registers
2 (indexed from 0) and set to �1
3
4 function add.M : counter; x: item/
5 begin
6 i  hb.x/;
7 MŒi� max

˚
MŒi�; �C

�
hb.x/

�	
8 end; // function add
9
10 function size.M : counter/
11 begin

12 Z  
�Pp�1

jD0 2
�MŒj �

��1
;

13 return E D ˛pp2Z
14 end; // function size
15
16 foreach item x seen in the stream begin
17 add(M ,x)
18 end;
19 print size.M/

The value E printed by Algorithm 1 is [12][Theorem 1] an
asymptotically almost3 unbiased estimator for the number n
of distinct elements in the stream; for n ! 1, the relative
standard deviation (that is, the ratio between the standard
deviation of E and n) is at most ˇp=

p
p � 1:06=

p
p, where

ˇp is a suitable constant. Moreover, even if the size of the

3For the purposes of this paper, in the following we will consider in practice
the estimator as it if was unbiased, as suggested in [12].

registers (and of the hash function) used by the algorithm
is unbounded, one can limit it to log log.n=p/ C !.n/ bits
obtaining almost certainly the same output (!.n/ is a function
going to infinity arbitrarily slowly); overall, the algorithm
requires .1 C o.1// � p log log.n=p/ bits of space (this is the
reason why these counters are called HyperLogLog). Here and
in the rest of the paper we tacitly assume that p � 16 and that
registers are made of dlog logne bits.

B. Estimating balls

The basic idea used by algorithms such as ANF [11] and
HyperANF [3] is that that BG.x; r/, the ball of radius r around
node x, satisfies

BG.x; 0/ D f x g

BG.x; r C 1/ D
[
x!y

BG.y; r/ [ f x g:

We can thus compute BG.x; r/ iteratively using sequential
scans of the graph (i.e., scans in which we go in turn through
the successor list of each node). One obvious drawback of this
solution is that during the scan we need to access randomly
the sets BG.x; r � 1/ (the sets BG.x; r/ can be just saved
on disk on an update file and reloaded later). For this to be
possible, we need to store the (approximated) balls in a data
structure that can be fit in the core memory: here is where
probabilistic counters come into play; to be able to use them,
though, we need to endow counters with a primitive for the
union. Union can be implemented provided that the counter
associated with the stream of data AB can be computed
from the counters associated with A and B; in the case of
HyperLogLog counters, this is easily seen to correspond to
maximising the two counters, register by register.

Algorithm 2, named HyperBall, describes our strategy to
compute centralities. We keep track of one HyperLogLog
counter for each node; at the t -th iteration of the main loop, the
counter cŒv� is in the same state as if it would have been fed
with BG.v; t/, and so its expected value is jBG.v; t/j. During
the execution of the loop, when we have finished examining
node v the counter a is in the same state as if it would
have been fed with BG.v; t C 1/, and so its value will be
jBG.v; t C 1/j in expectation.

This means, in particular, that it is possible to compute an
approximation of

jfy j d.x; y/ D t gj

(the number of nodes at distance t from x) by evaluating

jBG.v; t C 1/j � jBG.v; t/j:

The computation would be exact if the algorithm had actually
kept track of the set BG.x; t/ for each node, something that
is obviously not possible; using probabilistic counters makes
this feasible, at the cost of tolerating some approximation in
the computation of cardinalities.

The idea of using differences between ball sizes to estimate
the number of nodes at distance t appeared also in [14],
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where it was used with a different kind of counter (Martin–
Flajolet) to estimate the 90% percentile of the distribution of
distances from each node. An analogous technique, always
exploiting Martin–Flajolet counters, was adopted in [5] to
approximate closeness. In both cases the implementations
were geared towards MapReduce [4]. A more sophisticated
approach, which can be implemented using breadth-first visits
or dynamic programming, uses all-distances sketches [15]: it
provides better error bounds, but it requires also significantly
more memory.

Algorithm 2 HyperBall in pseudocode. The algorithm uses, for
each node v 2 n, an initially empty HyperLogLog counter cŒv�.
The function union.�;�/ maximises two counters register by
register. At line 19, one has the estimate of jBG.v; t/j from
cŒv� and the estimate of jBG.v; t C 1/j from a.

0 cŒ��, an array of n HyperLogLog counters
1
2 function union.M : counter; N : counter/
3 foreach i < p begin
4 MŒi� max.MŒi�; N Œi �/
5 end
6 end; // function union
7
8 foreach v 2 n begin
9 add.cŒv�; v/
10 end;
11 t  0;
12 do begin
13 foreach v 2 n begin
14 a cŒv�;
15 foreach v ! w begin
16 a union.cŒw�; a/
17 end;
18 write hv; ai to disk
19 do something with a and cŒv�
20 end;
21 Read the pairs hv; ai and update the array cŒ��
22 t  t C 1
23 until no counter changes its value.

HyperBall is run until all counters stabilise (e.g., the last
iteration must leave all counters unchanged). As shown in [3],
any alternative termination condition may lead to arbitrarily
large mistakes on pathological graphs.

V. ESTIMATING CENTRALITIES

It should be clear that exactly three ingredients for each
node x are necessary to compute closeness, harmonic, and
Lin’s centrality:

� the sum of the distances to x;
� the sum of the reciprocals of the distances to x;
� the size of the coreachable set of x.

The last quantity is simply the value of each counter cŒv� in
HyperBall at the end of the computation on GT . The other
quantities can be easily computed in a cumulative fashion
nothing thatX

y

d.y; x/ D
X
t>0

t jfy j d.y; x/ D t gj

D

X
t>0

t
�
jBGT .x; t/j � jBGT .x; t � 1/j

�
;

andX
y¤x

1

d.y; x/
D

X
t>0

1

t
jfy j d.y; x/ D t gj

D

X
t>0

1

t

�
jBGT .x; t/j � jBGT .x; t � 1/j

�
:

We can thus obtain estimators for the first two ingredients by
storing a single floating point value per node, and cumulating
the values for each node during the execution of HyperBall.
Note that we have to run the algorithm on the transpose of G,
since we need to estimate the distances to x, rather than from
x.

If we accept the minimum possible precision (16 regis-
ters per HyperLogLog counter), the core memory necessary
for running HyperBall is just 16 bytes per node (assuming
n � 264), plus four booleans per node to keep track of
modifications, and ancillary data structures that are orders of
magnitude smaller. A machine with 2 TiB of core memory
could thus compute centralities on networks with more than a
hundred billion nodes, prompting the title of this paper.

Note that even if we use a small number of registers per
HyperLogLog counter, by executing HyperBall multiple times
we can increase the confidence in the computed value for each
estimator, leading to increasingly better approximations.

As in the case of the average distance [3], the theoretical
bounds are quite ugly, but actually the derived values we
compute are very precise, as shown by the concentration of the
values associated several runs. Multiple runs in this case are
very useful, as they make it possible to compute the empirical
standard deviation.

A. Representing and scanning the graph

In the previous section we have estimated the core memory
usage of HyperBall without taking the graph size into account.
However, representing and accessing the graph is a nontrivial
problem, in particular during the last phases of the compu-
tation, where we can keep track of the few nodes that are
modifying their counter, and propagate new values only when
necessary.

Here we exploit two techniques: compression, to represent
the graph as a bit stream in a small amount of disk space, so
that we are able to access it from disk efficiently using memory
mapping; and succint data structures, to access quickly the
bitstream in a random fashion.
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In particular, for compression we use the WebGraph frame-
work [16], which is a set of state-of-the-art algorithms and
codes to compress web and social graphs. WebGraph repre-
sents a graph as a bitstream, with a further 64-bit pointer for
each node if random access is necessary. To store the pointers
in memory, we use a succinct encoding based on a broad-
word implementation [17] of the Elias-Fano representation of
monotone sequences [18]. This way, the cost of a pointer is
logarithmic in the average length per node of the bitstream,
and in real-world graphs this means about one byte of core
memory per node, which is an order of magnitude less than
the memory used by HyperBall.

B. Error bounds

The estimate OBG.x; t/ for jBG.x; t/j obtained by Hyper-
Ball follow the bounds given in Section IV-A. Nonetheless, as
soon as we consider the differences OBG.x; t C 1/� OBG.x; t/,
the bounds on the error become quite ugly. A similar problem
occurs when estimating the distance distribution and its statis-
tics: by taking the difference between points of the cumulative
distribution, the bound on the relative standard deviation is
lost [3].

Note that in part this is an intrinsic problem: HyperBall es-
sentially runs in quasi-linear expected time O.pm logn/ [15],
and due to known bounds on the approximation the diame-
ter [19] it is unlikely that it can provide in all cases a good
approximation of the differences (which would imply a good
approximation of the eccentricity of each node, and in the end
a good approximation of the diameter).

Nonetheless, for a number of reasons the estimates of the
differences on real-world graphs turn out to be very good.
First of all, for very small numbers the HyperLogLog counters
compute a different estimator (not shown in Algorithm 1) that
is much more accurate. Second, on social and web graphs (and
in general, for small-world graphs) the function jBG.x; t/j
grows very quickly for small values of t , so the magnitude of
the difference is not far from the magnitude of the ball size,
which makes the relative error on the ball size small with
respect to the difference. Third, once most of the nodes in
the reachable set are contained in BG.x; t/, the error of the
HyperLogLog counter tends to stabilise, so the bound on the
relative standard deviation “transfers” to the differences.

We thus expect (and observe) that the estimation of the size
of the nodes at distance t to be quite accurate, in spite of the
difficulty of proving a theoretical error bound.

From a practical viewpoint, the simplest way of controlling
the error is generating multiple samples, and computing the
empirical standard deviation. This is, for example, the way in
which the results for the “degrees of separation” in [7] were
reported. By generating several samples, we can restrict the
confidence interval for the computed values.

In Section VIII we report experiments on a relatively small
graph on which centralities could be computed exactly to show
that the precision obtained on the final values is very close to
the theoretical prediction for a single counter.

VI. COMPUTING WITH WEIGHTS ON THE NODES

It is very natural, in a number of contexts, to have weights on
the nodes that represent their importance. Centrality measures
should then be redefined taking into account weights in the
obvious way: the sum of distances should becomeX

y

w.y/d.y; x/;

the sum of inverse distances should becomeX
y

w.y/

d.y; x/
;

and the size of the coreachable set should becomeX
d.y;x/<1

w.y/:

There is no direct way to incorporate weights in the dynamic
programming algorithm, but weights can be easily simulated
if they are integers. Suppose that the weighting function is
w W V ! f1; : : : ;W g, and assume that each node x 2 V is
associated with a set R.x/ D fx1; : : : ; xw.x/g of replicas of
the node (with the proviso that distinct nodes have disjoint
replicas).

Then the weighted ball of radius r around x can be defined
recursively as:

WG.x; 0/ D R.x/

WG.x; r C 1/ D R.x/ [
[
x!y

WG.y; r/:

It is easy to see that

jWG.x; r C 1/j � jWG.x; r/j D
X

yWd.x;y/Dr

w.y/:

Attention must be paid, of course, to the sizing of the counters
in this case. Instead of log logn bits, counters with

log log
X
x

w.x/ � log log.W n/ D log.lognC logW /

bits will have to be used. We note, however, that since the
increase factor

P
x w.x/=n passes through two logarithms, it

is unlikely that more than 6 or at most 7 bits will be ever
necessary.

VII. COMPUTING WITH DISCOUNT FUNCTIONS

If we look at harmonic centrality from a more elementary
perspective, we can see that when measuring the centrality
of a node we start by considering its (in)degree, that is, how
many neighbours it has at distance one. Unsatisfied by this
raw measure, we continue and take into consideration nodes
at distance two. However, their number is not as important
as the degree, so before adding it to the degree we discount
its importance it by 1=2. The process continues with nodes at
distance three, discounted by 1=3 until all coreachable nodes
have been considered.
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The essence of this process is that we are counting nodes
at larger and larger distances from the target, discounting
their number based on their distance. One can generalize this
idea to a family of centrality measures. The idea, similar to
the definition of discounted cumulative gain in information
retrieval [20], is that with each coreachable node we gain some
importance. However, the importance given by the node is
discounted by a quantity depending on the distance that, in
the case of harmonic centrality, is the reciprocal 1=d . Another
reasonable choice is a logarithmic discount 1= log.d C 1/,
which attenuates even more slowly the importance of far nodes,
or a quadratic discount 1=d2. More generally, the centrality
of x based on a non-increasing discount function f W N! R
is X

d.y;x/<1;y¤x

f .d.y; x//:

It can be approximated by HyperBall nothing thatX
d.y;x/<1;y¤x

f .d.y; x// D
X
t>0

f .t/jfy j d.y; x/ D t gj

D

X
t>0

f .t/
�
jBGT .x; t/j � jBGT .x; t � 1/j

�
:

We are proposing relatively mild discount functions, in
contract with the exponential decay used, for example, in
Katz’s index [21]. This is perfectly reasonable, since Katz’s
index is based on paths, which are usually infinite. Discount-
based centralities are necessarily given by finite summations,
so there is no need for a rapid decay. Actually, by choosing a
constant discount function we would estimate the importance
of each node just by the number of nodes it can coreach (i.e.,
in the undirected case, by the size of its connected component).

Combining this observation and that of Section VI, we
conclude that HyperBall can compute a class of centralities
that could be called discounted-gain centralities:4X

d.y;x/<1;y¤x

w.y/f .d.y; x//:

VIII. EXPERIMENTS

We decided to perform three kinds of experiments:

� A small-scale experiment on the same graphs for which
explicit timings are reported in [5], to compare the
absolute speed of a MapReduced-based approach using
the Hadoop open-source implementation and of an in-
core approach. Note that the graphs involved are ex-
tremely unrealistic (e.g., they have all diameter 2 and are
orders of magnitude denser than typical web or social
graphs). This experiment was run using p D 64 registers
per HyperLogLog counter, corresponding to a relative
standard deviation of 13:18%, which is slightly better
than the one used in [5] (13:78%, as communicated by
the authors), to make a comparison of the execution
times possible.

4These are called spatially decaying in [22].

TABLE I. COMPARATIVE TIMINGS PER ITERATION BETWEEN THE
HADOOP IMPLEMENTATION DESCRIBED IN [5] RUNNING ON 50 MACHINES

AND HYPERBALL ON A MACBOOK PRO LAPTOP (2:6GHZ INTEL I7,
8 GIB RAM, 8 CORES) AND ON A 32-CORE, 64 GIB RAM WORKSTATION

USING 2:3GHZ AMD OPTERON 6276 PROCESSORS. TIMINGS FOR THE
HADOOP IMPLEMENTATION WERE DEDUCTED FROM FIGURE 4(B) OF [5].

NOTE THAT THE BETTER PROCESSOR AND THE SSD DISK OF THE
MACBOOK PRO MAKE IT ALMOST TWICE FASTER (PER CORE) THAN THE

WORKSTATION.

Size (nodes/arcs) Hadoop [5] MacBook 32 cores
20 K / 40 M 250 s 2 s 1 s

59 K / 282 M 1750 s 10 s 4 s
177 K / 1977 M 2875 s 70 s 23 s

� A medium-size experiment to verify the convergence
properties of our computations. For this purpose, we
had to restrict ourselves to a graph for which exact
values could be computed using n breadth-first visits. We
focused on a public snapshot of Wikipedia5. This graph
consists of 4 206 785 nodes and 101 355 853 arcs (with
average degree 24 and the largest strongly connected
component spanning about 89% of the nodes). We per-
formed 100 computations using p D 4096 registers per
counters, corresponding to a theoretical relative standard
deviation of 1:62% for each computation. The exact
computation of the centralities required a few days using
40 cores.

� A large-scale experiment using the largest ClueWeb096

graph; ClueWeb09 is, at the time of this writing, the
largest web graph publicly available, one order of mag-
nitude larger that previous efforts in terms of nodes.
It contains 4 780 950 903 nodes and 7 939 647 896 arcs.
The purpose of this experiment was to show our methods
in action on a very large dataset.7

In Table I we report the timings for an iteration on the same
set of Kronecker graphs used in [5]. A standard workstation
with 32 cores using HyperBall is at least 150 times faster than a
Hadoop-based implementation using using 50 machines; even
a MacBook Pro with 8 cores is at least 50 times faster.

In Figure 1 we report the results of the second set of
experiments, which fully confirm our empirical observations
on the behaviour of the difference estimator: on average, the
relative error on the computed centrality indices is very close
to the theoretical prediction for each single HyperLogLog
counter, and, in fact, almost always significantly smaller.

It is interesting to observe that the estimation on the number
of coreachable nodes (depending on the value of a single

5Available at http://law.di.unimi.it/
6A dataset gathered in 2009 within the U.S. National Science Foundation’s

Cluster Exploratory (CluE) program. The ClueWeb12 graph will be even
larger, but it is presently still under construction. See http://lemurproject.org/
clueweb09/

7We remark that due to the way in which the graph has been collected
(e.g., probably starting from a large seed) the graph is actually significantly
less dense than a web graph obtained by breadth-first sampling or similar
techniques. Moreover, the graph contains the whole set of discovered nodes,
even if only about 1:2 billion pages were actually crawled. As a result, many
statistics are off scale: the harmonic diameter [10], [23] is � 15131 (typical
values for breadth-first web snapshots are � 20) and the giant component is
just 0:6% of the whole graph.
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Fig. 1. Relative errors in the computation of centrality measures on Wikipedia: we averaged the values computed in 5, 10, 15, . . . , 100 runs and computed the
relative error with respect to the real value (the latter were obtained by running an exact implementation). The boxes represent the 1st (lower edge), 2nd (i.e.,
the median; midline) and 3rd (upper edge) quartile; the whiskers correspond to an interval of length 2� around the mean. For comparison, each plot contains
the curve of the theoretical relative standard deviation for each single HyperLogLog counter over the given number of samples.

counter at the end of the computation) is extremely more
concentrated. This is due both to the lack of differences, which
reduces the error, and to the fact that most nodes (89%) lie in
the giant strongly connected component, so their coreachable
set is identical, and this induces a collapse of the quartiles of
the error on the median value.

On the same dataset, Table II reports figures showing that
increasing the number of cores leaves essentially unmodified
the time per arc per core (i.e., linear scalability). The only
significant (30%) increase happen at 32 cores, and it is likely

to be caused by the nonlinear cost of caching.

Finally, we ran HyperBall on ClueWeb09 using a work-
station with 40 Intel Xeon E7-4870 at 2:40GHz and 1 TiB
of RAM (with the same hardware, we could have analysed
a graph with 50 billion nodes using p D 16). We report
the results in Table III. We performed three experiments with
different levels of precision, and in the one with the highest
precision we fully utilized the in-core memory: the timings
show that increasing the precision scales even better than
linearly, which is to be expected, because the cost of scanning
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TABLE II. TIME PER ARC PER CORE OF A HYPERBALL ITERATION,
TESTED ON THE WIKIPEDIA GRAPH WITH p D 4096.

cores Time per arc per core
1 906 ns
2 933 ns
4 967 ns
8 1018 ns
16 1093 ns
32 1389 ns

TABLE III. TIMINGS FOR A FULL 40-CORE COMPUTATION (� 200
ITERATIONS) ON CLUEWEB09 USING A DIFFERENT NUMBER p OF

REGISTERS PER HYPERLOGLOG COUNTER. THE AMOUNT OF MEMORY
DOES NOT INCLUDE 7:2GIB OF SUCCINCT DATA STRUCTURES THAT
STORE POINTERS TO THE MEMORY-MAPPED ON-DISK BITSTREAMS

REPRESENTING THE GRAPH AND ITS TRANSPOSE.

p Memory Overall time Per iteration (avg.)
16 73GiB 96 m 27 s
64 234GiB 141 m 40 s
256 875GiB 422 m 120 s

the graph is constant whereas the cost of computing with
greater precision grows linearly with the number of registers
per HyperLogLog counter. Thus, for a fixed desired precision a
greater amount of in-core memory translates into higher speed.

IX. CONCLUSIONS AND FUTURE WORK

We have described HyperBall, a framework for in-core
approximate computation of centralities based on the number
of (possibly weighted) nodes at distance exactly t or at most
t from each node x of a graph. With 2 TiB of memory,
HyperBall makes it possible to compute accurately and quickly
harmonic centrality for graphs up to a hundred billion nodes.
We obtain our results with a mix of approximate set representa-
tions (by HyperLogLog counters), efficient compressed graph
handling, and succinct data structures to represent pointers
(that make it possible to access quickly the memory-mapped
graph representation).

We provide experiments on a 4:8 billion node dataset, which
should be contrasted with previous literature: the largest dataset
in [5] contains 25 million nodes, and the dataset of [14]
contains 1:4 billion nodes. Moreover, both papers provide
timings only for a small, � 177 000-nodes graph, whereas we
report timings for all our datasets.
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