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Quick detection of popular entities
in large directed networks

ABSTRACT

In this paper, we address a problem of quick detection of
popular entities in large online social networks. Practical
importance of the problem is attested by a large number
of companies that continuously collect and update statistics
about popular entities. We suggest an efficient two-stage
algorithm for solving this problem. For instance, our al-
gorithm needs only one thousand API requests in order to
find the top-50 most popular users in Twitter, a network
with more than a billion of registered users. Our algorithm
is easy to implement, it outperforms existing methods, and
serves many different purposes, such as finding most popular
users or most popular interest groups in social networks. An
important contribution of this work is the analysis of the pro-
posed algorithm using the Extreme Value Theory — a branch
of probability that studies extreme events and properties of
largest order statistics in random samples. Using this the-
ory, we derive accurate predictions for the algorithm’s per-
formance and show that the number of API requests for find-
ing top-k most popular entities is sublinear in the number
of entities. Moreover, we formally show that the high vari-
ability among the entities, expressed through heavy-tailed
distributions, is the reason for the algorithm’s efficiency. We
quantify this phenomenon in a rigorous mathematical way.

1. INTRODUCTION

In this paper, we propose a randomized algorithm for
quick detection of popular entities in large online social net-
works. The entities can be, for example, users or interest
groups, user categories, geographical locations, etc. For in-
stance, one can be interested in finding out a list of Twit-
ter users with many followers or Facebook interest groups
with many members. Practical importance of the prob-
lem is attested by a large number of companies that con-
tinuously collect and update statistics about popular enti-
ties (twittercounter.com, followerwonk.com, twitaholic.com,
www.insidefacebook.com, yavkontakte.ru just to name a few).

The problem at hand may seem trivial, if one assumes
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that the network structure and the relation between entities
are known. However, even then finding, for example, top-k
in-degree nodes in a directed graph G of size N takes the
time O(N). For large networks, such linear complexity is al-
ready too high. In fact, for any practical purpose, it is much
more valuable to find an approximate result in a sublinear
time than an exact result in a linear time. Furthermore,
the data of current social graphs is typically available only
to the owners of the social network, and can be obtained
by other interested parties only through API requests. The
rate of allowed API requests is usually quite small. For in-
stance, Twitter has the limit of one access per minute for
one standard API account. Then, in order to crawl the en-
tire network with more than 500 million users one need more
than 950 years. Clearly, we would like to find most popular
entities using only a small number of API requests.
Formally, the problem addressed in this paper is as follows.
Let V be a set of entities, usually users, that can be accessed
using API requests. Let W also be another set of entities
(possibly equal to V). We represent V and W as vertices of a
bipartite graph (V, W, E), where a directed edge (v,w) € E,
with v € V, w € W, represents a relation between v and
w. For instance, if V.= W is a set of Twitter users, then
(v,w) € F may mean that v follows w, or that v retweeted a
tweet from w. Note that any directed graph G = (V, E) can
be represented equivalently by the bi-partite graph (V, V, E).
One can also suppose that V is a set of users and W is a set
of interest groups, while the edge (v, w) represents that user
v belongs to group w. Our goal is to quickly find top-k in-
degree entities in W. In this setting, throughout the paper,
we use the terms ‘nodes’ and ‘entities’ interchangeably.
The algorithm proposed in this paper can detect popu-
lar entities with high precision using very small number of
API requests. Most of our experiments are performed on
the Twitter graph, because it is a good example of a huge
network (billion of registered users) and very limited rate of
requests to API. We use only 1000 API request to find top-
50 Twitter users with very high precision. We also demon-
strate the efficacy of our approach on the example of online
social network (to be specified in the camera-ready version)
which had, at the time of article preparation, more than 200
million registered users. We use our algorithm to quickly
detect most popular interest groups in this social network.
Experiments on random graph models show that our algo-
rithm outperforms the baselines algorithms from [4] and [14].
Moreover, our algorithm can be used in a very general set-
tings for finding most popular entities, while the baseline
algorithms can only be use for finding nodes of largest de-



grees in directed ([14]) or undirected ([4]) graphs.

An important contribution of this work is the novel anal-
ysis of proposed algorithm using classical results of the Ex-
treme Value Theory (EVT) — a branch of probability that
studies extreme events and properties of largest order statis-
tics in random samples. We refer to [8] for a comprehensive
introduction to EVT. Specifically, we treat the largest in-
degrees in W as high order statistics of a heavy-tailed dis-
tribution, and use EVT to obtain the limiting properties of
these order statistics. This way we obtain statistical estima-
tion of the magnitude of the largest in-degrees in W. Using
these mathematical tools, we can, for instance, accurately
predict the average fraction of correctly identified top-100
most followed users in Twitter using only the knowledge of
top-20 degrees, which can be detected by our algorithm very
quickly with practically 100% accuracy.

We derive the complexity of our algorithm in terms of the
number of entities in W show that the complexity is sublin-
ear if the in-degree distribution in W is heavy tailed. Intu-
itively, this should be the case because the high variability
of the in-degrees implies that the largest entities have ex-
tremely large number of in-links and thus are easy to find.
We formalize this argument using the EVT results.

The algorithm consists of two stages. The parameters of
the algorithm, n1 and ns, are the number of API requests
used on the first and the second stage, respectively. The
performance of the algorithm is very robust with respect
of the parameters’ values. We find the optimal scaling for
n1 and ne with respect to three measures of the algorithm
performance: the average fraction of correctly identified top-
k entities, the first-error index (the number of the highest
statistics within top-k that was not included in the identified
top-k list), and the the sum of incoming degrees of identified
no entities. Notice that for fixed n, the latter performance
measure does not monotonically grows with na because with
small n1 the number of links received from n; random users
is a poor indication of the node’s actual degree. This can be
clearly seen in Figure 2 for the Twitter graph.

The rest of the paper is organized as follows. In Section 2,
we give a short overview of the related work. In Section 3,
we formally describe our algorithm. We empirically show
the efficiency of our algorithm and compare it to baseline
strategies in Section 4. We present a detailed analysis of the
algorithm in Section 5 and evaluate its optimal parameters
with respect to the above mentioned performance character-
istics. Section 6 concludes the paper.

2. RELATED WORK

Over the last years data sets have become increasingly
massive. For such large data any complexity higher than
linear (in dataset size) is unacceptable, and even linear com-
plexity may be too high. It is also well understood that
an algorithm, which runs in sublinear time, cannot return
an exact answer. In fact, such algorithms often use ran-
domization, and then errors occur with positive probability.
Nevertheless, in practice, a rough but quick answer is often
more valuable than exact but computationally demanding
solution. Therefore, sublinear time algorithms become in-
creasingly important, and many studies of such algorithms
have appeared in recent years (see, e.g., [10, 13, 15, 16]).

An essential assumption of this work is that the network
structure is not available, and has to be discovered using
the API requests. This setting is similar to on-line compu-

tations, when information is obtained and immediately pro-
cessed while crawling the network graph (for instance the
World Wide Web). There is a large body of literature where
such on-line algorithms are developed and analyzed. Many
of these algorithms are developed for computing and updat-
ing the PageRank vector [1, 6]. In particular, the algorithm
recently proposed in [6] computes the PageRank vector in
sublinear time. Furthermore, the probabilistic Monte Carlo
methods [2, 11] allow to continuously update the PageRank
as the structure of the Web changes.

Randomized algorithms are also used for discovering the
structure of social networks. Often random walks are de-
signed in such a way that the desired nodes are easily found.
For example, in [12] an unbiased random walk, where each
node is visited with equal probability, is constructed in or-
der to find the degree distribution on Facebook. A different
random walk is designed in [4] for finding nodes with largest
degrees in undirected graphs. This random walk has jumps,
so that it does not get stuck around just one hub, but unlike
PageRank, its a stationary distribution completely defined
by the nodes’ degrees.

The problem of finding the most popular entities in large
networks has been analyzed in several papers. In Section 4.3
we show that our algorithm outperforms two baselines: the
random walk algorithm in [4], and the crawling algorithm in
[14]. The latter algorithm [14] is designed to efficiently dis-
cover the correct set of pages with largest incoming degrees
in a fixed network, and to track these pages over time when
the network is changing. Their setting is different from ours
in several aspects. For example, in our case we can use API
to get indegree of any given item, while in the World Wide
Web this information is not available. On the other hand,
the algorithm in [14] is designed to discover the graph struc-
ture, and cannot be easily adopted for other tasks, such as
finding most popular use categories or interest groups.

To the best our knowledge, this is the first work that
presents and analyzes an efficient algorithm for retrieving
most popular entities under realistic API constraints.

3. ALGORITHM DESCRIPTION

Recall that we consider a bipartite graph (V, W, E), where
V and W are sets of entities, and (v, w) € E represents a
relation between the entities.

Let n = n1 +ne. Our algorithm has two stages, described
below. See Algorithm 1 for the pseudocode.

First stage. We start by sampling uniformly at random
a set A of ny entities (users, or nodes) vi,...,vn, € V. The
nodes are sampled independently, so the same node may
appear in A more than once, in which case we regard each
copy of this node as a different node. Since multiplicities
occur with very small probability this does not affect the
efficiency of the algorithm but simplifies the implementation.
For each node in A we record its out-neighbors in W. In
practice, we bound the number of recorded out-links by the
maximal number of id’s that can be retrieved within one API
request, thus the first stage uses exactly n1 API requests.

Second stage. Let Sy, w € W, be the number of nodes
in A that have a (recorded) edge to w, and let w; be the node
in W with i-th largest values of S, so that Sy, = Sw, =
-+ 2 Swy. Then we use another ny API requests to retrieve
the actual in-degrees of the ny top-nodes wi, ..., wn,.

The set {wi, w2, ..., wn,} is supposed to contain nodes
from W with large in-degrees. For example, if we are inter-



ested in top-k in-degree nodes in a directed graph, we hope
to identify these nodes with high precision if £ is significantly
smaller than ns.

Algorithm 1: Find entities with large incoming de-
grees

input : Set of entities V of size M, set of entities
W of size N, number of random nodes n1,
number of candidate nodes na

output: Nodes w1, ... wn, € W, their degrees

diy...,dn,
for i+ 1 to N do
| S[i] < 0;

for i < 1 to n1 do
v < random(M);
F < OutNeighbors(v);
foreach j in F' do
Sl <SG+ 1

W, ...y Wny  Top_na(S) // Slwil,..., S[wn,] are
top ng values in S;
for i < 1 to n2 do

L d; «+ InDegree(w;);

4. EXPERIMENTS

4.1 Twitter graph

First, we show that our algorithm quickly finds the most
popular users in Twitter graph. Formally, V is a set of
Twitter users, W =V, and (v, w) € E iff v is a follower of w.
Twitter is an example of a huge network with limited access
to its structure. Information on the Twitter graph can be
obtained via Twitter API. The standard rate of requests to
API is one per minute. Every vertex has an id, which is an
integer number starting from 12. The largest id of a user is
~ 1460M (at the time when we performed the experiments).
Due to such id assignment, a random user in Twitter can be
easily chosen. The only problem is that some users in this
range have been deleted, some are suspended, and therefore
errors occur when addressing the id’s of these pages. In our
implementation we usually skip errors and assume that we
do not spend resources on such nodes. The fraction of errors
is ~ 20%.

Given an id of a user, a request to API can return one
of the following: i) the number of followers (indegree), ii)
the number of followees (outdegree), or iii) at most 5000
id’s of followers or followees. If a user has more than 5000
followees, then all their id’s can be retrieved only by using
several API requests. Instead, as described above, we record
only the first 5000 of the followees and ignore the rest. This
does not affect the performance of the algorithm because we
record followees of randomly sampled users, and the fraction
of Twitter users with more than 5000 followees, is small.

In order to obtain the ground truth, we first took nq =
nge = 500000 and found top-1000 users with a very high
precision. We used the obtained list for evaluating the per-
formance of our algorithm.

Figure 1 shows the average fraction of correctly identified
users from top-k for different k£ over 100 experiments, as a

function of ny, when n = 1000. Remarkably, we can find
top-50 users with very high precision.
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Figure 1: The number of correctly identified top-k£ most
followed Twitter users as a function of ns, with n = 1000.

We have also looked at the first-error index — the position
of the first mistake in the top-k list. Formally, if we correctly
identified top-(i—1) users, but did not find the ith user, then
the first-error index is i. Again, we have averaged the results
over 100 experiments. Results are shown in Figure 4 below
(red line). Note that with only 1000 API requests we can
correctly identify more than 50 users without any omission.

The sums of the degrees of the identified top-n2 entities,
with n = 1000, are depicted in Figure 2. Observe that
here the optimal value of ns is larger than in two previously
discussed metrics. Thus, in order to to discover as many true
in-links as possible, we may want to check more incoming
degrees in the second stage of the algorithm, so that we have
a large output list, but with less precision. We will discuss
this in more detail in Section 5.3.

4.2 Finding largest interest groups

Let V' be a set of users, W be a set of interest groups, and
(v,w) € E iff v is a member of w.

We will demonstrate that our algorithm can find the most
popular groups in a large social network with more than
200M registered users (to be specified in the camera-ready
version). As for Twitter, information on the network under
consideration can be obtained via API. Again, all users have
ids: integer numbers starting from 1. Due to this id assign-
ment, a random user in this network can be easily chosen.
In addition, all interest groups also have their own id’s.

We are interested in the following requests to API: i) given
id of a user, return his or her interest groups, ii) given id of
a group return its number of members. If a user decide to
hide the list of groups, then an error occurs. The portion of
such errors is ~ 30%.

As before, first we used our algorithm with n; = ny =
50000 in order to find the most popular groups with high
precision. Table 1 presents some statistics on the most pop-
ular groups. Then, we took n; = 700, ny = 300 and com-
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Figure 2: The sum of incoming degrees of identified users as
a function of n2, n = 1000.

Table 1: The most popular groups

Rank | Number of participants | Topic |

1 4,35M humor
2 4, 1M humor
3 3,76M movies
4 3,69M humor
5 3,59M humor
6 3,58M facts
7 3,36M cookery
8 3,31M humor
9 3,14M humor
10 3,14M movies
100 1,66M success

puted the fraction of correctly identified groups from top-
100. Using only 1000 API requests, our algorithm identifies
on average 73.2 from the top-100 interest groups (averaged
over 25 experiments). The standard deviation is 4.6.

4.3 Comparison with baseline algorithms

In this section we compare our algorithm with the algo-
rithms suggested in [4] and [14]. We start with the descrip-
tion of these algorithms.

Random walk based algorithm [4]. The algorithm
in [4] is a randomized algorithm for undirected graphs that
finds a top-k list of nodes with largest degrees in sublinear
time. It is based on the random walk with uniform jumps,
described by the following transition probabilities [5]:

(1)

a/N
di+a’

Py = { ad/ﬁ-zlv 1fz has a link to 7, . ‘

if ¢ does not have a link to j,
where N is the number of nodes in the graph and d; is
the degree of node i. The parameter o controls how often
the random walk makes an artificial jump. In [4] it is sug-
gested to take the parameter o equal to the average degree

Algorithm 2: Random walk based algorithm

input : Graph G with N nodes, E edges, number
of steps n, size of output list k, parameter o
output: Nodes v1, ... vk, their degrees di, ..., d
v < random(N);
F <+ Neighbors(v);
D] + size(F);
for i < 2 to n do
sample U[O,l},
. D(v]
if r < Blojta then
L v + random from F’;

else
| v < random(N);

F + Neighbors(v);
| D[] « size(F);
V1, ...,v < Top_k(D) // D[vi1],, D[vk] are top k
values in D;

in order to maximize the number of independent samples.
Interestingly, this implies that the random walk, in station-
arity, makes on average just one step between the jumps.
With such choice of o the random walk method of [4] mim-
ics most closely the suggested algorithm with independent
sampling and exactly one step from entity in V' to entity in
W. We should note that the random walk method could
be very valuable when the independent uniform sampling is
expensive, for example, when the id space is very sparse.

The random walk keeps a candidate list of £ nodes. Once
a new node is discovered according to the transition proba-
bility (1), we check its degree and compare it with degrees
of the nodes in the candidate list. If this newly discovered
node has a degree larger than degrees of some nodes in the
candidate list, the newly discovered node is inserted in the
candidate list and a node with the smallest degree in the
candidate list is pushed out. See Algorithm 2 for more de-
tailed description. The algorithm can be run for a predefined
number of steps or can be terminated according to one of
the stopping criteria provided in [4].

Crawl-Al and Crawl-GAI [14]. At each step we con-
sider one node and ask for its outgoing edges. At step n any
node j has its apparent indegree S;j, j = 1,..., N: the num-
ber of discovered edges pointing to this node. In Crawl-Al
the next node to consider is a random node, with probability
proportional to the apparent indegree. In Crawl-GAI, the
next node is the node with the highest apparent indegree.
After n steps we get a list of nodes with largest apparent
indegrees. See Algorithm 3 for the pseudocode of the algo-
rithm Crawl-GAI

In the experiments of the present paper we take the same
budget for all tested algorithms to compare their perfor-
mance.

Note that we cannot compare the algorithms on the Twit-
ter graph for several reasons. First, Algorithm 2 works only
on undirected graphs. Second, in order to choose a random
edge of a node, we need at least two request to API, to ask
for followees and followers. Also, the random walk often hits
nodes of high degree, and then many additional requests are
needed to retrieve their followers and followees, because the



Algorithm 3: Crawl-GAI
input : Graph G with N nodes, number of steps n,
size of output list k
output: Nodes v1,... vk

for i < 1 to N do
L S[i] « 0;
for i <1 to N do
v+ argmax(S[i]);
F < OutNeighbors(v);
foreach j in F' do
L Sl + S+ 1;
V1,...,0 < Top_k(S) // Slwi],..., S[wk] are top k
values in S;

Table 2: Number of correctly identified nodes from top-100
averaged over 100 experiments, n = 1000.

| Algorithm | mean | standard deviation |
Our (directed) 91.9 4.88
Crawl GAI (directed) 81.9 2.42
Crawl AT (directed) 82.9 2.38
Our (undirected) 97.9 1.71
Random walk (undirected) | 60.7 4.76

number of id’s that can be obtained in one request is lim-
ited (5000 in Twitter). For example, we need 6K request to
get the followers of a user with 30M followers. Algorithm 3
crawls only out-degrees, that are usually much smaller, but
it can potentially suffer from the API constraints, for exam-
ple, when in-degrees and out-degrees are dependent.

Therefore, in order to compare Algorithms 1-3, we have
generated a random directed graph according to the config-
uration model (see [7]). Our artificial graph has 1M nodes,
6M edges, and the parameter of the power law degree dis-
tribution is 2. This directed graph is used to compare our
algorithm to Crawl-Al and Crawl-GAI. In order to compare
our method to the random walk based algorithm, we treat
the generated graph as undirected. As prescribed by [4], we
took « slightly smaller than the average degree in the graph
(in our case w = 10) and we considered a random walk with
1000 steps.

For the algorithm suggested in this paper we took n; =
700, ny = 300. The results of comparison can be seen in
Table 2.

We expect our algorithm with ny = 1000 to be close to
Crawl-GALI Indeed, in the directed case our algorithm with
ny = 1000 identifies 81.4 nodes from top-100 on average (this
number is not presented in the table). Further improvement
of our algorithm over the baselines is obtained because of
the right balance between n; and na.

S. ANALYSIS OF THE ALGORITHM

In this section, we present the theoretical analysis of Al-
gorithm 1. The goal of this analysis is: 1) to mathematically
justify our suggested two-steps procedure; 2) to prove that
the total number of API requests, n, scales sublinearly with
the network size, N; 3) to find the optimal scaling of n1 and
n2 (the number of API requests in the first and the second

stage of the algorithm) with respect to n.

We number the nodes in W by 1,2,..., N according to
the number of incoming links, from most popular to least
popular. As prescribed by Algorithm 1, we pick ni nodes
in V uniformly at random. The first important observation
is that S; follows a binomial distribution. Indeed, let F}
be the unknown random in-degree of node j € W, so that
> Fy > ... > Fn. Then, if we label all nodes from V'
that have a edge to j (we call such nodes followers of j),
then S; is exactly the number of labeled nodes in a random

sample of n1 nodes, so its distribution is Binomial (nl, %)

Hence, we have

E(S;|F;) =ma % Var(8;) = m ( - W)' (2)

For the top nodes with large F this distribution can be ap-

proximated with the Poisson distribution Poisson(ij )

N

5.1 Candidate list

The quality of the top-k lists produced by Algorithm 1
is defined by the events whether or not the value of Sj,
j=1,...,k, is among the top-n2 values of Si,S2,...,SN,
obtained in the first stage of the algorithm. This is justified
by the intuition that if F; > Fj, then we are likely to see
S; > Si. Note, however, that the case when S; is as small
as 1, the event 1 = S; > S; = 0 is not informative.

EXAMPLE 1. Let us take n1 = ne = 500 in the case of the
Twitter graph. Then the average number of nodes i among
the top-10000 with S; = 1 is already

10* 10* 500F, .
Z P(S; = 1) ~ Z 5710;675001%/5'10 = 2539.1,
i=1 1=1

hence, many more than na nodes will have S; = 1 and can
make it to the top na values of S1,S52,...,5n only with a
small probability.

Motivated by the above considerations, we formulate our
approach in terms of a statistical test as follows. Let our
data be S1, S2,...,Sn. We assume that the observations are
realizations of independent Poisson random variables with
parameters n1 F1 /N,n1F>/N, ... ,n1Fn/N. For the two num-
bers j,l € 1,..., N, we test the null-hypothesis Hy : F; < F}
against the alternative Hy : F; > Fj. Let Si; = Si, = -+ 2>
S¢n2 be the top-n2 order statistics of Si, ..., Sy obtained by
Algorithm 1. Then the first stage of the algorithm is equiv-
alent to rejecting Hy : Fij < F;, forj=1,...,n2 —1such
that

no

Si; > max{S;,,, 1}. (3)

Here the strict inequality is necessary to guarantee that ¢;
is on the top-ng list after the first stage of the algorithm.
If Hy is rejected, then the actual degree of entity i; will be
retrieved in the second stage of the algorithm.

Note that in contrast to the classical hypothesis testing,
here we do not draw the conclusions solely from the observed
random data Si, Se, ..., Sy but we obtain the true values of
the parameters in the second stage of the algorithm. Hence,
if we use S;,, as a proxy for Sp,, then, given F1, F3, ...,
F, the quality of the top-k list is expressed as the power of



the test as follows:
P(node j is found|Fj, F,,)
= P(S; > max{Si,,, 1}|F}, Fi,,) (4)
~ P(S; > max{Suy, 1HE}, Fry)
2, _mPny (pyFp,)®
~ N ~ - 27
; c Nss! >

r>max{s,1}

—mFi (k)"
Nrrl

= Pj(nl), .]:1,,.1{7 (5)

5.2 Performance criteria

The main constraint of Algorithm 1 is the number of API
requests that we can use. In order to measure the perfor-
mance of the algorithm, we propose three objectives, de-
scribed formally in this section.

The first objective is the average number of correctly iden-
tified top-k nodes. This is defined in the same way as in [3]:

Elfraction of correctly indentified top-k entities]
1 1
=7 > P(node j is found|F}, Fr,) & = > Pi(n1). (6)
j=1 j=1

The second objective is the first-error index, which is equal
to 4 if the top (i — 1) entities are identified correctly, but
the top-i entity is not identified. If all top-ns2 entities are
identified correctly, we set the first-error index equal to n+1.
Using that for a discrete random variable X with values
1,2,...,k+1holds E(X) =YF  P(X > 1), we obtain the
average first-error index as follows:

ng
E[lst-error index] = Z P(1st-error index > 1)
1=0
1
P(S] > maX{S7;n2 B 1}|F], ey Finz)

1

+

na+1y

Il
M

l

3
|
—-

2 J
R~ Pi(n1). (M)
1i=1

J
Finally, our last objective is the sum of the identified top-
no degrees, that can be written in a very simple form:

ng
U := [sum of identified ny degrees] = Z F;,. (8)
1=1

5.3 EVT performance predictions

In order to compute the values in (6), (7), we need to make
assumptions on the top-nz in-degrees of entities in W: Fi,
Fs, ..., Fy,. To this end, we employ the quantile estimation
techniques from the Extreme Value Theory (EVT).

In most social networks the degrees of the entities show
a great variability. This is often modeled using power laws,
although it has been often argued that classical Pareto dis-
tribution does not always fit the observed data. In our anal-
ysis we assume that the incoming degrees of the entities in
W are independent random variables following a regularly
varying distribution G:

1—G(z) = Lx)z™ ", x>0, 9)
where L(-) is a slowly varying function, that is,

lim L(tx)/L(x)=1, t>0
Tr—r0o0

(L(-) can be, for example, a constant or a logarithm). We
note that (9) describes a broad class of heavy-tailed distri-
butions, for which the EVT arguments presented below are
valid, without imposing the rigid Pareto assumption.

Observe that Fi, Fb, ..., Fny are the order statistics of G.
Assume now that we know the correct values of the top-
m nodes, m < k. This is plausible because, for instance,
in Twitter, with n = 1000, the top-50 nodes are identified
with a very high precision, see Figure 1. Then, in order
to estimate the value of v, we can use the classical Hill’s
estimator 4, based on the top-m order statistics:

1, 1 i log(F3) — log(Fom). (10)

¥ =
m

Next, we use the quantile estimator, given by formula (4.3)
in [9], but we replace their two-moment estimator by the
Hill’s estimator in (10). This is possible because both esti-
mators are consistent (under slightly different conditions).
Under the assumption v > 0, we have the following estima-
tor f; for the (j — 1)/N-th quantile of G:

.
fi = F (%) ., j>1,j<<N. (11)

We propose to use f; as a prediction of Fj.

Note that our argument is inspired but not entirely justi-
fied by [9] because the consistency of the proposed quantile
estimator (11) is only proved for j < m, while we want to use
it for j > m. However, in the experiments we observe that
expressions (6) and (7) are very robust with respect to the
estimated values F1, ..., Fy,. Moreover, 4 increases with m,
and it is easy to see that with smaller 4 the predictions of
the algorithm performance are more conservative.

In Figure 3 we compare the true fraction of the correctly
identified top-k followed Twitter users to the performance
prediction (6) for n = 1000 and k = 100. The magenta
line shows the prediction for the fraction of correctly iden-
tified nodes in (6), where we used the correct values of
Fy, Fs, ..., Fn,. The green line represents the results for the
estimated values of Fi,..., Fy and Fy,, based on the true
values of the top-20 degrees. We see that it is very close to
the magenta line, which is based on the true values of the
degrees.

Similarly, we use formula (7) and the estimator (11) in
order to provide the prediction of the first-error index. The
results are given in Figure 4. We see again that the EVT
predictions are more pessimistic than the experimental re-
sults, so we find the lower bound for the algorithm’s actual
performance. Note also that the shape of the plot and the
optimal value of na have been captures correctly by both
predictors.

It is also clear that there is a principal difficulty in finding
similar analytical predictions for the objective U in (8) be-
cause is it is based not on the actual degrees Fi, Fb,. .., but
on the degrees Fj,, Fi,, .. S Finy, where S;; = Si, = - >
Siy are the order statistics of the S;’s. The exact expres-
sions for such order statistics are rather messy. However,
we can get some insight in the behavior of U in Figure 2.
Indeed, clearly, the sum of correct top-ny degrees, Y .2, Fj,
is an increasing function of ne. Moreover, if we use the esti-
mator (11), then we observe that the largest values of Fj’s



0.9r

0.8

0.7f

0.6

051

0.4} Poisson+EVT based on top-20
Poisson

Experiment
0.3f 1

02 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Figure 3: Fraction of correctly predicted nodes out of top-
100 as a function of na, with n = 1000: experiments (red);
prediction (5) based on the true values of the degrees (ma-
genta); prediction (5) based on top-m degrees and estimator
(11) with m = 20, 4 = 2.2 (green).

are of the same order of magnitude:

1—1\7
e (2)'

Thus, as long as n: large enough so that a large entity j
receives large S;, we have that U is comparable to Y12, Fj,
and hence U increases in ne. However, as n; becomes smaller,
then small entities will constitute a large proportion of the
set {i1,42,...,in,. For example, if no = 800, n1 = 200, then
we obtain, for the true values of in-degrees in Twitter graph
with N =~ 500M:

800
> P(S: > 1) = 280.9,

i=1

thus on average about 520 out of the top-800 nodes will
be undistinguishable from other, much smaller nodes (see
Example 1). Moreover, in this case

10°
D P(Si > 1) ~ 485.18,

i=1

thus, on average, more than 300 nodes will be included into
{i1,...,1800} essentially on a random basis. Since large ma-
jority of the nodes has very small degrees, this will drasti-
cally affect the magnitude of U. This is exactly what we
observe in Figure 2.

5.4 Optimal scaling for », and n.

In this section our goal is to find the ratio na to n1 which
maximizes the performance of the Algorithm 1. For sim-
plicity, as a performance criterion we consider the fraction
of correctly identified nodes from top-k in (6):

i

k
Z Pj (’I’Ll) — max.
j=1
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Figure 4: The position of first error as a function of ng, with
n = 1000.

We start with analyzing the optimal scaling for ni. Intu-
itively, after the first stage of the algorithm, only O(n1)
nodes j will have S; > 1, and thus there is no need to check
more than no = O(n1) nodes in the second stage, which im-
plies that n; should grow at least proportionally to n. This
is formalized in the next proposition.

PROPOSITION 1. It is optimal to choose n = O(ny).

ProoOF. Let J be a randomly chosen node, and J;, | =
1,...,n1 be independent realizations of J in the first stage
of Algorithm 1. Denote by M the maximal number of neigh-
bors that a given API allows to retrieve. The first stage of
the algorithm returns a list of candidate nodes, for which we
require S; > 1. Observe that the number of such nodes is
bounded by

1«
U:= 3 ZZ; max{M, out-degree(J;) }.

Assuming that the out-degrees of each node are independent,
we obtain that

EWU) = %nlE(max{M, out-degree(J)}),
Var(U) = imVar(max{M, out-degree(J)}).

Note that the API restriction simplifies the derivation be-
cause the variance of max{M, out-degree(J)} is finite. The
formal argument for M = oo and infinite variance of out-
degrees will be similar but requires some more work. Using,
e.g. Chernoff bound or Chebyshev bound we obtain that
P(U > EWU)(1+¢)) — 0as ni — oo. Thus, the number of
nodes j with S; > 1 is at most O(n;) with high probability,
so we choose ny = O(n1) which results in n = O(n1). O

Note that if n is large enough, then the top nodes (first,
second, etc.) can be found with very high probability. Fig-
ure 1 shows that if n = 1000, then for a wide range of nq
the fraction of correctly identified nodes from top-50 is the



same. As k grows, the optimization becomes much more
important. Motivated by this observation, we maximize the
value Pj(n1). We prove the following theorem.

THEOREM 1. Assume that k = o(n) as n — oo. The
mazimizer ny of probability Py(n — n2) is close to the maz-
imal root of the equation

1
3k~

2z —n=0, (12)

that 1is,
ny =x(1+o0(1)), as k/ny —0.

If in addition n3 = o(n) as n — oo, then n3 can be given in
a closed-form asymptotic expression

ng = (3’yk'yn)ﬁ + o(n#).

PROOF. Consider first an extreme regime: z = O(k).
Thus, we exclude the regime n — z = o(n). Consequently,
n1 — 0o as n — oo and we can apply the following normal
approximation

nl(Fk_an) nl(Fk+Fn2)
P, ~P|N
% (11) ( ( N s N >0
n1 Fy — Fn, )

N \/Fi + Fn,

(A completely formal justification can be given by the Berry-
Esseen theorem.) Thus, in order to maximize the above

o1 . . n Fk _Fn
probability, we need to maximize /5 \/F772 From EVT
k+Fng

it follows that Fj decays as k~7. So, we can maximize
Vn1 (k:_“’ —ny 'Y)

A k=7 +ng

Now if z = O(k), v/n—z = /n(1 + o(1)), and the maxi-
mization of (14) mainly depends on the remaining term in
the product, which is an increasing function of ne. This sug-
gests that ny has to be chosen considerably greater than k.
Hence, we proceed assuming the only interesting asymptotic
regime where k = o(n2). In this asymptotic regime, we can
simplify (14) as follows:

vn—x (k77 - x_w) B
VE=7v =

o= (-3(2)) ()

Next, we differentiate the function
3 (k"
fl@):=vn—z 175 —
x

and set the derivative to zero. This results in equation (12).
If we assume further that n3 = o(n), then only the highest
order term will remain in (12) and we immediately obtain
the following approximation

=P (N(O, 1)>— (13)

(14)

ng = (3’yk“’n)ﬁ + O(nﬁ).
|

For example, for n = 1000, k = 100, and v = 0.35 we get
ng ~ 570.

5.5 Sublinear complexity

The normal approximation (13) immediately implies the
following proposition.

PROPOSITION 2. For large enough ni, the inequality

EiFk — Fn2 > x
VN /Ft Foy
guarantees that on average we can find the fraction 1 — & of
top-k nodes in W.

For the inequality in (2) to hold, it is necessary that
\/771(F;C — F,,,) is at least of the same order of magnitude as
N/ F} + F,,. Moreover, it follows from Proposition 1 that
n = O(n1), and thus the complexity n of the algorithm is
defined by n1. In the theorem below we use the results from
Extreme Value Theory to show that n; scales sublinearly
with N.

Theorem 1, and estimator (11), we can already provide a
rough indication of the number of API request we need to
use. Indeed, k& > m, rough estimation with n — no ~n and
Fy >> F,, gives
> Nz?_ kY

F,m?>
For finding top-100 most followed users on Twitter with
good precision, this will result in about 5000 of API requests
(with N =500M, m =20, k =100, x1—. = 2, ¥ = 2.2).
For a better result, we may take into account the value of

(15)

. 1
n2, and substitute the value ny = (3k”n’y) 7+1 obtained in
Proposition 2:

k72 4\ FAT 3 5\ 4

ﬁ (Qn— (Sk n’y) ) 1-— 3 <3k: n’y) k
N

F,m?’

2 T1—e

From (15) we can also already anticipate that n is sublin-
ear in N because F,,m” grows with N. This argument is
formalized in Theorem 2 below.

Notice that, interestingly, the obtained complexity is in
terms of the cardinality of W, not V. In particular, this
makes the problem of finding popular groups easier than
the problem of finding popular users.

THEOREM 2. If the in-degrees of the nodes are indepen-
dent realizations of a regularly varying distribution G with
exponent 1/ as defined in (9), and F1 > F>» > --- > Fn are
their order statistics. Let (an)n>1, (bN)n>1 be sequences
such that

lim N(1—Ganz +by)) = (1 + ) /7.

N —oo
Then Algorithm 1 finds (1 —€) of the top-k nodes with high
probability in
n1 = O(N/an),
of API requests. In particular, n scales sublinearly in N,
and

log(n1) = (1 — ) log(N).
PRrROOF. For a regularly varying G, Theorem 2.1.1 in [§]
can be applied, and thus for any finite m

F1 71)1\7 Fm*bN
anN ’ an




converges in distribution, as N — oo, to

(Bt e B o)
’y ? ) ’y i

where E;’s are independent exponential random variables
with parameter 1. This implies, in particular, that an /by =
O(1) and that for large enough N and any € > 0, there exist
l;, u; such that Pll;an < F; < uzan] > 1—e. It follows that
for fixed k

& VE: = 0(1)

with high probability when n1 = O(N/an), and the first
statement of the theorem follows because k = o(n2) implying
that Fr, = o(F%). In particular, if G is a Pareto distribution,
1—G(z) = Cz™ Y7, & > xo, then

any =vC"N?, by =C"n".

For a general regularly varying distribution in (9) the slowly
varying function will influence an but the logarithmic asymp-
totics of any will be still determined by the power law:

log(an) = vlog(N),
which gives the result. []

6. CONCLUSION

We proposed a randomized algorithm for quick detection
of popular entities in large online social networks whose ar-
chitecture has underlying directed graphs. Examples of so-
cial network entities are users and interest groups. We have
analyzed the algorithm with respect to three criteria and
compared with two baseline methods. Our analysis demon-
strates that the algorithm has nonlinear complexity on net-
works with heavy-tailed in-degree distribution and that the
performance of the algorithm is robust with respect to the
values of its few parameters. The algorithm outperforms
the two baseline methods and has much wider applicability.
An important ingredient of our analysis is substantial use of
the extreme value theory. The extreme value theory is not
so well know in computer science and sociology but appears
to be a very useful tool in the analysis of social networks.
We feel that our work could be a good reference point for
other researchers to start applying EVT in social network
analysis. We have validated our theoretical results on two
very large online social networks.

We see several extensions of the present work. A top list
of popular entities is just one type of properties of social
networks. We expect that our approach based on extreme
value theory and using referral links can be extended to infer
and to analyze other properties such as power law index
and the tail, network functions and network motifs, degree-
degree correlation. It will be very interesting and useful
to develop quick and effective statistical tests to check for
network assortativity and presence of heavy tails.

Since our approach requires very small numbers of APT ac-
cesses, we believe that it will trace well network changes. Of
course, a formal justification of the algorithm applicability
for dynamic networks is needed.
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Preface

The past few decades have seen the rise of online social networks as a worldwide phenomenon
with a high impact on our society. Beyond the obvious exposure phenomena, with obvious im-
plications on security and privacy, people have started to become acquainted—even married!—in
online social networks. In parallel, we have seen an enormous growth in terms of the number
of published papers in computer science, mathematics and physics that study the organization
of such networks. The availability of large free databases of friendships, collaborations and quo-
tations have made possible to study social networks at a scale and with a precision previously
unknown.

This issue of Internet Mathematics, titled ‘Searching and mining the Web and social networks’,
was born out of the interest of the editors for the problem of searching and analyzing not only
the web, but also social networks in a broad sense. In particular, we aimed to publish a collection
of papers that take a rigorous mathematical viewpoint on problems most important and common
in network applications. The general topics represented in this special issue cover ranking of the
nodes, network measurements, and adversarial behavior. Each of these topics received a large
attention in the literature. We believe however that the originality of the papers presented in this
volume is in a high level of mathematical rigor.

All submitted articles have been thoroughly reviewed in accordance with the usual high stan-
dards of Internet Mathematics. Each paper received reviews from at least two experts: one in
the field of application, and one in the in the relevant branch of mathematics. Some high quality
submissions have been rejected because they did not sufficiently satisfied either the criterion of
practical importance for social networks or did not have a sufficient mathematical depth.

The first two papers deal with the problem of detecting interesting properties of the nodes using
only the structure of a social network (i.e., the underlying graph). In the paper Azioms for central-
ity by Paolo Boldi and Sebastiano Vigna the authors try to understand the inner works of centrality
measures, which are designed to identify which nodes in a social networks are more important than
others. The paper Towards quantifying vertex similarity in networks by Charalampos Tsourakakis
proposes (somewhat dually) new techniques to identiy similar nodes in large networks.

The next two papers address statistical measurements in social networks, including the in-
depth mathematical analysis of the proposed estimators. The paper Degree-degree dependencies
in random graphs with heavy tailed degrees by Remco van der Hofstad and Nelly Litvak is the first
rigorous study of statistical estimators for correlations between degrees of neighbouring nodes in
general social networks, and in common random graph models for them. The paper Estimating
sizes of social networks via biased sampling by Liran Katzir, Edo Liberty, Oren Somekh, and Ioana
A. Cosma proposes a new random walk sampling techniques for estimating the network size — the
basic network characteristic that is often important and unavailable in practice.

Finally, the last two papers are devoted to identifying, predicting, and preventing an adversar-
ial behaviour in Web and social networks. The paper Communities, random walks and social sybil
defense by Lorenzo Alvisi, Allen Clement, Alessandro Epasto, Silvio Lattanzi, Alessandro Pan-
conesi addresses a question whether a sybil attack, when an adversary introduces fake nodes and
links in the graph, can be identified, based solely on the graph structure. To this end, they study
analytically the change of the graph characteristics under a specified model of the sybil attack.
The paper The classification power of Web features by Miklos Erdélyi, Andrds A. Benczur, Bélint
Daréczy, Andras Garzé, Tamdés Kiss and David Siklési analyzes in a rigorous experimental setting
a wide range of signals used to detect spam pages. Both these papers also provide an excellent
review on their respective topics.

We would like to thank the authors of all submissions for their high quality contributions. It
has been our pleasure to receive and handle the very interesting papers submitted to this volume.
We hope that it will give rise to new fascinating research on the topic.

Nelly Litvak, Sebastiano Vigna, guest editors.
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Abstract—In this paper we address the problem of quick
detection of high-degree entities in large online social networks.
Practical importance of this problem is attested by a large number
of companies that continuously collect and update statistics about
popular entities, usually using the degree of an entity as an
approximation of its popularity. We suggest a simple, efficient,
and easy to implement two-stage randomized algorithm that
provides highly accurate solutions to this problem. For instance,
our algorithm needs only one thousand API requests in order
to find the top-100 most followed users, with more than 90%
precision, in the online social network Twitter with approxi-
mately a billion of registered users. Our algorithm significantly
outperforms existing methods and serves many different purposes
such as finding the most popular users or the most popular
interest groups in social networks. An important contribution
of this work is the analysis of the proposed algorithm using
Extreme Value Theory — a branch of probability that studies
extreme events and properties of largest order statistics in random
samples. Using this theory we derive an accurate prediction for
the algorithm’s performance and show that the number of API
requests for finding the top-k most popular entities is sublinear
in the number of entities. Moreover, we formally show that the
high variability of the entities, expressed through heavy-tailed
distributions, is the reason for the algorithm’s efficiency. We
quantify this phenomenon in a rigorous mathematical way.

I. INTRODUCTION

In this paper we propose a randomized algorithm for quick
detection of high-degree entities in large online social net-
works. The entities can be, for example, users, interest groups,
user categories, geographical locations, etc. For instance, one
can be interested in finding a list of Twitter users with many
followers or Facebook interest groups with many members.
The importance of this problem is attested by a large number of
companies that continuously collect and update statistics about
popular entities in online social networks (twittercounter.com,
followerwonk.com, twitaholic.com, www.insidefacebook.com,
yavkontakte.ru just to name a few).

The problem under consideration may seem trivial if one
assumes that the network structure and the relation between
entities are known. However, even then finding for example the
top-k in-degree nodes in a directed graph G of size N takes the
time O(N). For very large networks, even linear complexity
is too high cost to pay. Furthermore, the data of current social
networks is typically available only to managers of social
networks and can be obtained by other interested parties only
through API (Application Programming Interface) requests.
API is a set of request messages, along with a definition of

OThe authors are given in alphabetical order. L. Ostroumova Prokhorenkova
is the principal author.

L. Ostroumova Prokhorenkova

E. Suyargulova
Yandex
siyargul @yandex.ua
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ostroumova-la@yandex.ru

the structure of response messages. Using one API request it
is usually possible to discover either friends of one given user,
or his/her interest groups, or the date when his/her account
was created, etc. The rate of allowed API requests is usually
very limited. For instance, Twitter has the limit of one access
per minute for one standard API account (see dev.twitter.com).
Then, in order to crawl the entire network with a billion users,
using one standard API account, one needs more than 1900
years.

Hence currently, there is a rapidly growing interest in
algorithms that evaluate specific network properties, using only
local information (e.g., the degree of a node and its neighbors),
and give a good approximate answer in the number of steps
that is sublinear in the network size. Recently, such algorithms
have been proposed for PageRank evaluation [3]], [9], [10], for
finding high-degree nodes in graphs [4], [L1], [12]], [20], and
for finding the root of a preferential attachment tree [S].

In this paper, we propose a new two-stage method for
finding high-degree nodes in large directed networks with
highly skewed in-degree distribution. We demonstrate that our
algorithm outperforms other known methods by a large margin
and has a better precision than the for-profit Twitter statistics
twittercounter.com.

II. PROBLEM FORMULATION AND OUR CONTRIBUTION

Let V be a set of IV entities, typically users, that can be
accessed using API requests. Let 1/ be another set of M
entities (possibly equal to V). We consider a bipartite graph
(V,W, E), where a directed edge (v,w) € E, with v € V,
and w € W, represents a relation between v and w. In our
particular model of the Twitter graph V' is a set of Twitter
users, W = V, and (v,w) € E means that v follows w or
that v retweeted a tweet of w. Note that any directed graph
G = (V,E) can be represented equivalently by the bipartite
graph (V,V,E). One can also suppose that V' is a set of
users and W is a set of interest groups, while the edge (v, w)
represents that the user v belongs to the group w.

Our goal is to quickly find the top in-degree entities in W.
In this setting, throughout the paper, we use the terms ‘nodes’,
‘vertices’, and ‘entities’ interchangeably.

We propose a very simple and easy-to-implement algo-
rithm that detects popular entities with high precision using
a surprisingly small number of API requests. Most of our
experiments are performed on the Twitter graph, because it
is a good example of a huge network (approximately a billion
of registered users) with a very limited rate of requests to
API. We use only 1000 API requests to find the top-100



Twitter users with a very high precision. We also demonstrate
the efficacy of our approach on the popular Russian online
social network VKontakte (vk.com) with more than 200 million
registered users. We use our algorithm to quickly detect the
most popular interest groups in this social network. Our
experimental analysis shows that despite of its simplicity, our
algorithm significantly outperforms existing approaches, e.g.,
[4], [11]], [20]. Moreover, our algorithm can be used in a very
general setting for finding the most popular entities, while
some baseline algorithms can only be used for finding nodes
of largest degrees in directed [20] or undirected [4] graphs.

In most social networks the degrees of entities show great
variability. This is often modeled using power laws, although it
has been often argued that the classical Pareto distribution does
not always fit the observed data. In our analysis we assume
that the incoming degrees of the entities in 1/ are independent
random variables following a regularly varying distribution G:

1—-G(z) = L(z)z~ ",
where L(-) is a slowly varying function, that is,

ILm L(tx)/L(z) =1, t>0.

x>0, v>0, (D)

L(-) can be, for example, a constant or logarithmic function.
We note that (I) describes a broad class of heavy-tailed
distributions without imposing the rigid Pareto assumption.

An important contribution of this work is a novel analysis
of the proposed algorithm that uses powerful results of the
Extreme Value Theory (EVT) — a branch of probability that
studies extreme events and properties of high order statistics
in random samples. We refer to [13] for a comprehensive
introduction to EVT. Using EVT we can accurately predict
the average fraction of correctly identified top-k nodes and
obtain the algorithm’s complexity in terms of the number of
nodes in V. We show that the complexity is sublinear if the in-
degree distribution of the entities in W is heavy tailed, which
is usually the case in real networks.

The rest of the paper is organized as follows. In Section [ITI]
we give a short overview of related work. We formally
describe our algorithm in Section then we introduce
two performance measures in Section [V| Section contains
extensive experimental results that demonstrate the efficiency
of our algorithm and compare it to baseline strategies. In
Sections we present a detailed analysis of the algorithm
and evaluate its optimal parameters with respect to the two
performance measures. Section [X] concludes the paper.

III. RELATED WORK

Over the last years data sets have become increasingly
massive. For algorithms on such large data any complexity
higher than linear (in dataset size) is unacceptable and even
linear complexity may be too high. It is also well understood
that an algorithm which runs in sublinear time cannot return an
exact answer. In fact, such algorithms often use randomization,
and then errors occur with positive probability. Nevertheless, in
practice, a rough but quick answer is often more valuable than
the exact but computationally demanding solution. Therefore,
sublinear time algorithms become increasingly important and
many studies of such algorithms appeared in recent years (see,
e.g., [15], 18], [24], 125]).

An essential assumption of this work is that the network
structure is not available and has to be discovered using
API requests. This setting is similar to on-line computations,
where information is obtained and immediately processed
while crawling the network graph (for instance the World
Wide Web). There is a large body of literature where such
on-line algorithms are developed and analyzed. Many of these
algorithms are developed for computing and updating the
PageRank vector [1]], [2], [9], [16]]. In particular, the algorithm
recently proposed in [9] computes the PageRank vector in sub-
linear time. Furthermore, probabilistic Monte Carlo methods
[2], [6], [L6] allow to continuously update the PageRank as
the structure of the Web changes.

Randomized algorithms are also used for discovering the
structure of social networks. In [21] random walk methods are
proposed to obtain a graph sample with similar properties as
a whole graph. In [17] an unbiased random walk, where each
node is visited with equal probability, is constructed in order to
find the degree distribution on Facebook. Random walk based
methods are also used to analyse Peer-to-Peer networks [22]]. In
[8]] traceroute algorithms are proposed to find the root node and
to approximate several other characteristics in a preferential
attachment graph.

The problem of finding the most popular entities in large
networks based only on the knowledge of a neighborhood of
a current node has been analyzed in several papers. A random
walk algorithm is suggested in [12] to quickly find the nodes
with high degrees in a preferential attachment graph. In this
case, transitions along undirected edges x,y are proportional
to (d(x)d(y)), where d(z) is the degree of a vertex x and
b > 0 is some parameter.

In [4] a random walk with restart that uses only the
information on the degree of a currently visited node was
suggested for finding large degree nodes in undirected graphs.
In [L1] a local algorithm for general networks, power law
networks, and preferential attachment graphs is proposed for
finding a node with degree, which is smaller than the maximal
by a factor at most c. Another crawling algorithm [20] is
proposed to efficiently discover the correct set of web pages
with largest incoming degrees in a fixed network and to track
these pages over time when the network is changing. Note that
the setting in [20] is different from ours in several aspects. For
example, in our case we can use API to inquire the in-degree of
any given item, while in the World Wide Web the information
on in-links is not available, the crawler can only observe the
in-links that come from the pages already crawled.

In Section we show that our algorithm outperforms
the existing methods by a large margin. Besides, several of
the existing methods such as the ones in [4] and [20] are
designed specifically to discover the high degree nodes, and
they cannot be easily adapted for other tasks, such as finding
the most popular user categories or interest groups, while the
algorithm proposed in this paper is simpler, much faster, and
more generic.

To the best of our knowledge, this is the first work that
presents and analyzes an efficient algorithm for retrieving the
most popular entities under realistic API constraints.



IV. ALGORITHM DESCRIPTION

Recall that we consider a bipartite graph (V, W, E'), where
V and W are sets of entities and (v,w) € E represents a
relation between the entities.

Let n be the allowed number of requests to APIL. Our
algorithm consists of two steps. We spend n; API requests
on the first step and ne API requests on the second step, with
ni + ng = n. See Algorithm [I] for the pseudocode.

Algorithm 1: Two-stage algorithm

input : Set of entities V' of size IV, set of entities
W of size M, number of random nodes n;
to select from V, number of candidate nodes
no from W

output: Nodes wy, ... wy,, € W, their degrees
di,...,dn,

for w in W do
| S[w] + 0;
for i < 1 to n; do
v < random(N);
foreach w in OutNeighbors(v) C W do
| S[w] + Sfw] +1;

Wiy ..oy Wpy < Top_na(S) I Slwi], ..., S[wy,] are
the top ne maximum values in S}
for i < 1 to ny do

| di < InDegree(w;);

First stage. We start by sampling uniformly at random a
set A of ny nodes vq,...,v,, € V. The nodes are sampled
independently, so the same node may appear in A more than
once, in which case we regard each copy of this node as a
different node. Note that multiplicities occur with a very small
probability, approximately 1 — e~"1/(2N)_For each node in A
we record its out-neighbors in W. In practice, we bound the
number of recorded out-links by the maximal number of IDs
that can be retrieved within one API request, thus the first stage
uses exactly n; API requests. For each w € W we identify
S[w], which is the number of nodes in A that have a (recorded)
edge to w.

Second stage. We use ny API requests to retrieve the actual
in-degrees of the no nodes with the highest values of S[w].
The idea is that the nodes with the largest in-degrees in W
are likely to be among the no nodes with the largest S|w]. For
example, if we are interested in the top-k in-degree nodes in
a directed graph, we hope to identify these nodes with high
precision if k is significantly smaller than n.

V. PERFORMANCE METRICS

The main constraint of Algorithm [I]is the number of API
requests we can use. Below we propose two performance
metrics: the average fraction of correctly identified top-k nodes
and the first-error index.

We number the nodes in W in the deceasing order of their
in-degrees and denote the corresponding in-degrees by F; >
Fy > --- > Fyy. Werefer to F) as the j-th order statistic of the
in-degrees in W. Further, let S; be the number of neighbors

of a node 5, 1 < j < M, among the n; randomly chosen
nodes in V, as described in Algorithm [I} Finally, let S;, >
Si, = ... =2 S;,, be the order statistics of Si,...,Sy. For
example, i; is the node with the largest number of neighbors
among n; randomly chosen nodes, although 7; may not have
the largest degree. Clearly, node j is identified if it is in the
set {i1,42,...,1n, ;. We denote the corresponding probability

by
ying }) - (2

The first performance measure is the average fraction of
correctly identified top-k nodes. This is defined in the same
way as in [3]:

Pj(nl) = P(] S {il, ..

E[fraction of correctly identified top-k entities]
k
1
=22 Pim). O
j=1

The second performance measure is the first-error index,
which is equal to ¢ if the top (¢ — 1) entities are identified cor-
rectly, but the top-ith entity is not identified. If all top-ns en-
tities are identified correctly, we set the first-error index equal
to ny + 1. Using the fact that for a discrete random variable X
with values 1,2,..., K + 1 holds E(X) = Zf:;l P(X > j),
we obtain the average first-error index as follows:

no+1

E[1st-error index] = Z P(1st-error index > j)
j=1
no+17—1

> 11 Bna). )

j=1 1=1

If the number n of API requests is fixed, then the metrics
(3) and involve an interesting trade-off between n; and no.
On the one hand, n; should be large enough so that the values
S;’s are sufficiently informative for filtering out important
nodes. On the other hand, when ns is too small we expect
a poor performance because the algorithm returns a top-k list
based mainly on the highest values of .S;’s, which have rather
high random fluctuations. For example, on Figure when
ng = k = 100, the algorithm returns the nodes {i1, ..., %100},
of which only 75% belong to the true top-100. Hence we
need to find the balance between n; and ns. This is especially
important when n is not very large compared to & (see Figure[]]
with n = 1000 and k = 250).

VI. EXPERIMENTS

This section is organized as follows. First, we analyze
the performance of our algorithm (most of the experiments
are performed on the Twitter graph, but we also present
some results on the CNR-2000 graph). Then we compare our
algorithm with baseline strategies on the Twitter graph and
show that the algorithm proposed in this paper significantly
outperforms existing approaches. Finally, we demonstrate an-
other application of our algorithm by identifying the most
popular interest groups in the large online social network
VKontakte.

All our experiments are reproducible: we use public APIs
of online social networks and publicly available sample of a
web graph.
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Fig. 1. The fraction of correctly identified top-k most followed Twitter users
as a function of ng, with n = 1000.

A. Performance of the proposed algorithm

First, we show that our algorithm quickly finds the most
popular users in Twitter. Formally, V' is a set of Twitter users,
W =V, and (v,w) € E iff v is a follower of w. Twitter is
an example of a huge network with a very limited access to
its structure. Information on the Twitter graph can be obtained
via Twitter public API. The standard rate of requests to API
is one per minute (see dev.twitter.com). Every vertex has an
ID, which is an integer number starting from 12. The largest
ID of a user is ~ 1500M (at the time when we performed the
experiments). Due to such ID assignment, a random user in
Twitter can be easily chosen. Some users in this range have
been deleted, some are suspended, and therefore errors occur
when addressing the IDs of these pages. In our implementation
we skip errors and assume that we do not spend resources on
such nodes. The fraction of errors is approximately 30%. In
some online social networks the ID space can be very sparse
and this makes problematic the execution of uniform sampling
in the first stage of our algorithm. In such situation we suggest
to use random walk based methods (e.g., Metropolis-Hastings
random walk from [17]] or continuous-time random walk from
[22]) that produce approximately uniform sampling after a
burn-in period. To remove the effect of correlation, one can
use a combination of restart [5] and thinning [4], [L7].

Given an ID of a user, a request to API can return one of
the following: i) the number of followers (in-degree), ii) the
number of followees (out-degree), or iii) at most 5000 IDs of
followers or followees. If a user has more than 5000 followees,
then all their IDs can be retrieved only by using several API
requests. Instead, as described above, we record only the first
5000 of the followees and ignore the rest. This does not affect
the performance of the algorithm because we record followees
of randomly sampled users, and the fraction of Twitter users
with more than 5000 followees is very small.

In order to obtain the ground truth on the Twitter graph,
we started with a top-1000 list from the publicly available
source twittercounter.com. Next, we obtained a top-1000 list
by running our algorithm with n; = ny = 20000. We noticed
that 1) our algorithm discovers all top-1000 users from twit-
tercounter.com, 2) some top users identified by our algorithm
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Fig. 2. The first-error index as a function of na, with n = 1000, on Twitter.
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Fig. 3. The fraction of correctly identified top-k in-degree nodes in the
CNR-2000 graph as a function of n2, with n = 1000.

are not presented in the top-1000 list on twittercounter.com.
Then, we obtained the ground truth for top-1000 users by
running our algorithm with ample number of API requests:
n1 = ng = 500 000.

First we analyzed the fraction of correctly identified top-k
nodes (see Equation (3)). Figure [I] shows the average fraction
of correctly identified top-k users for different £ over 100
experiments, as a function of ng, when n = 1000, which is
very small compared to the total number of users. Remarkably
we can find the top-50 users with very high precision. Note
that, especially for small k, the algorithm has a high precision
in a large range of parameters.

We also looked at the first-error index (see Equation (@),
i.e., the position of the first error in the top list. Again, we
averaged the results over 100 experiments. Results are shown
on Figure [2] (red line). Note that with only 1000 API requests
we can (on average) correctly identify more than 50 users
without any omission.

Although in this paper we mostly focus on the Twitter
graph (since it is a huge network with a very limited rate of
requests to API), we also demonstrated the performance of our



algorithm on CNR-2000 graph (law.di.unimi.it/webdata/cnr-
2000). This graph is a sample of the Italian CNR domain. It
is much smaller and there are no difficulties in obtaining the
ground truth here. We get very similar results for this graph
(see Figure [3). Interestingly, the performance of the algorithm
is almost insensitive to the network size: the algorithm per-
forms similarly on the network with a billion nodes as on the
network with half a million nodes.

B. Comparison with baseline algorithms

Literature suggests several solutions for the problem stud-
ied here. Not every solution is feasible in the setting of a large
unknown realistic network. For example, random-walk-based
algorithms that require the knowledge of the degrees of all
neighbors of a currently visited node, such as the one in [12],
are not applicable. Indeed if we want to make a transition from
a vertex of degree d, we need at least d requests to decide
where to go. So once the random walk hits a vertex of high
degree, we may spend all the allowed resources on just one
transition of the random walk. In this section, we compare our
algorithm with the algorithms suggested in [4], [[L1], and [20].
We start with the description of these algorithms.

RandomWalk [4].

The algorithm in [4] is a randomized algorithm for undi-
rected graphs that finds a top-k list of nodes with largest
degrees in sublinear time. This algorithm is based on a random
walk with uniform jumps, described by the following transition
probabilities [5]:

_f eREL i has alink to j, )
Pig =1 av if ¢ does not have a link to j,

d;+a’

where N is the number of nodes in the graph and d; is the
degree of node ¢. The parameter o controls how often the
random walk makes an artificial jump. In [4] it is suggested
to take « equal to the average degree in order to maximize
the number of independent samples, where the probability of
sampling a node is proportional to its degree. After n steps
of the random walk, the algorithm returns top-k degree nodes
from the set of all visited nodes. See Algorithm [2] for formal
description.

Note that Algorithm 2| works only on undirected graphs. In
our implementation on Twitter, all links in the Twitter graph
are treated as undirected, and the algorithm returns the top-
k in-degree visited vertices. The idea behind this is that the
random walk will often find users with large total number of
followers plus followees, and since the number of followers
of popular users is usually much larger than the number of
followees, the most followed users will be found. Another
problem of Algorithm [2]in our experimental settings is that it
needs to request IDs of all neighbors of a visited node in order
to follow a randomly chosen link, while only limited number
of IDs can be obtained per one API request (5000 in Twitter).
For example, the random walk will quickly find a node with
30M followers, and we will need 6K requests to obtain IDs
of all its neighbors. Therefore, an honest implementation of
Algorithm [2| usually finds not more than one vertex from
top-100. Thus, we have implemented two versions of this
algorithm: strict and relaxed. One step of the strict version
is one API request, one step of the relaxed version is one

Algorithm 2: RandomWalk
input : Undirected graph G with N nodes, number
of steps n, size of output list &k, parameter o
output: Nodes vy, ... vg, their degrees d, ..., dx

v + random(N);

A < Neighbors(v);

D[v] + size(A);

for i + 2 to n do
sample U[O, 1}’

. Dlv

if r < D[Ugia then

| v < random from A;

else
| v < random(N);

A « Neighbors(v);
| D[v] + size(A);

V1, ..., 0, & Top_k(D) I/ Dlv1],..., D[vg] are the
top k maximum values in D;

considered vertex. Relaxed algorithm runs much longer but
shows better results. For both algorithms we took o = 100,
which is close to twice the average out-degree in Twitter.

Crawl-Al and Crawl-GAI [20].

We are given a directed graph G with N nodes. At each
step we consider one node and ask for its outgoing edges.
At every step all nodes have their apparent in-degrees S;,
j = 1,...,N: the number of discovered edges pointing to
this node. In Crawl-Al the next node to consider is a random
node, chosen with probability proportional to its apparent in-
degree. In Crawl-GAI, the next node is the node with the
highest apparent in-degree. After n steps we get a list of
nodes with largest apparent in-degrees. See Algorithm [3| for
the pseudocode of Crawl-GAL

Algorithm 3: Crawl-GAI

input : Directed graph G with N nodes, number of
steps n, size of output list &k
output: Nodes vy, ... v

for : < 1 to N do
| S[i] < 05
for i < 1 to n do
v « argmax(S[i]);
A < OutNeighbors(v);
foreach j in A do
| Sl S+ L

U1y ..., 0k < Top_k(S) I S[v1], ..., S[vk] are the
top £ maximum values in S;

HighestDegree [11].

A strategy which aims at finding the vertex with largest
degree is suggested in [11]. In our experimental setting with a
limited number of API requests this algorithm can be presented
as follows. While we have spare resources we choose random
vertices one by one and then check the degrees of their



neighbors. If the graph is directed, then we check the incoming
degrees of out-neighbors of random vertices. See Algorithm
for the pseudocode of the directed version of this algorithm.

Algorithm 4: HighestDegree

input : Directed graph G with N nodes, number of
steps n, size of output list k&
output: Nodes v, ... vg, their degrees di,...,dy

s« 0;
for i <— 1 to n do
if s = 0 then
v + random(N);
A < OutNeighbors(v);
s <« size(A);
else
DJA[s]] + InDeg(A[s]);
L s+ s—1;

V1y..., 0k & Top_k(D) Il Dlv],..., D|vg] are the
top k£ maximum values in D;

The algorithms Crawl-Al, Crawl-GAI and HighestDegree
find nodes of large in-degrees, but crawl only out-degrees that
are usually much smaller. Yet these algorithms can potentially
suffer from the API constraints, for example, when in-degrees
and out-degrees are positively dependent so that large in-degree
nodes tend have high number of out-links to be crawled. In
order to avoid this problem on Twitter, we limit the number
of considered out-neighbors by 5000 for these algorithms.

In the remainder of this section we compare our Algo-
rithm [I] to the baselines on the Twitter follower graph.

The first set of results is presented in Table[l] where we take
the same budget (number of request to API) n = 1000 for all
tested algorithms to compare their performance. If the standard
rate of requests to Twitter API (one per minute) is used, then
1000 requests can be made in 17 hours. For the algorithm
suggested in this paper we took n; = 700, no = 300.

As it can be seen from Table [ Crawl-GAI algorithm,
that always follows existing links, seems to get stuck in
some densely connected cluster. Note that Crawl-Al, which
uses randomization, shows much better results. Both Crawl-
GAI and Crawl-Al base their results only on apparent in-
degrees. The low precision indicates that due to randomness
apparent in-degrees of highest in-degree nodes are often not
high enough. Clearly, the weakness of these algorithms is
that the actual degrees of the crawled nodes remain unknown.
Algorithm [2} based on a random walk with jumps, uses API
requests to retrieve IDs of all neighbors of a visited node,
but only uses these IDs to choose randomly the next node to
visit. Thus, this algorithm very inefficiently spends the limited
budget for API requests. Finally, HighestDegree uses a large
number of API requests to check in-degrees of all neighbors
of random nodes, so it spends a lot of resources on unpopular
entities.

Our Algorithm [I] greatly outperforms the baselines. The
reason is that it has several important advantages: 1) it is in-
sensitive to correlations between degrees; 2) when we retrieve

TABLE 1. PERCENTAGE OF CORRECTLY IDENTIFIED NODES FROM
TOP-100 IN TWITTER AVERAGED OVER 30 EXPERIMENTS, n = 1000

[ Algorithm [ mean [ standard deviation |
Two-stage algorithm 92.6 4.7
RandomWalk (strict) 043 0.63
RandomWalk (relaxed) 8.7 2.4
Crawl-GAI 4.1 5.9
Crawl-Al 23.9 20.2
HighestDegree 24.7 11.8
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Fig. 4. The fraction of correctly identified top-100 most followed Twitter
users as a function of n averaged over 10 experiments.

IDs of the neighbors of a random node (at the first stage of
the algorithm), we increase their count of .S, hence we do not
lose any information; 3) sorting by S[w] prevents the waste of
resources on checking the degrees of unpopular nodes at the
second stage; 4) the second stage of the algorithm returns the
exact degrees of nodes, thus, to a large extent, we eliminate
the randomness in the values of S.

On Figure [d] we compare the average performance of
our algorithm with the average performance of the baseline
strategies for different values of n (from 100 to 5000 API
requests). For all values of n our algorithm outperforms other
strategies.

C. Finding the largest interest groups

In this section, we demonstrate another application of our
algorithm: finding the largest interest groups in online social
networks. In some social networks there are millions of interest
groups and crawling all of them may not be possible. Using
the algorithm proposed in this paper, the most popular groups
may be discovered with a very small number of requests to
API. In this case, let V be a set of users, W be a set of interest
groups, and (v, w) € E iff v is a member of w.

Let us demonstrate that our algorithm allows to find the
most popular interest groups in the large social network
VKontakte with more than 200M registered users. As in the
case of Twitter, information on the VKontakte graph can be
obtained via API. Again, all users have IDs: integer numbers
starting from 1. Due to this ID assignment, a random user
in this network can be easily chosen. In addition, all interest
groups also have their own IDs.



We are interested in the following requests to API: i) given
an ID of a user, return his or her interest groups, ii) given an
ID of a group return its number of members. If for some ID
there is no user or a user decides to hide his or her list of
groups, then an error occurs. The portion of such errors is
again approximately 30%.

As before, first we used our algorithm with ny = ny =
50000 in order to obtain the ground truth for the top-100 most
popular groups (publicly available sources give the same top-
100). Table [lI] presents some statistics on the most popular
groups.

TABLE II. THE MOST POPULAR GROUPS FOR VKONTAKTE
[ Rank [ Number of participants [ Topic |
1 4,35M humor
2 4,10M humor
3 3,76M movies
4 3,69M humor
5 3,59M humor
6 3,58M facts
7 3,36M cookery
8 3,3IM humor
9 3,14M humor
10 3,14M movies
[ 100 ] 1,65M [ success stories |

Then, we took n; = 700, no = 300 and computed the
fraction of correctly identified groups from top-100. Using
only 1000 API requests, our algorithm identifies on average
73.2 groups from the top-100 interest groups (averaged over
25 experiments). The standard deviation is 4.6.

VII. PERFORMANCE PREDICTIONS

In this section, we evaluate the performance of Algorithm 1
with respect to the metrics and @) as a function of the
algorithm’s parameters n; and ns.

Recall that without loss of generality the nodes in W can
be numbered 1,2,..., M in the decreasing order of their in-
degrees, Fj is the unknown in-degree of a node j, and S, is the
number of followers of a node j among the randomly chosen
nq nodes in V.

As prescribed by Algorithm [I} we pick n; nodes in V
independently and uniformly at random with replacement. If
we label all nodes from V' that have an edge to j € W, then
S; is exactly the number of labeled nodes in a random sample

of n1 nodes, so its distribution is Binomial (nl, ﬁ) Hence

we have
F.
E(S)) = n1 =7,

F; F,
2, Var($;) = m 32 (1 - J). 6)

N N

We are interested in predictions for the metrics and

. These metrics are completely determined by the prob-
abilities Pj(ny), j = 1,...,k, in . The expressions for
Pj(n1), 7 = 1,...,k, can be written in a closed form, but
they are computationally intractable because they involve the
order statistics of S, 5o, ..., .Sy . Moreover, these expressions
depend on the unknown in-degrees Fi, Fo, ..., Fy.

We suggest two predictions for (3)) and @). First, we give a
Poisson prediction that is based on the unrealistic assumption

that the degrees F1,..., F,, are known, and replaces the re-
sulting expression for and by an alternative expression,
which is easy to compute. Next, we suggest an Extreme Value
Theory (EVT) prediction that does not require any preliminary
knowledge of unknown degrees but uses the top-m values of
highest degrees obtained by the algorithm, where m is much
smaller than &.

A. Poisson predictions

First, for j = 1,...,k we write

Pj(n1) =

=P(S; > Si,,) +P(S; = Si,,,J € {i1r,.. . in,}). (D)
Note that if [S; > 5;, ] then the node j will be selected by the
algorithm, but if [S; = S;, ], then this is not guaranteed and
even unlikely. This observation is illustrated by the following
example.

Example 1. Consider the Twitter graph and take n; = 700,
ny = 300. Then the average number of nodes © with S; = 1
among the top-l nodes is

l

! 699
F; F;
P(S;=1)= —(1-—= ,
25— =30 (1= 55
which is 223.3 for | = 1000, and it is 19.93 for | = ny = 300.
Hence, in this example, we usually see [S;,,, = 1], however,

only a small fraction of nodes with [S; = 1] is selected (on a
random basis) into the set {i1,...,i300}-

Motivated by the above example, we suggest to approxi-
mate Pj(np) in (7) by its first term P(S; > S, ).

Next, we employ the fact that S,,, has the no-th highest
average value among S, ..., Sy, and we suggest to use Sy,
as a proxy for the order statistic S;, . However, we cannot
replace P(S; > ;) directly by P(S; > S,,) because
the latter includes the case [S; > S,, = 0], while with
a reasonable choice of parameters it is unlikely to observe
[Si,, = 0]. This is not negligible as, e.g., in Example |I| we
have P(S,,, = 0) ~ 0.06. Hence, we propose to approximate
P(SJ > Sinz) by P(S] > max{Snz, 1}), =1 ... n9.

As the last simplification, we approximate the binomial
random variables S;’s by independent Poisson random vari-
ables. The Poisson approximation is justified because even
for j = 1,...,k the value F;/N is small enough. For
instance, in Example [I| we have Fy/N = 0.04, so n1F;/N
is 700 - 0.04 = 28.

Thus, summarizing the above considerations, we propose

to replace Pj(n1) in (3) and (4) by
Pj(n1) = P(S; > max{S,,.1}), i =1,...,n2, (8
where Sl, ey gnz are independent Poisson random variables

with parameters n1 Fy /N, ..., n1F,,/N. We call this method
a Poisson prediction for (3) and (@).

On Figures [2]and 5] the results of the Poisson prediction are
shown by the green line. We see that these predictions closely
follow the experimental results (red line).



B. EVT predictions

Denote by Fl > Fg > ..
by the algorithm.

> F}, the top-k values obtained

Assume that the actual in-degrees in W are randomly
sampled from the distribution G that satisfies (I). Then Fy >
Fy > --- > F,; are the order statistics of G. The EVT
techniques allow to predict high quantiles of G using the
top values of F;’s [14]]. However, since the correct values
of F}’s _are not kngwn, we instead use the obtained top-m
values F', F», ..., F,,, where m is much smaller than k. This
i§ justified for two reasons. First, given F};, j < k, the estimate
F; converges to F; almost surely as n; — oo, because, in
the limit, the degrees can be ordered correctly using S;’s only
according to the strong law of large numbers. Second, when m
is small, the top-m list can be found with high precision even
when n is very modest. For example, as we saw on Figure [I]
we find 50 the most followed Twitter users with very high
precision using only 1000 API requests.

Our goal is to estimate Pj(nl), j =1,...,k, using only
the values Fl, . ,Fm, m < k. To this end, we suggest to first
estimate the value of « using the classical Hill’s estimator #
[19] based on the top-m order statistics:

m—1
“w11;bg —log(Fyn)). ©)

Next, we use the quantile estimator, given by formula (4.3)
in [14], but we replace their two-moment estimator by the
Hill’s estimator in (9). This is possible because both estimators
are consistent (under slightly different conditions). Under the
assumption y > 0, we have the following estimator f; for the
(j — 1)/M-th quantile of G:

Y
ﬁ:ﬂ(/ﬂ>7 j>1j<<M. (10)

We propose to use fj as a prediction of the correct values F3,
j=m+1,...,n9

Summarising the above, we suggest the following predic-
tion procedure, which we call EVT prediction.

1)  Use Algorithm [I] to find the top-m list, m << k.

2)  Substitute the identified _m highest degrees
Fi,Fs, ..., F,, in @) and in order to compute,
respectively, ¥ and f;, j =m +1,...,na.

3)  Use the Poisson prediction @])A substituting the values
F1,...7Fn2 by Fla--me’ fm+17---afn2~

On Figures P| and 2] the blue lines represent the EVT
predictions, with & = 100, m = 20 and different values
of no. For the average fraction of correctly identified nodes,
depicted on Figure [5] we see that the EVT prediction is very
close to the Poisson prediction and the experimental results.
The predictions for the first error index on Figure [2] are less
accurate but the shape of the curve and the optimal value
of ny is captured correctly by both predictors. Note that the
EVT prediction tends to underestimate the performance of the
algorithm for a large range of parameters. This is because
in Twitter the highest degrees are closer to each other than

09 -
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0.7 -
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o
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Fig. 5. Fraction of correctly identified nodes out of top-100 most followed
users in Twitter as a function of no, with n = 1000.

the order statistics of a regularly varying distribution would
normally be, which results in an underestimation of ~ in (9)
if only a few top-degrees are used.

Note that the estimation (T0) is inspired but not entirely
justified by [14] because the consistency of the proposed
quantile estimator (I0) is only proved for j < m, while we
want to use it for 5 > m. However, we see that this estimator
agrees well with the data.

VIII. OPTIMAL SCALING FOR ALGORITHM PARAMETERS

In this section, our goal is to find the ratio ng to n; which
maximizes the performance of Algorithm [I| For simplicity, as
a performance criterion we consider the expected fraction of
correctly identified nodes from the top-k list (see Equation (3))):

k
e 3 YR
ni,namni+ng=n k 4=

maximize

We start with stating the optimal scaling for n;. Let us
consider the number of nodes with .S; > 0 after the first stage
of the algorithm. Assuming that the out-degrees of randomly
chosen nodes in V' are independent, by the strong law of large
numbers we have

llmsup—ZI{S >0} <

ni— oo

with probability 1,

where g is the average out-degree in V and I{A} is an
indicator of the event A. Thus, there is no need to check more
than ny = O(n1) nodes on the second stage, which directly
implies the next proposition.

Proposition 1. It is optimal to choose ny such that n = O(ny).

As we noted before (see, e.g., Figure , for small % the
algorithm has a high precision in a large range of parameters.
However, for not too small values of k, the optimization
becomes important. In particular, we want to maximize the
value Py (n1). We prove the following theorem.



Theorem 1. Assume that k = o(n) as n — oo, then the
maximizer of the probability Pi(n —ns) is

ny = (37K™n) 7 (1+0(1)),
with v as in .

Proof: 1t follows from Proposition [I] that ny — oo as
n — 00, so we can apply the following normal approximation

nl(Fk_Fn) nl(Fk+Fn)
P ~P(N 2 2
k(nl) ( ( N s N >0
m Fk—Fnz>

(11)
Fi, + .Fn2

=P (N 0,1) > —
The validity of the normal approximation follows from the
Berry-Esseen theorem. In order to maximize the above prob-

o . F,—F,
ability, we need to maximize ,/"ﬁﬁ. It follows from
k no

EVT that Fj decays as k~7. So, we can maximize
Vvrn—ng (k77 —ny")
\VE=Y +ny

Now if ny = O(k), then /n —ng = v/n(1 4+ o(1)) and the
maximization of (IZ) mainly depends on the remaining term
in the product, which is an increasing function of nsy. This
suggests that no has to be chosen considerably greater than k.
Also note that it is optimal to choose ny = o(n) since only
in this case the main term in (I2) amounts to /n. Hence,
we proceed assuming the only interesting asymptotic regime
where k = o(nz2) and ny = o(n). In this asymptotic regime,
we can simplify as follows:

Vi (k7 —ny")

Jioremr
(o33 o {(2))

Next, we differentiate the function

12)

f(na) = V= (1 3 (’“))

2 U

and set the derivative to zero. This results in the following
equation:

Svkwn;ﬁl—i-ng—nzo. (13)

Since ny = o(n), then only the highest order term remains in
(13) and we immediately obtain the following approximation

ny = (37k7n) 7T (1 + o(1)).

IX. SUBLINEAR COMPLEXITY

The normal approximation (II) implies the following
proposition.
Proposition 2. For large enough n1, the inequality
ni Fk - an

— 2 >,
N /7Fk+Fn2 1—¢

where z_. is the (1 — €)-quantile of a standard normal
distribution, guarantees that the mean fraction of top-k nodes
in W identified by Algorithm |l|is at least 1 — €.

Zy(ny) == (14)

Using (I0), the estimated lower bound for ny in is:

2 —4 —5
> Na kT dn ) (15)
Fomi(k=7 —ny )2

Ip the case of the Twitter graph with N = 109, m = 20,
Fyy = 18,825,829, k = 100, ny = 300, zp9 ~ 1.28,
4 = 0.4510, this will result in n; > 1302, which is more
pessimistic than n; = 700 but is sufficiently close to reality.
Note that Proposition [2| is expected to provide a pessimistic
estimator for ny, since it uses the k-th highest degree, which is
much smaller than, e.g., the first or the second highest degree.

We will now express the complexity of our algorithm in
terms of M and N, assuming that the degrees in W follow
a regularly varying distribution G defined in (I)). In a special
case, when our goal is to find the highest in-degree nodes in
a directed graph, we have N = M. If M is, e.g., the number
of interest groups, then it is natural to assume that M scales
with N and M — oo as N — oo. Our results specify the role
of N, M, and G in the complexity of Algorithm

From (I3)) we can already anticipate that n is of the order
smaller than NV because F},, grows with M. This argument is
formalized in Theorem [2] below.

Theorem 2. Let the in-degrees of the entities in W be inde-
pendent realizations of a regularly varying distribution G with
exponent 1/ as defined in , and F1 > Fy > --- > F) be
their order statistics. Then for any fixed €, > 0, Algorithm
finds the fraction 1 — ¢ of top-k nodes with probability 1 — ¢
in
n = O(N/a(M))

API requests, as M, N — oo, where a(M) = [(M)M" and
I(-) is some slowly varying function.

Proof: Let a(-) be a left-continuous inverse function of
1/(1 — G(x)). Then a(-) is a regularly varying function with
index ~ (see, e.g., [1l), that is, a(y) = I(y)y"? for some
slowly varying function I(-). Furthermore, repeating verbatim
the proof of Theorem 2.1.1 in [13], we obtain that for a fixed
m

(Q(F]‘\lf)’“. 7a(F]7\2)) ﬂ> (El—’Y’... 7(E1_|_...+Em)—’v)’

where E; are independent exponential random variables with

mean 1 and % denotes the convergence in distribution. Now
for fixed k, choose ny as in Theorem It follows that if
ny = CN/a(M) for some constant C' > 0 then Zy(n;) A
VC(B1 + -+ Ej)~7 as M, N — oc. Hence, we can choose




C, M, N large enough so that P(Z,(n1) > z1-¢) > 1—0. We
conclude that ny = O(N/a(M)) for fixed k, as N, M — oo.
Together with Proposition [T] this gives the result. [ |

In the case M = N, as in our experiments on Twitter,
Theorem [2] states that the complexity of the algorithm is
roughly of the order N'~7, which is much smaller than linear
in realistic networks, where we often observe v € (0.3, 1) [23].
The slowly varying term (V') does not have much effect since
it grows slower than any power of N. In particular, if G is a
pure Pareto distribution, 1 — G(x) = Cz~ Y7, z > x, then
a(N)=CYN".

X. CONCLUSION

In this paper, we proposed a randomized algorithm for
quick detection of popular entities in large online social
networks whose architecture has underlying directed graphs.
Examples of social network entities are users, interest groups,
user categories, etc. We analyzed the algorithm with respect to
two performance criteria and compared it with several baseline
methods. Our analysis demonstrates that the algorithm has
sublinear complexity on networks with heavy-tailed in-degree
distribution and that the performance of the algorithm is robust
with respect to the values of its few parameters. Our algorithm
significantly outperforms the baseline methods and has much
wider applicability.

An important ingredient of our theoretical analysis is the
substantial use of the extreme value theory. The extreme
value theory is not so widely used in computer science and
sociology but appears to be a very useful tool in the analysis of
social networks. We feel that our work could provide a good
motivation for wider applications of EVT in social network
analysis. We validated our theoretical results on two very large
online social networks by detecting the most popular users and
interest groups.

We see several extensions of the present work. A top list
of popular entities is just one type of properties of social
networks. We expect that both our theoretical analysis, which is
based on the extreme value theory, and our two-stage random-
ized algorithm can be extended to infer and to analyze other
properties such as the power law index and the tail, network
functions and network motifs, degree-degree correlations, etc.
It would be very interesting and useful to develop quick and
effective statistical tests to check for the network assortativity
and the presence of heavy tails.

Since our approach requires very small number of API
requests, we believe that it can be used for tracing network
changes. Of course, we need formal and empirical justifications
of the algorithm applicability for dynamic networks.
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