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Abstract
We up a directed network tracing links from a given integer to its divisors
and analyze the properties of the Google matrix of this network. The PageRank
vector of this matrix is computed numerically and it is shown that its probability
is approximately inversely proportional to the PageRank index thus being
similar to the Zipf law and the dependence established for the World Wide
Web. The spectrum of the Google matrix of integers is characterized by a large
gap and a relatively small number of nonzero eigenvalues. A simple semi-
analytical expression for the PageRank of integers is derived that allows us
to find this vector for matrices of billion size. This network provides a new
PageRank order of integers.

PACS numbers: 02.10.De, 02.50.−r, 89.75.Fb

(Some figures may appear in colour only in the online journal)

1. Introduction

Number theory [1] is the fundamental branch of mathematics where the theory of prime
numbers, besides its beauty, finds important cryptographic applications [2]. It is established
that the methods of random matrix theory and quantum chaos find their useful applications
for the understanding of properties of prime numbers and the Riemann zeros [3–5].

In this work, we propose another matrix approach to number theory based on the Markov
chains [6]3 and the Google matrix [7]. The latter finds important applications for the information
retrieval and Google search engine of the World Wide Web (WWW) [8]. The right eigenvector
of the Google matrix with the largest eigenvalue is known as the PageRank vector. The elements
of this vector are non-negative and have the meaning of probability of finding a random surfer
on the network nodes. The PageRank algorithm ranks all websites in decreasing order of

3 English translation ‘Extension of the limit theorems of probability theory to a sum of variables connected in a
chain’ reprinted in appendix B of the second part of [6].

1751-8113/12/405101+20$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/45/40/405101
mailto:dima@irsamc.ups-tlse.fr
http://stacks.iop.org/JPhysA/45/405101


J. Phys. A: Math. Theor. 45 (2012) 405101 K M Frahm et al

components of the PageRank vector (see e.g. detailed description in [8]). Here, we propose a
natural way to construct the Google matrix of positive integers using their division properties.
We study the statistical properties of the PageRank vector of this matrix and discuss the
properties of a new order of integers given by this ranking. The properties of the eigenvalues
and eigenvectors are also discussed.

The paper is constructed as follows: in section 2, we give the definition of the Google
matrix of integers; in section 3, the properties of its PageRank vector are analyzed; in section 4,
the analysis of spectral properties is given; in sections 4 and 5, the analytical expressions for
the PageRank vector are presented and in section 6, the discussion of the results is presented.

2. Google matrix of integers

The elements of the Google matrix G(α) of a directed network with N nodes are given by

Gmn(α) = αSmn + (1 − α)/N. (1)

Here the matrix S is obtained by normalizing to unity all columns of the adjacency matrix Amn,
and replacing the elements of columns with only zero elements, corresponding to dangling
nodes, by 1/N. An element Amn of the adjacency matrix is equal to unity if a node n points
to the node m and zero otherwise. The damping parameter α in the WWW context describes
the probability (1 − α) of jumping to any node for a random surfer. The value α = 0.85
gives a good classification of pages for WWW [8]. The matrix G belongs to the class of
Perron–Frobenius operators [8], its largest eigenvalue is λ = 1 and the other eigenvalues obey
|λ| � α. In typical WWW networks, the eigenvalue λ = 1 is strongly degenerate at α = 1
(see e.g. [9]) and the introduction of α < 1 becomes compulsory to define a unique right
eigenvector at λ = 1 and to ensure the convergence of the PageRank vector by the power
iteration method [8]. The right eigenvector at λ = 1 gives the probability P(n) of finding a
random surfer at site n and is called the PageRank. Once the PageRank is found, all nodes can
be sorted by decreasing probabilities P(n) and increasing index K(n). The node rank is then
given by the index K(n) which reflects the relevance of the node corresponding to a positive
integer n. For the WWW, the PageRank dependence on K is well described by a power law
P(K) ∝ 1/Kβin with βin ≈ 0.9 [8, 9]. This is consistent with the relation βin = 1/(μin − 1)

corresponding to the average proportionality of the PageRank probability P(n) to its in-degree
distribution win(k) ∝ 1/kμin where k(n) is a number of ingoing links for a node n [8]. For
the WWW, it is established that for the ingoing links μin ≈ 2.1 (with βin ≈ 0.9), while for
the out-degree distribution wout of outgoing links, a power law has the exponent μout ≈ 2.7
[10, 11]. Here we analyze the properties of PageRank and use the notation β = βin. Finally,
we note that usually for WWW, the analysis is done for the exponent μ (see e.g. [10, 11])
related to dK ∼ dP/P−μ ∼ win(k), but here we prefer to analyze the exponent β which is
related to μ by a simple relation β = 1/(μ − 1).

To construct the Google matrix of integers, we define for m, n ∈ {1, . . . , N} the adjacency
matrix by Amn = k where k is a ‘multiplicity’ defined as the largest integer such that mk is a
divisor of n and if 1 < m < n, and k = 0 if m = 1 or m = n or if m is not a divisor of n. Thus,
we have k = 0 if m is not a divisor of n and k � 1 if m is a divisor of n different from 1 and n.
The total size N of the matrix is fixed by the maximal considered integer.

This defines a network where an integer number n is linked to its divisors m different
from 1 and n itself and where the transition probability is proportional to the multiplicity
k, the number of times we can divide n by m. The number 1 and the prime numbers
are therefore not linked to any other number and correspond to dangling nodes in the
language of WWW networks. For example, the number n = 24 has links pointing to

2
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Figure 1. The Google matrix of integers: the amplitudes of the matrix elements Gmn at α = 1
are shown by color: blue for minimal zero elements and red for maximal unity elements, with
1 � n � N corresponding to the x-axis (with n = 1 corresponding to the left column) and
1 � m � N to the y-axis (with m = 1 corresponding to the upper row). The matrix sizes are
N = 31 in the left panel and N = 101 in the right panel.

m(k) = 2(3), 3(1), 4(1), 6(1), 8(1), 12(1) (multiplicity is given in parentheses) so that
the nonzero matrix elements in this column are 3/8, 1/8, 1/8, 1/8, 1/8, 1/8, respectively.
We find the total number of links N� = ∑

mn Amn, taking into account the multiplicity, to be
N� = 6005 at N = 1000, N� = 1066 221 at N = 105, N� = 152 720 474 at N = 107 and
N� = 19 877 650 264 at N = 109. The fit of the dependence N� = N (a� + b� ln N) gives
a� = −0.901 ± 0.018, b� = 1.003 ± 0.001.

From the adjacency matrix A, we first construct a matrix S0 by normalizing the sum in
each column, containing at least one non-zero element, to unity and the matrix S is obtained
from S0 by replacing the elements of columns with only zero elements, corresponding to
dangling nodes 1 and prime numbers, by 1/N. The Google matrix G is finally obtained from S
by equation (1) for an arbitrary damping factor. The PageRank is the right eigenvector of the
matrix G with the maximal eigenvalue λ = 1: GP = λP = P.

The examples of the Google matrix G at α = 1 for N = 31, 101 are shown in figure 1.
We see that most elements are concentrated above the main matrix diagonal since the divisors
m are smaller than the number n itself. The only exceptions are given by the columns at 1 and
the prime numbers p which have no divisors (apart from 1 and p) and hence they correspond
to the dangling nodes with no direct links pointing to them. The amplitude of the elements
in these columns is uniformly 1/N. The structure of the matrix clearly shows the presence
of diagonals m = n/2, n/3, . . . corresponding to the small divisors m′ = 2, 3, . . ., which
appear rather often in the division of integers. This structure is preserved up to the largest size
N = 109 considered in this work.

As we will see in section 4, the eigenvalue λ0 = 1 of the matrix S is non-degenerate
(contrary to typical realistic WWW networks [9]) and in addition, its spectrum has a large gap
with λ0 and the other eigenvalues |λi| < 0.6. In such a case, the PageRank vector P(K) has
a very small variation when the damping factor α is changed in the range 0.85 � α � 1 and
the convergence of the power method to calculate the PageRank is well assured, actually quite
fast, even for the damping parameter α = 1. Therefore, we limit in this work our studies to
the case α = 1 at which G coincides with the matrix S and from now on we denote S as ‘the
Google matrix’.

3
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Figure 2. Dependence of PageRank probability P(K) on the PageRank index K for the matrix sizes
N = 103, 104, 105, 106, 107; the dashed straight line shows the Zipf law dependence P ∼ 1/K.

Finally, we note that certain networks constructed from integers have been considered
in [12, 13] but these networks were nondirectional and the Google matrix analysis was not
performed there.

3. PageRank order of integers

We first determine the PageRank vector of the Google matrix numerically by the power
iteration method [8] or by the Arnoldi method [14] using an Arnoldi dimension of size nA,
which allows us to find several eigenvalues and eigenvectors with largest |λ| for a full matrix
size of a few millions (see more details in [9, 15]).

The dependence of PageRank probability P(K) on the PageRank index K is shown in
figure 2. We see that with the growth of the system size N, the dependence P(K) converges
to a fixed distribution P(K) on initial K � N/10 values with the tail of distribution P(K) at
K > N/10, which is sensitive to the cut-off at the finite matrix size N. In the convergent part, a
formal fit (for 10 < K < 105) gives the dependence P ∼ A/Kβ with ln A = 0.0431±0.000 49,
β = 1.040 ± 0.0015 being close to the Zipf law with β = 1 [16]. The small value of β − 1
indicates that there can be a logarithmic correction. Indeed, the fit 1/(PK) = a1 + b1 ln K (for
10 < K < 103) gives the values a1 = 16.050±0.187, b1 = 2.468±0.036. Thus, it is possible
that in the limit of N → ∞, we have the asymptotic behavior P ∼ 1/(K ln K). Such a scaling
looks to be more probable due to usual logarithmic corrections in the density of primes [2].
However, for the available finite matrix sizes, the regime of linear behavior of 1/(PK) versus
ln K is quite limited and it is not obvious how to distinguish between the above two fitting
dependences.

The dependence of PageRank probability P on the integer index n is shown in figure 3.
It is characterized by a global decay P ∝ 1/n with the presence of various branches which
are especially well visible for the rescaled quantity nP. This structure is preserved with the
increase of matrix size for the values of n < N/100. The direct check shows that the highest
plateau corresponds to the prime numbers p.

Another way to analyze the structures visible in figure 3 is to consider the dependence of
n on the PageRank index K obtained from the PageRank probability P(Kn). In fact K gives a
new order of integers imposed by the PageRank. The dependence n(K) is shown in figure 4
on a large scale. In the first approximation, we find the layered structure with a sequence of
parallel lines n ∝ K. This global structure is preserved with the increase of the matrix size
from N = 105 to 107.

4
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Figure 3. Dependence of PageRank probability P on the integer number n for matrix sizes
N = 106, 107 (left panel: green and red points, respectively), and rescaled probability nP on
n (right panel); data are shown in log–log scale.
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Figure 4. Dependence of the integer number n on the PageRank index K for sizes N = 105, 106

(left panel: green and red points, respectively) and 107 (right panel); data are shown in log–log
scale.

A more detailed view of this structure is shown in figure 5. There are well-defined separated
branches with approximately linear dependence n ≈ κK with κ ≈ 4.5 for the highest branch,
which corresponds to the highest plateau in figure 3 (right panel). This branch contains only
primes. The lower branch contains semi-primes (products of two primes) and so on down to
smaller and smaller values of κ . The whole structure looks to have a self-similar structure as
it shows a zoom to a smaller scale. The increase of the size N gives some modifications of the
structure keeping its global pattern (see figure 5, bottom panels). There is a certain clustering
on the (n, K) plane of rectangles containing close values of K and integer numbers n. The
rectangles in the upper prime-branch contain exclusively prime numbers for n = p. Note that
the neighboring non-prime values appear in other rectangles on the right side for larger values
of K. For example, in the bottom-left panel of figure 5, we have a rectangle at K ∼ 2.6 × 104

and n ∼ 105 with primes but there is at K ∼ 7 × 104 another rectangle of semi-primes, also
with the values n ∼ 105.

The direct analysis shows that the rectangles in figure 5 correspond to flat plateaux with
degenerate values of P(Kn) (see the global dependence shown in figure 2) appearing for finite
matrix size N. This degeneracy results from only rational numbers appearing in the elements
of the Google matrix and from its very sparse structure. Inside such flat regions, the ordering
in K is somewhat arbitrary and depends on the precise sorting algorithm used. The K index
shown in figure 5 was obtained by the Shellsort method that may indeed produce quite a

5
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Figure 5. Top panels: the dependence of the integer number n on the PageRank index K for size
N = 107 shown by red points (left panel); the right panel shows zoom of data in a rectangle from
the left panel. Bottom panels: in addition to the data of the top right panel, data for N = 106 are
shown (left panel); the right panel shows zoom of data in a rectangular region from the left panel.
Data are shown in usual scale.

random ordering for degenerate values, thus generating the rectangles seen in figure 5. We
have verified that when using a modified sorting algorithm with a secondary criterion, to sort
with increasing n inside a degenerate region, the rectangles are replaced by lines from the
left bottom corner to the right top corner. With increasing values of N, these rectangles are
reduced in size. We numerically find that the first degenerate plateau appears at K = Kd and
that this number increases with the matrix size N, e.g. Kd = 27 at N = 1000, 177 at 105,
1287 at 107 and 10 386 at 109. This dependence is well described by the fit Kd = adKbd with
ad = 1.284 ± 0.078, bd = 0.432 ± 0.004. We return to discussion of the convergence at large
N a bit later.

Since we find an approximate linear growth of n with K inside each branch, it is useful to
consider the dependence of the ratio n/K on K, which is shown in figure 6. The upper branch of
primes is well described by the dependence n/K = b2 ln K + a2 with b2 = 0.322, a2 = 1.358.
This shows that in the previous relation, κ is not a constant but grows logarithmically with K.
We have an approximate relation b2 = 0.322 ≈ 1/b1 = 1/2.468. The lower branches also
have an approximately logarithmic growth of the ratio n/K with K.

Finally, let us discuss the stability of the PageRank order of integers with respect to the
variation of the matrix size N. The dependence P(K) is definitely converging to a fixed function
for K 	 N as is well seen in figure 2. However, for a fixed integer n, its PageRank index
Kn has a visible variation with the increase of matrix size N. These variations are visible in
figure 5 (bottom panels). At the same time, the global structure of the Kn or n(K) dependence
shows signs of convergence with the growth of N. A more detailed analysis of variation of
�K = |Kn(N1) − Kn(N2)| for two matrix sizes N2 = 10N1 is shown in figure 7. We see that
there is a significant decrease in variations �K with increase in N1, even if a small change
of Kn values is visible even at relatively low n ∼ 100. On the basis of these data, we make a

6
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Figure 6. Dependence of the ratio n/K on the PageRank index K for size N = 107; data are shown
in semi-log scale. The straight line shows the fit dependence n/K = a2 + b2 ln K for the upper
branch in the range 10 � K � 104 with a2 = 1.3583 ± 0.0099, b2 = 0.3227 ± 0.0014.
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Figure 7. Dependence of |�K| = |Kn(N2) − Kn(N1)| on the integer n for matrix sizes
N1 = 106, N2 = 107 (green points) and N1 = 105, N2 = 106 (red points). The left and right
panels show the same data either in normal or in log–log scales.

conjecture that in the limit of N → ∞, we will have a convergence to a fixed PageRank order
of integers Kn. However, we expect that this convergence is very slow, probably logarithmic
in N, thus being the reason that, even at N = 107, we find some variations in Kn. We note that
the density of states of Riemann zeros also shows very slow convergence so that enormously
large values of n ∼ N ∼ 1020 are required to obtain stable results [3, 4].

4. Spectral properties of the Google matrix of integers

4.1. Arnoldi method

To study numerically the spectrum of the Google matrix S = G of integers at α = 1, we
first employ the Arnoldi method [14, 15]. This method uses a normalized initial vector ξ0 and
generates a Krylov space by the vectors S j ξ0 for j = 0, . . . , nA − 1, where nA is called the
Arnoldi dimension. Using Gram–Schmidt orthogonalization, one determines an orthogonal
basis of the Krylov space and the matrix representation of S in this basis. This provides a
matrix S̄ of modest dimension nA of Hessenberg form which can be diagonalized by standard
QR-methods and whose eigenvalues, called Ritz eigenvalues, are in general very accurate
approximations of the largest eigenvalues of the original (very large) matrix S.

In this work, we have used the Arnoldi dimension nA = 1000 and two different initial
vectors: first a random initial vector and second a uniform initial vector with identical

7
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Figure 8. Spectrum of the Google matrix of integers for the matrix size N = 106 (left panels)
and 107 (right panels); the red crosses (light blue squares) represent numerical data from the
Arnoldi method with Arnoldi dimension nA = 1000 and a random initial vector (with the unit
initial vector), and the dark blue points represent the exact eigenvalues obtained as the zeros of
the reduced polynomial of equation (6). The top panels show the whole spectrum and the bottom
panels show a zoom of the region represented by black squares in the top panels. The eigenvalues
have significantly higher accuracy for the Arnoldi method with unit initial vector. The unit circle
|λ| = 1 is shown in green.

components 1/
√

N (thus normalized by the Euclidean norm ‖(· · ·)‖2). The spectrum of the
matrix S is shown in figure 8 for two sizes N = 106, 107. We see that there are only three
eigenvalues within the ring 0.05 < |λ| < 0.5 while the majority of eigenvalues is concentrated
inside a range of |λ| < 0.05. The first few largest eigenvalues are accurately obtained from
both initial vectors used for the Arnoldi method and also coincide (up to numerical precision)
with the eigenvalues determined by a semi-analytical approach (see below). However, for the
range |λ| < 0.05, the situation becomes more subtle, as discussed below.

We note that figure 8 shows a large gap between λ0 = 1 and the next eigenvalue, thus
justifying our above choice of the damping factor α = 1.

4.2. Analytical discussion of spectrum

The Google matrix S at α = 1 has a very particular structure that allows us to establish some
important properties for the spectrum and its eigenvalues. We can write

S = S0 + v d T , (2)

8
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where v and d are two vectors of size N with components vn = 1/N and dn = 1 for the prime
numbers n = p or n = 1 and dn = 0 for the other non-prime numbers (different from 1). For
later use, we also introduce the vector e with components en = 1 and therefore v = e/N. In
addition, d T denotes the transposed line vector of d. The matrix S0 is the contribution that
arises from the adjacency matrix A by normalizing the non-vanishing columns of the latter and
the tensor product v d T represents the values 1/N that are put in the zero columns of S0 when
constructing the full matrix S. The normalization condition of the non-vanishing columns of
S0 can be formally written as e T S0 = e T − d T which is just the line vector with components
0 for the vanishing columns of S0 (for prime numbers n or n = 1) and 1 for the non-vanishing
columns of S0 (for the other non-prime numbers different from 1). This expression provides
the useful identity

d T = e T (1 − S0). (3)

Furthermore, we observe that the matrix S0 has a trigonal form with vanishing entries
on the diagonals because (S0)mn �= 0 only if m is a divisor of n different from 1 and n, and
therefore for any non-vanishing matrix element (S0)mn, we have m � n/2 < n. This matrix
structure can also be seen in figure 1. As a consequence, S0 is nilpotent with Sl

0 = 0 for
some integer l. In the following, let us assume that l is the minimal number such that Sl

0 = 0.
Obviously in our model, l = [log2(N)] is actually a very modest number as compared to the
full matrix size N.

We now discuss how the form of equation (2) affects the eigenvalues of the full matrix S.
Let ψ be a right eigenvector of S and λ its eigenvalue:

λψ = Sψ = S0ψ + C v, C = d T ψ =
N∑

n prime or n=1

ψn. (4)

If C = 0, we find that ψ is an eigenvector of S0. Then λ = 0 since the matrix S0 is nilpotent
and cannot have non-vanishing eigenvalues. The matrix S0 is actually non-diagonalizable and
can only be transformed to a Jordan form with quite large Jordan blocks and 0 as the diagonal
element of each of the Jordan blocks.

Suppose now that C �= 0 implying that λ �= 0 since the equation S0ψ = −C v does not
have a solution for ψ because S0 has many zero rows and vn = 1/N �= 0 for each n = 1, . . . , N.
Since λ �= 0, the trigonal matrix λ1 − S0 is invertible and from equation (4), we obtain

ψ = C (λ1 − S0)
−1 v = C

λ

l−1∑
j=0

(
S0

λ

) j

v. (5)

Note that the sum is finite since Sl
0 = 0. The eigenvalue λ is determined by the condition that

this expression of ψ has to satisfy the condition C = d T ψ . Multiplying this condition by
λl/C, we find that λ is a zero of the following reduced polynomial of degree l:

Pr(λ) = λl −
l−1∑
j=0

λl−1− j c j = 0, c j = d T S j
0 v. (6)

This calculation shows that there are at most l eigenvalues λ �= 0 of S given as the zeros of
this reduced polynomial.

We note that using Sl
0 = 0 and identity (3), one finds that the coefficients c j obey the

following sum rule:

l−1∑
j=0

c j = d T

⎛
⎝ l−1∑

j=0

S j
0

⎞
⎠ v = e T (1 − S0)(1 − S0)

−1 v = 1 (7)

9
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since e T v = ∑
n vn = 1. This sum rule ensures that λ = 1 is a zero of the reduced polynomial

and the PageRank as the eigenvector of λ = 1 is obtained from (5):

P = C
l−1∑
j=0

S j
0 v, C−1 =

l−1∑
j=0

e T S j
0 v, (8)

where the identity for C−1 is due to the normalization of P.
Since the degree l = [log2(N)] of the reduced polynomial is very modest, 9 � l � 29

for 103 � N � 109, we have determined numerically the coefficients c j, which only require
a finite number of successive multiplications of S0 to the initial vector v, and determined the
zeros of the reduced polynomial by the very efficient Newton–Maehly method in the complex
plane. The resulting l eigenvalues (and the trivial highly degenerate eigenvalue λ = 0 of S)
obtained from this semi-analytical method are also shown in figure 8.

The numerical determination of the zeros shows that they are all simple zeros of the
reduced polynomial but at this point, we are not yet sure that they are also non-degenerate
as far as the full matrix S is concerned. In theory we might still have the principal vectors φ

associated with some eigenvalue λ �= 0 such that Sφ = λφ+ψ with ψ being the eigenvector at
λ. However, we can exclude this scenario by determining the full characteristic polynomial
of S:

PS(λ) = det(λ1 − S0 − v d T )

= λN det(1 − S0/λ) det[1 − (1 − S0/λ)−1 v d T /λ]

= λN[1 − d T (1 − S0/λ)−1 v/λ] = λN−l Pr(λ) (9)

since det(1 − S0/λ) = 1, det(1 − u w T ) = (1 − w T u) for the arbitrary vectors u and w,
and the matrix inverse has been expanded in a finite sum in a similar way as in equation (5).
According to equation (9), we observe that the simple zeros of Pr(λ) are also simple zeros of
PS(λ) and have therefore an algebraic multiplicity equal to 1. This proves that there are no
principal vectors and no non-trivial Jordan-block structure for λ �= 0. On the other hand, the
eigenvalue λ = 0 has the algebraic multiplicity N − l with many large Jordan blocks.

The l-dimensional subspace associated with the eigenvalues λ �= 0 is according to
equation (5) generated by the l vectors v( j) = S j

0 v with j = 0, . . . , l − 1, which form
a basis of this subspace. Using equations (2) and (6), we may easily determine the matrix
representation of S with respect to this basis by

S v( j) = c j v
(0) + v( j+1) =

l∑
k=0

S̄k+1, j+1 v(k), j = 0, . . . , l − 1, (10)

where for simplicity of notation for the case j = l − 1, we write v(l) = 0. The l × l-matrix S̄
has the explicit form

S̄ =

⎛
⎜⎜⎜⎜⎜⎝

c0 c1 · · · cl−2 cl−1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ . (11)

One easily verifies that the characteristic polynomial PS̄(λ) of this matrix coincides with
the reduced polynomial (6) and its l eigenvalues are therefore exactly the l non-vanishing
eigenvalues of the full matrix S. Using the sum rule (7), one notes that the l-dimensional
vector (1, . . . , 1)T is a right eigenvector of S̄ with eigenvalue λ = 1, thus confirming the
PageRank expression P ∝ ∑l−1

j=0 v( j) (see also equation (8)).

10
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Figure 9. Left panel: the dependence of γ j = 2 ln |λ j| on the index j for the l non-vanishing
eigenvalues of S and various matrix sizes N. Right panel: the dependence of γ1 on (ln N)−1 (red
line with crosses). The green line corresponds to the fit γ1(N) = γ1(∞) + �γ/ ln N for the range
105 � N � 109 (i.e. (ln N)−1 < 0.09) with γ1(∞) = 1.020 ± 0.006 and �γ = 7.14 ± 0.09.

A direct numerical diagonalization of matrix (11) is tricky and fails to produce the smaller
eigenvalues (below 10−2) due to numerical rounding errors since the coefficients c j decay very
rapidly, e.g. c22 ∼ 10−38 for N = 107 with l = 23. However, we may numerically diagonalize
the ‘equilibrated’ matrix, ρ−1 S̄ ρ, which has the same eigenvalues as S̄ and where ρ is a
diagonal matrix with the diagonal matrix elements ρ j j = 1/c j−1. The eigenvalues obtained
from the equilibrated matrix coincide very precisely (up to numerical precision 10−14) with
the zeros obtained from the reduced polynomial by the Newton–Maehly method. In figure 8,
we also show these l zeros for N = 106 and N = 107. Apparently, both variants of the Arnoldi
method fail to confirm the analytical result that there are only l non-vanishing eigenvalues, a
point we attribute to the numerical instability of the highly degenerate and defective eigenvalue
λ = 0 and which we will discuss below.

To study the evolution of the eigenvalue spectrum with N, it is actually convenient to
introduce the variable γ j = −2 ln |λ j|. The dependence of γ j on the index j is shown in the
left panel of figure 9. It appears that the γ -spectra for different values of N fall roughly on the
same curve except for the last one or two values of each spectrum. This universal curve can
be roughly approximated by a piecewise linear function with two slopes ≈ 4/3 for 0 � j � 6
and ≈ 1/7 for 6 � j � 28.

We note that the convergence of the first nonzero γ1 is compatible with the law
γ1(N) ≈ γ1(∞) + �γ/ ln N with γ1(∞) = 1.020 ± 0.006 and �γ = 7.14 ± 0.09 obtained
from a fit in the range 105 � N � 109. This fit is actually very accurate as can be seen from the
small error of γ1(∞) and the right panel of figure 9. Once more, such a dependence indicates
a very slow logarithmic convergence with the system size N.

In figure 10, we show the amplitude |ψ1| of the second eigenvector ψ1 at λ1 =
−0.284 22 + i 0.387 26 for N = 107 versus the K index. Despite some fluctuations, this
eigenvector seems to be close to the PageRank as far as the overall distribution of very large
and small values is concerned. This behavior does not come as a surprise in view of the
expansion (see equation (5))

ψ1 ∝
l−1∑
j=0

λ
− j−1
1 v( j). (12)

In principle, the fact that |λ1| is well below 1 indicates that the contributions of v( j) for the
larger values of j increase. However, as we will discuss in the next section, the overall size of
v( j) decays with increasing j much faster than the increase by the factor λ

− j−1
1 and therefore

11
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Figure 10. Dependence of the PageRank vector P (red curve) and the eigenvector |ψ1| (blue crosses)
on the PageRank index K for N = 107. Here the eigenvalue is λ1 = −0.284 22 + i 0.387 26
(|λ1| = 0.480 37, γ1 = 1.4663, and the corresponding ψ1 is normalized by the condition∑

n |ψ1(n)| = 1); the green curve shows the difference |�P| between the numerically computed
PageRank P (red curve) and semi-analytical computation of PageRank; for clarity, |�P| is
multiplied by a factor of 108.

mainly the first few terms of this sum contribute to ψ1 in a similar way as for the PageRank
(see section 5).

Finally in figure 10, also the numerical difference of the PageRank determined by the
standard power method and the semi-analytical expression (8) is shown. The relative difference
is ∼10−10 for the full range of K, thus numerically confirming the accuracy of equation (8).

4.3. Numerical problems due to Jordan blocks

The question arises why the Arnoldi method for both initial vectors, random and uniform (and
also direct numerical diagonalization for small matrix sizes N � 104), fails to confirm the
analytical result that there are only l = [log2(N)] non-zero eigenvalues λ �= 0 of S. The reason
is that the big subspace of dimension N − l associated with the eigenvalue λ = 0 with a lot of
large Jordan blocks is numerically very problematic. This effect for such a defective eigenvalue
is well known in the theory of numerical diagonalization methods [14]. To understand this a
bit clearer, consider a ‘perturbed’ Jordan block of size D:⎛

⎜⎜⎜⎜⎜⎝

0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
ε 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (13)

which has a characteristic polynomial λD − (−1)Dε and therefore complex eigenvalues that
scale as |λ| ∼ ε1/D as a function of the perturbation ε, while for ε = 0 we have λ = 0 with
multiplicity D. Therefore, a value of ε ∼ 10−15 due to numerical rounding errors may still
produce strong numerical errors in the eigenvalues if D is sufficiently large. In our case, figure 8
shows that the eigenvalues obtained by the Arnoldi method are accurate for |λ| � 10−2.

As can be seen in figure 8, there is also a difference in quality between the two initial
vectors chosen for the Arnoldi method. Using a random initial vector, the Arnoldi method
produces some wrong isolated eigenvalues in the intermediate regime 0.01 � |λ| � 0.02 and
in the case N = 107, some of the semi-analytical eigenvalues in the same regime are not
accurately found. However, for uniform initial vector, the Arnoldi method produces rather

12
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accurate eigenvalues even for |λ| ≈ 0.005. The reason is that the uniform initial vector
corresponds (up to normalization) to the vector v = e/N. In view of equation (10), the Arnoldi
method generates, at least in theory, exactly the l-dimensional subspace spanned by the vectors
v( j) and should exactly break off at nA = l with a vanishing coupling matrix element from
the subspace to the remaining space. However, due to numerical rounding errors and the fact
that the vectors v( j) are badly conditioned, i.e. mathematically they are linearly independent
but numerically nearly linearly dependent, the coupling matrix element is of the order of
10−3 (for N = 107). As a consequence, the Arnoldi method continues to generate new vectors
producing a cloud of ‘artificial’ eigenvalues inside a circle or radius ∼0.005. These eigenvalues
are generated by the above-explained mechanism of perturbed Jordan blocks.

The Arnoldi method with a random initial vector produces a similar but slightly larger
cloud of such artificial eigenvalues. However, here, even without any numerical rounding
errors, the method should not break off due to a bad choice of the initial vector. Actually,
in this case, the method even produces some ‘bad’ eigenvalues outside the Jordan-block-
generated cloud.

We mention that it is possible to improve the numerical behavior of the Arnoldi method
with uniform initial vector by the following ‘tricks’: first we chose a different matrix
representation of S where the first basis vector (associated with the number ‘1’) is replaced
by the uniform vector e and second where the scalar product used for the Gram–Schmidt
orthogonalization is modified with stronger weights ∼ n2 for the larger components. This
modified Arnoldi method produces a very small coupling matrix element ∼10−10 (for N = 107)
at nA = l and numerically very accurate eigenvalues (up to 10−10) for all l non-vanishing
eigenvalues. If we force the Arnoldi iterations to continue (nA  l), we obtain again a Jordan-
block-generated cloud of eigenvalues but whose size is considerably reduced as compared to
both original variants of the method.

5. Self-consistent determination of PageRank and analytic approximation

The eigenvalue equation of the PageRank, P = C v + S0 P with C = d T P (see equation (2)),
can be interpreted as a self-consistent equation for P defining a very effective iterative method
to determine P in a few iterations. Let us define the following iteration procedure:

P(0) = 0, P( j+1) = C v + S0 P( j), j = 0, 1, 2, . . . . (14)

In principle, the constant C = d T P is only obtained once the exact PageRank is known.
Therefore, in a practical application of this iteration, one first chooses some arbitrary non-
vanishing value for C and normalizes the PageRank once the procedure has converged.
However, for reasons of notation, we chose to keep the value C = d T P in equation (14)
from the very beginning.

We note that iteration (14) can formally be solved by the sum

P( j) = C
j−1∑
i=0

Si
0 v = C

j−1∑
i=0

v(i). (15)

Since Sl
0 = 0 for l = [log2(N)], the iteration not only converges but it actually provides the

exact PageRank P = P(l) after a finite number of iterations when j = l and in which case,
equation (15) coincides with our previous result (8).

We mention that the power method, where one successively multiplies the matrix
S = v d T + S0 by an initial (normalized) vector, is somewhat similar to (14) but with a
very crucial difference. In the power method, the constant C is updated at each iteration
according to C( j) = d T P( j) and here the initial vector must be different from 0. We recall that
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obtained from equation (14) and the exact PageRank P versus the PageRank index K. Right
panel: comparison of the dependence of the rescaled probabilities nP and nP(3) on n. Both panels
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the power method converges exponentially with an error ∼|λ1| j where λ1 being the second
eigenvalue of S with |λ1| ≈ 0.5 for N = 109 and an extrapolated value |λ1| ≈ 0.6 in the limit
N → ∞. As can be seen in figure 11, iteration (14) actually converges much faster than |λ1| j,
which is simply due to fixing the constant C from the beginning and not updating it with the
iterations.

The norm δ j = ‖P( j) − P‖1 of the error vector after j iterations decays much faster than
exponentially with j as shown in figure 11. For N = 107, one can quite well approximate the
error norm by the fit δ j ≈ exp(1.6–1.48 j − 0.117 j2) representing a quadratic function in
the exponential. Furthermore, for j close to l, we have the approximate ratio δ j/δ j−1 ≈ 10−2

and not 0.5–0.6 as the power method would imply. For j > 12, one can actually identify
a regime of superconvergence where the logarithm of the error behaves exponentially,
− ln(δ j) ≈ exp(2.46 + 0.092 j), but the parameter range for j is too small to decide if
there is really superconvergence. However, both fits clearly indicate that the convergence is
considerably faster than exponential.

As a consequence of the very rapid convergence dependent on the required precision, it is
sufficient to apply iteration (14) only a few times j 	 l to obtain a reasonable approximation.
For example, figure 12 shows for N = 107 that on a logarithmic scale, P(3) and P are already
very close.
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This allows us to obtain a very simple analytical approximation of the PageRank:
P ≈ P(3) = v(0) + v(1) + v(2). For this, let us rewrite the recursion v( j+1) = S0 v( j) in a
different way:

v( j+1)
n =

[N/n]∑
m=2

M(mn, m)

Q(mn)
v( j)

mn if n � 2 and v
( j+1)

1 = 0, (16)

where for given two integers n and m > 1, the multiplicity M(n, m) is the largest integer
such that mM(n,m) is a divisor of n and Q(n) = ∑n−1

m=2 M(n, m) is the number of divisors of n
(different from 1 and n itself) counting divisors several times according to their multiplicity.
The appearance of the multiplicity M(mn, n) in (16) is not very convenient for numerical
evaluations. Either one recalculates the multiplicity at each use or one sacrifices a big amount
of memory to store them. It is actually possible to rewrite equation (16) in a way that the
multiplicities no longer appear explicitly. For this, we note that the case M(mn, n) � 2 implies
only those values of m such that n is a divisor of m implying m = m̃n and mn = m̃n2. This
produces a second sum where one uses the multiples of n2 and in a similar way, a further sum
with multiples of n3 for the cases M(mn, n) � 3 and so on. For n � 2, we may therefore
rewrite equation (16) in the following equivalent expression:

v( j+1)
n =

[N/n]∑
m=2

1

Q(mn)
v( j)

mn +
nν�N∑
ν�2

[N/nν ]∑
m=1

1

Q(mnν )
v

( j)
mnν , (17)

where each term in the sum of ν takes into account the contributions with M(mn, m) = ν.
Note that the extra sums start at m = 1 since n � 2 and therefore mnν > n even for m = 1.
The above PageRank iteration (14) can be written in a similar way (see below) but for practical
purposes, numerical or analytical, it is actually more convenient to use the recurrence for the
vectors v( j) and to add them to obtain the PageRank according to equation (15).

Both equations (16) and (17) are also very efficient for a numerical evaluation, especially
in terms of memory usage, since the matrix S0 is represented by ‘only’ N integer values Q(n),
n = 1, . . . , N, which is much less than the number (∼N ln N) of non-zero double-precision
matrix elements of S0 (even completely taking into account the sparse structure of S0). When
using equation (16), one can recalculate at each time the multiplicities M(n, m), which is not
very expensive. However, it turns out that the additional sums in equation (17) are slightly
more effective than this recalculation. Furthermore, for the iteration of v( j), the number of
non-vanishing elements is reduced by a factor of 2 at each iteration. As a consequence, we may
replace in equations (16) and (17) N by [N 2− j] and thus considerably reduce the computation
time. We note that the direct iteration of P( j) instead v( j) does not have this advantage. Actually,
in terms of numerical computation time, the approximation to stop after a few iterations is not
very important since in any case the higher order corrections require less computation time.
Using iteration (17), we have been able to determine numerically the vectors v( j) and therefore
the PageRank, the coefficients c j and the resulting l = [log2 N] non-zero eigenvalues of S for
system sizes up to N = 109.

In addition, equation (16) allows also for some analytical approximate evaluation of the
first vectors. The initial vector is v(0)

n = 1/N. Let us try to evaluate the next two vectors v(1)
n

and v(2)
n for the most important case where n is a prime number p. Furthermore, in sum (16),

the most important contributions arise for m also being a prime number q such that Q(qp) = 2
and M(qp, p) = 1 (except for the case q = p, which we neglect) resulting in

v(1)
p ≈

[N/p]∑
q=2, prime

1

2N
= 1

2N
π

([
N

p

])
≈ 1

2p(ln N − ln p)
, (18)
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where π(n) ≈ n/ ln(n) (for n  1) is the number of prime numbers below n. However,
these values of v(1)

n at the prime numbers n = p do not contribute to (16) for the next
iteration j = 1 when trying to determine v(2). To obtain the leading contributions in v(2),
we need v(1)

n for n = p1 p2 being a product of two prime numbers. In this case, we have
Q(q p1 p2) = 23 −2 = 6 if q, p1and p2 are three different prime numbers. Assuming p1 �= p2

and neglecting the complications from the few cases q = p1 or q = p2, we find that

v(1)
p1 p2

≈ 1

6N
π

([
N

p1 p2

])
≈ 1

6p1 p2 (ln N − ln p1 − ln p2)
. (19)

For the case n = p2, i.e. p1 = p2 = p, we have Q(qp2) = 5 (since p has multiplicity 2)
resulting in

v
(1)

p2 ≈ 1

5N
π

([
N

p2

])
≈ 1

5p2 (ln N − 2 ln p)
. (20)

From (16) for j = 1 and (19), we obtain

v(2)
p ≈ 1

12N

[N/(2p)]∑
q=2, prime

π

([
N

p q

])
. (21)

Here we have reduced the sum from q � [N/p] to q � [N/(2p)] since π([N/(pq)]) is non-zero
only for N/(pq) � 2 and therefore q � N/(2p). Now, we replace the sum

∑
q(· · ·) over the

prime numbers by an integral
∫

dq π ′(q) (· · ·) where π ′(q) ≈ 1/ ln(q) is the average density
of prime numbers at q resulting in

v(2)
p ≈ 1

12N

∫ N/(2p)

2
dq π

([
N

p q

])
π ′(q)

≈ 1

12p

∫ N/(2p)

2

dq

q

1

(ln(N/p) − ln q) ln q

= 1

12p

∫ ln(N/(2p))

ln 2
du

1

(ln(N/p) − u) u

= 1

6p ln(N/p)

(
ln ln

(
N

2p

)
− ln ln 2

)
. (22)

From (18) and (22), we obtain the PageRank approximation at integer values,

Pp ≈ P(3)
p ≈ C

(
1

N
+ v(1)

p + v(2)
p

)
≈ C

2p ln N

(
1 − ln ln 2 + ln ln N

3

)
, (23)

where we have assumed that N  p and replaced ln(N/p) = ln N − ln p ≈ ln N and C is the
same constant as used in (14).

The important point with this expression is that it is of the form Pp ≈ CN/p where CN is
a constant depending on N. In order to compare with our above results, especially in figure 2,
we have to replace p by the K index. Assuming that the K index is dominated by the prime
numbers, we have K = π(p) ≈ p/ ln p implying p ≈ K ln p ≈ K ln K, thus providing the
behavior P(K) ≈ CN/(K ln K) already conjectured above based on the numerical results.
Concerning the numerical value of the constant CN , we find that, at N = 107, it is roughly one
order of magnitude too small compared to the numerical results.

We recall that the considerations leading to expression (23) are based on a lot of
assumptions and quite crude approximations, especially the replacement of π(n) ≈ n/ ln(n),
even if n = O(1), and we have neglected a lot of contributions from numbers with more
factors in their prime factor decomposition, which are most likely responsible for the reduced
numerical prefactor. Furthermore, the assumption that the PageRank is dominated by prime

16



J. Phys. A: Math. Theor. 45 (2012) 405101 K M Frahm et al

10-8

10-6

10-4

10-2

100 102 104 106 108

P

K

~K −1

107

108

109

107, PM

10-8

10-6

10-4

10-2

100 102 104 106 108

P

K

~K −1

107

108

109

Figure 13. Left panel: the full lines correspond to the dependence of PageRank probability P(K)

on the PageRank index K for the matrix sizes N = 107, 108, 109 with the PageRank evaluated from
expression (8) using the efficient numerical method based on equation (17). The green crosses
correspond to the PageRank obtained by the power method (PM) for N = 107; the dashed straight
line shows the Zipf law dependence P ∼1/K. Right panel: the same as in the left panel (without
data from the power method) for a simplified model for the Google matrix of integers where all
multiplicities M(n, m) are replaced by 1, i.e. n is linked to its divisors m only once even if n can be
divided several times by m. The PageRank was numerically evaluated by the same efficient method
using equations (8) and (16) with M(n, m) = 1.

numbers is not completely exact since certain non-prime numbers with a small number of
factors intermix with larger prime numbers in the PageRank, thus modifying the dependence
of the prime numbers on the K index from p ≈ K ln(K) to p ≈ K (1.36 + 0.323 ln K)

according to the fit in figure 6 for N = 107. However, despite the approximations, we recover
the leading parametric dependence of P ∼1/(K ln K).

The PageRank dependence P(K) obtained from expression (8) using the efficient
numerical method based on equation (17) is shown in figure 13 (left panel) for N =
107, 108, 109. For N = 107, these data agree with the computation result by the Arnoldi
power method with the numerical accuracy of the order of 10−10 (see also figure 10). This
confirms the efficiency of our semi-analytical computation of the PageRank.

We note that it may be useful to consider a simplified model for the Google matrix
of integers when multiplicity of all divisors is taken to be unity. The numerical fit of
data shows that, in this case, the number of links scales as N� = N (a� + b� ln N) with
a� = −1.838±0.002, b� = 0.999±0.0002. For this model, we have the same expression (16)
but with the replacements M(nm, m) → 1 and Q(n) → Q∗(n) where Q∗(n) is the
number of divisors of the integer n excluding 1 and n itself without multiplicities, e.g.
Q∗(2) = 0, Q∗(3) = 0, Q∗(4) = 1, . . .. Note that this quantity is given by the expression
Q∗(n) = (

∏
j(μ j + 1)) − 2 where μ j are the exponents in the prime factor decomposition of

n = ∏
j p

μ j

j .
The dependence of the PageRank on K for the simplified model is shown in the right

panel of figure 13. It shows practically the same behavior as in the main model shown in the
left panel. In this case, the analytical expression for the PageRank P, obtained from the first
three terms, has a very simple form

Pn ≈ P(3)
n = σN

(
1 +

[N/n]∑
m1=1

1

Q∗(m1n)
+

[N/n]∑
m1=2

[N/(nm1)]∑
m2=2

1

Q∗(m1n)

1

Q∗(m2m1n)

)
, (24)

where N is the matrix size and σN is the global normalization constant determined by the
condition

∑n=N
n=1 Pn = 1. This simple formula gives a good description of the PageRank

behavior shown in the right panel of figure 13. Indeed, the direct count shows that the ratio
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Figure 14. Dependence of |�K| = |Kn(N2) − Kn(N1)| on the integer n for matrix sizes
N1 = 108, N2 = 109 (green points) and N1 = 107, N2 = 108 (red points). The left and right
panels show the same data in normal and log–log scales. Note the strongly reduced vertical scale
of the left panel as compared to the left panel of figure 7. The vertical scale of the right panel was
not reduced allowing a direct comparison with the right panel of figure 7. The data were obtained
by the same efficient numerical method as in the left panel of figure 13.

Rms of the total number of links N� for both models (counted with or without multiplicities)
approaches unity for large matrix sizes. For example, we have Rms = 1.184 (N = 1000),
1.102 (105), 1.070 (107) and 1.052 (109). Thus, we think that in the limit of large N, both
models converge to the same type of behavior. It is possible that the simplified model may be
more suitable for further analytical analysis. However, in this work, we present data for the
simplified model only in the right panel of figure 13.

Using the PageRank data obtained by the self-consistent approach for large N =
107, 108, 109, we can analyze the convergence of the PageRank order Kn at larger sizes
compared to those used in figure 7. These new results for variation of |�K| are presented in
figure 14. They show that the variation |�K| decreases with the increase of N from 107 up
to 109 even if the process is slow. A direct comparison shows that the first deviation in the
order Kn appears at K = Ks = 13 (comparing N = 106 versus 107), Ks = 27 (107 versus
108), Ks = 30 (108 versus 109). We find that the stable range interval Ks grows with N but this
growth seems logarithmic like with Ks ∼ln N. Such a growth seems to be natural in the view
of logarithmic convergence of the second eigenvalue λ1 discussed above and all logarithmic
factors appearing in the density of primes. We also note that the value of Ks is significantly
smaller than the value of Kd at which the first degenerate flat plateau appears in the PageRank
P(K) and hence these degeneracies do not affect the order of the first Ks integers.

On the basis of the obtained results, we conclude that for our maximal matrix size N = 109,
we have convergence of the first 32 values of Kn. These numbers n, corresponding to the values
of K = 1, 2, . . . , 32, are n = 2, 3, 5, 7, 4, 11, 13, 17, 6, 19, 9, 23, 29, 8, 31, 10, 37, 41, 43, 14,
47, 15, 53, 59, 61, 25, 67, 12, 71, 73, 22, 21. There are about 30% of non-primes among these
values. We mention that the positions of the first non-primes 4, 6, 9 can already be obtained
from the first-order approximations of v(1) discussed above. According to (18), the relative
weight of a prime number in the first order is 1/(2p). For the two square numbers 4 and 9,

the weight is according to (20) either 1/(5 × 4) = 1/(2 × 10) or 1/(5 × 9) = 1/(2 × 22.5),
explaining that 4 is between the primes 7 and 11 and that 9 is between 19 and 23. For the
product 6 = 2 × 3, we have according to (19) the weight 1/(6 × 6) = 1/(2 × 18) implying
that 6 is between 17 and 19. However, this simple argument does not work for other numbers,
for example, for 10 (or 14), it would imply an incorrect position between 29 and 31 (41 and
43). We mention that more numerical data are available at the web page [17].
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For the simplified model, we find at N = 109 for the first values K = 1, 2, . . . , 32 a
slightly different order of integers n = 2, 3, 5, 4, 7, 11, 13, 17, 9, 6, 19, 8, 23, 29, 31, 10, 37,
41, 43, 14, 47, 15, 53, 25, 59, 16, 61, 12, 67, 71, 22, 21. Here the absence of multiplicities
increases the weight for the square numbers of primes to 1/(4p2), implying that these numbers
are slightly advanced in the K order as compared to our main model. The modified weight for
9 is 1/(2 × 18) coherent with the new position between 17 and 19 (with 6 having the same
first-order weight as 9 and also being between 17 and 19). For 4, the weight is increased from
1/(2 × 10) to 1/(2 × 8). However, this increase is not sufficient to explain the new position
of 4 between 5 and 7.

One might mention as a curiosity a special ‘prime integer network model’ where a non-
prime number n is only linked to its prime factors (and not to all of its divisors). In this case,
the matrix S0 is strongly simplified such that S2

0 = 0, i.e. l = 2 being independent of the
system size, and hence there are only two non-vanishing eigenvalues of the Google matrix,
which are λ0 = 1 and λ1 = c0 − 1 ≈ −1 + 1/ ln N where c0 = (π(N) + 1)/N ≈ 1/ ln N is
the ratio of the number of primes and unity to N. This is simply seen from the definition of c j

in equation (6) and the trace c0 = λ0 + λ1 of matrix (11), which is of size 2 × 2 for this case.
According to (5), the PageRank P and the second eigenvector ψ1 are given by P ∝ e + v(1)

and ψ1 ∝ e − v(1)/(1 − 1/ ln N) where e is the vector with all components equal to unity
and v(1) is a vector such that v(1)

n = 0 for the non-prime numbers n or n = 1 and v(1)
n for

the prime numbers n = p is given by an equation similar to equation (16) for j = 0 with
v(0)

nm being replaced by unity and multiplicities and number of divisors adapted for the prime
integer network model. Here both versions, with or without multiplicities, are possible. The
eigenvalues do not depend on the version but the eigenvectors do. For both cases, it is pretty
obvious that the K index gives exactly the sequence of prime numbers below N in increasing
order followed by a large degenerated plateau for the non-prime integer numbers. Note that
here the second eigenvalue converges to −1 with a correction 1/ ln(N) for large N, thus closing
the gap in |λ| of the Google matrix.

6. Discussion

In this work, we constructed the Google matrix of integers based on links between a given
integer n and its divisors. The numerical analysis based on the Arnoldi method allowed us
to show that the PageRank P(Kn) of this directed network decays with the PageRank index
Kn of an integer n approximately as P(Kn) ∼ 1/(Kn ln Kn), being similar to those of the Zipf
law and those found for the WWW. However, the spectrum of the Google matrix has a large
gap appearing between the unit eigenvalue and other eigenvalues, while the spectrum of the
Google matrix of WWW usually has no gap. We developed an efficient semi-analytical method
to compute the PageRank of integers which allowed us to determine the dependence P(Kn)

up to the matrix size of 1 billion. We show that the dependence of PageRank on the integer
number n is characterized by a series of branches corresponding to primes, semi-primes and
numbers with higher products of primes. Our data show a logarithmic-like convergence of the
PageRank order of integers to a fixed order in the limit of matrix size going to infinity.
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Abstract. We construct the Google matrix of the entire Twitter network, dated by July 2009, and analyze
its spectrum and eigenstate properties including the PageRank and CheiRank vectors and 2DRanking of
all nodes. Our studies show much stronger inter-connectivity between top PageRank nodes for the Twitter
network compared to the networks of Wikipedia and British Universities studied previously. Our analysis
allows to locate the top Twitter users which control the information flow on the network. We argue that
this small fraction of the whole number of users, which can be viewed as the social network elite, plays the
dominant role in the process of opinion formation on the network.

1 Introduction

Twitter is an online directed social network that enables
its users to exchange short communications of up to 140
characters [1]. In March 2012 this network had around
140 million active users [1]. Being founded in 2006, the size
of this network demonstrates an enormously fast growth
with 41 million users in July 2009 [2], only three years af-
ter its creation. The crawling and statistical analysis of the
entire Twitter network, collected in July 2009, was done
by the KAIST group [2] with additional statistical charac-
teristics available at LAW DSI of Milano University1. This
network has scale-free properties with an average power
law distribution of ingoing and outgoing links1 [2] being
typical for the World Wide Web (WWW), Wikipedia and
other social networks (see e.g [3–5]). In this work we use
this Twitter dataset to construct the Google matrix [6,7]
of this directed network and we analyze the spectral prop-
erties of its eigenvalues and eigenvectors. Even if the en-
tire size of Twitter 2009 is very large the powerful Arnoldi
method (see e.g. [8–11]) allows to obtain the spectrum and
eigenstates for the largest eigenvalues.

A special analysis is performed for the PageRank vec-
tor, used in the Google search engine [6,7], and the Chei-
Rank vector studied for the Linux Kernel network [12,13],
Wikipedia articles network [5], world trade network [14]
and other directed networks [15]. While the components
of the PageRank vector are on average proportional to
a number of ingoing links [16], the components of the
CheiRank vector are on average proportional to a number
of outgoing links [5,12] that leads to a two-dimensional
ranking of all network nodes [15]. Thus our studies allow

a e-mail: dima@irsamc.ups-tlse.fr
1 Twitter web data of [2] are downloaded from the web site

maintained by S. Vigna, http://law.dsi.unimi.it/webdata/
twitter-2010.

to analyze the spectral properties of the entire Twitter
network of an enormously large size which is by one-
two orders of magnitude larger compared to previous
studies [5,11,13,15].

The paper is organized as follows: the construction of
the Google matrix and its global structure are described
in Section 2; the properties of spectrum and eigenvectors
of the Google matrix of Twitter are presented in Section 3;
properties of 2DRanking of Twitter network are analyzed
in Section 4 and the discussion of the results is given in
Section 5. Detailed data and results of our statistical anal-
ysis of the Twitter matrix are presented at the web page2.

2 Google matrix construction

The Google matrix of the Twitter network is constructed
following the standard rules described in [6,7]: we consider
the elements Aij of the adjacency matrix being equal to
unity if a user (or node) j points to user i and zero oth-
erwise. Then the Google matrix of the network with N
users is given by

Gij = αSij + (1 − α)/N, (1)

where the matrix S is obtained by normalizing to unity
all columns of the adjacency matrix Ai,j with at least one
non-zero element, and replacing columns with only zero
elements, corresponding to the dangling nodes, by 1/N .
The damping factor α in the WWW context describes
the probability (1 − α) to jump to any node for a ran-
dom surfer. The value α = 0.85 gives a good classifica-
tion for WWW [7] and thus we also use this value here.
The matrix G belongs to the class of Perron-Frobenius

2 http://www.quantware.ups-tlse.fr/QWLIB/

twittermatrix/.
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operators [7], its largest eigenvalue is λ = 1 and other
eigenvalues have |λ| ≤ α. The right eigenvector at λ = 1
gives the probability P (i) to find a random surfer at site i
and is called the PageRank. Once the PageRank is found,
all nodes can be sorted by decreasing probabilities P (i).
The node rank is then given by index K(i) which reflects
the relevance of the node i. The top PageRank nodes are
located at small values of K(i) = 1, 2, . . .

The PageRank dependence on K is well described by
a power law P (K) ∝ 1/Kβin with βin ≈ 0.9. This is con-
sistent with the relation βin = 1/(μin − 1) correspond-
ing to the average proportionality of PageRank proba-
bility P (i) to its in-degree distribution win(k) ∝ 1/kμin

where k(i) is a number of ingoing links for a node i [7,16].
For the WWW it is established that for the ingoing links
μin ≈ 2.1 (with βin ≈ 0.9) while for the out-degree distri-
bution wout of outgoing links the power law has the ex-
ponent μout ≈ 2.7 [3,4]. Similar values of these exponents
are found for the WWW British university networks [11],
the procedure call network of Linux Kernel software intro-
duced in [12] and for Wikipedia hyperlink citation network
of English articles (see e.g. [5]).

In addition to the Google matrix G we also analyze
the properties of matrix G∗ constructed from the network
with inverted directions of links, with the adjacency ma-
trix Ai,j → Aj,i. After the inversion of links the Google
matrix G∗ is constructed via the procedure (1) described
above. The right eigenvector at unit eigenvalue of the ma-
trix G∗ is called the CheiRank [5,12]. In analogy with the
PageRank the probability values of CheiRank are pro-
portional to number of outgoing links, due to links in-
version. All nodes of the network can be ordered in a
decreasing order with the CheiRank index K∗(i) with
P ∗ ∝ 1/K∗βout with βout = 1/(μout − 1). Since each
node i of the network is characterized both by PageRank
K(i) and CheiRank K∗(i) indexes the ranking of nodes be-
comes two-dimensional. While PageRank highlights well-
know popular nodes, CheiRank highlights communicative
nodes. As discussed in [5,12,15], such 2DRanking allows
to characterize an information flow on networks in a more
efficient and rich manner. It is convenient to character-
ize the interdependence between PageRank and CheiRank
vectors by the correlator

κ = N

N∑
i=1

P (K(i))P ∗(K∗(i)) − 1. (2)

As it is shown in [12,15], we have κ ≈ 0 for Linux Kernel
network, transcription gene networks and κ ≈ 2−4 for
University and Wikipedia networks.

In this work we apply the Google matrix analysis de-
veloped in [5,11–15] to the Twitter 2009 network avail-
able at1 [2]. The total size of the Google matrix is N =
41 652 230 and the number of links is N� = 1 468 365 182.
This matrix size is by one-two orders of magnitude larger
than those studied in [11,13,15]. The number of links per
node is ξ� = N�/N ≈ 35 being by a factor 1.5−3.5 larger
than for Wikipedia network or Cambridge University 2006
network [15]. The matrix elements of G and G∗ are shown

in Figure 1 on a scale of top 200 (top panels) and 400
(middle panels) values of K (for G) and K∗ (for G∗) and
in a coarse grained image for the whole matrix size scale
(bottom panels).

It is interesting to note that the coarse-grained image
has well visible hyperbolic onion curves of high density
which are similar to those found in [15] for Wikipedia and
University networks. In [15] the appearance of such curves
was attributed to existence of specific categories. We as-
sume that for the Twitter network such curves are a result
of enhanced links between various categories of users (e.g.
actors, journalists, etc.) but a detailed origin is still to be
established.

In the following sections we also compare the proper-
ties of the Twitter network with those of the Wikipedia
articles network from [5]. Some spectral properties of
the Wikipedia network with N = 3 282 257 nodes and
N� = 71 012 307 links are analyzed in [11,15]. We also com-
pare certain parameters with the networks of Cambridge
and Oxford Universities of 2006 with N = 212 710 and
N = 200 823 nodes and with N� = 2 015 265 and N� =
1 831 542 links respectively. The properties of these net-
works are discussed in [11,15]. The gallery of the Google
matrix G images for these networks, as well as for the
Linux Kernel network, are presented in [15]. The compar-
ison with the data shown in Figure 1 here shows that for
the Twitter network we have much stronger interconnec-
tion matrix at moderate K values. We return to this point
in Sections 4 and 5.

3 Spectrum and eigenstates of Twitter

To obtain the spectrum of the Google matrix of Twitter we
use the Arnoldi method [8–10]. However, at first, following
the approach developed in [11], we determine the invariant
subspaces of the Twitter network. For that for each node
we find iteratively the set of nodes that can be reached by
a chain of non-zero matrix elements of S. Usually, there
are several such invariant isolated subsets and the size of
such subsets is smaller than the whole matrix size. These
subsets are invariant with respect to applications of ma-
trix S. We merge all subspaces with common members,
and obtain a sequence of disjoint subspaces Vj of dimen-
sion dj invariant by applications of S. The remaining part
of nodes forms the wholly connected core space. Such a
classification scheme can be efficiently implemented in a
computer program, it provides a subdivision of network
nodes in Nc core space nodes (typically 70−80% of N for
British University networks [11]) and Ns subspace nodes
belonging to at least one of the invariant subspaces Vj

inducing the block triangular structure,

S =
(

Sss Ssc

0 Scc

)
. (3)

Here the subspace-subspace block Sss is actually com-
posed of many diagonal blocks for each of the invariant
subspaces. Each of these blocks corresponds to a column
sum normalized matrix of the same type as G and has
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Fig. 1. (Color online) Google matrix of Twitter: matrix el-
ements of G (left column) and G∗ (right column) are shown
in the basis of PageRank index K (and K′) of matrix GKK′

(left column panels) and in the basis of CheiRank index K∗

(and K∗′) of matrix G∗
K∗K∗′ (right column panels). Here, x

(and y) axis shows K (and K
′
) (left column) (and respec-

tively K∗ and K∗′ on right column) with the range 1 ≤
K,K′ ≤ 200 (top panels); 1 ≤ K,K′ ≤ 400 (middle pan-
els); 1 ≤ K,K′ ≤ N (bottom panels). All nodes are ordered
by PageRank index K of the matrix G and thus we have two
matrix indexes K,K′ for matrix elements in this basis (left

column) and respectively K∗,K∗′ for matrix G∗ (right col-
umn). Bottom panels show the coarse-grained density of ma-
trix elements GK,K′ and G∗

K∗K∗′ ; the coarse graining is done
on 500 × 500 square cells for the entire Twitter network. We
use a standard matrix representation with K = K′ = 1 on top

left panel corner (left column) and respectively K∗ = K∗′ = 1
(right column). Color shows the amplitude of matrix elements
in top and middle panels or their density in the bottom panels
changing from blue for minimum zero value to red at maximum
value. Here the PageRank index K (and CheiRank index K∗)
has been calculated for the damping factor α = 0.85. However,
the matrix elements G are shown for the damping factor α = 1
since a value α < 1 only adds a uniform background value and
modifies the overall scale in the density plots.

therefore at least one unit eigenvalue thus explaining the
high degeneracy. Its eigenvalues and eigenvectors are eas-
ily accessible by numerical diagonalization (for full matri-
ces) thus allowing to count the number of unit eigenvalues.

We find for the G matrix of Twitter 2009 that there
are Ns = 40 307 subset sites with a maximal subspace di-
mension of 44 (most subspaces are of dimension 2 or 3).
For the matrix G∗ we find Ns = 180 414 also with a lot

of subspaces of dimension 2 or 3 and a maximal subspace
dimension of 2959. The remaining eigenvalues of S can
be obtained from the projected core block Scc which is
not column sum normalized (due to non-zero matrix el-
ements in the block Ssc) and has therefore eigenvalues
strictly inside the unit circle |λ(core)

j | < 1. We have ap-
plied the Arnoldi method (AM) [8–10] with Arnoldi di-
mension nA = 640 to determine the largest eigenvalues
of Scc which required a machine with 250 GB of physical
RAM memory to store the non-zero matrix elements of S
and the 640 vectors of the Krylov space.

In general the Arnoldi method provides numerically
accurate values for the largest eigenvalues (in modulus)
but their number depends crucially on the Arnoldi di-
mension. In our case there is a considerable density of real
eigenvalues close to the points 1 and −1 where convergence
is rather difficult. Comparing the results for different val-
ues of nA, we find that for the matrix S (S∗) the first
200 (150) eigenvalues are correct within a relative error
below 0.3% while the marjority of the remaining eigenval-
ues with |λj | ≥ 0.5 (|λj | ≥ 0.6) have a relative error of
10%. However, the well isolated complex eigenvalues, well
visible in Figure 2, converge much better and are numeri-
cally accurate (with an error ∼10−14). The first three core
space eigenvalues of S (S∗) are also numerically acurrate
with an error of ∼10−14 (∼10−8).

The composed spectrum of subspaces and core space
eigenvalues obtained by the Arnoldi method is shown in
Figure 2 for G and G∗. The obtained results show that the
fraction of invariant subspaces with λ = 1 (g1 = Ns/N ≈
10−3) is by orders of magnitude smaller than the one found
for British Universities (g1 ≈ 0.2 at N ≈ 2×105) [11]. We
note that the cross and triple-star structures are visible for
Twitter spectrum in Figure 2 but they are significantly
less pronounced as compared to the case of Cambridge
and Oxford network spectrum (see Fig. 2 in [11]). It is in-
teresting that such a triplet and cross structures naturally
appear in the spectra of random unistochastic matrices of
size N = 3 and 4 which have been analyzed analytically
and numerically in [17]. A similar star-structure spectrum
appears also in sparse regular graphs with loops studied
recently in [18] even if in the later case the spectrum goes
outside of unit circle. This shows that even in large size
networks the loop structure between 3 or 4 dominant types
of nodes is well visible for University networks. For Twitter
network it is less pronounced probably due to a larger
number ξ� of links per node. At the same time a circle
structure in the spectrum remains well visible both for
Twitter and University networks. The integrated number
of eigenvalues as a function of |λ| is shown in the bottom
panels of Figure 2. Further detailed analysis is required
for a better understanding of the origin of such spectral
structures.

It is interesting to note that a circular structure,
formed by eigenvalues λi with |λi| being close to unity (see
red and blue point in top left and right panels of Fig. 3),
is rather similar to those appearing in the Ulam networks
of intermittency maps (see Fig. 4 in [19]). Following an
analogy with the dynamics of these one-dimensional maps



Page 4 of 7 Eur. Phys. J. B (2012) 85: 355

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

λ -1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

λ

10-5

0
 0.7  0.8  0.9  1

j/
N

|λj|

6x10-5

5x10-5

4x10-5

3x10-5

2x10-5

10-5

0
 0.7  0.8  0.9  1

j/
N

|λj|

Fig. 2. (Color online) Spectrum of the Twitter matrix S (S∗

with inverted direction of links) for the Twitter network shown
on left panels (right panels). Top panel: subspace eigenvalues
(blue dots) and core space eigenvalues (red dots) in λ-plane
(green curve shows unit circle); there are 17 504 (66 316) in-
variant subspaces, with maximal dimension 44 (2959) and the
sum of all subspace dimensions is Ns = 40 307 (180 414). The
core space eigenvalues are obtained from the Arnoldi method
applied to the core space subblock Scc of S with Arnoldi di-
mension 640 as explained in reference [11]. Bottom panels:
fraction j/N of eigenvalues with |λ| > |λj | for the core space
eigenvalues (red bottom curve) and all eigenvalues (blue top
curve) from raw data of top panels. The number of eigenvalues
with |λj | = 1 is 34135 (129 185) of which 17505 (66 357) are at
λj = 1; this number is (slightly) larger than the number of in-
variant subspaces which have each at least one unit eigenvalue.
Note that in the bottom panels the number of eigenvalues with
|λj | = 1 is artificially reduced to 200 in order to have a better
scale on the vertical axis. The correct number of those eigen-
values corresponds to j/N = 8.195×10−4 (3.102×10−3) which
is strongly outside the vertical panel scale.

we may say that the eigenstates related to such a circu-
lar structure corresponds to quasi-isolated communities,
being similar to orbits in a vicinity of intermittency re-
gion, where the information circulates mainly inside the
community with only a very little flow outside of it.

The eigenstates of G and G∗ with |λ| being unity or
close to unity are shown in Figure 3. For the PageRank P
(CheiRank P ∗) we compare its dependence on the corre-
sponding index K (K∗) with the PageRank (CheiRank) of
the Wikipedia network analyzed in [5,11,15] which size N
(number of links N�) is by a factor of 10 (20) smaller.
Surprisingly we find that the PageRank P (K) of Twitter,
approximated by the algebraic decay P (K) = a/Kβ, has
a slower drop as compared to Wikipedia case. Indeed, we
have β = 0.540 ± 0.004 (a = 0.00054 ± 0.00002) for the
PageRank of Twitter in the range 1 ≤ log10 K ≤ 6 (simi-
lar value as in [20] for the range log10 K ≤ 5.5) while we
have β = 0.767 ± 0.0005 (a = 0.0086 ± 0.00035) for the
same range of PageRank of Wikipedia network. Also we
have a sharper drop of CheiRank with β = 0.857 ± 0.003
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Fig. 3. (Color online) The left (right) panel shows the Page-
Rank P (CheiRank P ∗) versus the corresponding rank in-
dex K (K∗) for the Google matrix of Twitter at the damp-
ing parameter α = 0.85 (thick black curve); for comparison
the PageRank (CheiRank) of the Google matrix of Wikipedia
network [5] is shown by the gray curve at same α. The col-
ored thin curves (shifted down by factor 1000 for clarity)
show the modulus of four core space eigenvectors |ψi| (|ψ∗

i |)
of S (S∗) versus their own ranking indexes Ki (K∗

i ). Red
and green lines are the eigenvectors corresponding to the two
largest core space eigenvalues (in modulus) λ1 = 0.99997358,
λ2 = 0.99932634 (λ1 = 0.99997002, λ2 = 0.99994658); blue
and pink lines are the eigenvectors corresponding to the two
complex eigenvalues λ151 = 0.09032572 + i 0.90000530, λ161 =
−0.47504961+ i 0.76576321 (λ457 = 0.38070896+ i 0.39207668,
λ105 = −0.45794117+ i 0.80825210). Eigenvalues and eigenvec-
tors are obtained by the Arnoldi method with Arnoldi dimen-
sion 640 as for the data in Figure 2.

(a = 0.0148 ± 0.0004) compared to those of PageRank of
Twitter while for CheiRank of Wikipedia network we find
an opposite tendency (β = 0.620 ± 0.001, a = 0.0015 ±
0.00002) in the same index range. Thus for Twitter net-
work the PageRank is more delocalized compared to
CheiRank (e.g. P (1) < P ∗(1)) while usually one has the
opposite relation (e.g. for Wikipedia P (1) > P ∗(1)). We
attribute this to the enormously high inter-connectivity
between the top PageRank nodes K ≤ 104 which is well
visible in Figure 1.

We should also point out a specific property of
PageRank and CheiRank vectors which has been already
noted in [21]: there are some degenerate plateaus in
P (K(i)) or P ∗(K∗(i)) with absolutely the same values
of P or P ∗ for a few nodes. For example, for the Twitter
network we have the appearance of the first degenerate
plateau at P = 7.639 × 10−7 for 196489 ≤ K ≤ 196491.
As a result the PageRank index K can be ordered in var-
ious ways. We attribute this phenomenon to the fact that
the matrix elements of G are composed from rational ele-
ments that leads to such type of degeneracy. However, the
sizes of such degenerate plateaus are relatively short and
they do not influence significantly the PageRank order.
Indeed, on large scales the curves of P (K), P ∗(K∗) are
rather smooth being characterized by a finite slope (see
Fig. 3). Similar type of degenerate plateaus exits for net-
works of Wikipedia, Cambridge and Oxford Universities.

Other eigenvectors of G and G∗ of Twitter network are
shown by color curves in Figure 3. We see that the shape
of eigenstates with λ1 and λ2, shown as a function of their
monotonic decrease index Ki, is well pronounced in P (K).
Indeed, these vectors have a rather small gap separating
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Fig. 4. (Color online) Fraction of invariant subspaces F with
dimensions larger than d as a function of the rescaled variable
x = d/〈d〉, where 〈d〉 is the average subspace dimension. Left
(right) panel corresponds to the matrix S (S∗) for the Twitter
network (thick red curve) with 〈d〉 = 2.30 (2.72). The tail can
be fitted for x ≥ 0.5 (x ≥ 10) by the power law F (x) = a/xb

with a = 0.092±0.011 and b = 2.60±0.07 (a = 0.0125±0.0008
and b = 0.94±0.02). The thin black line is F (x) = (1+2x)−1.5

which corresponds to the universal behavior of F (x) found in
reference [11] for the WWW of British university networks.

them from unity (|Δλ| ∼ 2 × 10−5) and thus they signif-
icantly contribute to the PageRank at α = 0.85. At the
same time we note that the gap values are significantly
smaller than those for certain British Universities (see e.g.
Fig. 4 in [11]). We argue that a larger number of links ξ� for
Twitter is at the origin of moderate spectral gap between
the core space spectrum and λ = 1. The eigenvectors of G∗
have less slope variations and their decay is rather similar
to the decay of CheiRank vector P ∗(K∗).

Finally, in Figure 4 we use the approach developed
in [11] and analyze the dependence of the fraction of in-
variant subspaces F (x) with dimensions larger than d on
the rescaled variable x = d/〈d〉 where 〈d〉 is the average
subspace dimension. In [11] it was found that the British
University networks are characterized by a universal func-
tional distribution F (x) = 1/(1 + 2x)3/2. For the Twitter
network we find significant deviations from such a depen-
dence as it is well seen in Figure 4. The tail can be fitted
by the power law F (x) ∼ x−b with the exponent b = 2.60
for G and b = 0.94 for G∗. It seems that with the in-
crease of number of links per node ξ� we start to see devi-
ations from the above universal distribution: it is visible
for Wikipedia network (see Fig. 7 in [11]) and becomes
even more pronounced for the Twitter network. We as-
sume that a large value of ξ� for Twitter leads to a change
of the percolation properties of the network generating
other type of distribution F which properties should be
studied in more detail in further.

4 CheiRank versus PageRank of Twitter

As discussed in [5,12,15] each network node i has its own
PageRank index K(i) and CheiRank index K∗(i) and,
hence, the ranking of network nodes becomes a two-dimen-
sional (2DRanking). The distribution of Twitter nodes
in the PageRank-CheiRank plane (K, K∗) is shown in
Figure 5 (left column) in comparison to the case of the
Wikipedia network from [5,15] (right column). There are
much more nodes inside the square of size K, K∗ ≤ 1000

Fig. 5. (Color online) Density of nodes W (K,K∗) on
PageRank-CheiRank plane (K,K∗) for Twitter (left panels)
and Wikipedia (right panels). Top panels show density in the
range 1 ≤ K,K∗ ≤ 1000 with averaging over cells of size
10 × 10; middle panels show the range 1 ≤ K,K∗ ≤ 104 with
averaging over cells of size 100×100; bottom panels show den-
sity averaged over 100 × 100 logarithmically equidistant grids
for 0 ≤ lnK, lnK∗ ≤ lnN , the density is averaged over all
nodes inside each cell of the grid, the normalization condition
is

∑
K,K∗ W (K,K∗) = 1. Color varies from blue at zero value

to red at maximal density value. At each panel the x-axis cor-
responds to K (or lnK for the bottom panels) and the y-axis
to K∗ (or lnK∗ for the bottom panels).

for Twitter as compared to the case of Wikipedia. For the
squares of larger sizes the densities become comparable.
The global logarithmic density distribution is shown in the
bottom panels of Figure 5 for both networks. The two den-
sities have certain similarities in their distributions: both
have a maximal density along a certain ridge along a line
ln K∗ = ln K+ const. However, for the Twitter network
we have a significantly larger number of nodes at small
values K, K∗ < 1000 while in the Wikipedia network this
area is practically empty.

The striking difference between the Twitter and
Wikipedia networks is in the number of points NK , lo-
cated inside a square area of size K×K in the PageRank-
CheiRank plane. This is directly illustrated in Figure 6:
at K = 500 there are 40 times more nodes for Twitter,
at K = 1000 we have this ratio around 6. We note that a
similar dependence NK was studied in [15] for Wikipedia,
British Universities and Linux Kernel networks (see Fig. 8
there), where in all cases the initial growth of NK was
significantly smaller as compared to the Twitter network
considered here.
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Fig. 7. (Color online) Histogram of frequency appearance of
correlator components κi = NP (K(i))P ∗(K∗(i)) for networks
of Twitter (blue) and Wikipedia (red). For the histogram the
whole interval 10−10 ≤ κi ≤ 102 is divided in 240 cells of equal
size in logarithmic scale.

Another important characteristics of 2DRanking is the
correlator κ (2) between PageRank and CheiRank vectors.
We find for Twitter the value κ = 112.60 which is by a
factor 30−60 larger compared to this value for Wikipedia
(4.08), Cambridge and Oxford University networks of 2006
considered in [5,11,15]. The origin of such a large value
of κ for the Twitter network becomes more clear from the
analysis of the distribution of individual node contribu-
tions κi = NP (K(i))P ∗(K∗(i)) in the correlator sum (2)
shown in Figure 7. We see that there are certain nodes
with very large κi values and even if there are only few of
them still they give a significant contribution to the total
correlator value. We note that there is a similar feature for
the Cambridge University network in 2011 as discussed
in [15] even if there one finds a smaller value κ = 30.
Thus we see that for certain nodes we have strongly cor-
related large values of P (K(i)) and P ∗(K∗(i)) explaining
the largest correlator value κ among all networks studied
up to now. We will argue below that this is related to a
very strong inter-connectivity between top K PageRank
users of the Twitter network.

5 Discussion

In this work we study the statistical properties of the
Google matrix of Twitter network including its spectrum,
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Fig. 8. (Color online) Left panel: dependence of the area den-
sity gK = NG/K

2 of nonzero elements of the adjacency ma-
trix among top PageRank nodes on the PageRank index K for
Twitter (blue curve) and Wikipedia (red curve) networks, data
are shown in linear scale. Right panel: linear density NG/K of
same matrix elements shown for the whole range ofK in log-log
scale for Twitter (blue curve), Wikipedia (red curve), Oxford
University 2006 (magenta curve) and Cambridge University
2006 (green curve) (curves from top to bottom at K = 100).

eigenstates and 2DRanking of PageRank and CheiRank
vectors. The comparison with Wikipedia shows that for
Twitter we have much stronger correlations between Page-
Rank and CheiRank vectors. Thus for the Twitter net-
work there are nodes which are very well known by the
community of users and at the same time they are very
communicative being strongly connected with top Page-
Rank nodes. We attribute the origin of this phenomenon
to a very strong connectivity between top K nodes for
Twitter as compared to the Wikipedia network. This prop-
erty is illustrated in Figure 8 where we show the number
of nonzero elements NG of the Google matrix, taken at
α = 1 and counted in the top left corner with indexes
being smaller or equal to K (elements in columns of dan-
gling nodes are not taken into account). We see that for
K ≤ 1000 we have for Twitter the 2D density of nonzero
elements to be on a level of 70% while for Wikipedia this
density is by a factor 10 smaller. For these two networks
the dependence of NG on K at K ≤ 1000 is well de-
scribed by a power law NG = aN b with a = 0.72 ± 0.01,
b = 1.993 ± 0.002 for Twitter and a = 2.10 ± 0.01,
b = 1.469 ± 0.001 for Wikipedia. Thus for Twitter the
top K ≤ 1000 elements fill about 70% of the matrix and
about 20% for size K ≤ 104. For Wikipedia the filling
factor is smaller by a factor 10−20. An effective number
of links per node for top K nodes is given by the ratio
NG/K which is equal to ξ� at K = N . The dependence
of this ratio on K is shown in Figure 8 in right panel. We
see a striking difference between Twitter network and net-
works of Wikipedia, Cambridge and Oxford Universities.
For Twitter the maximum value of NG/K is by two or-
ders of magnitude larger as compared to the Universities
networks, and by a factor 20 larger than for Wikipedia.
Thus the Twitter network is characterized by a very strong
connectivity between top PageRank nodes which can be
considered as the Twitter elite [20].

It is interesting to note that for K ≤ 20 the Wikipedia
network has a larger value of the ratio NG/K2 com-
pared to the Twitter network, but the situation is changed
for larger values of K > 20. In fact the first top 20
nodes of Wikipedia network are mainly composed from
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world countries (see [5]) which are strongly interconnected
due to historical reasons. However, at larger values of K
Wikipedia starts to have articles on various subjects and
the ratio NG/K2 drops significantly. On the other hand,
for the Twitter network we see that a large group of very
important persons (VIP) with K < 104 is strongly in-
terconnected. This dominant VIP structure has certain
similarities with the structure of transnational corpora-
tions and their ownership network dominated by a small
tightly-knit core of financial institutions [22]. The exis-
tence of a solid phase of industrially developed, strongly
linked countries is also established for the world trade
network obtained from the United Nations COMTRADE
data base [23]. It is possible that such super concentration
of links between top Twitter users results from a global
increase of number of links per node characteristic for such
type of social networks. Indeed, the recent analysis of the
Facebook network shows a significant decrease of degree of
separation during the time evolution of this network [24].
Also the number of friendship links per node reaches as
high value as ξ� ≈ 100 at the current Facebook snapshot
(see Tab. 2 in [24]). This significant growth of ξ� during
the time evolution of social networks leads to an enormous
concentration of links among society elite at top Page-
Rank users and may significantly influence the process of
strategic decisions on such networks in the future. The
growth of ξ� leads also to a significant decrease of the ex-
ponent β of algebraic decay of PageRank which is known
to be β ≈ 0.9 for the WWW (see e.g. [3,4,7]) while for
the Twitter network we find β ≈ 0.5 (see also [20]). This
tendency may be a precursor of a delocalization transition
of the PageRank vector emerging at a large values of ξ�.
Such a delocalization would lead to a flat PageRank prob-
ability distribution and a strong drop of the efficiency of
the information retrieval process. It is known that for the
Ulam networks of dynamical maps such a delocalization
indeed takes place under certain conditions [19,25].

Our results show that the strong inter-connectivity of
VIP users with about top 1000 PageRank indexes domi-
nates the information flow on the network. This result is
in line with the recent studies of opinion formation of the
Twitter network [20] showing that the top 1300 PageRank
users of Twitter can impose their opinion for the whole
network of 41 million size. Thus we think that the statis-
tical analysis presented here plays a very important role
for a better understanding of decision making and opinion
formation on the modern social networks.

The present size of the Twitter network is by a fac-
tor 3.5 larger as compared to its size in 2009 analyzed
in this work. Thus it would be very interesting to extend
the present analysis to the current status of the Twitter
network which now includes all layers of the world soci-
ety. Such an analysis will allow to understand in an better
way the process of information flow and decision making
on social networks.
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Abstract. We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia
articles hyperlink network and other real networks. With the help of the Arnoldi method, we analyze
the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue
modulus are located on well defined network communities. We also show that the correlator between
PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le
Monde web sites.

1 Introduction

With the appearance of the world wide web (WWW) [1]
the modern society created huge directed networks where
the information retrieval and ranking of network nodes be-
comes a formidable challenge. The mathematical grounds
of ranking of nodes are based one the concept of Markov
chains [2] and related class of Perron-Frobenius operators
naturally appearing in dynamical systems (see, e.g., [3]). A
concrete implementation of these mathematical concepts
to the ranking of WWW nodes was started by Brin and
Page in 1998 [4]. It is significantly based on the PageRank
algorithm (PRA) which became a fundamental element
of the Google search engine broadly used by internet
users [5].

Already in 1998, Brin and Page pointed out that
“despite the importance of large-scale search engines on
the web, very little academic research has been done on
them” [4]. Since that time the academic studies have been
concentrated mainly on the properties of the PageRank
vector determined by the PRA (see, e.g., [5–8]). Of course,
the PageRank vector is at the basis of ranking of network
nodes but the whole description of a directed network is
given by the Google matrix G. Thus, it is important to
understand the properties of the whole spectrum of eigen-
values of Google matrix and to analyze the meaning and
significance of its eigenstates. Certain spectral properties
of G matrix have been analyzed in references [9–15]. Here,
we concentrate our spectral analysis on the Wikipedia ar-
ticles network studied in reference [16]. The advantage of
this network is due to a clear meaning of nodes, deter-
mined by the titles of Wikipedia articles thus simplify-
ing the understanding of information flow in this network.

a e-mail: dima@irsamc.ups-tlse.fr

In addition to that, we analyze the statistical properties
of eigenvalues and eigenstates of G for WWW networks
of Cambridge University, Python, BBC and Le Monde
crawled in March 2011.

The Google matrix elements of a directed network are
defined as [4,5,17]:

Gij = αSij + (1 − α)/N, (1)

where the matrix Sij is obtained from an adjacency
matrix Aij by normalizing all nonzero columns to one
(
∑

i Sij = 1) and replacing columns with only zero ele-
ments by 1/N (dangling nodes) with N being the matrix
size. For the WWW an element Aij of the adjacency ma-
trix is equal to unity if a node j points to the node i and
zero otherwise. The damping parameter α in the WWW
context describes the probability (1 − α) to jump to any
node for a random surfer. For WWW, the Google search
engine uses α ≈ 0.85 [5]. The matrixG belongs to the class
of Perron-Frobenius operators [5], its largest eigenvalue is
λ = 1 and other eigenvalues have |λ| ≤ α. The right eigen-
vector at λ = 1, which is called the PageRank, has real
nonnegative elements P (i) and gives a probability P (i) to
find a random surfer at site i. Due to the gap 1−α ≈ 0.15
between the largest eigenvalue and the other eigenvalues
the PRA permits an efficient and simple determination of
the PageRank by the power iteration method. Note that
at α = 1 the largest eigenvalue λ = 1 is typically highly
degenerate due to many invariant subspaces which define
many independent Perron-Frobenius operators which pro-
vide (at least) one eigenvalue λ = 1. This point and also
a numerical method to determine the PageRank for the
case 1 − α� 1 are described in detail in reference [13].

Once the PageRank (at α = 0.85) is found, all nodes
can be sorted by decreasing probabilities P (i). The node
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Table 1. Parameters of all networks considered in the paper.

N N� nA

Wikipedia 3282257 71012307 3000
Cam. 2011 893176 15106706 4000

Python 541545 9031262 5000
BBC 319637 7278258 4000

Le Monde 134196 10621445 5000

rank is then given by index K(i) which reflects the rele-
vance of the node i. The top PageRank nodes are located
at small values of K(i) = 1, 2, . . .

In addition to a given directed network Aij , it is use-
ful to analyze an inverse network with inverted direction
of links with elements of adjacency matrix Aij → Aji.
The Google matrix G∗ of the inverse network is then con-
structed via corresponding matrix S∗ according to the re-
lations (1) using the same value of α as for the G ma-
trix. The right eigenvector of G∗ at eigenvalue λ = 1 is
called CheiRank giving a complementary rank indexK∗(i)
of network nodes [15,16,18–20]. It is known that the
PageRank probability is proportional to the number of in-
going links characterizing how popular or known a given
node is while the CheiRank probability is proportional to
the number of outgoing links highlighting the node com-
municativity (see, e.g., [5–8,16,19]). The statistical prop-
erties of the node distribution on the PageRank-CheiRank
plane are described in reference [19] for various directed
networks.

The paper is composed as following: the spectrum of
the Google matrix of various networks is analyzed in Sec-
tion 2, statistical properties of eigenstates are discussed
in Section 3, the communities related to Wikipedia eigen-
states are examined in Section 4, the distribution of nodes
in the PageRank-CheiRank plane is studied in Section 5,
the link distribution over PageRank index is considered
in Section 6, discussion of results is given in Section 7.
An Appendix gives all parameters of the five directed
networks considered here and describes in detail certain
eigenvalues and eigenvectors.

2 Google matrix spectrum

We study the spectrum of eigenvalues of the Google ma-
trix of five directed networks. For each network the num-
ber of nodes N and the number of links N� are given in
Table 1 (see Appendix). The spectrum is obtained nu-
merically using the powerful Arnoldi method described
in [21–23]. The idea of the method is to construct a set
of orthonormal vectors by applying the matrix (G, S, G∗,
S∗ or any other matrix of which we want to determine
the largest eigenvalues) on some suitable normalized ini-
tial vector and orthonormalizing the result to the initial
vector. Then the matrix is applied to the second vector
and the result is orthonormalized to the first two vectors
and so on. The used scalar products and normalization
factors during the Gram-Schmidt process provide the ma-
trix representation of the initial big matrix on the set of

Table 2. G and G∗ eigespectrum parameters for all networks.

Ns Nd dmax Ncirc. N1

Wikipedia 515 255 11 381 255
Wikipedia∗ 21198 5355 717 8968 5365
Cam. 2011 808 329 74 343 332
Cam. 2011∗ 186062 2039 5144 2044 2041

Python 198 23 72 26 23
Python∗ 1589 25 951 35 31

BBC 50 19 28 19 19
BBC∗ 39 28 6 28 28

Le Monde 83 64 18 64 64
Le Monde∗ 789 354 15 373 361

orthonormal vectors (which span a Krylov space) in a form
of a Hessenberg matrix whose eigenvalues converge typi-
cally quite well versus the largest eigenvalues of the initial
matrix even if the chosen number of orthonormal vectors,
the Arnold dimension nA, is quite modest (3000–5000 in
this work) as compared to the initial matrix size.

In this work, we are interested in the spectrum of the
matrix S = G(α = 1) (or S∗) since the spectrum of G(α)
(or G∗(α)) is simply obtained by rescaling the complex
eigenvalues with the factor α (apart from “one” largest
eigenvalue λ = 1 which does not change).

The direct dionalization of the Google matrix G faces
a number of numerical challenges. Thus, the highly de-
generate unit eigenvalue λ = 1 of S creates convergence
problems for the Arnoldi method. To resolve this numer-
ical problem, we follow the approach developed in refer-
ences [13,15] and follow the description given there. We
first find the invariant isolated subsets. These subsets are
invariant with respect to applications of S. We merge all
subspaces with common members, and obtain a sequence
of disjoint subspaces Vj of dimension dj invariant by ap-
plications of S. The remaining part of nodes forms the
wholly connected core space. Such a classification scheme
can be efficiently implemented in a computer program and
it provides a subdivision of network nodes inNc core space
nodes and Ns subspace nodes belonging to at least one of
the invariant subspaces Vj inducing the block triangular
structure of matrix S:

S =
(
Sss Ssc

0 Scc

)
, (2)

where Sss is itself composed of many small diagonal
blocks for each invariant subspace and whose eigenvalues
can be efficiently obtained by direct (“exact”) numerical
diagonalization.

The total subspace sizeNS , the number of independent
subspaces Nd, the maximal subspace dimension dmax and
the number N1 of S eigenvalues with λ = 1 are given in
Table 2. The spectrum and eigenstates of the core space
Scc are determined by the Arnoldi method with Arnoldi
dimension nA giving the eigenvalues λi of Scc with largest
modulus and the corresponding eigenvectors ψj (Gψi =
λiψi). The values of nA we used for the different networks
are given in Table 1. According to Table 2, we have the
average number of links per node ζ� ≈ 21.63 (Wikipedia),
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Fig. 1. Spectrum of eigenvalues λ the Google matrices G
(left column) and G∗ (right column) for Wikipedia, Cambridge
2011, Python, BBC and Le Monde (α = 1). Red dots are core
space eigenvalues, blue dots are subspace eigenvalues and the
full green curve shows the unit circle. The core space eigen-
values were calculated by the projected Arnoldi method with
Arnoldi dimensions nA as given in Table 1.

16.91 (Cambridge 2011), 16.67 (Python), 22.77 (BBC),
79.14 (Le Monde).

The distributions of subspaces eigenvalues and largest
nA eigenvalues of the core space are shown in Figure 1
in the complex plane λ for all five networks. The blue
points show the eigenvalues of isolated subspaces. We note
that their number is relatively small compared to those of

Table 3. Eigenvalues of eigenvectors shown in Figures 1 and 2
by corresponding colors. Index m of λm numbers eigenvalues
in the decreasing order of |λ| in the core space.

Color Eigenvalue
Wikipedia red λ1 = 0.999987

green λ2 = 0.977237
blue λ52 = −0.35003 + i 0.77374
pink λ864 = −0.34293 + i 0.43145

Wikipedia∗ red λ1 = 0.999982
green λ2 = 0.999902
blue λ662 = 0.0000000 + i 0.84090
pink λ38 = −0.49626 + i 0.85653

Cam. 2011 red λ1 = 0.999749
green λ2 = 0.999270
blue λ350 = 0.41779 + i 0.77856
pink λ144 = −0.52909 + i 0.78693

Cam. 2011∗ red λ1 = 0.999998
green λ2 = 0.999994
blue λ765 = 0.24846 + i 0.80915
pink λ249 = −0.48736 + i 0.84568

Python red λ1 = 0.999975
green λ2 = 0.998864
blue λ3315 = 0.14484 + i 0.19215
pink λ1337 = −0.14427 + i 0.42051

Python∗ red λ1 = 0.999995
green λ2 = 0.999991
blue λ2559 = 0.37694 + i 0.45231
pink λ3076 = 0.12214 + i 0.47416

BBC red λ1 = 0.99883
green λ2 = 0.99251
blue λ1276 = −0.12414 + i 0.24795
pink λ1148 = −0.22459 + i 0.20024

BBC∗ red λ1 = 0.999999
green λ2 = 0.999994
blue λ16 = −0.00067 + i 0.99930
pink λ90 = −0.49635 + i 0.85848

Le Monde red λ1 = 0.998837
green λ2 = 0.983123
blue λ926 = 0.10295 + i 0.22890
pink λ1118 = 0.08023 + i 0.20595

Le Monde∗ red λ1 = 0.999999
green λ2 = 0.999959
blue λ2093 = 0.15987 + i 0.48502
pink λ2474 = 0.17637 + i 0.40917

British University networks [24] (up to year 2006) ana-
lyzed in reference [13]. We attribute this to a larger num-
ber of ζ� links per node that reduces an effective size of
isolated parts of network. Between 2006 and 2011, espe-
cially for Cambridge, it seems that the increased use of
PHP and similar web software tends to considerably in-
crease the value of ζ�. Indeed, we have ζ� ≈ 10 for univer-
sity networks up to 2006 [13] which used less this kind of
PHP software. In Figure 1 the red points show nA eigen-
values of the core space with largest |λ|. Due to finite nA

value there is an empty white space around λ = 0. There
is no significant gap for core eigenvalues since λ1 is rather
close to 1 (see Tab. 3).

In global, we can say that the structure of the
Wikipedia spectrum of S and S∗ is somewhat similar to
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those of Cambridge 2006 (see Fig. 2 in Ref. [13]). For
Cambridge 2011, the spectrum of S is drastically changed
compared to the year 2006 but for S∗ certain features
remain common both for 2006 and 2011 (e.g., a circle
|λ| ≈ 0.5, triplet-star). For Python, BBC and Le Monde
the imaginary parts Im(λ) of eigenvalues of S are rela-
tively small compared to the networks of Wikipedia and
Cambridge. We suppose that there are less symmetric
links in the later cases. It is interesting that for S∗ of
Python, BBC and Le Monde the imaginary parts Im(λ)
are significantly larger than for S.

The origin of nontrivial structures of the spectrum ofG
and G∗ for directed networks discussed here and in refer-
ences [11–13,15] still require detailed analysis. We note
that well visible triplet and cross structures (see, e.g.,
Wikipedia spectrum in Fig. 1 and Fig. 2 of [13]) naturally
appear in the spectra of random unistochastic matrices of
size N = 3 and 4, which have been analyzed analytically
and numerically in reference [25]. In view of this similarity,
we suppose that networks with such structures have some
triplet or quartet subgroup of nodes weakly coupled to
the rest of the network. However, a detailed understand-
ing of the spectrum requires a deeper analysis. In the next
section, we turn to a study of eigenstate properties.

3 Statistical properties of eigenstates

The dependence of PageRank P and CheiRank P ∗ vec-
tors on their indexes K and K∗ at α = 0.85; 1 − 10−8

are shown in Figure 2. At α = 0.85, we have an ap-
proximate algebraic decay of probability according to
the Zipf law P ∼ 1/Kβ, P ∗ ∼ 1/K∗β (see, e.g., [14]
and references therein). We find the following values β
for PageRank (CheiRank): 0.96 ± 0.002 (0.73 ± 0.003)
Wikipedia; 0.81 ± 0.007 (0.90 ± 0.004) Cambridge 2011;
1.12±0.01 (1.17±0.006) Python; 1.20±0.006 (0.96±0.004)
BBC; 1.08± 0.009 (0.55± 0.002) Le Monde. Formally, the
statistical errors in β are relatively small but in some cases
there are variations of slope in the decay of PageRank
(CheiRank) probability that gives a dependence of β on
a fitting range (e.g., that is why β here is a bit different
from its values for Wikipedia given in Ref. [16]). We note
that the value β ≈ 1 for the PageRank remains relatively
stable to all networks corresponding to the usual exponent
μ ≈ 2.1 of algebraic decay of the ingoing link distribution
leading to β = 1/(μ− 1) ≈ 0.9 (see, e.g., [6,7,14–16]).

For CheiRank the variations of β from one network to
another are more significant being in agreement with the
fact that for outgoing links the exponent μ ≈ 2.7 varies in
a more significant manner.

For α = 1 − 10−8, we find that the main probability
of PageRank and CheiRank eigenvectors is located on iso-
lated subspaces with Ns nodes; after that value there is a
significant drop of probability for K,K∗ > Ns. This effect
was already found and explained in detail in reference [13]
and our new data confirm that it is indeed rather generic.

The modulus of four eigenfuctions |ψi(j)| from the core
space are shown in Figure 2 by color curves as a function
of their own index Ki which order |ψi(j)| in a monotonic

10-13
10-11
10-9
10-7
10-5
10-3
10-1

100 101 102 103 104 105 106

P,
 |ψ

i|

K, Ki

Wikipedia

10-13
10-11
10-9
10-7
10-5
10-3
10-1

100 101 102 103 104 105

P,
 |ψ

i|

K, Ki

Cambridge 2011

10-13
10-11
10-9
10-7
10-5
10-3
10-1

100 101 102 103 104 105

P,
 |ψ

i|

K, Ki

Python

10-13
10-11
10-9
10-7
10-5
10-3
10-1

100 101 102 103 104 105

P,
 |ψ

i|

K, Ki

BBC

10-13
10-11
10-9
10-7
10-5
10-3
10-1

100 101 102 103 104 105

P,
 |ψ

i|

K, Ki

Le Monde

10-13
10-11
10-9
10-7
10-5
10-3
10-1

100 101 102 103 104 105 106

P* , |
ψ

i* |

K*, Ki
*

Wikipedia

10-13
10-11
10-9
10-7
10-5
10-3
10-1

100 101 102 103 104 105

P* , |
ψ

i* |

K*, Ki
*

Cambridge 2011

10-13
10-11
10-9
10-7
10-5
10-3
10-1

100 101 102 103 104 105

P* , |
ψ

i* |

K*, Ki
*

Python

10-13
10-11
10-9
10-7
10-5
10-3
10-1

100 101 102 103 104 105

P* , |
ψ

i* |

K*, Ki
*

BBC

10-13
10-11
10-9
10-7
10-5
10-3
10-1

100 101 102 103 104 105

P* , |
ψ

i* |

K*, Ki
*

Le Monde

Fig. 2. PageRank P (left column) and CheiRank P ∗ (right
column) vectors are shown as a function of the corresponding
rank indexes K or K∗ for the Google matrices of Wikipedia,
Cambridge 2011, Python, BBC and Le Monde at the damping
parameter α = 0.85 (thick black curve) and α = 1 − 10−8

(thick gray curve). The thin color curves show for each panel
the modulus of four core space eigenvectors |ψi| of S (left col-
umn) and |ψ∗

i | of S∗ (right column) versus their ranking in-
dexes Ki or K∗

i . Red and green curves are the eigenvectors
corresponding to the two largest core space eigenvalues (in
modulus) which are real and close to 1; blue and pink curves
are the eigenvectors corresponding to two complex eigenvalues
with large imaginary part. The chosen eigenvalues and other
relevant quantities for each case are listed in Tables 1–3.

decreasing order. For Python, BBC and Le Monde
the decay of |ψi(j)| with Ki is similar to the decay
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Fig. 3. A selection of 200 complex core space eigenvalues clos-
est to the unit circle for the matrices S (left column) and S∗

(right column) of Wikipedia and Cambridge 2011 networks.
The characteristics of corresponding eigenvectors are shown in
Figures 4 and 5.
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Fig. 4. Left column: algebraic exponent b obtained from a
power law fit |ψi(Ki)| ∼ Kb

i for Ki ≥ 104 shown as a func-
tion of the phase ϕ = arg(λi) of the complex eigenvalue λi

associated to the eigenvector ψi of S. The shown data points
correspond to the eigenvalue selection of Figure 3 for networks
of Wikipedia and Cambridge 2011. Right column: the same as
in the left column for the eigenvectors of S∗.

of PageRank probability with K. For Wikipedia and
Cambridge 2011 we see that eigenvectors |ψi(j)| are more
localized. The eigenstates of S∗ have a significantly more
irregular decay compared to the eigenstates of S.

To analyze the properties of core eigenstates of
Wikipedia and Cambridge 2011 in a better way, we se-
lect 200 core space eigenvalues of S and S∗ being closest
to the unitary circle |λ| = 1. These eigenvalues are shown
in Figure 3. For these eigenvalues, we compute the cor-
responding eigenvectors ψi(j) and by fitting a power law
dependence |ψi(Ki)| ∼ Kb

i at Ki ≥ 104 we determine the
dependence of the exponent b on the phase of the eigen-
value ϕ = arg(λi). For Wikipedia, we have values of |b|
distributed mainly in the range (1–2) for S and in the
range (0.5–1.5) for S∗. For Cambridge 2011, we have a
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Fig. 5. Left column: inverse participation ratio ξIPR =
(
∑

j |ψi(j)|2)2/∑
j |ψi(j)|4 shown as a function of the phase

ϕ = arg(λi) of the complex eigenvalue λi associated to the
eigenvector ψi of S. The data points correspond to the eigen-
value selection of Figure 3 for networks of Wikipedia and
Cambridge 2011. Right column: the same as in the left col-
umn for the eigenvectors of S∗.

more compact range (0.5–1) for S while for S∗ there is a
very broad variation of |b| values in the range (1–4).

The above approximate power law description of the
eigenstate decay characterizes their behavior at large K
values. The behavior at low K values can be charac-
terized by the inverse participation ratio (IPR) ξIPR =
(
∑

j |ψi(j)|2)2/
∑

j |ψi(j)|4, which gives an approximate
number of nodes on which the main probability of an
eigenstate ψi(j) is located. We note that such a charac-
teristic is broadly used in disordered mesoscopic systems
allowing to detect the Anderson transition from localized
phase with finite ξ to delocalized phase with ξ value com-
parable with the system size [26]. The IPR data are pre-
sented in Figure 5 for eigenvalues selection of Figure 3. We
find that ξIPR values are by a factor 104 to 105 smaller
than the network size N . This means that these eigen-
states are well localized on a restricted number of nodes.
We try to analyze what are these nodes in next section for
the example of Wikipedia where the meaning of a node is
clearly defined by the title of the corresponding Wikipedia
article.

4 Communities of Wikipedia eigenstates

To understand the meaning of other eigenstates in the
core space we order selected eigenstates by their decreas-
ing value |ψi(j)| and apply a frequency analysis on the
first 1000 articles with Ki ≤ 1000. The mostly frequent
word of a given eigenvector is used to label the eigen-
vector name. These labels with corresponding eigenval-
ues are shown in Figure 6 in λ-plane. We identify four
main categories for the selected eigenvectors shown by
different colors in Figure 6: countries (red), biology and
medicine (orange), mathematics (blue) and others (green).
The category of others contains rather diverse articles
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Fig. 6. Complex eigenvalue spectrum of the matrices S for
Wikipedia. Highlighted eigenvalues represent different commu-
nities of Wikipedia and are labeled by the most repeated and
important words following word counting of first 1000 nodes.
Color are used in the following way: red for countries, orange
for biology, blue for mathematics and green for others. Top
panel shows complex plane for positive imaginary part of eigen-
values, while middle and bottom panels focus in the negative
and positive real parts. Top 20 nodes with largest values of
eigenstates |ψi| and their eigenvalues λi are given in Tables 4–7
(4 names marked by dotted boxes in figure panels).

about poetry, Bible, football, music, American TV se-
ries (e.g., Quantum Leap), small geographical places (e.g.,
Gaafru Alif Atoll). Clearly these eigenstates select certain
specific communities which are relatively weakly coupled
with the main bulk part of Wikipedia that generates rel-
atively large modulus of |λi|. The top 20 articles of eigen-
state PageRank index Ki are listed in Tables 4–7.

The eigenvector of Table 4 has a positive real λ and
is linked to the main article Gaafu Alif Atoll which in its
turn is linked mainly to atolls in this region. Clearly this
case represents well localized community of articles mainly
linked between themselves that gives slow relaxation rate
of this eigenmode with λ = 0.9772 being rather close to
unity.

In Table 5, we have an eigenvector with real negative
eigenvalue λ = −0.8165 with the top node Photoactivat-
able fluorescent protein. This node is linked to Kaede (pro-
tein) and Eos (protein) with the later being isolated from
coral. Its picture is listed in Portal:Berkshire/Selected
picture which has pictures of St Paul’s Cathedral and
Legoland Windsor that generates appearance of these,
on a first glance unrelated articles, to be present in this
eigenvector. Thus, this eigenvector also highlights a spe-
cific community which is somewhat stronger coupled to
the global Wikipedia core, due to a link to selected pic-
tures, with a smaller modulus of λ compared to the case
of Table 4.

The eigenvector of Table 6 has a complex eigenvalue
with |λ| = 0.3733 and the top article Portal:Bible. The
top three articles of this eigenvector have very close val-
ues of |ψi(j)| that seems to be the reason why we have

Table 4. Node rank for decreasing modulus of eigenstate |ψi|
corresponding to the eigenvalue λ2 = 0.97724 (see Fig. 6).

λ2 = 0.9772 (“Gaafu Alif Atol”) |ψi|
1 Gaafu Alif Atoll 0.00816
2 Kureddhoo (Gaafu Alif Atoll) 0.00812
3 Hithaadhoo (Gaafu Alif Atoll) 0.00808
4 Dhigurah (Gaafu Alif Atoll) 0.00806
5 Maarandhoo (Gaafu Alif Atoll) 0.00806
6 Hulhimendhoo (Gaafu Alif Atoll) 0.00805
7 Araigaiththaa 0.00798
8 Baavandhoo 0.00798
9 Baberaahuttaa 0.00798
10 Bakeiththaa 0.00798
11 Beyruhuttaa 0.00798
12 Beyrumaddoo 0.00798
13 Boaddoo 0.00798
14 Budhiyahuttaa 0.00798
15 Dhevvalaabadhoo 0.00798
16 Dhevvamaagalaa 0.00798
17 Dhigudhoo 0.00798
18 Dhonhuseenahuttaa 0.00798
19 Falhumaafushi 0.00798
20 Falhuverrehaa 0.00798

Table 5. Node rank for decreasing modulus of eigenstate |ψi|
corresponding to the eigenvalue λ80 = −0.8165 (see Fig. 6).

λ80 = −0.8165 (“protein”) |ψi|
1 Photoactivatable fluorescent protein 0.22767
2 Kaede (protein) 0.13942
3 Eos (protein) 0.13942
4 Fusion protein 0.05946
5 Green fluorescent protein 0.05723
6 Portal:Berkshire/Selected picture 0.01019
7 Persistent tunica vasculosa lentis 0.00552
8 Portal:Berkshire/Selected picture/Layout 0.00416
9 Portal:Berkshire/Selected picture/1 0.00416
10 Portal:Berkshire/Nominate/ 0.00416

Selected picture
11 Persistent hyperplastic primary vitreous 0.00338
12 Tunica vasculosa lentis 0.00338
13 Tpr-met fusion protein 0.00319
14 St Paul’s Cathedral 0.00256
15 Legoland Windsor 0.00255
16 Complementary DNA 0.00252
17 Gené 0.00221
18 Gene 0.00215
19 Gag-onc fusion protein 0.00181
20 Protein 0.00177

ϕ = arg(λi) = π × 0.3496 being very close to π/3. The
Bible is strongly linked to various aspects of human soci-
ety that leads to a relatively small modulus value of this
well defined community.

In Table 7, we have an eigenvector which starts from
the article Lower Austria with the eigenvalue modulus
|λ| = 0.3869. This article is linked to such articles as
Austria and Upper Austria with historical links to Styria.
It also links to its city capital Krems an der Donau. The
articles World War II and Jew appear due to a sentence
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Table 6. Node rank for decreasing modulus of eigenstate |ψi|
corresponding to the eigenvalue λ1481 = 0.1699 + i0.3325 (see
Fig. 6).

λ1481 = 0.1699 + i0.3325 (“Bible”) |ψi|
1 Portal:Bible 0.02311
2 Portal:Bible/Featured chapter/archives 0.02201
3 Portal:Bible/Featured article 0.02063
4 Bible 0.01684
5 Portal:Bible/Featured chapter 0.01644
6 Books of Samuel 0.00852
7 Books of Kings 0.00849
8 Books of Chronicles 0.00840
9 Book of Leviticus 0.00426
10 Book of Ezra 0.00425
11 Book of Ruth 0.00420
12 Book of Deuteronomy 0.00417
13 Book of Joshua 0.00400
14 Book of Exodus 0.00397
15 Book of Judges 0.00395
16 Book of Genesis 0.00394
17 Book of Numbers 0.00389
18 Portal:Bible/Featured chapter/1 Kings 0.00347
19 Portal:Bible/Featured chapter/Numbers 0.00347
20 Portal:Bible/Featured chapter/2 Samuel 0.00347

Table 7. Node rank for decreasing modulus of eigenstate |ψi|
corresponding to the eigenvalue λ1395 = −0.3149+ i0.2248 (see
Fig. 6).

λ1395 = −0.3149 + i0.2248 (“Austria”) |ψi|
1 Lower Austria 0.04284
2 Austria 0.03112
3 Upper Austria 0.00817
4 Styria 0.00781
5 Burgenland 0.00307
6 World War II 0.00304
7 Krems an der Donau 0.00282
8 Jew 0.00272
9 Slovakia 0.00268
10 Bruck an der Leitha (district) 0.00265
11 History of Austria 0.00263
12 Wiener Neustadt 0.00260
13 Mostviertel 0.00251
14 States of Austria 0.00250
15 Waidhofen an der Ybbs 0.00249
16 MELK 0.00246
17 Melk 0.00246
18 Bundesland (Austria) 0.00239
19 Wachau 0.00233
20 Waldviertel 0.00226

“Before World War II, Lower Austria had the largest num-
ber of Jews in Austria”. Due to links with very popular
nodes the eigenvector of this community has a relative
small modulus of λ.

Let us make here a few additional remarks about other
eigenvectors. For example, we analyzed the meaning of
eigenvector with λ = −0.3500 + i0.7737 = |λ| exp(iθ) (lo-
cated slightly above the word England in Fig. 6). Its top
five amplitude modulus are Screen Producers Association

of Australia, Screen Producers Association of Australia
(SPAA), SPAA Conference, SPAA Fringe, Sydney. This
clearly shows that this vector selects a certain community
of Australian Screen Producers. It is interesting to note
that we have here θ = 114◦ being close to the angle 2π/3
corresponding to 1/3 resonance rotations mainly between
first three top nodes.

In fact, there are other eigenvalues which have θ being
close to resonance values with θ/2π = 1/3, 1/4 . . . Thus,
the eigenvector England has λ = −0.2613 + i0.4527 with
θ = 120◦ corresponding to the resonance rotation between
three nodes. Indeed, the top amplitudes of this eigenvec-
tor have titles Charles William Hempel, Charles Frederick
Hempel, Carl Frederick Hempel with strong links between
these titles leading to 1/3 rotation (this vector is marked
as England since this word is the most frequent among top
1000 titles).

There are other eigenvalues close to 1/3 resonance
rotation. Thus, we have λ = −0.2621 + i0.4346 with
θ = 121◦ marked as poetry in Figure 6. This eigenvec-
tor has top amplitude modulus: Poetry (0.0622), Por-
tal:Poetry/poem archive (0.03339), Portal:Poetry/poem
archive/2006 archive (0.03289), Portal:Poetry (0.03180),
Walter Raleigh (0.0064). We think that the top nodes 2,
3, 4 have practically the same amplitudes thus correspond-
ing to the resonance 1/3 rotation between these three
nodes.

There is also another eigenvector marked poetry in Fig-
ure 6 with λ = −0.0026 + i0.4297 and θ ≈ 90◦. In fact
this article speaks about 1000s in poetry with approxi-
mately equal 6 amplitudes about poetry in various years
that corresponds to a resonance 1/6 rotation generating
θ ≈ 90◦. There are also other vectors with resonance val-
ues 1/2, 1/4, 1/6 that produce eigenvalues with a domi-
nant imaginary part. We also note that there are other res-
onance eigenvalues among those given in Table 3 (e.g., λ38

with θ = 120.1◦). We think that such resonance θ values
have close similarity with those of random matrix mod-
els of small size N = 3, 4, 5, 6 analyzed in reference [25]
corresponding to the main part of information exchange
between a small number of nodes.

The above analysis shows that the eigenvectors of the
Google matrix of Wikipedia clearly identify certain com-
munities which are relatively weakly connected with the
Wikipedia core when the modulus of corresponding eigen-
value is close to unity. For moderate values of |λ|, we
still have well defined communities which however have
stronger links with some popular articles (e.g., countries)
that lead to a more rapid decay of such eigenmodes.

The above results show that the analysis of eigenvec-
tors highlights interesting features of communities and
network structure. However, a priori it is not evident
what is a correspondence between the numerically ob-
tained eigenvectors and the specific community features in
which someone has a specific interest. It is possible that for
a well defined community it can be useful to construct a
personalized Google matrix (see, e.g., [5]) and to perform
analysis of its eigenstates.
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Fig. 7. Top 5000 values in PageRank-CheiRank plane (K,K∗)
of Wikipedia. All nodes and all links in this region are shown
by black circles and red arrows, respectively.

5 CheiRank versus PageRank plane

As it is discussed in references [15,16,18,19], it is useful to
look on the distribution of network nodes on PageRank-
CheiRank plane (K,K∗). For Wikipedia a large scale dis-
tribution is analyzed in references [16,19] and the networks
of British Universities, Linux Kernel and Twitter are con-
sidered in references [15,19].

In Figure 7, we show for Wikipedia the distribution of
nodes in (K,K∗) plane for a relatively small range of top
5000 values of K,K∗. All directed links in this region are
also shown. In fact the number of such links and number
of nodes in this region are relatively small. Indeed, a large
scale density of nodes (see Fig. 3 in Ref. [16]) shows that
the density of nodes is not very high at the top corner of
PageRank-CheiRank plane. This happens due to the fact
that top nodes of PageRank, whose components are pro-
portional to the number of ingoing links, are usually not
those of CheiRank, whose components are proportional to
the number to outgoing links.

The correlation between PageRank and CheiRank vec-
tors can be characterized by their correlator [18,19]:

κ = N

N∑
i=1

P (K(i))P ∗(K∗(i)) − 1. (3)

For our networks we find its values to be κ = 4.08
(Wikipedia), 41.5 (Cambridge 2011), 12.9 (Python), 140.2
(BBC), 0.85 (Le Monde). Except for the case of Le Monde,
these values are relatively high showing that there is a
significant correlation between PageRank and CheiRank
probabilities on corresponding networks. We remind that
for Linux Kernel networks the values of κ are close to zero
corresponding to absence of correlations there [18,19].

The strong difference between κ values for BBC and Le
Monde shows that the structure of these two web sites is
very different. To analyze this difference in a better way we
show the density of nodes for these two networks on small
and large scales in Figure 8. For small scale, shown by top

Fig. 8. Density of nodes W (K,K∗) on PageRank-CheiRank
plane (K,K∗) for the networks of BBC (left panels) and Le
Monde (right panels). Top panels show density in the range
1 ≤ K,K∗ ≤ 104 with averaging over cells of size 100 × 100;
bottom panels show density averaged over 100 × 100 logarith-
mically equidistant grids for 0 ≤ lnK, lnK∗ ≤ lnN , the den-
sity is averaged over all nodes inside each cell of the grid, the
normalization condition is

∑
K,K∗ W (K,K∗) = 1. Color varies

from blue at zero value to red at maximal density value. At
each panel the x-axis corresponds to K (or lnK for the bot-
tom panels) and the y-axis to K∗ (or lnK∗ for the bottom
panels).

panels, it is clear that the density of nodes is significantly
larger for BBC network. However, this difference becomes
even more drastic on the large logarithmic scale of the
whole network shown in bottom panels. Indeed, on a log-
arithmic scale we see that BBC network has a square like
distribution region with a certain probability maximum
around the diagonalK ≈ K∗ while Le Monde network has
a triangular type distribution which is typical for networks
without correlations between PageRank and CheiRank
vectors, like it is the case for the Linux Kernel networks
(see Fig. 4 in Ref. [19]). Indeed, a random procedure of
node generation on (K,K∗) plane gives such a triangu-
lar distribution without correlations between PageRank
and CheiRank nodes (see procedure description and right
panel of Fig. 4 in Ref. [16]). This analysis shows that BBC
and Le Monde agencies handle information flows on their
web sites in a drastically different manner. Thus for the
BBC web site the most popular articles are at the same
time also the most communicative ones while in contrast
to that for the Le Monde web site the most popular and
most communicative articles are very different.

6 Links distribution over PageRank nodes

To understand the properties of directional flow on a net-
work it is also useful to analyze the distribution of links
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Fig. 9. Number of links between or inside sets A and B de-
fined by the index Ki ordered by decreasing absolute value of
Wikipedia eigenstates. The number of links starting and point-
ing to nodes inside the set A (NAA) is shown in top panel as a
function of Ki. The cases of links from set A to set B (NAB)
and from B to A (NBA) are shown in middle and bottom panel,
respectively. Note that the total number of links is conserved
and the quantity NBB can be obtained as NBB = N� −NAA −
NAB −NBA. The case of PageRank vector with damping pa-
rameter α = 0.85 is shown by a black curve versus K index.
The color curves show the cases of four core space eigenvec-
tors |ψi| of S versus their ranking indexes Ki. Red and green
curves are the eigenvectors corresponding to the two largest
core space eigenvalues (in modulus) being λ1 = 0.99998702 and
λ2 = 0.97723699, respectively; blue and pink curves are the
eigenvectors corresponding to two complex eigenvalues with
large imaginary part being λ52 = −0.35003316 + i0.77373677
and λ864 = −0.34293502 + i0.43144930, respectively.

over PageRank nodes. We illustrate this approach for the
Wikipedia network. Suppose that all nodes are ordered
in a decreasing order of modulus of a given eigenvector.
For the PageRank vector all nodes are numbered by the
PageRank index K, while for a given eigenstate ψi(j) all
nodes are numbered by a local corresponding indexKi. We
now divide all nodes on two parts A and B with 1, . . . ,Ki

nodes for A and Ki + 1, . . . , N nodes for B. Then we de-
termine the number of links NAA starting and ending in
part A, the number of links NAB pointing from part A
to part B and the number of links NBA pointing from
part B to part A. The number of links inside part B is
then NBB = N� −NAA −NAB −NBA. For the PageRank
vector, the dependence of NAA on K was analyzed for dif-
ferent networks in reference [15]. Here we generalize this
concept to consider links between two parts A,B for var-
ious eigenvectors of the Google matrix.

According to the data of Figure 9, we find that for
all eigenvectors NAA ∝ K1.5

i grows approximately in an
algebraic way with the exponent being close to 1.5 being

similar to the PageRank case considered in reference [15].
However, the dependence of NAB andNBA onKi is rather
different for different eigenstates. For the PageRank and
the λ1 eigenvector, we find practically the same behavior
linked to the fact that at α = 0.85, the PageRank vector
is rather close to the first core space eigenvector (see dis-
cussion in Ref. [13]). Here, the interesting point is that at
small values of Ki we have NBA being larger than NAB al-
most by a factor 100. This is due to the fact that low rank
nodes at large Ki point preferentially to high rank nodes
at low Ki. For other three eigenvectors with λ2, λ52, λ864,
we find well pronounced step-like behavior of NAB, NBA

on Ki. We argue that the step size in Ki is given by the
size of a community which has preferential links mainly
inside the community. Indeed, for the eigenvector of λ2

(see Tab. 3) we see that the community size is approxi-
mately Ncs ≈ 1/|ψ1| ≈ 100 that corresponds to the step
size in Ki ≈ 70 for this case.

These results show that the analysis of the link distri-
bution over the PageRank index provides interesting and
useful information about characteristics and properties of
directed networks.

7 Discussion

In this work, we performed a spectral analysis of eigen-
values and eigenstates of the Google matrix of Wikipedia
and other networks. Our study shows that the spectrum of
the core space component has eigenvalues in a close vicin-
ity of λ = 1 and that there are isolated subspaces which
give a degeneracy of the eigenvalue λ = 1. The eigenval-
ues and eigenstates with relatively large values of |λ| can
be efficiently determined by the powerful Arnoldi method.
These eigenstates are mainly located on well defined net-
work communities. We also find that the spectrum changes
drastically from one network to another even if the distri-
bution of links and decay of PageRank is rather similar
for the networks considered. This means that the proper-
ties of directed networks strongly depend on the internal
network structure. We show that the correlation between
PageRank and CheiRank vectors highlights specific prop-
erties of information flow on directed network. For exam-
ple, this correlation demonstrates a drastic difference be-
tween web sites of BBC and Le Monde. The distribution
of links between PageRank nodes also provides an inter-
esting information about the network structure. On the
basis of our studies, we argue that the developed spectral
analysis of Google matrix brings a deeper understanding
of information flow on real directed networks.

We thank A.D. Chepelianskii for making to us available net-
work data collected by him for networks of Cambridge Univer-
sity, Python, BBC, Le Monde in March 2011. Our research
presented here is supported in part by the EC FET Open
project “New tools and algorithms for directed network anal-
ysis” (NADINE No. 288956). This work was granted access to
the HPC resources of CALMIP (Toulouse) under the allocation
2012-P0110.
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Appendix

The tables are given in the text of the paper. The nota-
tions used in the tables are: N is network size, N� is the
number of links, nA is the Arnoldi dimension used for the
Arnoldi method for the core space eigenvalues, Nd is the
number of invariant subspaces, dmax gives a maximal sub-
space dimension, Ncirc. notes number of eigenvalues on the
unit circle with |λi| = 1,N1 notes number of unit eigenval-
ues with λi = 1. We remark that Ns ≥ Ncirc. ≥ N1 ≥ Nd

and Ns ≥ dmax and the average subspace dimension is
given by: 〈d〉 = Ns/Nd. We note that the values of N , N�

for network of Cambridge 2011 are slightly different from
those given in [19] due to a slightly different procedure
of cleaning of row data collection (e.g., count of pdf and
other type nodes). Eigenvalues for eigenvectors are shown
in Figure 1 with the colors red, green, blue or pink cor-
responding to colors of Table 3. The index m of λm in
Tables 3–7 counts the order number of core eigenvalues in
a decreasing order of |λm|.
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Introduction

The theory of Markov chains [1] finds impressive modern

applications to information retrieval and ranking of directed

networks including the World Wide Web (WWW) where the

number of nodes is now counted by tens of billions. The PageRank

algorithm (PRA) [2] uses the concept of the Google matrix G and

allows to rank all WWW nodes in an efficient way. This algorithm

is a fundamental element of the Google search engine used by a

majority of Internet users. A detailed description of this method

and basic properties of the Google matrix can be found e.g. in

[3,4].

The Google matrix belongs to the class of Perron-Frobenius

operators naturally appearing in dynamical systems (see e.g. [5]).

Using the Ulam method [6] a discrete approximant of Perron-

Frobenius operator can be constructed for simple dynamical maps

following only one trajectory in a chaotic component [7] or using

many independent trajectories counting their probability transi-

tions between phase space cells [8,9], [10]. The studies of Google

matrix of such directed Ulam networks provides an interesting and

detailed analysis of dynamical properties of maps with a complex

chaotic dynamics [7,8], [9,10].

In this work we use the Google matrix approach to study the

statistical properties of DNA sequences of the species: Homo

sapiens (HS, human), Canis familiaris (CF, dog), Loxodonta

africana (LA, elephant), Bos Taurus (bull, BT), Danio rerio (DR,

zebrafish), taken from the publicly available database [11]. The

analysis of Poincaré recurrences in these DNA sequences [12]

shows their similarities with the statistical properties of recurrences

for dynamical trajectories in the Chirikov standard map and other

symplectic maps [7]. Indeed, a DNA sequence can be viewed as a

long symbolic trajectory and hence, the Google matrix, construct-

ed from it, highlights the statistical features of DNA from a new

viewpoint.

An important step in the statistical analysis of DNA sequences

was done in [13] applying methods of statistical linguistics and

determining the frequency of various words composed of up to 7

letters. A first order Markovian models have been also proposed

and briefly discussed in this work. Here we show that the Google

matrix analysis provides a natural extension of this approach.

Thus the PageRank eigenvector gives the frequency appearance of

words of given length. The spectrum and eigenstates of G

characterize the relaxation processes of different modes in the

Markov process generated by a symbolic DNA sequence. We show

that the comparison of word ranks of different species allows to

identify proximity between species.

At present the investigations of statistical properties of DNA

sequences are actively developed by various bioinformatic groups

(see e.g. [14,15], [16], [17,18]). The development of various

methods of statistical analysis of DNA sequences become now of

great importance due to a rapid growth of collected genomic data.

We hope that the Google matrix approach, which already

demonstrated its efficiency for enormously large networks [2,3],

will find useful applications for analysis of genomic data sets.

Results

Construction of Google matrix from DNA sequence
From [11] we collected DNA sequences of HS represented as a

single string of length L&1:5:1010 base pairs (bp) corresponding to

5 individuals. Similar data are obtained for BT (2:9:109 bp), CF

(2:5:109 bp), LA (3:1:109 bp), DR (1:4:109 bp). For HS, CF, LA,

DR the statistical properties of Poincaré recurrences in these
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sequences are analyzed in [12]. All strings are composed of 4

letters A,G,G,T and undetermined letter Nl . The strings can be

found at the web page [19].

For a given sequence we fix the words Wk of m letters length

corresponding to the number of states N~4m. We consider that

there is a transition from a state i to state j inside this basis N when

we move along the string from left to right going from a word Wk

to a next word Wkz1. This transition adds one unit in the

transition matrix element Tij?Tijz1. The words with letter Nl

are omitted, the transitions are counted only between nearby

words not separated by words with Nl . There are approximately

Nt&L=m such transitions for the whole length L since the fraction

of undetermined letters Nl is small. Thus we have Nt~
PN

i,j~1 Tij .

The Markov matrix of transitions Sij is obtained by normalizing

matrix elements in such a way that their sum in each column is

equal to unity: Sij~Tij=
P

i Tij . If there are columns with all zero

elements (dangling nodes) then zeros of such columns are replaced

by 1=N. Such a procedure corresponds to one used for the

construction of Google matrix of the WWW [2,3]. Then the

Google matrix of DNA sequence is written as

Gij~aSijz(1{a)=N, ð1Þ

where a is the damping factor for which the Google search uses

usually the value a&0:85 [3]. The matrix G belongs to the class of

Perron-Frobenius operators. It has the largest eigenvalue

l~l1~1 with all other eigenvalues Dli Dƒa. For WWW usually

there are isolated subspaces so that at a~1 there are many

degenerate l~1 eigenvalues [4] so that the damping factor allows

to eliminate this degeneracy creating a gap between l~1 and all

other eigenvalues. For our DNA Google matrices we find that

there is already a significant spectral gap naturally present. In this

case the PageRank vector is not sensitive to the damping factor

being in the range 0:5ƒaƒ1 (other eigenvectors are independent

of a [3,4], [9]). Due to that in the following we present all results at

the value a~1.

The spectrum li and right eigenstates yi(j) are determined by

the equation

X
j’

Gjj’yi(j’)~liyi(j): ð2Þ

The PageRank eigenvector P(j) at l~1 has positive or zero

elements which can be interpreted as a probability to find a

random surfer on a given site j with the total probability

normalized to unity
P

j P(j)~1. Thus, all sites can be ordered

in a decreasing order of probability P(j) that gives us the

PageRank order index K(j) with most frequent sites at low values

of K~1,2,:::.
It is useful to consider the density of matrix elements GKK ’ in the

PagePank indexes K,K ’ similar to the presentation used in [20,21]

for networks of Wikipedia, UK universities, Linux Kernel and

Twitter. The image of the DNA Google matrix of HS is shown in

Fig. 1 for words of 5 and 6 letters. We see that almost all matrix is

full that is drastically different from the WWW and other networks

considered in [20] where the matrix G is very sparse. Thus the

DNA Google matrix is more similar to the case of Twitter which is

characterized by a strong connectivity of top PageRank nodes

[21].

It is interesting to analyze the statistical properties of matrix

elements Gij . Their integrated distribution is shown in Fig. 2. Here

Ng is the number of matrix elements of the matrix G with values

Gijwg. The data show that the number of nonzero matrix

elements Gij is very close to N2. The main fraction of elements has

values Gijƒ1=N (some elements Gijv1=N since for certain j

there are many transitions to some node i’ with Ti’j&N and e.g.

only one transition to other i’’ with Ti’’j~1). At the same time

there are also transition elements Gij with large values whose

fraction decays in an algebraic law Ng&AN=gn{1 with some

constant A and an exponent n. The fit of numerical data in the

range {5:5v log10 gv{0:5 of algebraic decay gives for m~6:

n~2:46+ 0:025 (BT), 2:57+ 0:025 (CF), 2:67+ 0:022 (LA),

2:48+ 0:024 (HS), 2:22+ 0:04 (DR). For HS case we find

n~2:68+ 0:038 at m~5 and n~2:43+ 0:02 at m~7 with the

average A&0:003 for m~5,6,7. There are visible oscillations in

the algebraic decay of Ng with g but in global we see that on

average all species are well described by a universal decay law with

the exponent n&2:5. For comparison we also show the

distribution Ng for the WWW networks of University of Cam-

bridge and Oxford in year 2006 (data from [4,20]). In these

networks we have N&2:105 and on average 10 links per node. We

see that in these cases the distribution Ng has a very short range in

which the decay is at least approximately algebraic

({5:5v log10 (Ng=N2)v{6). In contrast to that for the DNA

sequences we have a large range of algebraic decay.

Since in each column we have the sum of all elements equal to

unity we can say that the differential fraction dNg=dg!1=gn gives

the distribution of outgoing matrix elements which is similar to the

distribution of outgoing links extensively studied for the WWW

networks [3,23], [24,25]. Indeed, for the WWW networks all links

in a column are considered to have the same weight so that these

matrix elements are given by an inverse number of outgoing links

[3]. Usually the distribution of outgoing links follows a power law

decay with an exponent ~nn&2:7 even if it is known that this

Figure 1. DNA Google matrix of Homo sapiens (HS) construct-
ed for words of 5-letters (top) and 6-letters (bottom) length.
Matrix elements GKK ’ are shown in the basis of PageRank index K (and
K ’). Here, x and y axes show K and K ’ within the range 1ƒK,K ’ƒ200
(left) and 1ƒK ,K ’ƒ1000 (right). The element G11 at K~K ’~1 is
placed at top left corner. Color marks the amplitude of matrix elements
changing from blue for minimum zero value to red at maximum value.
doi:10.1371/journal.pone.0061519.g001
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exponent is much more fluctuating compared to the case of

ingoing links. Thus we establish that the distribution of DNA

matrix elements is similar to the distribution of outgoing links in

the WWW networks with n&~nn. We note that for the distribution of

outgoing links of Cambridge and Oxford networks the fit of

numerical data gives the exponents ~nn~2:80+ 0:06 (Cambridge)

and 2:51+ 0:04 (Oxford).

It is known that on average the probability of PageRank vector

is proportional to the number of ingoing links [3]. This relation is

established for scale-free networks with an algebraic distribution of

links when the average number of links per node is about 10 to 100
that is usually the case for WWW, Twitter and Wikipedia networks

[4,20], [21,22], [23,24], [25]. Thus in such a case the matrix G is

very sparse. For DNA we find an opposite situation where the

Google matrix is almost full and zero matrix elements are

practically absent. In such a case an analogue of number of

ingoing links is the sum of ingoing matrix elements gs~
PN

j~1 Gij .

The integrated distribution of ingoing matrix elements with the

dependence of Ns on gs is shown in Fig. 3. Here Ns is defined as

the number of nodes with the sum of ingoing matrix elements

being larger than gs. A significant part of this dependence,

corresponding to large values of gs and determining the PageRank

probability decay, is well described by a power law

Ns&BN=gm{1
s . The fit of data at m~6 gives m~5:59+ 0:15

(BT), 4:90+ 0:08 (CF), 5:37+ 0:07 (LA), 5:11+ 0:12 (HS),

4:04+ 0:06 (DR). For HS case at m~5,7 we find respectively

m~5:86+ 0:14 and 4:48+ 0:08. For HS and other species we

have an average B&1.

Usually for ingoing links distribution of WWW and other

networks one finds the exponent ~mm&2:1 [23,24], [25]. This value

of ~mm is expected to be the same as the exponent for ingoing matrix

elements of matrix G. Indeed, for the ingoing matrix elements of

Cambridge and Oxford networks we find respectively the

exponents m~2:12+ 0:03 and 2:06+ 0:02 (see curves in Fig. 3).

For ingoing links distribution of Cambridge and Oxford networks

we obtain respectively ~mm~2:29+ 0:02 and ~mm~2:27+ 0:02 which

are close to the usual WWW value ~mm&2:1. Thus we can say that

for the WWW type networks we have m&~mm. In contrast the

exponent m for DNA Google matrix elements gets significantly

larger value m&5. This feature marks a significant difference

between DNA and WWW networks.

For DNA we see that there is a certain curvature in addition to a

linear decay in log-log scale. From one side, all species are close to

a unique universal decay curve which describes the distribution of

ingoing matrix elements gs (there is a more pronounced deviation

for DR which does not belong to mammalian species). However,

from other side we see visible differences between distributions of

various species (e.g. non mammalian DR case has the largest

deviation from others mammalian species). We will discuss the

links between m and the exponent b of PageRank algebraic decay

P(K)!1=Kb in next sections.

Spectrum of DNA Google matrix
The spectrum of eigenstates of DNA Google matrix G of HS is

shown in Fig. 4 for words of m~5,6,7 letters and matrix sizes

N~4m. The spectra for DNA sequences of bull BT, dog CF,

elephant LA and zebrafish DR are shown in Fig. 5 for words of

m~6 letters. The spectra and eigenstates are obtained by direct

numerical diagonalization of matrix G using LAPACK standard

code.

In all cases the spectrum has a large gap which separates

eigenvalue l~1 and all other eigenvalues with DlDv0:5 (only for

non mammalian DR case we have a small group of eigenvalues

within 0:5vDlDv0:75). This is drastically different from the

spectrum of WWW and other type networks which usually have

no gap in the vicinity of l~1 (see e.g. [4,21], [22]). In a certain

sense the DNA G spectrum is similar to the spectrum of

randomized WWW networks and the spectrum of G of the

Albert-Baraási network model discussed in [26], but the properties

of the PageRank vector are rather different as we will see below.

Visually the spectrum is mostly similar between HS and CF

having approximately the same radius of circular cloud

DlDvlc&0:2. For DR this radius is the smallest with lc&0:1.

Thus the spectrum of G indicates the difference between

mammalian and non mammalian sequences. For HS the increase

of the word length m~5; 6; 7 leads to an increase of

lc&0:1; 0:2; 0:35. For m~7 the number of nonzero matrix

elements Gij is close to N2 and thus on average we have only about

L=(mN2)&8 transitions per each element. This determines an

Figure 2. Integrated fraction Ng=N2 of Google matrix elements with Gijwg as a function of g. Left panel : Various species with 6-letters
word length: bull BT (magenta), dog CF (red), elephant LA (green), Homo sapiens HS (blue) and zebrafish DR(black). Right panel : Data for HS
sequence with words of length m~5 (brown), 6 (blue), 7 (red). For comparison black dashed and dotted curves show the same distribution for the
WWW networks of Universities of Cambridge and Oxford in 2006 respectively.
doi:10.1371/journal.pone.0061519.g002
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approximate limit of reliable statistical computation of matrix

elements Gij for available HS sequence length L. For HS at m~6

we verified that two halves of the whole sequence L still give

practically the same spectrum with a relative accuracy of

Dl=l&0:01 for eigenvalues in the main part of the cloud at

lc=3vDlDvlc. This means that the spectrum presented in Figs 4,5

is statistically stable at the values of L used in this work.

We also constructed the Google matrix G� by inverting the

direction of transitions Tij?Tji and then normalizing sum of all

elements in each column to unity. This procedure is also

equivalent to moving along the sequence, from word to word,

not from left to right but from right to left. We note that for WWW

and other networks such a matrix with inverted direction of links

was used to obtain the CheiRank vector (which is the PageRank

vector of matrix G�). Due to the inversion of links the CheiRank

vector highlights very communicative nodes [4,20], [21,22]. In our

case the spectrum of G and G� are identical. As a result the

probability distributions of PageRank and CheiRank vectors are

the same. This is due to some kind of detailed balance principle:

we count only transitions between nearby words in a DNA

sequence and the direction of displacement along the sequence

does not affect the average transition probabilities so that Tij~Tji

(up to statistical fluctuations). In a certain sense this situation is

similar to the case of Ulam networks in symplectic maps where the

conservation of phase space area leads to the same properties of G
and G� [7,10].

We tried to test if a random matrix model can reproduce the

distribution of eigenvalues in l plane. With this aim we generated

random matrix elements Gij with exactly the same distribution Ng

as for HS case at m~6 (see Fig. 2). However, in this random

model we found all eigenvalues homogeneously distributed in the

radius lc&0:07 being significantly smaller compared to the real

data. Also in this case the PageRank probability P(K) changes

only by 30% in the whole range 1ƒKƒN being absolutely

different from the real data (see next section). Thus the

construction of random matrix models which are able to produce

results similar to the real data remains as a task for future

investigations.

PageRank properties of various species
By numerical diagonalization of the Google matrix we

determine the PageRank vector P(K) at l~1 and several other

eigenvectors with maximal values of DlD. The dependence of

probability P on index K is shown in Fig. 6 for various species and

different word length m. The probability P(K) describes the steady

Figure 3. Integrated fraction Ns=N of sum of ingoing matrix elements with
PN

j~1 Gi,j§gs. Left and right panels show the same cases as in
Fig. 2 in same colors. The dashed and dotted curves are shifted in x-axis by one unit left to fit the figure scale.
doi:10.1371/journal.pone.0061519.g003

Figure 4. Spectrum of eigenvalues in the complex plane l for
DNA Google matrix of Homo sapiens (HS) shown for words of
5,6,7 letters (from top to bottom).
doi:10.1371/journal.pone.0061519.g004
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state of random walks on the Markov chain and thus it gives the

frequency of appearance of various words of length m in the whole

sequence L. The frequencies or probabilities of words appearance

in the sequences have been obtained in [13] by a direct counting of

words along the sequence (the available sequences L were shorted

at that times). Both methods are mathematically equivalent and

indeed our distributions P(K) are in a good agreements with those

found in [13] even if now we have a significantly better statistics.

The decay of P with K can be approximately described by a

power law P*1=Kb. Thus for example for HS sequence at m~7
we find b~0:357+ 0:003 for the fit range 1:5ƒ log10 Kƒ3:7
that is rather close to the exponent found in [13]. Since on average

the PageRank probability is proportional to the number of ingoing

links, or the sum of ingoing matrix elements of G, one has the

relation between the exponent of PageRank b and exponent of

ingoing links (or matrix elements): b~1=(m{1) [3,4], [23,24],

[25]. Indeed, for the HS DNA case at m~7 we have m~4:48 that

gives b~0:29 being close to the above value of b~0:357 obtained

from the direct fit of P(K) dependence. We think that the

agreement is not so perfect since there is a visible curvature in the

log-log plot of Ns vs gs in Fig. 3. Also due to a small value of b the

variation range of P is not so large that reduces the accuracy of the

numerical fit even if a formal statistical error is relatively small

compared to a visible systematic nonlinear variations. In spite of

this only approximate agreement we should say that in global the

relation between b and m works correctly. In average we find for

DNA network the value of m&5 being significantly larger than for

the WWW networks with ~mm&2:1 [3]. This gives a significantly

smaller value b&0:25 for DNA case comparing to the usual

WWW value b&0:9 (we note that the randomized WWW

networks and the Albert-Barabási model have b&1 [26]). The

relation between b and m also works for the DR DNA case at

m~6 with m~4:04 that gives b~0:33 being in a satisfactory

agreement with the fit value b~0:426 found from P(K)
dependence of Fig. 6.

At m~6 we find for our species the following values of exponent

b~0:273+ 0:005 (BT), 0:340+ 0:005 (CF), 0:281+ 0:005 (LA),

0:308+ 0:005 (HS), 0:426+ 0:008 (DR) in the range

1ƒ log10 Kƒ3:3. There is a relatively small variation of b
between various mammalian species. The data of Fig. 6 for HS

show that the value of b remains stable with the increase of word

length. These observations are similar to those made in [13].

PageRank proximity between species
The top ten 6-letters words, with largest probabilities P(K), are

given for all studied species in Table 1. Two top words are

identical for BT, CF, HS. To see a similarity between species on a

global scale it is convenient to plot the PageRank index Ks(i) of a

given species s versus the index Khs(i) of HS for the same word i.
For identical sequences one should have all points on diagonal,

while the deviations from diagonal characterize the differences

between species. The examples of such PageRank proximity

K{K diagrams are shown in Figs. 7,8 for words at m~6. A zoom

of data on a small scale at the range 1ƒKƒ200 is shown in Fig. 9.

A visual impression is that CF case has less deviations from HS

rank compared to BT and LA. The non-mammalian DR case has

most strong deviations from HS rank. For BT, CF and LA cases

we have a significant reduction of deviations from diagonal around

K&3N=4. This effect is also visible for DR case even if being less

pronounced. We do not have explanation for this observation.

The fraction of purine letters A or G in a word of m~6 letters is

shown by color in Fig. 7 for all words ranked by PageRank index

K . We see that these letters are approximately homogeneously

distributed over the whole range of K values. In contrast to that

the distribution of letters A or T is inhomogeneous in K :

their fraction is dominant for 1ƒKvN=4, approximately

homogeneous for N=4ƒKƒ3N=4 and is close to zero for

3N=4vKƒN (see Fig. 8). We find that in the whole HS

sequence the fractions Fa,c,g,t of A,C,G,T are respectively

0:276596,0:192576,0:192624,0:276892 (and Fn~0:061312 for

undetermined Nl ). Thus we have the fraction of A,G being close

to 1=2&(FazFg)=(1{Fn)~0:499867 and the fraction of A,T

being (FazFt)=(1{Fn)~0:589640w0:5. Thus it is more prob-

able to have A or T in the whole sequence that can be a possible

origin of the inhomogeneous distribution of A or T along K and

large fraction of A, T at top PageRank positions.

The whole HS sequence used here is composed from 5 humans

with individual length Li&3:109&L=5. We consider the first and

last fifth parts of the whole sequence L separately thus forming two

independent sequences HS1 and HS2 of two individuals. We

Figure 5. Spectrum of eigenvalues in the complex plane l for
DNA Google matrix of of bull BT, dog CF, elephant LA,
zebrafish DR shown for words of 6 letters (from top to bottom).
doi:10.1371/journal.pone.0061519.g005
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determine for the the corresponding PageRank indexes Khs1 and

Khs2 and show their PageRank proximity diagram in Fig. 10. In

this case the points are much closer to diagonal compared to the

case of comparison of HS with other species.

To characterize the proximity between different species or

different HS individuals we compute the average dispersion

s(s1,s2)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1 (Ks1

(i){Ks2
(i))2)=N

q
between two species (in-

dividuals) s1 and s2. Comparing the words with length m~5,6,7

Figure 6. Dependence of PageRank probability P(K) on PageRank index K. Left panel : Data for different species for word length of 6-
letters: bull BT (magenta), dog CF (red), elephant LA (green), Homo sapiens HS (blue) and zebrafish DR (black). Right panel : Data for HS (full curve) and
LA (dashed curve) for word length m~5 (brown), 6 (blue/green), 7 (red).
doi:10.1371/journal.pone.0061519.g006

Figure 7. PageRank proximity K{K plane diagrams for different species in comparison with Homo sapiens: x-axis shows PageRank
index Khs(i) of a word i and y-axis shows PageRank index of the same word i with Kbt(i) of bull, Kcf (i) of dog, Kla(i) of elephant and
Kdr(i) of zebrafish; here the word length is m~6. The colors of symbols marks the purine content in a word i (fractions of letters A or G in any
order); the color varies from red at maximal content, via brown, yellow, green, light blue, to blue at minimal zero content.
doi:10.1371/journal.pone.0061519.g007
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we find that the scaling s!N works with a good accuracy (about

10% when N is increased by a factor 16). To represent the result

in a form independent of m we compare the values of s with the

corresponding random model value srnd . This value is computed

assuming a random distribution of N points in a square N|N

when only one point appears in each column and each line (e.g. at

m~6 we have srnd&1673 and srnd!N). The dimensionless

dispersion is then given by f(s1,s2)~s(s1,s2)=srnd . From the

ranking of different species we obtain the following values at m~6:

f(CF ,BT)~0:308; f(LA,BT)~0:324, f(LA,CF )~0:303;

f(HS,BT)~0:246, f(HS,CF )~0:206, f(HS,LA)~0:238;

f(DR,BT)~0:425, f(DR,CF )~0:414, f(DR,LA)~0:422,

f(DR,HS)~0:375 (other m have similar values). According to

this statistical analysis of PageRank proximity between species we

find that f value is minimal between CF and HS showing that

these are two most similar species among those considered here.

For two HS individuals we find f(HS1,HS2)~0:031 being

significantly smaller then the proximity correlator between

different species. We think that this PageRank proximity correlator

f can be useful as a quantitative measure of statistical proximity

between various species.

Finally, in Table 2 we give for all species the words of 6 letters

with the 10 minimal PageRank probabilities. Thus for HS the less

probable is the word TACGCG corresponding to two amino acids

Tyr and Ala. In general the ten last words are mainly composed of

C and G even if the letters A and T still have small but nonzero

weight. The last two words are the same for mammalian species

but they are different for DR sequence.

Other eigenvectors of G
The properties of 10 eigenstates yi(j) of DNA Google matrix

with largest modulus of eigenvalues Dli D are analyzed in Table 3

and Fig. 11. The words Wi at the maximal amplitude Dyi(j)D are

presented for all species in Table 3. We see that in general these

words Wi are rather different from the top PageRank word W1

(some words appear in pairs since there are pairs of complex

conjugated values li~l�i ).

The probability of the above top 10 eigenstates as a function of

PageRank index K are shown in Fig. 11. We see that the majority

of the vectors, different from the PageRank vector, have well

localized peaks at relatively large values Kw50. This shows that in

the DNA network there are some modes located on certain specific

patterns of words.

To illustrated the localized structure of eigenmodes yi(j) for HS

case at m~6 we compute the inverse participation ratio

ji~(
P

j Dyi(j)D
2)2=

P
j Dyi(j)D

4 which gives an approximate num-

ber of nodes on which the main probability of an eigenstate yi(j) is

located (see e.g. [4,21,26]). The obtained values are ji~385:26,

16:37, 2:07, 1:72, 2:23, 3:19, 77:43, 77:43, 2:33, 2:06 for

i~1,:::10 respectively. We see that for iw1 we have significantly

smaller j values compared to the case of PageRank vector with a

large j1. This supports the conclusion about localized structure of

a large fraction of eigenvectors of G.

In [22] on an example of Wikipedia network it is shown that the

eigenstates with relatively large DlD select specific communities of

the network. The detection of communities in complex networks is

now an active research direction [27]. We expect that the

eigenmodes of G matrix can select specific words of bioniformatic

Figure 8. Same as in Fig. 7 but now the color marks the fraction of of letters A or T in any order in a word i with red at maximal
content and blue at zero content.
doi:10.1371/journal.pone.0061519.g008
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interest. However, a detailed analysis of words from eigenmodes

remains for further more detailed investigations.

Discussion

In this work we used long DNA sequences of various species to

construct from them the Markov process describing the probabi-

listic transitions between words of up to 7 letters length. We

construct the Google matrix of such transitions with the size up to

47 and analyze the statistical properties of its matrix elements. We

show that for all 5 species, studied in this work, the matrix

elements of significant amplitude have a power law distribution

with the exponent n&2:5 being close to the exponent of outgoing

links distribution typical for WWW and other complex directed

networks with ~nn&2:7. The distribution of significant values of the

sum of ingoing matrix elements of G is also described by a power

Figure 9. Zoom of the PageRank proximity K{K diagram of Fig. 8 for the range 1ƒKƒ200 with the same color for A or T content.
doi:10.1371/journal.pone.0061519.g009

Table 1. Top ten PageRank entries at DNA word length m~6
for species: bull BT, dog CF, elephant LA, Homo sapiens HS
and zebrafish DR.

BT CF LA HS DR

TTTTTT TTTTTT AAAAAA TTTTTT ATATAT

AAAAAA AAAAAA TTTTTT AAAAAA TATATA

ATTTTT AATAAA ATTTTT ATTTTT AAAAAA

AAAAAT TTTATT AAAAAT AAAAAT TTTTTT

TTCTTT AAATAA AGAAAA TATTTT AATAAA

TTTTAA TTATTT TTTTCT AAAATA TTTATT

AAAGAA AAAAAT AAGAAA TTTTTA AAATAA

TTAAAA ATTTTT TTTCTT TAAAAA TTATTT

TTTTCT TTTTTA TTTTTA TTATTT CACACA

AGAAAA TAAAAA TAAAAA AAATAA TGTGTG

doi:10.1371/journal.pone.0061519.t001

Table 2. Ten words with minimal PageRank probability given
at m~6 for species: bull BT, dog CF, elephant LA, Homo
sapiens HS and zebrafish DR.

BT CF LA HS DR

CGCGTA TACGCG CGCGTA TACGCG CCGACG

TACGCG CGCGTA TACGCG CGCGTA CGTCGG

CGTACG TCGCGA ATCGCG CGTACG CGTCGA

CGATCG CGTACG TCGCGA TCGACG TCGACG

ATCGCG CGATCG CGCGAT CGTCGA TCGTCG

CGCGAT CGAACG GTCGCG CGATCG CCGTCG

TCGACG CGTTCG CGATCG CGTTCG CGACGG

CGTCGA TCGACG CGCGAC CGAACG CGACCG

CGTTCG CGTCGA TCGCGC CGACGA CGGTCG

TCGTCG ACGCGA ACGCGA CGCGAA CGACGA

Here the top row is the last PageRank entry, bottom is the tenth one from the
end of PageRank.
doi:10.1371/journal.pone.0061519.t002
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Figure 10. PageRank proximity K{K diagram of Homo sapiens HS2 versus Homo sapiens HS1 at m~6 (see text for details). Top
panels show the content of A,T (left) and A,G (right) in the same way as in Fig. 8 and Fig. 7 respectively. Bottom panels show zoom of top panels.
doi:10.1371/journal.pone.0061519.g010

Figure 11. Dependence of eigenstates amplitude Dyi(K)D on
PageRank index K in x-axis and eigenvalue index i in y-axis for
largest ten eigenvalues Dli D counted by i from i~1 at Dl1D~1 to
i~10 at Dl10D&0:2. The range 1ƒKƒ250 is shown with PageRank
vector for a given species at the bottom line of each panel. For each

species in each panel the color is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffi
Dyi(j)D

p
changing

from blue at zero to red at maximal amplitude value which is close to
unity in each panel. The panels show the species: bull BT (top left), dog
CF (top right), elephant LA (bottom left), Homo sapiens HS (bottom
right).
doi:10.1371/journal.pone.0061519.g011

Table 3. Words Wi corresponding to the maximum value of
eigenvector modulus wi~maxj(Dyi(j)D) for species bull BT,
dog CF, elephant LA, Homo sapiens HS and zebrafish DR,
which are shown in dark red in Fig. 11.

i BT CF LA HS DR

1 TTTTTT TTTTTT AAAAAA TTTTTT ATATAT

2 TTTTTT AAAAAA AAAAAA TTTTTT TATATA

3 ACACAC CTCTCT AAAAAA ACACAC ATATAT

4 ACACAC AGAGAG AAAAAA ACACAC TAGATA

5 CACACA CTCTCT AAAAAA TTTTTT ATAGAT

6 CACACA TCTCTC AAAAAA CACACA TATCTA

7 CCAGGC AGAGAG TATGAG TGGGAG ATCTAT

8 CCAGGC AGAGAG TATGAG TGGGAG TAGATA

9 CCCATG TGTGTG TTTTTT CACACA ATAGAT

10 CCCATG TGTGTG AGAGTA TTTTTT TATCTA

The eigenvectors at i~1,:::,10 correspond to the ten largest eigenvalues
Dl1 D,:::,Dl10 D of the DNA Google matrix for DNA word length m~6. The first row
i~1 corresponds to top PageRank entries.
doi:10.1371/journal.pone.0061519.t003
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law with the exponent m&5 which is significantly larger than the

corresponding exponent for WWW networks with ~mm&2:1. We

show that similar to the WWW networks the exponent m
determines the exponent b~1=(m{1)&0:25 of the algebraic

PageRank decay which is significantly smaller then its value for

WWW networks with b&0:9. The PageRank decay is similar to

the frequency decay of various words studied previously in [13]. It

is interesting to note that the value m{1 is close to the exponent of

Poincaré recurrences decay which has a value close to 4 [12] (even

if we cannot derive a direct mathematical relation between them).

Using PageRank vectors of various species we introduce the

PageRank proximity correlator f which allows to measure in a

quantitative way the proximity between different species. This

parameter remains stable in respect to variation of the word

length.

The spectrum of the Google matrix is determined and it is

shown that it is characterized by a significant gap between l~1
and other eigenvalues. Thus, this spectrum is qualitatively different

from the WWW case where the gap is absent at the damping

factor a~1. We show that the eigenmodes with largest values of

DlDv1 are well localized on specific words and we argue that the

words corresponding to such localized modes can play an

interesting role in bioinformatic properties of DNA sequences.

Finally we would like to trace parallels between the Google

matrix analysis of words in DNA sequences and the small world

properties of human language. Indeed, it is known that the

frequency of words in natural languages follows a power law Zipf

distribution with the exponent b&1 [28]. The parallels between

words distributions in DNA sequences and statistical linguistics

were already pointed in [13]. The analysis of degree distributions

of undirected networks of words in natural languages was found to

follow a power law with an exponent nl&1:5{2:7 [29] being not

so far from the one found here for the matrix elements

distribution. It is argued that the language evolution plays an

important role in the formation of such a distribution in languages

[30]. The parallels between linguistics and DNA sequence

complexity are actively discussed in bioinformatics [31,32]. We

think that the Google matrix analysis can provide new insights in

the construction and characterization of information flows on

DNA sequence networks extending recent steps done in [33].

In summary, our results show that the distributions of significant

matrix elements are similar to those of the scale-free type networks

like WWW, Wikipedia and linguistic networks. In analogy with

lingusitic networks it can be useful to go from words network

analysis to a more advanced functional level of links inside

sentences that may be viewed as a network of links between amino

acids or more complex biological constructions.

Supporting Information

Supporting Information S1. Supplementary methods, refer-

ences, tables, sequences data and figures are available at: http://

www.quantware.ups-tlse.fr/QWLIB/dnagooglematrix/.
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Abstract. We study the time evolution of ranking and spectral properties of the Google matrix of English
Wikipedia hyperlink network during years 2003 - 2011. The statistical properties of ranking of Wikipedia
articles via PageRank and CheiRank probabilities, as well as the matrix spectrum, are shown to be stabi-
lized for 2007 - 2011. A special emphasis is done on ranking of Wikipedia personalities and universities. We
show that PageRank selection is dominated by politicians while 2DRank, which combines PageRank and
CheiRank, gives more accent on personalities of arts. The Wikipedia PageRank of universities recovers 80
percents of top universities of Shanghai ranking during the considered time period.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 89.20.Hh World Wide Web, Internet

1 Introduction

At present Wikipedia [1] became the world largest En-
cyclopedia with open public access to its contain. A re-
cent review [2] represents a detailed description of pub-
lications and scientific research of this modern Library
of Babel, which stores an enormous amount of informa-
tion, approaching the one described by Jorge Luis Borges
[3]. The hyperlinks of citations between Wikipedia articles
represent a directed network which reminds the structure
of the World Wide Web (WWW). Hence, the mathemat-
ical tools developed for WWW search engines, based on
the Markov chains [4], Perron-Frobenius operators [5] and
the PageRank algorithm of the corresponding Google ma-
trix [6,7], give solid mathematical grounds for analysis of
information flow on the Wikipedia network. In this work
we perform the Google matrix analysis of Wikipedia net-
work of English articles extending the results presented
in [8,9],[10,11]. The main new element of this work is
the study of time evolution of Wikipedia network during
the years 2003 to 2011. We analyze how the ranking of
Wikipedia articles and the spectrum of the Google matrix
G of Wikipedia are changed during this period.

The directed network of Wikipedia articles is const-
ructed in a usual way: a directed link is formed from an
article j to an article i when j quotes i and an element Aij

of the adjacency matrix is taken to be unity when there is
such a link and zero in absence of link. Then the matrix
Sij of Markov transitions is constructed by normalizing
elements of each column to unity (

∑

j Sij = 1) and re-

placing columns with only zero elements (dangling nodes)

by 1/N , with N being the matrix size. Then the Google
matrix of the network takes the form [6,7]:

Gij = αSij + (1− α)/N . (1)

The damping parameter α in the WWW context describes
the probability (1−α) to jump to any node for a random
surfer. For WWW the Google search engine uses α ≈ 0.85
[7]. The matrix G belongs to the class of Perron-Frobenius
operators [5,7], its largest eigenvalue is λ = 1 and other
eigenvalues have |λ| ≤ α. The right eigenvector at λ = 1,
which is called the PageRank, has real nonnegative ele-
ments P (i) and gives a probability P (i) to find a random
surfer at site i. It is possible to rank all nodes in a de-
creasing order of PageRank probability P (K(i)) so that
the PageRank index K(i) counts all N nodes i according
their ranking, placing the most popular articles or nodes
at the top values K = 1, 2, 3....

Due to the gap 1−α ≈ 0.15 between the largest eigen-
value λ = 1 and other eigenvalues the PageRank algo-
rithm permits an efficient and simple determination of the
PageRank by the power iteration method [7]. It is also
possible to use the powerful Arnoldi method [12,13],[14]
to compute efficiently the eigenspectrum λi of the Google
matrix:

N
∑

k=1

Gjkψi(k) = λiψi(j) . (2)

The Arnoldi method allows to find a several thousands
of eigenvalues λi with maximal |λ| for a matrix size N
as large as a few tens of millions [10,11], [14,15]. Usually,

http://arxiv.org/abs/1304.6601v1
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at α = 1 the largest eigenvalue λ = 1 is highly degen-
erate [15] due to many invariant subspaces which define
many independent Perron-Frobenius operators providing
(at least) one eigenvalue λ = 1.

In addition to a given directed network Aij it is use-
ful to analyze an inverse network with inverted direction
of links with elements of adjacency matrix Aij → Aji.
The Google matrix G∗ of the inverse network is then con-
structed via corresponding matrix S∗ according to the re-
lations (1) using the same value of α as for the G matrix.
This time inversion approach was used in [16,17] but the
statistical properties and correlations between direct and
inversed ranking were not analyzed there. In [18], on an
example of the Linux Kernel network, it was shown thus
this approach allows to obtain an additional interesting
characterization of information flow on directed networks.
Indeed, the right eigenvector of G∗ at eigenvalue λ = 1
gives a probability P ∗(i), called CheiRank vector [8]. It
determines a complementary rank index K∗(i) of network
nodes in a decreasing order of probability P ∗(K∗(i)) [8,
9],[10,18]. It is known that the PageRank probability is
proportional to the number of ingoing links characteriz-
ing how popular or known is a given node. In a similar
way the CheiRank probability is proportional to the num-
ber of outgoing links highlighting the node communicativ-
ity (see e.g. [7,19], [20,21],[8,9]). The statistical properties
of distribution of indexes K(i),K∗(i) on the PageRank-
CheiRank plane are described in [9].

In this work we apply the above mathematical meth-
ods to the analysis of time evolution of Wikipedia network
ranking using English Wikipedia snapshots dated by De-
cember 31 of years 2003, 2005, 2007, 2009, 2011. In ad-
dition we use the snapshot of August 2009 (200908) ana-
lyzed in [8]. The parameters of networks with the number
of articles (nodes) N , number of links Nℓ and other in-
formation are given in Tables 1,2 with the description of
notations given in Appendix.

The paper is composed as following: the statistical
properties of PageRank and CheiRank are analyzed in
Section 2, ranking of Wikipedia personalities and univer-
sities are considered in Sections 3, 4 respectively, the prop-
erties of spectrum of Google matrix are considered in Sec-
tion 5, the discussion of the results is presented in Section
6, Appendix Section 7 gives network parameters.

2 CheiRank versus PageRank

The dependencies of PageRank and CheiRank probabili-
ties P (K) and P ∗(K∗) on their indexes K, K∗ at different
years are shown in Fig. 1. The top positions of K are oc-
cupied by countries starting from United States while at
the top positions of K∗ we find various listings (e.g. ge-
ographical names, prime ministers etc.; in 2011 we have
appearance of listings of listings). Indeed, the countries
accumulate links from all types of human activities and
nature, that make them most popular Wikipedia articles,
while listings have the largest number of outgoing links
making them the most communicative articles.
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Fig. 1. PageRank probability P (K) (left panel) and CheiRank
probability P

∗(K∗) (right panel) are shown as a function of the
corresponding rank indexes K and K

∗ for English Wikipedia
articles at years 2003, 2005, 2007, 200908, 2009, 2011; here the
damping factor is α = 0.85.

The data of Fig. 1 show that the global behavior of
P (K) remains stable from 2007 to 2011. The probability
P ∗(K∗) is stable in the time interval 2007 - 2009 while at
2011 we see the appearance of peak at 1 ≤ K∗ < 10 that
is related to introduction of listings of listings which were
absent at earlier years. At the same time the behavior of
P ∗(K∗) in the range 10 ≤ K∗ ≤ 106 remains stable for
2007 - 2011.

Each article i has its PageRank and CheiRank indexes
K(i), K∗(i) so that all articles are distributed on two-
dimensional plane of PageRank-CheiRank indexes. Fol-
lowing [8,9] we present the density of articles in the 2D
plane (K,K∗) in Fig. 2. The density is computed for 100×
100 logarithmically equidistant cells which cover the whole
plane (K,K∗) for each year. The density distribution is
globally stable for years 2007-2011 even if there are arti-
cles which change their location in 2D plane. We see an
appearance of a mountain like ridge of probability along a
line lnK∗ ≈ lnK + 4.6 that indicate the presence of cor-
relation between P (K(i)) and P ∗(K∗(i)). Following [8,9,
18] we characterize the interdependence of PageRank and
CheiRank vectors by the correlator

κ = N

N
∑

i=1

P (K(i))P ∗(K∗(i))− 1 . (3)

We find the following values of the correlator at vari-
ous time slots: κ = 2.837(2003), 3.894(2005), 4.121(2007),
4.084(200908), 6.629(2009), 5.391(2011). During that pe-
riod the size of the network increased almost by 10 times
while κ increased less than 2 times. This confirms the sta-
bility of the correlator κ during the time evolution of the
Wikipedia network.

In the next two Sections we analyze the time variation
of ranking of personalities and universities.

3 Ranking of personalities

To analyze the time evolution of ranking of Wikipedia
personalities (persons or humans) we chose the top 100
persons appearing in the ranking list of Wikipedia 200908
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Fig. 2. Density of Wikipedia articles in the CheiRank ver-
sus PageRank plane at different years. Color is proportional to
logarithm of density changing from minimal nonzero density
(dark) to maximal one (white), zero density is shown by black
(distribution is computed for 100×100 cells equidistant in log-
arithmic scale; bar shows color variation of natural logarithm
of density); left column panels are for years 2003, 2007, 200908
and right column panels are for 2005, 2009, 2011 (from top to
bottom).

given in [8] in order of PageRank, CheiRank and 2DRank.
We remind that 2DRankK2 is obtained by counting nodes
in order of their appearance on ribs of squares in (K,K∗)
plane with their size growing from K = 1 to K = N [8].

The distributions of personalities in PageRank-CheiRank
plane is shown at various time slots in Fig. 3. There are
visible fluctuations of distribution of nodes for years 2003,
2005 when the Wikipedia size has rapid growth. For other
years the distribution of top 100 nodes of PageRank and
2DRank is stable even if individual nodes change their
ranking. For top 100 of CheiRank the fluctuations remain
strong during all years. Indeed, the number of outgoing
links is more easy to be modified by authors writing a
given article, while a modification of ingoing links depends
on authors of other articles.

In Fig. 3 we also show the distribution of top 100 per-
sonalities from Hart’s book [22] (the list of names is also
available at the web page [8]). This distribution also re-
mains stable in years 2007-2011. It is interesting to note
that while top PageRank and 2DRank nodes form a kind
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Fig. 3. Change of locations of top-rank persons of Wikipedia
in K-K* plane. Each list of top ranks is determined by data
of top 100 personalities of time slot 200908 in corresponding
rank. Data sets are shown for (a) PageRank, (b) CheiRank, (c)
2DRank, (d) rank from Hart [22].

of droplet in (K,K∗) plane, the distribution of Hart’s per-
sonalities approximately follows the ridge along the line
lnK∗ ≈ lnK + 4.6.

The time evolution of top 10 personalities of slot 200908
is shown in Fig. 4 for PageRank and 2DRank. For PageR-
ank the main part of personalities keeps their rank posi-
tion in time, e.g. G.W.Bush remains at first-second po-
sition. B.Obama significantly improves his ranking as a
result of president elections. There are strong variations
for Elizabeth II which we relate to modification of arti-
cle name during the considered time interval. We also see
a steady improvement of ranking of C.Linnaeus that we
attribute to a growth of various botanic descriptions and
listings at Wikipedia articles which quote his name. For
2DRank we observe stronger variations of K2 index with
time. Such a politician as R.Nixon has increasing K2 in-
dex with time since the period of his presidency goes in
the past. At the same time singers and artists remain at
approximately constant level of K2.

In [8] it was pointed out that the top personalities of
PageRank are dominated by politicians while for 2DRank
the dominant component of human activity is represented
by artists. We analyze the time evolution of the distri-
bution of top 30 personalities over 6 categories of human
activity (politics, arts, science, religion, sport and etc (or
others)). The category etc contains only C.Columbus. The
results are presented in Fig. 5. They clearly show that
the PageRank personalities are dominated by politicians
whose percentage increases with time, while the percent
of arts decreases. For 2DRank we see that the arts are
dominant even if their percentage decreases with time.
We also see the appearance of sport which is absent in
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Fig. 4. Time evolution of top 10 personalities of year 200908
in indexes of PageRank K (a) and 2DRank K2 (b); B.Obama
is added in panel (a).

PageRank. The mechanism of the qualitative ranking dif-
ferences between two ranks is related to the fact that
2DRank takes into account via CheiRank a contribution
of outgoing links. Due to that singers, actors, sportsmen
increase their ranking since they are listed in various mu-
sic albums, movies sport competition results. Due to that
the component of arts gets higher positions in 2DRank in
contrast to politics dominance in PageRank. Thus the two-
dimensional ranking on PageRank-CheiRank plane allows
to select qualities of nodes according to their popularity
and communicativity.

4 Ranking of universities

The local ranking of top 100 universities is shown in Fig. 6
for years 2003, 2005, 2007 and in Fig. 7 for 2009, 200908,
2011. The local ranking is obtained by selecting top 100
universities appearing in PageRank listing so that they get
their university ranking K from 1 to 100. The same proce-
dure is done for CheiRank listing of universities obtaining
their local CheiRank index K∗ from 1 to 100. Those uni-
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Fig. 5. Left panel: distribution of top 30 PageRank personal-
ities over 6 activity categories at various years of Wikipedia.
Right panel: distribution of top 30 2DRank personalities over
the same activity categories at same years. Categories are pol-
itics, art, science, religion, sport, etc (other). Color shows the
number of personalities for each activity expressed in percents.

versities which enter inside 100× 100 square on the local
index plane (K,K∗) are shown in Figs. 6, 7.

The data show that the top PageRank universities are
rather stable in time, e.g. U Harvard is always on the first
top position. At the same time the positions in K∗ are
strongly changing in time. To understand the origin of this
variations in CheiRank we consider the case of U Cam-
bridge. Its Wikipedia article in 2003 is rather short but it
contains the list of all 31 Colleges with direct links to their
corresponding articles. This leads to a high position of U
Cambridge with university K∗ = 4 in 2003 (Fig. 8). How-
ever, with time the direct links remain only to about 10
Colleges while the whole number of Colleges are presented
by a list of names without links. This leads to a significant
increase of index up to K∗ ≈ 40 at Dec 2009. However,
at Dec 2011 U Cambridge again improves significantly its
CheiRank obtaining K∗ = 2. The main reason of that
is the appearance of section of “Notable alumni and aca-
demics” which provides direct links to articles about out-
standing scientists studied and/or worked at U Cambridge
that leads to second position at K∗ = 2 among all uni-
versities. We note that in 2011 the top CheiRank Univer-
sity is George Mason University with university K∗ = 1.
The main reason of this high ranking is the presence of
detailed listings of alumni in politics, media, sport with
direct links to articles about corresponding personalities
(including former director of CIA). These two examples
show that the links, kept with a large number of univer-
sity alumni, significantly increase CheiRank position of
university. We note that artistic and politically oriented
universities usually preserve more links with their alumni.

The time evolution of global ranking of top 10 univer-
sities of year 200908 for PageRank and 2DRank is shown
in Fig. 8. The results show the stability of PageRank or-
der with a clear tendency of top universities (e.g. Harvard)
to go with time to higher and higher top positions of K.
Thus for U Harvard the global value of K changes from
K ≈ 300 in 2003 to K ≈ 100 in 2011, while the whole size
N of the Wikipedia network increases almost by a fac-
tor 10 during this time interval. Since Wikipedia ranks all
human knowledge, the stable improvement of PageRank
indexes of universities reflects the global growing impor-



Y.-H.Eom, K.M.Frahm, A.Bencźur and D.L.Shepelyansky: Time evolution of Wikipedia network ranking 5

20

40

60

80

100

20 40 60 80 100

K
*

K

H
ar

va
rd

Oxford

Columbia

UC Berkeley

Stanford

Yale
Cambridge
Princeton

MIT

Chicago

Cornell

Toronto

Michigan

Johns Hopkins

Pennsylvania

Carnegie Mellon

McGill

UCLA

Virginia

UC San Diego

CalTech

Trinity College, Dublin

London

Maryland

California State Univ.

Virginia Tech

Utah

Texas at A
ustin

Ohio State Univ.

Washington

Mississippi

Duke

UC Irv
ine

Britis
h Columbia

Nor
th

wes
te

rn

Copenhagen

University College London

UC Santa Cruz

Michigan State Univ.

Royal C
ollege of M

usic

Brigham YoungFlorida

20

40

60

80

100

20 40 60 80 100

K
*

K

Harvard

Columbia
Yale

Oxford

Princeton

Cambridge

UC Berkeley

Stanford

New York

Michigan

Toronto

Virginia

Pe
nn

sy
lv

an
ia

Southern Califo
rnia

London

Johns Hopkins

Edinburgh

Duke

WashingtonM
cG

ill

University College London

Brown

Minnesota

UCLA

Boston

Notre Dame

CalTech

Carnegie Mellon

Georgia

Michigan State Univ.Florida

Sydney

Syracuse

Trinity College, D
ublin

Pitts
burgh

Iowa

British Columbia

Bristol

UC Santa Barbara

Purdue

Tennessee

Imperial College London

Florida State Univ.

Indiana Univ. B
loomington

George W
ashington

Gottin
gen

Arizona State Univ.

Tufts

Brandeis

Waterloo

Austra
lian Nat. U

niv.

Auburn

North
 Carolina State Univ.

20

40

60

80

100

20 40 60 80 100

K
*

K

Harvard

C
ol

um
bi

aYale

Cambridge

Oxford

Princeton
UC Berkeley

Chicago

Michigan

Cornell

MIT

New York

Southern Califo
rnia

Toronto

Virginia

Johns Hopkins

Brown

Texas at A
ustin

North
western

Minnesota

McGill

Rutgers

Notre
 Dame

Florida

Boston

Georgetown
Maryland

Mich
igan State Univ.

Pitts
burgh

Georgia

Carnegie Mellon

Austra
lian Nat. U

niv.

CalTech

Oklahoma

Pennsylvania State Univ.

Kansas

Fordham

York

Fig. 6. University of Wikipedia articles in the local CheiRank
versus PageRank plane at different years; panels are for years
2003, 2005, 2007 (from top to bottom).
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top to bottom).
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tance of universities in the world of human activity and
knowledge.

The time evolution of the same universities in 2DRank
remains stable in time showing certain interchange of their
ranking order. We think that an example of U Cambridge
considered above explains the main reasons of these fluc-
tuations. In view of 10 times increase of the whole network
size during the period 2003 - 2011 the average stability of
2DRank of universities also confirms the significant im-
portance of their place in human activity.

Finally we compare the Wikipedia ranking of universi-
ties in their local PageRank index K with those of Shang-
hai university ranking [23]. In the top 10 of Shanghai uni-
versity rank the Wikipedia PageRank recovers 9 (2003), 9
(2005), 8 (2007), 7 (2009), 7 (2011). This shows that the
Wikipedia ranking of universities gives the results being
very close to the real situation. A small decrease of overlap
with time can be attributed to earlier launched activity of
leading universities on Wikipedia.

5 Google matrix spectrum

Finally we discuss the time evolution of the spectrum of
Wikipedia Google matrix taken at α = 1. We perform the
numerical diagonalization based on the Arnoldi method
[12,13] using the additional improvements described in
[14,15] with the Arnold dimension nA = 6000. The Google
matrix is reduced to the form

S =

(

Sss Ssc

0 Scc

)

(4)

where Sss describes disjoint subspaces Vj of dimension dj
invariant by applications of S; Scc depicts the remaining
part of nodes forming the wholly connected core space.
We note that Sss is by itself composed of many small di-
agonal blocks for each invariant subspace and hence those
eigenvalues can be efficiently obtained by direct (“exact”)
numerical diagonalization. The total subspace size Ns, the
number of independent subspaces Nd, the maximal sub-
space dimension dmax and the number N1 of S eigenvalues
with λ = 1 are given in Table 2 (See also Appendix). The
spectrum and eigenstates of the core space Scc are de-
termined by the Arnoldi method with Arnoldi dimension
nA giving the eigenvalues λi of Scc with largest modulus.
Here we restrict ourselves to the statistical analysis of the
spectrum λi. The analysis of eigenstates ψi (Gψi = λiψi),
which has been done in [11] for the slot 200908, is left for
future studies.

The spectrum for all Wikipedia time slots is shown
in Fig. 9 for G and in Fig. 10 for G∗. We see that the
spectrum remains stable for the period 2007 - 2001 even if
there is a small difference of slot 200908 due to a slightly
different cleaning link procedure (see Appendix). For the
spectrum of G∗ in 2007 - 2001 we observe a well pro-
nounced 3-6 arrow star structure. This structure is very
similar to those found in random unistochastic matrices of
side 3-4 [24] (see Fig.4 therein). This fact has been pointed
in [11] for the slot 200908. Now we see that this is a generic
phenomenon which remains stable in time. This indicates
that there are dominant groups of 3-4 nodes which have
structure similar to random unistochastic matrices with
strong ties between 3-4 nodes and various random permu-
tations with random hidden complex phases. The spectral
arrow star structure is significantly more pronounce for
the case of G∗ matrix. We attribute this to more signif-
icant fluctuations of outgoing links that probably makes
sectors of G∗ to be more similar to elements of unistochas-
tic matrices. A further detailed analysis will be useful to
understand these arrow star structure and its links with
various communities inside Wikipedia.

As it is shown in [11] the eigenstates of G and G∗

select certain well defined communities of the Wikipedia
network. Such an eigenvector detection of the communi-
ties provides a new method of communities detection in
addition to more standard methods developed in network
science and described in [25]. However, the analysis of
eigenvectors represents a separate detailed research and in
this work we restrict ourselves to PageRank and CheiRank
vectors.
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Fig. 9. Spectrum of eigenvalues λ of the Google matrix G of
Wikipedia at different years. Red dots are core space eigen-
values, blue dots are subspace eigenvalues and the full green
curve shows the unit circle. The core space eigenvalues were
calculated by the projected Arnoldi method with Arnoldi di-
mensions nA = 6000.

Finally we note that the fraction of isolated subspaces
is very small for G matrix. It is increased approximately
by a factor of order 10 forG∗ but still it remains very small
compared to the networks of UK universities analyzed in
[15]. This fact reflects a strong connectivity of network of
Wikipedia articles.

6 Discussion

In this work we analyzed the time evolution of ranking of
network of English Wikipedia articles. Our study demon-
strates the stability of such statistical properties as PageR-
ank and CheiRank probabilities, the article density distri-
bution in PageRank-CheiRank plane during the period
2007 - 2011. The analysis of human activities in different
categories shows that PageRank gives main accent to pol-
itics while the combined 2DRank gives more importance
to arts. We find that with time the number of politicians
in the top positions increases. Our analysis of ranking of
universities shows that on average the global ranking of
top universities goes to higher and higher positions. This
clearly marks the growing importance of universities for
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Fig. 10. Same as in Fig. 9 but for the spectrum of matrix G
∗.

the whole range of human activities and knowledge. We
find that Wikipedia PageRank recovers 70 - 80 % of top
10 universities from Shanghai ranking [23]. This confirms
the reliability of Wikipedia ranking.

We also find that the spectral structure of the Wikipedia
Google matrix remains stable during the time period 2007
-2011 and show that its arrow star structure reflects cer-
tain features of small size unistochastic matrices.
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France-Armenia collaboration grant CNRS/SCSNo 24943
(IE-017) on “Classical and quantum chaos”.

7 Appendix

The tables with all network parameters used in this work
are given in the text of the paper. The notations used in
the tables are: N is network size, Nℓ is the number of
links, nA is the Arnoldi dimension used for the Arnoldi
method for the core space eigenvalues, Nd is the number
of invariant subspaces, dmax gives a maximal subspace di-
mension, Ncirc. notes number of eigenvalues on the unit
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N Nℓ nA

2003 455436 2033173 6000
2005 1635882 11569195 6000
2007 2902764 34776800 6000
2009 3484341 52846242 6000
200908 3282257 71012307 6000
2011 3721339 66454329 6000

Table 1. Parameters of all Wikipedia networks at different
years considered in the paper.

Ns Nd dmax Ncirc. N1

2003 15 7 3 11 7
2003∗ 940 162 60 265 163
2005 152 97 4 121 97
2005∗ 5966 1455 1997 2205 1458
2007 261 150 6 209 150
2007∗ 10234 3557 605 5858 3569
2009 285 121 8 205 121
2009∗ 11423 4205 134 7646 4221
200908 515 255 11 381 255
200908∗ 21198 5355 717 8968 5365
2011 323 131 8 222 131
2011∗ 14500 4637 1323 8591 4673

Table 2. G and G
∗ eigespectrum parameters for all Wikipedia

networks, year marks spectrum of G, year with star marks
spectrum of G∗.

circle with |λi| = 1, N1 notes number of unit eigenvalues
with λi = 1. We remark that Ns ≥ Ncirc. ≥ N1 ≥ Nd and
Ns ≥ dmax. The data for G are marked by the correspond-
ing year of the time slot, the data forG∗ are marked by the
year with a star. Links cleaning procedure eliminates all
redirects (nodes with one outgoing link), this procedure is
slightly different from the one used for the slot 200908 in
[8]. All data sets and high resolution figures are available
at the web page [26].
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Poincaré recurrences and Ulam method for the Chirikov
standard map

K.M. Frahma and D.L. Shepelyanskya,b
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Abstract. We study numerically the statistics of Poincaré recurrences for the Chirikov standard map and
the separatrix map at parameters with a critical golden invariant curve. The properties of recurrences are
analyzed with the help of a generalized Ulam method. This method allows us to construct the corresponding
Ulam matrix whose spectrum and eigenstates are analyzed by the powerful Arnoldi method. We also
develop a new survival Monte Carlo method which allows us to study recurrences on times changing by ten
orders of magnitude. We show that the recurrences at long times are determined by trajectory sticking in a
vicinity of the critical golden curve and secondary resonance structures. The values of Poincaré exponents
of recurrences are determined for the two maps studied. We also discuss the localization properties of
eigenstates of the Ulam matrix and their relation with the Poincaré recurrences.

1 Introduction

The interest to understanding of transition from dynam-
ical to statistical description of motion had started from
the dispute between Loschmidt and Boltzmann, which
is now known as the Loschmidt paradox [1,2]. The two-
dimensional (2D) symplectic maps represent an excellent
laboratory for investigation of how statistical laws appear
in dynamical, fully deterministic systems. Their properties
have been studied in great detail during last decades both
on mathematical (see e.g. [3,4] and references therein) and
physical (see e.g. [5–7] and references therein) levels of
rigor. The case of completely chaotic behavior, appearing
e.g. in Anosov systems, is now well understood [3,4] but a
generic case of maps with divided phase space, where is-
lands of stability are surrounded by chaotic components,
still preserves its puzzles. A typical example of such a map
is the Chirikov standard map [5,6] which often gives a local
description of dynamical chaos in other dynamical maps
and describes a variety of physical systems (see e.g. [8]).
This map has the form:

ȳ = y +
K

2π
sin(2πx), x̄ = x+ ȳ (mod 1). (1)

Here x, y are canonical conjugated variables of generalized
phase and action, bars mark the variables after one map
iteration and we consider the dynamics to be periodic on
a torus so that 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The dynamics is
characterized by one dimensionless chaos parameter K.

For small values of K the phase space is covered by in-
variant Kolmogorov-Arnold-Moser (KAM) curves which

a http://www.quantware.ups-tlse.fr
b e-mail: dima@irsamc.ups-tlse.fr

restrict dynamics in the action variable y. For K > Kg

the last invariant golden curve with the rotation number
r = rg = 〈(xt − x0)/t〉 = (

√
5 − 1)/2 is destroyed [9,10]

and it is believed that for K > Kg the dynamics in y
becomes unbounded [11,12]. A renormalization technique
developed by Greene [9] and MacKay [10] allowed to de-
termine Kg = 0.971635406 with enormous precision (due
to symmetry there is also a symmetric critical curve at
r = 1 − rg at Kg). The properties of the critical golden
curve on small scales are universal for all critical curves
with the golden tail of the continuous fraction expansion
of r for all smooth 2D symplectic maps [10]. Here and be-
low the time t is measured in number of map iterations.
For K > Kg the golden KAM curve is replaced by a can-
torus [13] which can significantly affect the diffusive trans-
port through the chaotic part of the phase space [14,15].
There are numerical and analytical indications that at
any K there are some chaotic regions in the phase space
bounded by internal invariant curves; at K < Kg there
are isolating invariant curves.

The dynamics inside a chaotic component of the phase
space (x, y) is characterized by correlation functions whose
decay ensures a transition from dynamical to statistical
description. The decay of correlations is related to the
probability to stay in a given region of phase space since
for a trajectory remaining in a small region the dynam-
ical variables are strongly correlated. This probability in
its own turn is related to the statistics of Poincaré recur-
rences. Indeed, according to the Poincaré recurrence the-
orem [16] a volume preserving dynamical flow with only
bounded orbits has for each open set orbits that intersect
the set infinitely often. Such orbits return, after a cer-
tain time, to a close vicinity of an initial state. However,
the statistics of these recurrences depends on dynamical

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2013-40120-6
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properties of the system. For a fully chaotic phase space
a probability to stay in a certain part of a phase space
decays exponentially with time being similar to a random
coin flipping [3,4]. However, in dynamical maps with di-
vided phase space, like the Chirikov standard map, the
extensive numerical simulations show that the decay of
probability of Poincaré recurrences P (t) is characterized
by a power law decay P (t) ∝ 1/tβ has β ≈ 1.5 whose
properties still remain poorly understood.

One of the first studies of Poincaré recurrences in dy-
namical Hamiltonian systems with two degrees of free-
dom was done in reference [17] where an algebraic de-
cay with an exponent β = 1/2 was found. This exponent
corresponds to an unlimited diffusion on an infinite one-
dimensional line which is in contrast to a bounded phase
space. This strange observation was explained in refer-
ences [18,19] as a diffusion in a chaotic separatrix layer of
a nonlinear resonance which takes place on relatively short
diffusion times. On larger times, which were not accessi-
ble to the computations presented in reference [17], this
diffusion becomes bounded by a finite width of the sepa-
ratrix layer and a universal algebraic decay takes place
with the exponent β ≈ 1.5 corresponding to a finite
chaos measure [18,19]. This algebraic decay of P (t) has
been confirmed by various groups in various Hamiltonian
systems [20–31].

One can argue that such a slow algebraic decay with
β ≈ 1.5 appears due to trajectory sticking near stable is-
lands and critical invariant curves and leads to an even
slower correlation function decay C(t) ∼ tP (t) with a di-
vergence of certain second moments. A sticking in a vicin-
ity of the critical golden curve [10] is expected to give
β ≈ 3 [24,25], being significantly larger than the average
value β ≈ 1.5. A certain numerical evidence is presented
in reference [27] showing that long time sticking orbits can
be trapped not only in a vicinity of a critical golden curve
but also in internal chaotic layers of secondary resonances.

Theoretical attempts to describe trapping in secondary
resonances as renormalization dynamics on some Cayley
type tree was started in references [22,23] with recent ex-
tensions done in references [28,32,33]. However, a detailed
understanding of the intriguing features of Poincaré re-
currences in the Chirikov standard map and other similar
maps is still missing.

In this work we use a generalized Ulam method de-
veloped in references [34,35] and combine it with a new
survival Monte Carlo method trying to reach larger time
scales and to obtain a better understanding of statistics
of Poincaré recurrences in the Chirikov standard map and
the separatrix map.

The paper is composed as follows: in Section 2 we con-
struct the Ulam matrix based on the generalized Ulam
method and study the properties of its spectrum, eigen-
states and corresponding time evolution for the case of
the Chirikov standard map. The survival Monte Carlo
method is introduced in Section 3 and the properties of
the Poincaré recurrences are studied with its help compar-
ing results with the Ulam method. In Section 4 we apply
the above methods to the separatrix map and in Section 5

the localization properties of the eigenstates of the Ulam
matrix are analyzed. The discussion of the results is pre-
sented in Section 6.

2 Generalized Ulam method with absorption

The Ulam method was proposed in 1960 [36]. In the orig-
inal version of this method a 2D phase space is divided in
Nd = M ×M cells and nc trajectories are propagated on
one map iteration from each cell j. Then the matrix Sij

is defined by the relation Sij = nij/nc where nij is the
number of trajectories arriving from a cell j to a cell i. By
construction we have

∑
i Sij = 1 and hence the matrix

Sij belongs to the class of the Perron-Frobenius opera-
tors (see e.g. [37]). This Ulam matrix can be considered
as a discrete Ulam approximate of the Perron-Frobenius
operator (UPFO) of the continuous dynamics.

According to the Ulam conjecture [36] the UPFO
converges to the continuous limit at large M . Indeed,
this conjecture was proven for 1D homogeneously chaotic
maps [38]. Various properties of the UPFO for 1D and
2D maps are analyzed in references [39–42]. Recent stud-
ies [43,44] demonstrated similarities between the UPFO,
the corresponding Ulam networks and the properties of
the Google matrix of the world wide web networks. It
was shown that in maps with absorption or dissipation
the spectrum of the UPFO is characterized by the fractal
Weyl law [45].

The coarse-grained cell structure of the original Ulam
method corresponds to an effective noise and in case of a
divided phase space the noise induces an artificial diffusion
between chaotic and regular regions. In reference [34] this
problem was solved by replacing the random initial points
by a very long chaotic trajectory and the transitions be-
tween cells are accumulated along the chaotic trajectory
that keeps the invariant curves and stable islands even in
presence of the effective noise. Furthermore, the matrix
size is also reduced since only cells which are visited at
least once by the trajectory are kept. Here we use this ap-
proach for the analysis of the Poincaré recurrences keeping
the same notations as in reference [34]. In particular, as in
reference [34], we exploit the parity symmetry x → 1 − x
and y → 1−y allowing to limit the effective phase space to
0 ≤ x ≤ 1, 0 ≤ y ≤ 0.5 and therefore reducing the number
of cells at a given cell size by a factor of two. In x direc-
tion we use therefore M cells and in y direction M/2 cells
with M ∈ {25, 35, . . . , 1120, 1600} and the intermediate
values are multiples of 25 or 35 by powers of 2.

To study the Poincaré recurrences within the Ulam
method we introduce absorption of all trajectories with
y < ycut = 0.05. The measure of the phase space where
the absorption takes place is relatively small (only a few
percents of the whole phase space). Thus the absorption
does not significantly affect the dynamics of trajectories
sticking for long times. Indeed, we will see that the prob-
ability decay due to absorption reproduces the decay of
Poincaré recurrences in a closed system. At the same time
this absorption leads to a survival probability decay and
allows us to use efficiently the Ulam method for the anal-
ysis of Poincaré recurrences. We generate the matrix S

http://www.epj.org
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Fig. 1. The left panel shows the eigenvalue spectrum λj for the
projected case of the UPFO of map (1) at K = Kg in the com-
plex plane for M = 280 and Nd = 16609 by red/gray dots (pro-
jected matrix dimension Np = 15 457). The green/gray curve
represents the circle |λ| = 1. The right panel shows the num-
ber Nc of eigenvalues, with modulus larger than λc, versus Nd

in a double logarithmic representation for λc = 0.5 (crosses),
λc = 0.66 (stars), λc = 0.8 (open squares) and λc = 0.9
(open circles). The straight lines correspond to the power law
fits Nc ∼ Nν

d with exponents ν = 0.971 ± 0.006 (λc = 0.5),
ν = 0.919 ± 0.005 (λc = 0.66), ν = 0.832 ± 0.010 (λc = 0.8)
and b = 0.821±0.021 (λc = 0.9). The fits are done for the data
with Nc > 50, M > 35 and M ≤ 400 (λc = 0.5), M ≤ 800
(λc = 0.66), M ≤ 1120 (λc = 0.8), M ≤ 1600 (λc = 0.9), since
the Arnoldi method provides only a partial spectrum of the
eigenvalues with largest modulus for large values of M .

using one trajectory iterated by the map up to the iter-
ation time t = 1012 (as in Ref. [34]; this corresponds to
the closed system without absorption and we call this the
symplectic case). After that the matrix size Nd is simply
reduced only to those cells with y ≥ ycut that gives the
projected matrix dimension Np and matrix Sp. The ma-
trix size of this projected case is smaller approximately by
7%. We find, for M ≤ 1600, an approximate dependence
Nd ≈ 0.39M2/2 and Np ≈ 0.36M2/2. This corresponds to
the usual estimate of the chaos measure being around 39%
in agreement with the results of Chirikov [6] (see also [14]).
For the symplectic case we have the maximal eigenvalue
λ = 1 while in the projected case with absorption we are
getting |λ| < 1.

The spectrum λj of the projected case with matrix Sp

is shown in Figure 1. The spectrum is obtained by the
direct diagonalization of the matrix Sp that can be done
numerically up to M = 280. It can be compared with the
corresponding spectrum of the symplectic system shown
in Figure 2 of [34]. The global spectrum structure of S for
the symplectic case is similar to the projected case. Indeed,
the absorption is relatively weak and does not affect the
global properties of motion. However, with absorption the
measure is not conserved and the remaining non-escaping
set forms a fractal set with the fractal dimension d < 2
(see e.g. [45,46]).

In the case of Ulam networks on fractal chaotic re-
pellers the spectrum of UPFO Sp is characterized by the
fractal Weyl law with the number of states Nc in the ring
λc < |λ| ≤ 1 growing with the matrix size Nd as Nc ∝ Nν

d
(here for simplicity we use the size Nd of the symplec-
tic case, for the projected case we have simply to change
Np ≈ 0.93Nd). It can be argued that the fractal dimension
d0 of the invariant repeller set determines the exponent
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Fig. 2. Partial spectrum λj for the projected case of the
UPFO of the map (1) at K = Kg for M = 1600. The left
panel shows all eigenvalues obtained by the Arnoldi method
with nA = 5000. The insert of the right panel shows the
blue/black square of the first zoomed range of the left panel;
the blue/black square here is the second zoomed range shown in
the main figure of the right panel. The eigenvalue with largest
modulus λ0 = 0.99994672216 is indicated by an arrow. The
green/gray curve represents in all cases the circle |λ| = 1.

ν = d0/2 [45]. Examples of dependencies Nc vs. Nd are
given in Figure 1 for various values of λc. Definitely we
have ν < 1 but there is an evident dependence on λc with
a decreasing value of ν at λc → 1. We attribute this to
the fact that at λc → 1 we are dealing with long sticking
trajectories whose measure decreases with time.

Here we should point out that the data for M ≥ 400
corresponding to Nd > 30 000 are obtained from the
Arnoldi method [47] which allows us to find the eigenval-
ues for matrix sizes up to Nd ∼ 106. However, only a finite
number of eigenvalues with largest |λ| can be determined
numerically using nA = 12 000, 8000, 8000, 6000, 5000
(for M = 400, 560, 800, 1120, 1600, respectively and with
nA being the used Arnoldi dimension). A more detailed
description of the Arnoldi method for the UPFO is given
in reference [34]. An example of the spectrum λ ob-
tained with the Arnoldi method at the largest value of
M = 1600 is shown in Figure 2. Here Nd = 49 4964 and
Np = 45 8891. We find that the maximal eigenvalue for the
projected case is λ0 = 0.99994672216 corresponding to a
slow escape rate at large times. As in reference [34] for the
symplectic case without absorption, we obtain also for the
case with absorption two type of eigenmodes: “diffusion
modes” with real eigenvalues close to 1 and whose eigen-
vectors are rather extended in phase space (with some
decay for cells close to the absorption border) and “res-
onant modes” with complex or real negative eigenvalues
and which are quite well localized around a chain of stable
islands close to an invariant curve. It turns out that many
of the resonant modes (those “far” away from the absorp-
tion border), coincide numerically very well with corre-
sponding resonant modes for the case without absorption
already found in reference [34].

The dependence of the density of eigenvalues ρ(|λ|) on
|λ| is shown in Figure 3. We see the proximity between the
symplectic and projected cases not only in density ρ but
also in a slow relaxation of the diffusion modes with relax-
ation rates γj ≈ γ1j

2 (γj = −2 ln |λj |) provided we iden-
tify γj+1 of the symplectic case with γj of the projected
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Fig. 3. The left panel shows the density ρ(λ) of eigenvalues, be-
ing normalized by

∫
ρ(λ) d2λ = 1, of the UPFO for the map (1)

at K = Kg in the complex plane as a function of the modulus
|λ| for M = 280 for the symplectic case (upper curve, crosses)
and the projected case (lower green curve, stars). The other
curves are partial (non-normalized) densities for the projected
case and the values M = 400, 560, 800, 1120, 1600 and the
number of used eigenvalues (obtained by the Arnoldi method)
is nA = 12 000, 8000, 8000, 6000, 5000, respectively. The right
panel shows the decay rates γj = −2 ln(|λj |) versus level num-
ber j for the UPFO eigenvalues λj , with M = 1600 and
Nd = 494 964. The red/gray crosses correspond to the UPFO of
symplectic case and the blue/black squares correspond to the
projected case (data points for this case are shifted to one posi-
tion to the right). The green curve corresponds to the quadratic
dispersion law γj ≈ γ1 j

2 which is approximately valid for the
diffusion modes with 0 ≤ j ≤ 5 and where γ1 is taken from the
UPFO of the symplectic case.

case because γ0 of the symplectic case is simply zero and
the relaxation rate γ1 to the ergodic state of the symplec-
tic case corresponds roughly to the exponential long time
escape rate γ0 of the projected case. The proximity of the
two cases is also well seen in the dependence of integrated
density of states ρΣ(γ) = j/Nd on γj shown in Figure 4
(here j is a number of eigenvalues with γ ≤ γj). In both
cases we have the algebraic dependence ρΣ(γ) ∝ γβ with
β ≈ 1.5. In reference [34] it was argued that this expo-
nent is the same as for the exponent of decay of Poincaré
recurrences P (t). These data show that an introduction
of small absorption at y < ycut does not produce signif-
icant modification for trajectories trapped for long times
in a vicinity of the critical golden curve or other secondary
islands located far away from the absorption band.

The slowest decay rates, such like γ0 and γ5, decrease
algebraically with the increase of M as it is shown in right
panel of Figure 4. In the fit range 400 ≤ M ≤ 1600 we
have a power law γ0(M) ≈ 0.72 M−1.20 but taking into
account the curvature for the interval 25 ≤M ≤ 1600 the
modified fit γ0(M) = D

M
1+C/M
1+B/M with D = 0.162, C = 165

and B = 17.0 seems to indicate a behavior γ0(M) ∝M−1

in the limit M → ∞. This behavior is similar to the one
found in reference [34] for γ1 in the symplectic case (where
γ0 is simply 0). On the other hand the resonant mode γ5

obeys the power law γ5(M) ≈ 389M−1.55 which is valid
for the interval 100 ≤M ≤ 1600 if we use for the smaller
values of M not γ5 but the resonant mode localized to the
same chain of resonant islands which may have a differ-
ent eigenvalue index (see Fig. 4 for details). The compar-
ison of these decays indicate that eventually at very large
values of M , far outside the range numerically accessi-
ble by the Arnoldi method, the resonant modes become
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Fig. 4. The left panel shows the rescaled level number j/Nd

versus the decay rate γj , in a double logarithmic scale, for
the map (1) at Kg with M = 1600 and Nd = 494 964.
Red/lower data points correspond to the UPFO projected
case and green/upper data points correspond to the UPFO
symplectic case. The two straight lines correspond to the
power law fits j/Nd ≈ 0.052745 γ1.5203 (symplectic case) and
j/Nd ≈ 0.041570 γ1.5157 (projected case) for the data in the
range 0.04 ≤ γ ≤ 0.3. The statistical error bound of the expo-
nents obtained from the fits is close to 0.1% in both cases. The
right panel shows the decay rates γj(M) for j = 0 (red crosses),
j = 5 (green open squares) of the UPFO projected case in a
double logarithmic scale. The lower/pink straight line corre-
sponds to the power law fit γ0(M) ≈ 0.72M−1.20 and the up-
per/light blue straight line to the fit γ5(M) ≈ 389M−1.55 (both
fits obtained for the range 400 ≤M ≤ 1600). The black/curved

line corresponds to the other fit γ0(M) = f(M) = D
M

1+C/M
1+B/M

with D = 0.162, C = 165 and B = 17.0 (fit obtained for the
range 25 ≤ M ≤ 1600). We mention that γ5 corresponds for
M ≥ 400 to a resonant mode whose eigenvector is strongly
localized close to the three stable islands of the resonance 1/3.
However, for M ≤ 280 γ5 corresponds to a different mode and
the resonant mode at 1/3 is associated to γ7 (M = 280), γ13

(M = 200), γ17 (M = 140) and γ23 (M = 100) which are
shown as four additional data points (blue stars).

dominant over the diffusion modes. The limit γ → 0 for
M → ∞ is related to long sticking trajectories near crit-
ical invariant curves which restrict the chaos component
and whose phase space structure can be better resolved
with decreasing cell size 1/M . As in reference [34] we ar-
gue that these lowest modes are affected by the effective
noise present in the Ulam method. Due to that we do not
have a clear explanation for this algebraic decay. How-
ever, the fact that γj (at fixed value of j) vanishes with
increasing M indicates that the limit texp in time, when
the statistics of Poincaré recurrences P (t) obtained from
the UPFO becomes exponential, increases as well accord-
ing to texp ∝ γ−1

0 and therefore we expect to recover the
power law decay of P (t) for M → ∞ (see below in Sect. 3).

With the help of the Arnoldi method we find certain
eigenstates corresponding to eigenvalues of the matrix Sp

and satisfying the equation

Np−1∑

i=0

(Sp)miψj(i) = λjψj(m). (2)

Examples of two eigenmodes |ψ0| and |ψ29| are shown in
Figure 5. The state |ψ0| corresponds to the first diffusive
mode mainly located in a vicinity of the critical golden
curve while |ψ29| corresponds to the mode located near a
resonant chain with rotation number r = 2/7.
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Fig. 5. Density plot of the modulus of the eigenvector com-
ponents |ψ| of the UPFO projected case of map (1) at
Kg with M = 1600 for the two modes with eigenvalues
λ0 = 0.99994672 (left panel) and λ29 = −0.22008951 +
i 0.96448508 ≈ |λ29| ei2π(2/7) (right panel). The density is
shown by color with red/gray for maximum and blue/black
for zero.

Fig. 6. Time dependent probability density calculated by
ψ(t) = (Sp)

t ψ(0)/ ‖ (Sp)
t ψ(0) ‖1 where Sp is the UPFO

for the projected case for M = 1600, ψ(0) an initial vec-
tor with ψl(0) = δl,�0 and �0 being the index of the cell at
x0 = y0 = 0.0625 and ‖ . . . ‖1 is the 1-norm defined by
‖ ψ ‖1=

∑
l |ψl|. The densities are shown for t = 40 (left panel)

and t = 400 (right panel). In the limit t → ∞ the vector ψ(t)
converges to the eigenvector of maximal eigenvalue λ0 shown
in the left panel of Figure 5. The full convergence is achieved
for t ≥ 40 000 so that for these times the density plot of ψ(t)
remains unchanged at the given color-resolution.

It is also interesting to follow how the probability ini-
tially placed in one cell 	0 evolves with time. Of course,
the total probability starts to decay due to absorption but
by renormalizing the total probability back to unity after
each map iteration we obtain its evolution in phase space.
At large times we have convergence to the state ψ0 with
maximal λ0 but at intermediate times we see the regions
of phase space which contribute to long time sticking and
long Poincaré recurrences. Two snapshots are shown in
Figure 6. The videos of such an evolution for the maps (1)
and (3) are available at [35].

3 Poincaré recurrences
by survival Monte Carlo method

The numerical computation of the Poincaré recurrences
counting the number of crossing of a given line (e.g. y = 0)
in the phase space is known to be a very stable numeri-
cal method since the integrated probability of recurrences
on a line at times larger than t is positively defined (see
e.g. [18,19,24,28]). However, at large times the direct nu-
merical computation becomes time consuming.

With the aim to reach larger times we present here
a new method to calculate the statistics of Poincaré re-
currences of map such as the Chirikov standard map (1).
We will call this method the Survival Monte Carlo method

(SMCM). The idea of this method is to chose a certain,
quite large number Ni  1, of initial conditions randomly
chosen in some small cell close to an unstable fix point and
to calculate in parallel the time evolution of these trajecto-
ries. At the initial time t = 0 we put the Poincaré return
probability to P (0) = 1 and the number of trajectories
to N(0) = Ni. At each time tk, when a given trajectory
escapes in the absorption region y < ycut = 0.05 of the
phase space, we put P (tk + 1) = P (tk) (N(tk) − 1)/N(tk)
and N(tk + 1) = N(tk) − 1, otherwise we simply keep
P (tk + 1) = P (tk) and N(tk + 1) = N(tk). When the
number of remaining trajectories N(tk) drops below a
certain threshold value Nf (typically chosen such that
Ni  Nf  1) we reinject a new trajectory close to
one of the other remaining trajectories with a small ran-
dom deviation: xnew(t) ∈ [xi(t) − ε/2, xi(t) + ε/2] and
ynew(t) ∈ [yi(t) − ε/2, yi(t) + ε/2]. The main idea is to
keep a typical statistics of trajectories at a given time t
and to concentrate the computational effort on the very
long and rare trajectories without wasting resources on the
more probable trajectories with short times of Poincaré
recurrences.

In this method the proper choice of ε is important.
On one hand ε should not be too small in order to avoid
too strong correlations between the trajectories and on
the other hand it should be very small in order to avoid
an uncontrolled too strong diffusion into regions too close
to stable islands where the trajectories may be trapped
stronger and longer as they should be without the random
deviations. Fortunately in the chaotic region even a mod-
est Lyapunov exponent ensures exponential separation of
trajectories and choosing a very small value of ε one may
hope to reduce the correlation between the injected trajec-
tory and its reference trajectory after a modest number of
iterations. Furthermore at longer times the average time
between the escape of two trajectories becomes very large
that helps to reduce these correlations.

We have chosen the parameters ε = 10−14, Ni = 106

and the two cases Nf = 100 and Nf = 1000. For Nf = 100
we have been able to iterate up to times 1011 and for
Nf = 1000 up to times 1010. We mention that at the val-
ues ε = 10−10, 10−14, we observe sticking of certain trajec-
tories for very long times while other trajectories escape
more rapidly (see Fig. 7). For Nf = 10 these fluctua-
tions become enormously large. Examples of the survival
probability P (t) obtained for 10 different realizations with
Nf = 100 (left panel) and Nf = 1000 (right panel) are
shown in Figure 7. Of course the fluctuations appear for
Nf = 100 at shorter times (t ∼ 105−106) as compared to
Nf = 1000 (t ∼ 106−107). For Nf = 10 the fluctuations
appear even at shorter times.

We calculate in parallel different realizations of P (t)
with respect of the random variables (for the initial con-
ditions, for the random deviations of the reinjected tra-
jectories and for the random choice at which remaining
trajectory the reinjection happens). The comparison of
obtained data shows that the distribution P (t) is stable
at small and large times. But at very large times it turns
out that the fluctuations become quite strong.

http://www.epj.org


Page 6 of 11 Eur. Phys. J. B (2013) 86: 322

10-20

10-15

10-10

10-5

100

100 102 104 106 108 1010

p(
t)

t

Nf = 1000, ε=10-14

10-20

10-15

10-10

10-5

100

100 102 104 106 108 1010

p(
t)

t

Nf = 100, ε=10-14

10-20

10-15

10-10

10-5

100

100 102 104 106 108 1010

p(
t)

t

Nf = 10, ε=10-10

10-20

10-15

10-10

10-5

100

100 102 104 106 108 1010

p(
t)

t

Nf = 10, ε=10-14

Fig. 7. Statistics of Poincaré recurrences P (t) of the map (1)
calculated by the SMCM as survival probability after times
larger than t (data are shown in double logarithmic scale).
Top panels: the number of initial trajectories is Ni = 106 and
the number of final trajectories is Nf = 100 (left panel) or
Nf = 1000 (right panel). The initial positions are randomly
chosen in a cell of size (1600)−1×(1600)−1 at the position x0 =
y0 = 0.0625, here the small random deviation for reinjected
trajectories is ∼ ε = 10−14. In both panels the results for P (t)
are shown for 10 realizations with different random seeds. The
horizontal dotted line indicates the limit probability Nf/Ni =
10−4 (left panel) or Nf/Ni = 10−3 (right panel) below which
the reinjection of trajectories is applied. The two realizations
in the left panel which drop below the shown range (of P (t) ≥
10−21) “saturate” eventually at the values P (1011) ≈ 2×10−36

or P (1011) ≈ 10−35. Bottom panels: same as in top panels but
with Nf = 10 at ε = 10−10 (left panel) and ε = 10−14 (right
panel).

We note that the SMCM allows us to determine
the survival probability P (t). Its comparison with the
statistics of Poincaré recurrences computed by the usual
method [18,24–26] is shown in Figure 8. We see that both
methods give the same behavior P (t) with a small shift
in time related to different initial conditions. The equiv-
alence of both methods is rather clear: in both methods
the probability is determined by long sticking trajectories;
both methods consider the recurrences to the lines y = 0
or y = 0.05 which are close to each other.

The decay of P (t) averaged over 10 random realiza-
tions is shown in Figure 8. In general we see that the
SMCM allows to reach extremely long times with t = 1011

for Nf = 100 and t = 1010 for Nf = 1000. For Nf = 100
we see that the fluctuations start to be important for
t > 109 while the case with Nf = 1000 remains stable
up to t = 1010. This allows us to obtain the behavior of
P (t) for times being about one order of magnitude larger
compared to previous numerical simulations.

We argue that these fluctuations appear not due to
different values of ε = 10−10, 10−14 but due to enormous
“spin glass” like fluctuations due to sticking in different
regions of chaotic phase space. Indeed, according to the ar-
guments presented in reference [24] at a recurrence time t a
trajectory reaches a chaotic layer measure at a resonance
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Fig. 8. The left panel shows the average over 10 random
realizations of the statistics of Poincaré recurrences P (t) of
the map (1), obtained by the SMCM for survival probabil-
ity and shown in Figure 7 at Nf = 1000, ε = 10−14 (red
curve); for comparison we also show data obtained by the same
type of averaging but at ε = 10−10 (magenta curve having
a strong overlap with the red curve). The next lower/green
curve, for t ≤ 1011, corresponds to Nf = 100, ε = 10−14.
The lowest blue curve, for t ≤ 1.7 × 109, corresponds to the
data of references [25,26] obtained by a direct computation of
the statistics of Poincaré recurrences. The dashed straight line
indicates a power law behavior P ∝ t−1.5. The right panel
compares the statistics of Poincaré recurrences P (t), obtained
by the SMCM for Nf = 1000, ε = 10−14, to P (t) obtained
by the Ulam method for M = 400, 800, 1600. At large times
t > texp ∼ 104−105 the curves obtained by the Ulam method
show an exponential behavior P (t) ∼ λt

0 determined by the
largest eigenvalue of the UPFO for the projected case.

q being μq ∼ tP (t) ∼ 1/q2. According to the data of
Figure 8 at Nf = 103 and t = 1010 with P (t) ∼ 10−13

we have μq ∼ 10−3 and q ∼ 30. Thus this chaos mea-
sure is very large compared to the displacement ampli-
tude μq ∼ 10−3  ε ≥ 10−10. Thus, these displacements
generally should not move trajectories from chaotic to in-
tegrable components. In fact the strong fluctuations of
various groups of orbits at Nf = 10 originate from stick-
ing of orbits for very different time scales in various parts
of phase space. At large values of Nf = 1000 the statisti-
cal averaging reduces these fluctuations but at larger times
at fixed Nf the fluctuations become more and more pro-
nounced. Our direct comparison of P (t) for Nf = 1000
at ε = 10−14 and ε = 10−10 (see Fig. 8) show that the
fluctuations remain small up to t = 1010. For Nf = 10
this time is reduced down to t ∼ 108. This comparison of
data at two values of ε confirms that the chosen values of
ε do not affect the averaged values of P (t) on time scales
considered in Figures 7, 8. We also note that the curve of
Poincaré recurrences decay P (t), computed in a standard
way as in references [24,28], as well as P (t) computation
described here, is not affected by a change of the com-
putational precision from a single to a double one (up to
statistical fluctuations at the tail of P (t)). This is related
to the above argument that μq measure is rather large at
the times reached in numerical simulations.

According to the empirical data in Figure 8 at right
panel for the Ulam method we see that the time tcel, dur-
ing which the computations of P (t) with a finite size cell
of size εcel = 1/M are correct, scales approximately as
tcel ∼ 10/εcel. In a similar way we find that for ε = 10−6

and single precision computations the curve P (t) obtained
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at Nf = 1000, ε = 10−14 is reproduced up to a time
tcel ∼ 10/ε. It may be interesting to analyze the depen-
dence of tcel on ε in more detail but we leave this for
further studies.

For the case Nf = 1000, ε = 10−14 in Figure 8 the
algebraic fit of data in the range 106 ≤ t ≤ 1010 gives the
Poincaré exponent β = 1.587 ± 0.009. For Nf = 100 case
we find β = 1.710 ± 0.017 for the range 106 ≤ t ≤ 1011.
The formal statistical error is rather small in both cases
but it is clear that for Nf = 100 we start to have an effect
of strong fluctuations due to long sticking around islands
and thus the reliable value of β is given by the case with
Nf = 1000.

The survival probability P (t) can be also computed
using the Ulam method at various sizes of discrete cells
determined by M . The results obtained by the generalized
Ulam method and by the SMCM are shown in the right
panel of Figure 8. The comparison shows that both meth-
ods give the same results but the SMCM is much more ef-
ficient allowing to follow the decay P (t) up to significantly
larger times since for the Ulam method we expect the de-
cay P (t) only to be accurate for t < texp ∼ γ−1

0 because for
t > texp it becomes exponential P (t) ∝ λt

0 = exp(−γ0 t/2).
The data of Figure 8 clearly shows that texp increases
with M in accordance with the decay of γ0 obtained from
Figure 4.

Using the SMCM we can follow the evolution of the
survival probability as a function of time showing the den-
sity plot of long sticking trajectories. Examples of such dis-
tributions are shown in Figure 9. These figures show that
at short times t < 100 the trajectories are not yet able to
cross the cantori barriers and remain relatively far from
the golden curve, at larger times t = 104, 106, 108 the prob-
ability becomes concentrated close to the golden curve.
But at very larger times t = 1010 we find trajectories stick-
ing in a vicinity of the golden curve or other secondary
resonances. Thus we see that at long time P (t) has con-
tributions not only from the vicinity of the critical golden
curve but also from other secondary resonances. In this re-
spect, our conclusion confirms a similar one expressed in
reference [27] obtained from simulations on shorter time
scales.

4 Separatrix map with critical golden curve

To show that the previous case of the Chirikov stan-
dard map represents a generic situation we also study the
UPFO of the projected case for the separatrix map [6],
defined by:

ȳ = y + sin(2πx), x̄ = x+
Λ

2π
ln(|ȳ|) (mod 1) . (3)

This map can be locally approximated by the Chirikov
standard map by linearizing the logarithm near a cer-
tain y0 that leads after rescaling to the map (1) with
an effective parameter Keff = Λ/|y0| [6]. As in refer-
ence [34] we study the map (3) at Λc = 3.1819316 with
the critical golden curve at the rotation number r = rg =
(
√

5−1)/2 = 0.618 . . . The construction of the matrix S is

Fig. 9. Density plots of the trajectories of the SMCM (with
Nf = 1000) for the map (1) for various times t and random
realizations. All density plots are obtained from a histogram of
107 data points and using a resolution of 800×400 cells for the
phase space 0 ≤ x < 1 and 0 ≤ y < 0.5. The data points are
obtained by iterating N(t) trajectories (with N(t) = P (t)Ni

for P (t) ≥ 10−3 and N(t) = Nf for P (t) < 10−3) from t to
t+Δt with Δt = 107/N(t). The left four panels and the upper
right panel correspond to one particular random realization at
t = 102, 104, 106, 108, 1010 and the three lower right panels
correspond to three other random realizations at t = 1010. For
short times t < 105 there is no significant difference between
the density plots for different random realizations at a given
time. More detailed density plots for intermediate times and
higher resolution figures are available at reference [35].

described in reference [34], its size is given by an approx-
imate relation Nd ≈ 0.78M2/2 for the phase space region
0 < x ≤ 1, 0 ≤ y ≤ 4 (symplectic case and using the sym-
metry: x → x + 1/2 (mod 1), y → −y). The absorption
is done for y < ycut = 0.4 corresponding to 10% of the
maximal possible value of y. Thus for the UPFO for the
projected case we have Np ≈ 0.68M2/2. In fact we have
2(Nd −Np)/M2 = 0.1 since all part of the phase space is
chaotic at 0 < y < ycut and all cells in this region were
occupied by the Ulam method. Thus for M = 1600 we
have Nd = 997 045, Np = 869 045.

In Figure 10, in analogy to Figure 4, we show the de-
pendence of integrated number of eigenvalues j/Nd on
γj = −2 ln |λj | for the symplectic and projected cases
of the UPFO of the map (3). In both cases we have ap-
proximately the same dependence with the algebraic ex-
ponent β ≈ 1.5 which works for the range 0.04 ≤ γ ≤ 0.3.
The minimal values of γ (e.g. γ0 and γ2) drop approxi-
mately inversely proportionally to M . As for symplectic
case [34] we attribute this decrease with M to a finite size
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Fig. 10. The left panel shows the rescaled level number j/Nd

versus the decay rate γj , in a double logarithmic scale, for the
separatrix map (3) at Λc with M = 1600 and Nd = 997 045.
Red/lower data points correspond to the UPFO for the pro-
jected case and green/upper data points correspond to the
symplectic case. For the symplectic case the data points are
shifted up by a factor 2 to separate the two data sets. The two
straight lines show the power law fits j/Nd ≈ 0.014173 γ1.4995

(symplectic case) and j/Nd ≈ 0.014207 γ1.5016 (projected case)
for the range 0.04 ≤ γ ≤ 0.3. The statistical error of the expo-
nents is close to 0.2% in both cases. The right panel shows the
decay of γj(M) with M for j = 0 (red crosses), j = 2 (green
open squares) for the UPFO for the projected case of map (3).
The lower/blue straight line corresponds to the power law fit
γ0(M) ≈ 2.26M−1.13 and the upper/pink straight line to the
fit γ2(M) ≈ 1, 95M−0.86 (for the range 400 ≤M ≤ 1600). The
eigenvector corresponding to γ2 is localized near the two stable
islands of the resonance 1/2.

Fig. 11. Density plot of the modulus of the eigenvector com-
ponents of the UPFO for the projected case of the map (3) at
M = 1600 for the two modes with λ0 = 0.99972660 (left panel)
and λ77 = −0.49158775 + i 0.85153885 ≈ |λ77| ei 2π(1/3) (right
panel).

coarse-graining effect of the Ulam method. As in refer-
ence [34], we argue that the exponent β for a more physical
intermediate range of γ is directly related to the Poincaré
exponent.

Examples of two eigenmodes at λ0 and λ77 are shown
in Figure 11. In the first case we have an eigenmode of
diffusive type similar to Figure 5 while in the latter case
we have an eigenmode concentrated around unstable fix
points of resonance 1/3 (see corresponding state of sym-
plectic case in bottom left panel of Fig. 11 in Ref. [34]).

The comparison of the statistics of Poincaré recur-
rences obtained from the map (3) by the SMCM and the
usual method are shown in Figure 12. The data of the
usual method obtained in reference [25] allows us to fol-
low the decay of P (t) up to t = 2 × 108, while with the
SMCM we reach times t = 1010 with Nf = 1000 and
t = 1011 with Nf = 100. We have a good agreement be-
tween three curves for the range 100 ≤ t ≤ 108 with a
certain constant displacement in log10 t of data from the
usual method compared to the SMCM data. This shift
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Fig. 12. The left panel shows the average over 10 random
realizations of the statistics of Poincaré recurrences P (t) of the
map (3), obtained by the SMCM. The red curve, for t ≤ 1010,
corresponds to Nf = 1000. The green curve, for t ≤ 1011,
corresponds to Nf = 100. The upper/blue curve, for t ≤ 2.8×
108, corresponds to the data shown in reference [25] using a
direct computation of the statistics of Poincaré recurrences.
The right panel compares P (t) SMCM data for Nf = 1000 (red
curve in left and right panels) with P (t) obtained by the Ulam
method for M = 400, 800, 1600. At large times t > texp ∼
2 × 103−2 × 104 the Ulam method leads to an exponential
decay P (t) ∼ λt

0 determined by the largest eigenvalue of the
UPFO for the projected case.

appears due to different initial conditions but apart of this
shift all oscillations of P (t) curve are well reproduced. This
shows that both methods works correctly. However, with
the SMCM we are able to reach times being by one to two
orders of magnitude larger than previously.

The algebraic fit of SMCM data in Figure 12 gives
β = 1.855±0.004 for Nf = 100 (range 104 ≤ t ≤ 1011) and
β = 1.706 ± 0.004 for Nf = 1000 (range 104 ≤ t ≤ 1010).
In both cases the statistical error is rather small but there
are visible fluctuations which become to be significant at
t > 109 for Nf = 100 even if they are smaller compared
to the similar case of map (1) shown in Figure 8. Due to
that one should take as the reliable value β = 1.706 that
shows a noticeable difference from the value β = 1.587
found above for the Chirikov standard map at K = Kg.

The comparison of the SMCM data for P (t) with the
results of the Ulam method are shown in the right panel
of Figure 12. As it was the case for the similar comparison
shown in Figure 8 we find that both methods give the
same results but the Ulam method works only for time
scales being significantly smaller than those reached with
the SMCM.

Finally, as in Figure 9, we show in Figure 13 the density
distribution obtained for various realizations and various
times of the map (3). The situation is similar to Figure 9:
at short times the density is bounded by cantori barriers,
at large times it reaches the critical golden curve and at
even larger times we see that the density is located near
the critical golden curve or other secondary resonances
depending on the realization.

5 Properties of eigenstates of Ulam matrix

Let us now try to analyze how the decay of Poincaré
recurrences is related to the properties of the (right)
eigenvectors ψ(x, y) of the UPFO for the projected
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Fig. 13. Density plots of the trajectories of the SMCM with
Nf = 1000 for the map (3) for various times t and various
realizations. All density plots are obtained by a histogram of
107 data points with a resolution of 800×400 cells for the phase
space 0 ≤ x < 1 and 0 ≤ y < 4. The data points are obtained
by iterating the N(t) trajectories (with N(t) = P (t)Ni for
P (t) ≥ 10−3 and N(t) = Nf for P (t) < 10−3) from t to t +
Δt with Δt = 107/N(t). The left four panels and the upper
right panel correspond to one particular random realization at
t = 102, 104, 106, 108, 1010 and the three lower right panels
correspond to three other random realizations at t = 1010. For
short times t < 105 there is no significant difference between
the density plots for different random realizations at a given
time.

case. For this we determine the x-average of the eigen-
vector amplitude around a given position x0 over a
band of 1% width of the whole x-range: 〈|ψ(y)|〉 =
100 M−1

∑
|Δx|<0.005 |ψ(x0 + Δx, y)|. The y-dependence

of this average allows to visualize the localization proper-
ties of the eigenstate in y-direction. In Figure 14 we show
this quantity for two examples for each of the maps (1)
and (3) and for different values of M between 400 and
1600.

For the case of the map (1), shown in the left column
of Figure 14, we see a clear evidence of exponential local-
ization of eigenstates. In fact the average amplitude in a
vicinity of y ≈ 0, where the initial state is taken and where
the absorption happens, has enormously small values be-
ing of the order of 10−15. These amplitudes on the tail
drop significantly with an increase of M . For the map (3)
the decay of eigenstates is more irregular since the band
at x ≈ x0 crosses some secondary islands thus leading
to appearance of a plateau in the decay with y. But in
global we can still say that there is an exponential decay
of eigenstates. This exponential localization of eigenstates
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Fig. 14. The localization properties in y-direction for certain
eigenvectors of the UPFO for the projected case for the maps
(1) (left column) and (3) (right column). The panels in the
second and fourth row show the averaged modulus 〈|ψ(y)|〉 of
the eigenvector components within a band of 1% width of the
whole x-range at a certain x = x0. The global structure of the
corresponding eigenstates is shown in the corresponding first
and third panels (counting from the top; the red vertical thick
line indicates the range of x-values where the average has been
performed for each y-value, M = 1600). Data are shown for
M = 400 (cyan/highest curve), M = 560 (pink/second curve),
M = 800 (blue/third curve), M = 1120 (green/fourth curve)
and M = 1600 (red/lowest curve). In the right panel of the
second row the data for different values of M approximately
coincide and only the data for M = 1600 are shown by a full
(red) curve; other M values are shown as isolated data points
for M = 1120 (green crosses), M = 800 (blue stars), M = 560
(pink squares) and M = 400 (cyan circles). For M = 1600
the eigenvectors, shown in the density plots of the first and
third row, correspond to the modes λ4 and λ31 of the map
(1) (left column) and to the modes λ2 and λ17 of the map (3)
(right column); for other M we show corresponding eigenvector
located at the same resonances.

reminds the Anderson localization in disordered solid state
systems (see e.g. [48]).

We can also consider the projection of our initial state
taken in a cell 	0 on the eigenstates. Indeed, this initial
state can be expressed as ψinit =

∑
j μj ψ

R
j where μj are

expansion amplitudes and ψR
j the right eigenvectors de-

fined by equation (2). To determine the values of μj we
need first to compute the left eigenvectors ψL

j of the Ulam
matrix Sp which are biorthogonal to the right eigenvectors
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Fig. 15. Modulus of the projection coefficients μj of the initial
density vector ψinit, localized in one cell at x0 = y0 = 0.0625,
with respect to the right eigenvectors ψR

j (of the UPFO pro-
jected case for M = 1600) versus level number j. These coeffi-
cients appear in the expansion ψinit =

∑
j μj ψ

R
j (see text). The

left and right panels represent data for the maps (1) and (3)
respectively. The cases with |μj | = |μj+1| correspond to pairs
of complex conjugated modes with μj+1 = μ∗

j .

ψR
j and provide the expansion amplitudes by the identity:
μj = 〈ψL

j |ψinit〉/〈ψL
j |ψR

j 〉. Note that this expression does
not depend on the chosen normalization of the eigenvec-
tors and it requires only that 〈ψL

j |ψR
j 〉 �= 0. However, for

convenience, we have normalized both type of eigenvectors
by the L1-norm such that

∑
x,y |ψR,L

j (x, y)| = 1. We have
numerically determined the first 51 left eigenvectors with
the help of the Arnoldi method applied to the transpose
of Sp and therefore obtained the corresponding expansion
amplitudes.

The dependence of μj on j is shown in Figure 15.
We see that there are enormously large fluctuations of
μj which are in a range of 10 orders of magnitude. In par-
ticular the amplitudes corresponding to resonant modes
are very small which is easy to understand if the resonant
mode is localized far away from the initial state and does
therefore not contribute to the expansion. We think that
these fluctuations are at the origin of the slow algebraic
decay of Poincaré recurrences P (t) (see below).

In Figure 16 we show the contribution of the largest
Nm eigenmodes to the statistics of Poincaré recur-
rences (for M = 1600) given by the formula: p(t) =
∑Nm−1

j=0 pj λ
t
j with pj = μj

∑
x,y ψ

R
j (x, y) and the eigen-

values ordered as |λ0| > |λ1| > |λ2| > . . .

For Nm = Np, we have the statistics of Poincaré re-
currences obtained from the iteration of the UPFO and
already shown in Figures 8 and 12. For Nm = 51 we
have evaluated the sum using the expansion coefficients
shown in Figure 15. Both curves coincide at t > 102 for
the map (1) or at t > 3 × 102 for the map (3) showing
that the largest eigenmodes determine the long time be-
havior. For large times (t > 104−105) only the first eigen-
mode contributes and the decay is purely exponential. It
turns out that in the sum for Nm = 51 the terms arising
from the resonant modes can be omitted without chang-
ing the curve up to graphical precision since these modes
contribute only very weakly in the expansion. In general,
the partial sum p(t) converges to the actual statistics of
Poincaré recurrences P (t) with increasingNm and at given
value of Nm one expects that p(t) and P (t) coincide for
t 2 γ−1

Nm
.

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105

p(
t)

t

∼ t -1.5

Nm = 1

Nm = 51

Nm = Nd

10-8

10-6

10-4

10-2

100

100 101 102 103 104 105

p(
t)

t

∼ t -1.5

Nm = 1

Nm = 51

Nm = Nd

Fig. 16. Contributions of the largest eigenmodes of the UPFO
projected case at M = 1600 to the statistics of Poincaré recur-
rences for the maps (1) (left panel) and (3) (right panel). Here,
we show the probability p(t) obtained from the expansion over
eigenvectors given by the formula p(t) =

∑Nm−1
j=0 pj λ

t
j with

pj = μj

∑
x,y ψ

R
j (x, y), Nm being the number of used modes

and the eigenvalues being ordered as |λ0| > |λ1| > |λ2| > . . .
(see text). The upper red curve is obtained from the direct
iteration of the UPFO (see green curve in the right panels of
Figs. 8 and 12) and corresponds to the contribution of the
full spectrum of all eigenvalues with Nm = Np. The middle
blue curve corresponds to Nm = 51 with the same μj values as
those shown in Figure 15. The main contributions to this curve
arise from the diffusion modes (with real positive eigenvalues
λj > 0), the other resonant modes with complex or real nega-
tive eigenvalues give only a small contribution which does not
modify the curve up to graphical precision. The bottom green
curve corresponds to Nm = 1, i.e. the contribution μ0 λ

t
0 of the

largest λ eigenmode. In both panels the dashed line indicates
for comparison a power law decay P (t) ∝ t−1.5.

The data of Figures 14−16 illustrate the nontrivial link
between the localized eigenstates of the Ulam matrix and
the decay of Poincaré recurrences. The eigenmodes are
exponentially localized and for many of them their pro-
jection on the initial state is very small but at some large
times their contribution can become very important since
the modes with large projections decay more rapidly.

6 Discussion

Our studies show that the generalized Ulam method re-
produces well the decay of Poincaré recurrences P (t) in 2D
symplectic maps with divided phase space. At the same
time the computation of P (t) is obtained in a more effi-
cient way by the proposed SMCM allowing to reach time
scales of the order of t = 1010. We find that at these
large times the Poincaré exponent has values β = 1.58 for
the Chirikov standard map at Kg and β = 1.70 for the
separatrix map at Λc. The recurrences at large times are
dominated by sticking of trajectories not only in a vicin-
ity of the critical golden curve but also in a vicinity of
secondary resonance structures. This confirms earlier nu-
merical observations obtained on shorter time scales [27].

The sticking around various different resonant struc-
tures on smaller and smaller scales of phase space leads
to nontrivial oscillations of the Poincaré exponent. The
values of β found here are not so far from the average val-
ues found previously by averaging over maps at different
parameters with β ≈ 1.5 [18,19], β ≈ 1.57 [28]. In agree-
ment with the data presented here and in reference [34],
we find that the above value of β is close to the exponent
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of integrated density of states of the Ulam matrix which
has β ≈ 1.5. At the same time we see that at t = 1010 the
fluctuations in the Chirikov standard map at various Nf

and various random realizations are significantly stronger
as compared to the separatrix map.

We attribute these fluctuations to a localization of
eigenstates of the Ulam matrix which gives very non-
trivial properties of eigenstates projection on an ini-
tial state. The properties of these eigenstates are still
poorly understood. We think that the further develop-
ments of analytical models of renormalization on Cayley
type tree [22,23,28,32,33] and their applications to the
puzzle of statistics of Poincaré recurrences should develop
a more detailed analysis of localization of eigenstates of
the Ulam matrix.
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ysis” (NADINE No. 288956). This work was granted access
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sical and quantum chaos”. We note that the high resolu-
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page [35]. We dedicate this work to the memory of Boris
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We study the statistical properties of spectrum and eigenstates of the Google matrix of the
citation network of Physical Review for the period 1893 - 2009. The main fraction of complex
eigenvalues with largest modulus is determined numerically by different methods based on high
precision computations with up to p = 16384 binary digits that allows to resolve hard numerical
problems for small eigenvalues. The nearly nilpotent matrix structure allows to obtain a semi-
analytical computation of eigenvalues. We find that the spectrum is characterized by the fractal
Weyl law with a fractal dimension df ≈ 1. It is found that the majority of eigenvectors are located
in a localized phase. The statistical distribution of articles in the PageRank-CheiRank plane is
established providing a better understanding of information flows on the network. The concept of
ImpactRank is proposed to determine an influence domain of a given article. We also discuss the
properties of random matrix models of Perron-Frobenius operators.

PACS numbers: 89.75.Hc, 89.20.Hh, 89.75.Fb

I. INTRODUCTION

The development of Internet led to emergence of vari-
ous types of complex directed networks created by mod-
ern society. The size of such networks grows rapidly go-
ing beyond ten billions in last two decades for the World
Wide Web (WWW). Thus the development of mathe-
matical tools for the statistical analysis of such networks
becomes of primary importance. In 1998, Brin and Page
proposed the analysis of WWW on the basis of PageRank
vector of the associated Google matrix constructed for a
directed network [1]. The mathematical foundations of
this analysis are based on Markov chains [2] and Perron-
Frobenius operators [3]. The PageRank algorithm allows
to compute the ranking of network nodes and is known to
be at the heart of modern search engines [4]. However, in
many respects the statement of Brin and Page that “De-
spite the importance of large-scale search engines on the
web, very little academic research has been done on them”

[1] still remains valid at present. In our opinion, this is
related to the fact that the Google matrix G belongs to a
new class of operators which had been rarely studied in
physical systems. Indeed, the physical systems are usu-
ally described by Hermitian or unitary matrices for which
the Random Matrix Theory [5] captures many universal
properties. In contrast, the Perron-Frobenium operators
and Google matrix have eigenvalues distributed in the
complex plane belonging to another class of operators.
The Google matrix is constructed from the adjacency

matrixAij which has unit elements if there is a link point-
ing from node j to node i and zero otherwise. Then the
matrix of Markov transitions is constructed by normaliz-
ing elements of each column to unity (Sij = Aij/

∑

iAij ,
∑

j Sij = 1) and replacing columns with only zero ele-

ments (dangling nodes) by 1/N , with N being the matrix
size. After that the Google matrix of the network takes
the form [1, 4]:

Gij = αSij + (1− α)/N . (1)

The damping parameter α in the WWW context de-
scribes the probability (1 − α) to jump to any node for
a random surfer. For WWW the Google search engine
uses α ≈ 0.85 [4]. The PageRank vector Pi is the right
eigenvector of G at λ = 1 (α < 1). According to the
Perron-Frobenius theorem [3], Pi components are posi-
tive and represent the probability to find a random surfer
on a given node i (in the stationary limit) [4]. All nodes
can be ordered in a decreasing order of probability P (Ki)
with highest probability at top values of PageRank index
Ki = 1, 2, .....

The distribution of eigenvalues of G can be rather non-
trivial with appearance of the fractal Weyl law and other
unusual properties (see e.g. [6, 7]). For example, a ma-
trix G with random positive matrix elements, normalized
to unity in each column, has N −1 eigenvalues λ concen-
trated in a small radius |λ| < 1/

√
3N and one eigenvalue

λ = 1 (see below in section VII). Such a distribution
is drastically different from the eigenvalue distributions
found for directed networks with algebraic distribution
of links [8] or those found numerically for other directed
networks including WWW of universities [9, 10], Linux
Kernel and Twitter networks [11, 12], Wikipedia net-
works [13, 14]. In fact even the Albert-Barabási model
of preferential attachment [16] still generates the com-
plex spectrum of λ with a large gap (|λ| < 1/2) [8] be-
ing very different from the gapless and strongly degen-
erate G spectrum of WWW of British universities [10]
and Wikipedia [13, 14]. Thus it is useful to get a deeper
understanding of the spectral properties of directed net-
works and to develop more advanced models of complex
networks which have a spectrum similar to such networks
as British universities and Wikipedia.

With the aim to understand the spectral properties of
Google matrix of directed networks we study here the Ci-
tation Network of Physical Review (CNPR) for the whole
period up to 2009 [15]. This network has N = 463348
nodes (articles) and Nℓ = 4691015 links. Its network
structure is very similar to the tree network since the

http://arxiv.org/abs/1310.5624v1
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citations are time ordered (with only a few exceptions
of mutual citations of simultaneously published articles).
As a result we succeed to develop powerful tools which
allowed us to obtain the spectrum of G in semi-analytical
way. These results are compared with the spectrum ob-
tained numerically with the help of the powerful Arnoldi
method (see its description in [17, 18]). Thus we are able
to get a better understanding of the spectral properties
of this network. Due to time ordering of article citations
there are strong similarities between the CNPR and the
network of integers studied recently in [19].
We note that the PageRank analysis of the CNPR had

been performed in [20, 21],[22] showing its efficiency in
determining the influential articles of Physical Review.
The citation networks are rather generic (see e.g. [23])
and hence the extension of PageRank analysis of such
networks is an interesting and important task. Here we
put the main accent on the spectrum and eigenstates
properties of the Google matrix of the CNPR but we also
discuss the properties of two-dimensional (2D) ranking
on PageRank-CheiRank plane developed recently in [24,
25],[26]. We also analyze the properties of ImpactRank
which shows a domain of influence of a given article.
In addition to the whole CNPR we also consider the

CNPR without Rev. Mod. Phys. articles which has
N = 460422, Nℓ = 4497707. If in the whole CNPR we
eliminate future citations (see description below) then
this triangular CNPR has N = 463348, Nℓ = 4684496.
Thus on average we have approximately 10 links per
node. The network includes all articles of Physical Re-
view from its foundation in 1893 till the end of 2009.
The paper is composed as follows: in Section II we

present a detailed analysis of the Google matrix spectrum
of CNPR, the fractal Weyl law is discussed in Section
III, properties of eigenstates are discussed in Section IV,
CheiRank versus PageRank distributions are considered
in Section V, properties of impact propagation through
the network are studied in Section VI, certain random
matrix models of Google matrix are studied in Section
VII, the discussion of the results is given in Section VIII.

II. EIGENVALUE SPECTRUM

The Google matrix of CNPR is constructed on the ba-
sis of Eq.(1) using citation links from one article to an-
other (see also [22]). The matrix structure for different
order representations of articles is shown in Fig. 1. In the
top left panel all articles are ordered by time that gen-
erates almost perfect triangular structure corresponding
to time ordering of citations. Still there are a few cases
with joint citations of articles which appear almost at the
same time. This breaks the triangular structure but the
weight of such cases is small and we will see that with a
good approximation one can neglect such links in a first
approximation. The triangular matrix structure is also
well visible in the middle left panel where articles are
time ordered within each Phys. Rev. journal. The left

FIG. 1: (Color online) Different order representations of the
Google matrix of the CNPR (α = 1). Left column: The top
panel shows the density of matrix elements Gtt′ in the basis
of the publication time index t (and t′). The middle panel
shows the density of matrix elements in the basis of jour-
nal ordering according to: Phys. Rev. Series I, Phys. Rev.,
Phys. Rev. Lett., Rev. Mod. Phys., Phys. Rev. A, B, C, D, E,
Phys. Rev. STAB and Phys. Rev. STPER with time order-
ing inside each journal. The bottom panel shows the same
as middle panel but with PageRank index ordering inside
each journal. Note that the journals Phys. Rev. Series I,
Phys. Rev. STAB and Phys. Rev. STPER are not clearly
visible due to a small number of published papers. Also
Rev. Mod. Phys. appears only as a thin line with 2-3 pix-
els (out of 500) due to a limited number of published papers.
The three left panels and the bottom right panel show the
coarse-grained density of matrix elements done on 500 × 500
square cells for the entire network. Right column: Matrix
elements GKK′ are shown in the basis of PageRank index
K (and K′) with the range 1 ≤ K,K′ ≤ 200 (top panel);
1 ≤ K,K′ ≤ 400 (middle panel); 1 ≤ K,K′ ≤ N (bottom
panel). Color shows the amplitude (or density) of matrix
elements G changing from blue for zero value to red at max-
imum value. The PageRank index K is determined from the
PageRank vector at α = 0.85.

bottom panel shows the matrix elements for each Phys
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Rev journal when inside each journal the articles are or-
dered by their PageRank index K. The right panels show
the matrix elements of G on different scales, when all ar-
ticles are ordered by the PageRank index K.
The dependence of number of no-zero links NG, be-

tween nodes with PageRank index being less than K,
on K is shown in Fig. 2 (left panel). We see that com-
pared to the other networks of universities, Wikipedia
and Twitter studied in [13] we have for CNPR the low-
est values of NG/K practically for all available K values.
This reflects weak links between top PageRank articles
of CNPR being in contrast with Twitter which has very
high interconnection between top PageRank nodes. Since
the matrix elements GKK′ are inversely proportional to
the number of links we have very strong average matrix
elements for CNPR at top K values (see Fig. 2 (right
panel)).
In the following we present the results of numerical and

analytical analysis of the spectrum of the CNPR matrix
G.

A. Nearly nilpotent matrix structure

The triangular structure of the CNPR Google matrix
in time index (see Fig. 1) has important consequences
for the eigenvalue spectrum λ defined by the equation
for the eigenstates ψi(j):

∑

j′

Gjj′ψi(j
′) = λiψi(j) . (2)

The spectrum of G at α = 1, or the spectrum of S,
obtained by the Arnoldi method [17, 18] with the Arnoldi
dimension nA = 8000, is shown in Fig. 3. For comparison
we also show the case of reduced CNPR without Rev.
Mod. Phys.. We see that the spectrum of the reduced
case is rather similar to the spectrum of the full CNPR.
The matrix S can be decomposed on invariant sub-

spaces Sss, the core space Scc with fully connected nodes,
and the coupling block Ssc, thus being presented in the
form [10]:

S =

(

Sss Ssc

0 Scc

)

. (3)

The subspace-subspace block Sss is actually composed
of many diagonal blocks for each of the invariant sub-
spaces. Each of these blocks corresponds to a column
sum normalized matrix of the same type as G and has
therefore at least one unit eigenvalue thus explaining the
high degeneracy of S eigenvalue λ = 1. This structure is
discussed in detail in [10].
A network with a similar triangular structure, con-

structed from factor decompositions of integer numbers,
was previously studied in [19]. There it was analytically
shown that the corresponding G has only a small num-
ber of non-vanishing eigenvalues and that the numerical
diagonalization methods, including the Arnoldi method,

are facing subtle difficulties of numerical stability due to
large Jordan blocks associated to the highly degenerate
zero eigenvalue. The numerical diagonalization of these
Jordan blocks is highly sensitive to numerical round-off
errors. For example a perturbed Jordan block of dimen-
sion D associated to the eigenvalue zero and with a per-
turbation ε in the opposite corner has eigenvalues on a
complex circle of radius ε1/D [19] which may became very
large for sufficient large D even for ε ∼ 10−15. There-
fore in presence of many such Jordan blocks the numer-
ical diagonalization methods create rather big “artificial
clouds” of incorrect eigenvalues.

In the examples studied in [19] these clouds extended
up to eigenvalues |λ| ≈ 0.01. The spectrum for the Phys-
ical Review network shown in Fig. 3 shows also a sudden
increase of the density of eigenvalues below |λ| ≈ 0.3−0.4
and one needs to be concerned if these eigenvalues are
“real” or only an artifact of the same type of numeri-
cal instability. Actually, we find that the eigenvalues of
Fig. 3 below |λ| ≈ 0.3− 0.4 are changed completely in a
random way if we apply to the network or the numerical
algorithm certain transformations or modifications which
are mathematically neutral but which have a different ef-
fect on the numerical round-off errors (e.g. a permuta-
tion of the network nodes, keeping the same network-
link structure, or simply changing the evaluation order
of the sums used for the scalar products between vectors
in the Gram-Schmidt orthogonalization for the Arnoldi
method). This clearly indicates that these eigenvalues
are not reliable due to problems in the numerical evalu-
ation.
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FIG. 2: (Color online) Left panel: dependence of the linear
density NG/K of nonzero elements of the adjacency matrix
among top PageRank nodes on the PageRank index K for
the networks of Twitter (blue curve), Wikipedia (red curve),
Oxford University 2006 (magenta curve), Cambridge Univer-
sity 2006 (green curve), with data taken from Ref. [12],
and Physical Review all journals (cyan curve) and Physi-
cal Review without Rep. Mod. Phys. (black curve) (curves
from top to bottom at K = 100). Right panel: depen-
dence of the quantity Σ/K on the PageRank index K with
Σ =

∑
K1<K,K2<K GK1,K2

being the weight of the Google
matrix elements inside the K×K square of top PageRank in-
dexes. The curves correspond to the same networks as in
the left panel: Physical Review without Rep. Mod. Phys.
(black curve), Physical Review all journals (cyan curve), Ox-
ford University 2006 (magenta curve), Cambridge University
2006 (green curve), Wikipedia (red curve), and Twitter (blue
curve) (curves from top to bottom at K = 1).
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The theory of [19] is based on the exact triangular
structure of the matrix S0 which appears in the repre-
sentation of S = S0 + edT /N (see also below Eq. 4). In
fact the matrix S0 is obtained from the adjacency matrix
by normalizing the sum of the elements in non-vanishing
columns to unity and simply keeping at zero vanishing
columns. For the network of integers [19] this matrix is
nilpotent with Sl

0 = 0 for a certain modest value of l
being much smaller than the network size l ≪ N . How-
ever, for CNPR the matrix S0 is not exactly nilpotent
despite the overall triangular matrix structure visible in
Fig. 1. Even though most of the non-vanishing matrix
elements (S0)tt′ (whose total number is equal to the num-
ber of links Nℓ = 4691015) are in the upper triangle t < t′

there are a few non-vanishing elements in the lower trian-
gle t > t′ (whose number is 12126 corresponding to 0.26
% of the total number of links [27]). The reason is that
in most cases papers cite other papers published earlier
but in certain situations for papers with close publication
date the citation order does not always coincide with the
publication order. In some cases two papers even mutu-
ally cite each other. In the following we will call these
cases “future citations”. The rare non-vanishing matrix
elements due to future citations are not visible in the
coarse grained matrix representation of Fig. 1 but they
are responsible for the fact that S0 of CMPR is not nilpo-
tent and that there are also a few invariant subspaces.
On a purely triangular network one can easily show the
absence of invariant subspaces (smaller than the full net-
work size) when taking into account the extra columns
due to the dangling nodes.

However, despite the effect of the future citations the
matrix S0 is still partly nilpotent. This can be seen by
multiplying a uniform initial vector e (with all compo-
nents being 1) by the matrix S0 and counting after each
iteration the number Ni of non-vanishing entries [28] in
the resulting vector Si

0e. For a nilpotent matrix S0 with
Sl
0 = 0 the number Ni becomes obviously zero for i ≥ l.

On the other hand, since the components of e and the
non-vanishing matrix elements of S0 are positive, one can
easily verify that the condition Sl

0e = 0 for some value l
also implies Sl

0ψ = 0 for an arbitrary initial (even com-
plex) vector ψ which shows that S0 must be nilpotent
with Sl

0 = 0.
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FIG. 3: (Color online) Spectrum of S for CNPR (reduced
CNPR without Rev. Mod. Phys.) shown on left panels (right
panels). Top panels: Subspace eigenvalues (blue dots) and
core space eigenvalues (red dots) in λ-plane (green curve
shows unit circle); there are 27 (26) invariant subspaces, with
maximal dimension 6 (6) and the sum of all subspace dimen-
sions is Ns = 71 (75). The core space eigenvalues are obtained
from the Arnoldi method applied to the core space subblock
Scc of S with Arnoldi dimension nA = 8000 as explained in
Ref. [10] and using standard double-precision arithmetic. Bot-
tom panels: Fraction j/N of eigenvalues, shown in a logarith-
mic scale, with |λ| > |λj | for the core space eigenvalues (red
bottom curve) and all eigenvalues (blue top curve) from raw
data of top panels. The number of eigenvalues with |λj | = 1
is 45 (43) of which 27 (26) are at λj = 1; this number is iden-
tical to the number of invariant subspaces which have each
one unit eigenvalue.

In Fig. 4 we see that for the CNPR the value of Ni sat-
urates at a value Nsat = 273490 for i ≥ 27 which is 59%
of the total number of nodes N = 463348 in the network.
On one hand the (small) number of future citations en-
sures that the saturation value of Ni is not zero but on
the other hand it is smaller than the total number of
nodes by a macroscopic factor. Mathematically the first
iteration e → S0e removes the nodes corresponding to
empty (vanishing) lines of the matrix S0 and the next it-
erations remove the nodes whose lines in S0 have become
empty after having removed from the network the non-
occupied nodes due to previous iterations. For each node
removed during this iteration process one can construct
a vector belonging to the Jordan subspace of S0 associ-
ated to the eigenvalue 0. In the following we call this
subspace generalized kernel. It contains all eigenvectors
of Sj

0 associated to the eigenvalue 0 where the integer j
is the size of the largest 0-eigenvalue Jordan block. Ob-
viously the dimension of this generalized kernel of S0 is
larger or equal than N −Nsat = 189857 but we will see
later that its actual dimension is even larger and quite
close to N . We will argue below that most (but not all)
of the vectors in the generalized kernel of S0 also belong
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to the generalized kernel of S which differs from S0 by
the extra contributions due to the dangling nodes. The
high dimension of the generalized kernel containing many
large 0-eigenvalue Jordan subspaces explains very clearly
the numerical problem due to which the eigenvalues ob-
tained by the double-precision Arnoldi method are not
reliable for |λ| < 0.3− 0.4.
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FIG. 4: (Color online) Number of occupied nodes Ni (i.e.
positive elements) in the vector Si

0 e versus iteration number
i (red crosses) for the CNPR (left panel) and the triangular
CNPR (right panel). In both cases the initial value is the
network size N0 = N = 463348. For the CNPR Ni saturates
at Ni = Nsat = 273490 ≈ 0.590N for i ≥ 27 while for the
triangular CNPR Ni saturates at Ni = 0 for i ≥ 352 con-
firming the nilpotent structure of S0. In the left panel the
quantity Ni −Nsat is shown in order to increase visibility in
the logarithmic scale.

B. Spectrum for the triangular CNPR

In order to extend the theory for the triangular matri-
ces developed in [19] we consider the triangular CNPR
obtained by removing all future citation links t′ → t with
t ≥ t′ from the original CNPR. The resulting matrix
S0 of this reduced network is now indeed nilpotent with
Sl−1
0 6= 0, Sl

0 = 0 and l = 352 which is much smaller
than the network size. This is clearly seen from Fig. 4
showing that Ni, calculated from the triangular CNPR,
indeed saturates at Ni = 0 for i ≥ 352. According to the
arguments of [19], and additional demonstrations given
below, there are at most only l = 352 non-zero eigenval-
ues of the Google matrix at α = 1. This matrix has the
form

S = S0 + (1/N) e dT (4)

where d and e are two vectors with e(n) = 1 for all nodes
n = 1, . . . , N and d(n) = 1 for dangling nodes n (corre-
sponding to vanishing columns in S0) and d(n) = 0 for
the other nodes. In the following we call d the dangling
vector. The extra contribution e dT /N just replaces the
empty columns (of S0) with 1/N entries at each element
and dT is the line vector obtained as the transpose of the
column vector d.
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FIG. 5: (Color online) Left Panel: Comparison of the core
space eigenvalue spectrum of S for CNPR (blue squares) and
triangular CNPR (red crosses). Both spectra are calculated
by the Arnoldi method with nA = 4000 and standard double-
precision. Right Panel: Comparison of the numerically deter-
mined non-vanishing 352 eigenvalues obtained from the rep-
resentation matrix (12) (blue squares) with the spectrum of
triangular CNPR (red crosses) already shown in the left panel.
Numerics is done with standard double-precision.

In the left panel of Fig. 5 we compare the core space
spectrum of S for CNPR and triangular CNPR (data
are obtained by the Arnoldi method with nA = 4000
and standard double-precision). We see that the largest
complex eigenvalues are rather close for both cases but
in the full network we have a lot of eigenvalues on the
real axis (with λ < −0.3 or λ > 0.4) which are absent
for the triangular CNPR. Furthermore, both cases suffer
from the same problem of numerical instability due to
large Jordan blocks.

Let us briefly remind the analytical theory of [19] for
pure triangular networks with a nilpotent matrix S0 such
that Sl

0 = 0. For this we define the coefficients:

cj = dTSj
0 e/N , bj = eTSj

0 e/N (5)

which are non-zero only for j = 0, 1, . . . , l− 1. The fact
that the non-vanishing columns of S0 are sum normalized
and that the other columns (corresponding to dangling
nodes) are zero can be written as: eTS0 = eT − dT im-
plying dT = eT (11− S0). Using this identify and the fact
that Sk

0 = 0 for k ≥ l we find:

l−1
∑

k=j

ck = dT (11− S0)
−1Sj

0 e/N = eTSj
0 e/N = bj (6)

and in particular for j = 0 we obtain the sum rule
∑l−1

k=0 ck = 1 and for j = l − 1 the identity bl−1 = cl−1.

Consider now a right eigenvector ψ of S with eigen-
value λ. If dTψ = 0 we find from (4) that ψ is also an
eigenvector of S0 and since S0 is nilpotent the eigenvalue
must be λ = 0. Therefore for λ 6= 0 we have necessarily
dTψ 6= 0 and with the appropriate normalization of ψ we
have dTψ = 1 that implies together with the eigenvalue
equation: ψ = (λ11−S0)

−1 e/N where the matrix inverse
is well defined for λ 6= 0. The eigenvalue is determined
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by the condition:

0 = λl(1 − dTψ) = λl
(

1− dT
11

λ11 − S0
e/N

)

. (7)

Since S0 is nilpotent we may expand the matrix inverse
in a finite series and therefore the eigenvalue λ is the zero
of the reduced polynomial of degree l:

Pr(λ) = λl −
l−1
∑

j=0

λl−1−j cj (8)

where the coefficients cj are given by (5). Using dT =
eT (11− S0) we may rewrite (7) in the form:

0 = λl
(

1− eT
11− S0

λ11− S0
e/N

)

= (λ−1)λl eT
11

λ11− S0
e/N

(9)
which gives another expression for the reduced polyno-
mial:

Pr(λ) = (λ − 1)

l−1
∑

j=0

λl−1−j bj (10)

using the coefficients bj and confirming explicitly that
λ = 1 is indeed an eigenvalue of S. The expression (10)
can also be obtained by a direct calculation from (6) and
(8).
Since the reduced polynomial has at most l zeros λj

(6= 0 since cl−1 = bl−1 6= 0) we find that there are at most
l non-vanishing eigenvalues of S given by these zeros.
They can also be obtained as the eigenvalues of a “small”
l× l matrix. To see this let us define the following set of
vectors vj for j = 1, . . . , l by vj = c−1

j−1 S
j−1
0 e/N where

we have chosen to apply the prefactor c−1
j−1 to the vector

Sj−1
0 e/N [29]. From (4) and (5) one finds that Svj can

be expanded in the other vectors vk as

Svj =
cj
cj−1

vj+1 + c0 v1 =

l
∑

k=1

S̄kj vk (11)

where S̄kj are the matrix elements of the l × l represen-
tation matrix

S̄ =













c0 c0 · · · c0 c0
c1/c0 0 · · · 0 0
0 c2/c1 · · · 0 0
...

...
. . .

...
...

0 0 · · · cl−1/cl−2 0













. (12)

Note that for the last vector vl we have Svl = c0 v1
since cl = 0 and therefore the matrix S̄ provides a closed
and mathematically exact representation of S on the l-
dimensional subspace generated by v1, . . . , vl. Further-
more one can easily verify (by a recursive calculation in
l) that the characteristic polynomial of S̄ coincides with

the reduced polynomial (8). Therefore numerical diago-
nalization of S̄ provides an alternative method to com-
pute the non-vanishing eigenvalues of S. In principle
one can also determine directly the zeros of the reduced
polynomial by the Newton-Maehly method and in [19]
this was indeed done for cases with very modest values
of l ≤ 29. However, here for the triangular CNPR we
have l = 352 and the coefficients cj become very small,
especially: cl−1 ≈ 3.6 × 10−352 a number which is (due
to the exponent) outside the range of 64 bit standard
double-precision numbers (IEEE 754) with 52 bits for
the mantissa, 10 bits for the exponent (with respect to
2) and two bits for the signs of mantissa and exponent.
This exponent range problem is not really serious and
can for example be circumvented by a smart reformula-
tion of the algorithm to evaluate the ratio Pr(λ)/P ′

r(λ)
using only ratios cj/cj−1 which do not have this expo-
nent range problem. However, it turns out that in this
approach the convergence of the Newton-Maehly method
using double-precision arithmetic is very bad for many ze-
ros and does not provide reliable results. Below we show
how this problem can be solved using high precision cal-
culations but for the moment we mention that one may
also try another approach by diagonalizing numerically
the representation matrix S̄ given in (12) which also de-
pends on the ratios cj/cj−1.

In the right panel of Fig. 5 we compare the numeri-
cal double-precision spectra of S̄ with the results of the
Arnoldi method with double-precision and the uniform
initial vector e as start vector for the Arnoldi iterations.
We remind that the Arnoldi method determines an or-
thonormal set of vectors ζ1, ζ2, ζ3, . . . , ζnA

where the
first vector ζ1 is obtained by normalizing a given ini-
tial vector and ζj+1 is obtained by orthonormalizing Sζj
to the previous vectors determined so far. It is obvious
due to (11) that for the initial uniform vector e each ζj
is given by a linear combination of the vectors vk with
k = 1, . . . , j. Since the subspace of vk for k = 1, . . . , l
is closed with respect to applications of S the Arnoldi
method should, in theory, break off at nA = l with a
zero coupling element. The latter is given as the norm of
Sζl othogonalized to ζ1, . . . , ζl and if this norm vanishes
the vector ζl+1 cannot be constructed and the Arnoldi
method has completely explored an S-invariant subspace
of dimension l.

However, due to a strong effect of round-off errors and
the fact that the vectors vj are numerically “nearly” lin-
early dependent the last coupling element does not van-
ish numerically (when using double-precision) and the
Arnoldi method produces a cloud of numerically incorrect
eigenvalues due to the Jordan blocks which are mathe-
matically outside the representation space (defined by the
vectors vj) but which are still explored due to round-off
errors and clearly visible in Fig. 5. The double-precision
spectrum of S̄ seems to provide well defined eigenval-
ues in the range where the Arnoldi method produces the
“Jordan block cloud” but outside this cloud both spec-
tra coincide only partly, mainly for the eigenvalues with
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largest modulus and positive real part. For the eigenval-
ues with negative real part there are considerable devia-
tions. As we will see later the eigenvalues produced by
the Arnoldi method at double-precision are reliable pro-
vided that they are well outside the Jordan block cloud
of incorrect eigenvalues. Therefore the deviations outside
the Jordan block cloud show that the numerical double-
precision diagonalization of the representation matrix S̄
is not reliable as well but here the effect of numerical er-
rors is quite different as for the Arnoldi method as it is
explained below.

We have tried to determine the zeros of the reduced
polynomial using higher precision numbers with 80 or
even 128 bits (quadruple precision) which helps to solve
the (minor) exponent range problem because these for-
mats use more bits for the exponent. However, there are
indeed two other serious numerical problems. First it
turns out that in a certain range of the complex plane
around Re(λ) ≈ −0.1 to −0.2 and Im(λ) ≤ 0.1 the nu-
merical evaluation of the polynomial suffers in a severe
way from an alternate sign problem with a strong loss of
significance. Second the zeros of the polynomial depend
in a very sensitive way on the precision of the coefficients
cj (see below). We have found that even 128 bit numbers
are not sufficient to obtain all zeros with a reasonable
graphical precision.

Therefore we use the very efficient GNU Multiple Pre-
cision Arithmetic Library (GMP library) [30]. With this
library one has 31 bits for the exponent and one may
chose an arbitrary number of bits for the mantissa. We
find that using 256 bits (binary digits) for the mantissa
the complex zeros of the reduced polynomial can be de-
termined with a precision of 10−18. In this case the con-
vergence of the Newton-Maehly method is very nice and
we obtain that the sum (and product) of the complex
zeros coincide with a high precision with the theoreti-
cal values c0 (respectively: (−1)l−1cl−1) due to (8). We
have also tested different ways to evaluate the polyno-
mial, such as Horner scheme versus direct evaluation of
the sum and for both methods using both expressions (8)
and (10). It turns out that with 256 binary digits during
the calculation the zeros obtained by the different vari-
ants of the method coincide very well within the required
precision of 10−18. Of course the coefficients cj or bj
given by (5) need also to be evaluated with the precision
of 256 binary digits but there is no problem of using high
precision vectors since the non-vanishing matrix elements
of S0 are rational numbers that allow to perform the
evaluation of the vectors Sj

0e/N with arbitrary precision.
We also tested a random modification of cj according to
cj → cj(1+10−16X) where X is a random number in the
interval ] − 0.5, 0.5[. This modification gives significant
differences of the order of 10−2 to 10−1 for some of the
complex zeros and which are well visible in the graphical
representation of the spectra. Therefore, the spectrum
depends in a very sensitive way on these coefficients and
it is now quite clear that numerical double-precision di-
agonalization of S̄, which depends according to (12) on

the values cj , cannot provide accurate eigenvalues simply
because the double-precision round-off errors of cj imply
a sensitive change of eigenvalues. In particular some of
the numerical eigenvalues of S̄ differ quite strongly from
the high precision zeros of the reduced polynomial.

In order to study more precisely the effect of the nu-
merical instability of the Arnoldi method due to the Jor-
dan blocks we also use the GMP library to increase the
numerical precision of the Arnoldi method. To be precise
we implement the first part of this method, the Arnold
iteration in which the nA × nA Arnoldi representation
matrix is determined by the Gram-Schmidt orthogonal-
ization procedure, using high precision numbers while
for the second step, the numerical diagonalization of
this representation matrix, we keep the standard double-
precision. It turns that only the first step is numerically
critical. Once the Arnoldi representation matrix is ob-
tained in a careful and precise way, it is numerically well
conditioned and its numerical diagonalization works well
with only double-precision.

In Fig. 6 we compare the exact spectrum obtained by
the high precision determination of the zeros of the re-
duced polynomial (using 256 bits) with the spectra of the
Arnold method for 52 bits (corresponding to the man-
tissa of double-precision numbers), 256 bits, 512 bits and
1280 bits. Here we use for the Arnoldi method a uniform
initial vector and the Arnold dimension nA = l = 352.
In this case, as explained above, in theory the Arnoldi
method should provide the exact l = 352 non-vanishing
eigenvalues (in absence of round-off errors).

However, with the precision of 52 bits we have a con-
siderable number of eigenvalues on a circle of radius≈ 0.3
centered at 0.05 indicating a strong influence of round-off
errors due to the Jordan blocks. Increasing the precision
to 256 (or 512) bits implies that the number of correct
eigenvalue increases and the radius of this circle decreases
to 0.13 (or 0.1) and in particular it does not extend to all
angles. We have to increase the precision of the Arnoldi
method to 1280 bits to have a perfect numerical confir-
mation that the Arnoldi method explores the exact in-
variant subspace of dimension l = 352 and generated by
the vectors vj . In this case the eigenvalues obtained from
the Arnoldi method and the high-precision zeros of the
reduced polynomial coincide with an error below 10−14

and in particular the Arnoldi method provides a nearly
vanishing coupling matrix element at the last iteration
confirming that there is indeed an exact decoupling of
the Arnoldi matrix and an invariant closed subspace of
dimension 352.
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FIG. 6: (Color online) Comparison of the numerically accu-
rate 352 non-vanishing eigenvalues of S matrix of triangular
CNPR, determined by the Newton-Maehly method applied
to the reduced polynomial (8) with a high-precision calcula-
tion of 256 binary digits (red crosses, all panels), with eigen-
values obtained by the Arnoldi method at different numeri-
cal precisions (for the determination of the Arnoldi matrix)
for triangular CNPR and Arnoldi dimension nA = 352 (blue
squares, all panels). The first row corresponds to the numeri-
cal precision of 52 binary digits for standard double-precision
arithmetic. The second (third, fourth) row corresponds to
the precision of 256 (512, 1280) binary digits. All high pre-
cision calculations are done with the library GMP [30]. The
panels in the left column show the complete spectra and the
panels in the right columns show the spectra in a zoomed
range: −0.4 ≤ Re(λ), Im(λ) ≤< 0.4 for the first row or
−0.2 ≤ Re(λ), Im(λ) ≤ 0.2 for the second, third and fourth
rows.

The results shown in Fig.6 clearly confirm the above
theory and the scenario of the strong influence of Jordan
blocks on the round-off errors. In particular, we find
that in order to increase the numerical precision it is only
necessary to implement the first step of the method, the
Arnoldi iteration, using high precision numbers while the
numerical diagonalization of the Arnoldi representation
matrix can still be done using standard double-precision
arithmetic. We also observe, that even for the case with
lowest precision of 52 bits the eigenvalues obtained by the
Arnoldi method are numerically accurate provided that
there are well outside the circle (or cloud) of numerically
incorrect eigenvalues.

C. High precision spectrum of the whole CNPR

Based on the observation that a high precision imple-
mentation of the Arnoldi method is useful for the trian-
gular CNPR, we now apply the high precision Arnoldi
method with 256, 512 and 756 bits and nA = 2000 to the
original CNPR. The results for the core space eigenvalues
are shown in Fig. 7 where we compare the spectrum of the
highest precision of 756 bits with lower precision spectra
of 52, 256 and 512 bits. As in Fig. 6 for the triangular
CNPR, for CNPR we also observe that the radius and
angular extension of the cloud or circle of incorrect Jor-
dan block eigenvalues decreases with increasing precision.
Despite the lower number of nA = 2000 as compared to
nA = 8000 of Fig. 3 the number of accurate eigenvalues
with 756 bit precision is certainly considerably higher.

The higher precision Arnoldi method certainly im-
proves the quality of the smaller eigenvalues, e.g. for
|λ| < 0.3− 0.4, but it also implies a strange shortcoming
as far as the degeneracies of certain particular eigenvalues
are concerned. This can be seen in Fig. 8 which shows
the core space eigenvalues |λj | versus the level number j
for various values of the Arnoldi dimension and the pre-
cision. In these curves we observe flat plateaux at certain
values |λj | = 1/

√
n with n = 2, 3, 4, 5, . . . correspond-

ing to degenerate eigenvalues which turn out to be real
but with positive or negative values: λj = ±1/

√
n. For

fixed standard double-precision arithmetic with 52 binary
digits the degeneracies increase with increasing Arnoldi
dimension and seem to saturate for nA ≥ 4000. However
at the given value of nA = 2000 the degeneracies de-

crease with increasing precision of the Arnoldi method.
Apparently the higher precision Arnoldi method is less
able to determine the correct degeneracy of a degenerate
eigenvalue.
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FIG. 7: (Color online) Comparison of the core space eigen-
value spectrum of S of CNPR, obtained by the high preci-
sion Arnoldi method using 768 binary digits (blue squares,
all panels), with lower precision data of the Arnoldi method
(red crosses). In both top panels the red crosses correspond
to double-precision with 52 binary digits (extended range in
left top panel and zoomed range in right top panel). In the
bottom left (right) panel red crosses correspond to the numer-
ical precision of 256 (512) binary digits. In these two cases
only a zoomed range is shown. The eigenvalues outside the
zoomed ranges coincide for both data sets up to graphical
precision. In all cases the Arnoldi dimension is nA = 2000.
High precision calculations are done with the library GMP
[30].

This point can be understood as follows. In theory,
assuming perfect precision, the simple version of Arnoldi
method used here (in contrast to more complicated block
Arnoldi methods) can only determine one eigenvector for
a degenerate eigenvalue. The reason is that for a degen-
erate eigenvalue we have a particular linear combination
of the eigenvectors for this eigenvalue which contribute in
any initial vector (in other words “one particular” eigen-
vector for this eigenvalue) and during the Arnoldi iter-
ation this particular eigenvector will be perfectly con-
served and the generated Krylov space will only contain
this and no other eigenvector for this eigenvalue. How-
ever, due to round-off errors we obtain at each step new
random contributions from other eigenvectors of the same
eigenvalue and it is only due to these round-off errors
that we can see the flat plateaux in Fig. 8. Obviously,
increasing the precision reduces this round-off error effect
and the flat plateaux are indeed considerably smaller for
higher precisions.
The question arises about the origin of the degenerate

eigenvalues in the core space spectrum. In other exam-
ples, such as the WWW for certain university networks
[10], the degeneracies, especially of the leading eigenvalue

1, could be treated by separating and diagonalizing the
exact subspaces and the remaining core space spectrum
contained much less or nearly no degenerate eigenvalues.
However, here for the CNPR we have “only” 27 subspaces
with maximal dimension of 6 containing 71 nodes in total.
The eigenvalues due to these subspaces are 1, −1, −0.5, 0
with degeneracies 27, 18, 4, 22 (see blue dots in the up-
per panels of Fig. 3). These exact subspaces exist only
due to the modest number of future citation links. Even
when we take care that in all cases the Arnoldi method
is applied to the core space without these 71 subspace
nodes, there are still remain a lot of degenerate eigenval-
ues in the core space spectrum.
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FIG. 8: (Color online) Modulus |λj | of the core space eigen-
values of S of CNPR, obtained by the Arnoldi method, shown
versus level number j. Left panel: data for standard double-
precision with 52 binary digits with different Arnoldi dimen-
sions 1000 ≤ nA ≤ 8000. Right panel: data for Arnoldi dimen-
sion nA = 2000 with different numerical precisions between
52 and 768 binary digits.

In order to understand the mechanism of these degen-
erate core space eigenvalues we extend the argumentation
of the last subsection for triangular CNPR to the case of
nearly triangular networks. Consider again the matrix
S given by Eq. (4) but now S0 is not nilpotent. There
are two groups of eigenvectors ψ of S with eigenvalue
λ. The first group is characterized by the orthogonality
dTψ = 0 of the eigenvector ψ with respect to the dan-
gling vector d and the second group is characterized by
the non-orthogonality dTψ 6= 0. In the following, we de-
scribe efficient methods to determine all eigenvalues of
the first group and a considerable number of eigenvalues
of the second group. We note that for the case of a purely
triangular network the first group contains only eigenvec-
tors for the eigenvalue 0 and the second group contains
the eigenvectors for the l non-vanishing eigenvalues as
discussed in the last subsection. In principle there are
also complications due to generalized eigenvectors (as-
sociated to non-trivial Jordan blocks) but they appear
mainly for zero eigenvalue and we for the moment do not
discuss these complications.
First we note that the subspace eigenvectors of S be-

long to the first group because the nodes of the subspaces
of S cannot contain dangling nodes which are by con-
struction of S are linked to any other node and therefore
belong to the core space. Since any subspace eigenvec-
tor ψ has non-vanishing values only for subspace nodes



10

being different from dangling nodes we have obviously
dTψ = 0. We also note that an eigenvector of S of the
first group with dTψ = 0 is due to (4) also an eigenvector
of S0 with the same eigenvalue.

For the remaining eigenvectors in the first group one
might try to diagonalize the matrix S0 and check for
each eigenvector of S0 if the identity dTψ = 0 holds in
which case we would obtain an eigenvector of S of the
first group but generically, and apart from the subspace
eigenvectors, there is no reason that eigenvectors of S0

with isolated non-degenerate eigenvalues obey this iden-
tity. However, if we have an eigenvalue of S0 with a
degeneracy m ≥ 2 we may construct by suitable linear
combinations m− 1 linearly independent eigenvectors of
S0 which also obey dTψ = 0 and therefore this eigen-
value with degeneracy m of S0 is also an eigenvalue with
degeneracy m − 1 of S. In order to determine the de-
generate eigenvalues of S0 it is useful to determine the
subspaces of S0 which (in contrast to the subspaces of
S) may contain dangling nodes. Actually, each dangling
node is a trivial subspace of dimension 1 with a network
matrix of size 1 × 1 and being zero. Explicitly we have
implemented the following procedure: first we determine
the subspaces of S (with 71 nodes in total) and remove
these nodes from the network. Then we determine all
subspaces of S0 whose dimension is below 10. Each time
such a subspace is found its nodes are immediately re-
moved from the network. When we have tested in a first
run all nodes as potential subspace nodes the procedure
is repeated until no new subspaces of maximal dimension
10 are found since removal of former subspaces may have
created new subspaces. Then the limit size of 10 is dou-
bled to 20, 40, 80 etc. to ensure that we do not miss large
subspaces. However, for the CNPR it turns out that the
limit size of 10 allows to find all subspaces. In our proce-
dure a subsequently found subspace may potentially have
links to a former subspace leading to a block-triangular
(and not block-diagonal structure as it was done in ref.
[10]). This method to determine “relative” subspaces of
a network already reduced by former subspaces is more
convenient for the CNPR which is nearly triangular and
it allows also to determine correctly all subspace eigen-
values by diagonalizing each relative subspace network.
The removal of subspace nodes of S and S0 reduces the
network size from N = 463348 to 404959. In the next
step we remove in the same way the subspaces of the
transpose ST

0 of S0 (since the eigenvalues of ST
0 and S0

are the same) which reduces the network size further-
more to 90965. In total this procedure provides a block

triangular structure of S0 as:

S0 =



































S1 ∗ · · · · · · ∗
0 S2 ∗

...
...

. . .
. . .

. . .
...

0 B ∗
... 0 T1 ∗

...
... 0 T2 ∗
0 · · · · · · . . .

. . .



































(13)

where S1, S2, . . . represent the diagonal subblocks associ-
ated to the subspaces of S and S0 while T1, T2, . . . repre-
sent the diagonal subblocks associated to the subspaces of
ST
0 and B is the “bulk” part for the remaining network of

90965 nodes. The stars represent potential non-vanishing
entries whose values do not influence the eigenvalues of
S0. The subspace blocks S1, S2, . . . and T1, T2, . . . which
are individually of maximal dimension 10 can be directly
diagonalized and it turns that out of 372382 eigenval-
ues in these blocks only about 4000 eigenvalues (counting
degeneracies) or 950 eigenvalues (non-counting degenera-
cies) are different from zero. Most of these eigenvalues
are not degenerate and are therefore not eigenvalues of S
but there are still quite many degenerate eigenvalues at
λ = ±1/

√
n with n ≥ 2 taking small integer values and

who are also eigenvalues of S with a degeneracy reduced
by one.
Concerning the bulk block B we can write it in the

form B = B0 + f1 e
T
1 where f1 is the first column vector

of B and eT1 = (1, 0, . . . , 0). The matrix B0 is obtained
from B by replacing its first column to zero. We can
apply the above argumentation between S and S0 in the
same way to B and B0, i.e. the degenerate eigenvalues
of B0 with degeneracy m are also eigenvalues of B with
degeneracy m − 1 (with eigenvectors obeying eT1 ψ = 0)
and therefore eigenvalues of S with degeneracy m − 2.
The matrix B0 is decomposed in a similar way as in (13)
with subspace blocks, which can be diagonalized numer-
ically, and a new bulk block B̃ of dimension 63559 and
which may be treated in the same way by taking out its
first column. This procedure provides a recursive scheme
which after 9 iterations stops with a final bulk block of
zero size. At each iteration we keep only subspace eigen-
values with degeneracies m ≥ 2 and which are joined
with reduced degeneracies m − 1 to the subspace spec-
trum of the previous iteration. For this joined spectrum
we keep again only eigenvalues with degeneracies m ≥ 2
which are joined with the subspace spectrum of the next
higher level etc.
In this way we have determined all eigenvalues of S0

with a degeneracy m ≥ 2 which belong to the eigen-
values of S of the first group. Including the direct
subspace of S there are 4999 non-vanishing eigenvalues
(counting degeneracies) or 442 non-vanishing eigenvalues
(non-counting degeneracies). The degeneracy of the zero
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λ degeneracy

1 27

−1 18

±1/
√
2 27

±1/
√
3 20

1/2 58

−1/2 52

±1/
√
5 20

±1/
√
6 52

±1/
√
7 6

±1/
√
8 44

1/3 47

−1/3 39

±1/
√
10 33

±1/
√
11 1

±1/
√
12 85

±1/
√
14 15

±1/
√
15 46

1/4 52

−1/4 42

±1/
√
18 29

±1/
√
20 60

±1/
√
21 30

±1/
√
22 3

±1/
√
24 69

1/5 20

−1/5 11

TABLE I: Degeneracies of the eigenvalues with largest mod-
ulus for the whole CNPR whose eigenvectors ψ belong to the
first group and obey the orthogonality dTψ = 0 with the dan-
gling vector d.

eigenvalue (or the dimension of the generalized kernel) is
found by this procedure to be 455789 but this would only
be correct assuming that there are no general eigenvec-
tors of higher order (representation vectors of non-trivial
Jordan blocks) which is clearly not the case. The Jordan
subspace structure of the zero eigenvalue complicates the
argumentation. Here at each iteration step the degener-
acy has to be reduced fromm tom−D whereD > 1 is the
dimension of the maximal Jordan block since each gen-
eralized eigenvector at a given order has to be treated as
an independent vector when constructing vectors obeying
the orthogonality with respect to the dangling vector d.
Therefore the degeneracy of the zero eigenvalue cannot
be determined exactly but we may estimate its degener-
acy of about ∼ 455000 out of 463348 nodes in total. This
implies that the number of non-vanishing eigenvalues is
about ∼ 8000 − 9000 which is considerably larger than
the value of 352 for the triangular CNPR but still much
smaller than the total network size.

In Table I we provide the degeneracies for some of the

eigenvalues ±1/
√
n for integer n in the range 1 ≤ n ≤ 25.

The degeneracies for +1/
√
n and −1/

√
n are identical for

non-square numbers n (with non-integer
√
n) and differ-

ent for square numbers (with integer
√
n). Apparently

for non-square numbers the eigenvalues are only gener-
ated from effective 2× 2 blocks:

(

0 1/n1

1/n2 0

)

⇒ λ = ± 1√
n1 n2

(14)

with positive integers n1 and n2 such that n = n1 n2

while for square numbers n = m2 they may be gener-
ated by such blocks or by simple 1 × 1 blocks contain-
ing 1/m such that the degeneracy for +1/

√
n = +1/m

is larger than the degeneracy for −1/
√
n = −1/m. Fur-

thermore, statistically the degeneracy is smaller for prime
numbers n or numbers with less factorization possibili-
ties and larger for numbers with more factorization pos-
sibilities. The Arnoldi method (with 52 bits for double-
precision arithmetic and nA = 8000) provides according
to the sizes of the plateaux visible in Fig. 8 the overall ap-
proximate degeneracies ∼ 60 for |λ| = 1/

√
2 (i.e. ±1/

√
2

counted together), ∼ 50 for |λ| = 1/
√
3 and ∼ 115 for

|λ| = 1/2. These values are coherent with (but slightly
larger than) the values 54, 40 and 110 taken from Ta-
ble I. Actually, as we will see below, the slight differences
between the degeneracies obtained from Fig. 8 and from
Table I are indeed relevant and correspond to some eigen-
values of the second group which are close but not iden-
tical to ±1/

√
2, ±1/

√
3 or ±1/2 and do not contribute

in Table I.
We now consider the eigenvalues λ of S for the

eigenvectors of the second group with non-orthogonality
dTψ 6= 1 or dTψ = 1 after proper renormalization of ψ.
Now ψ cannot be an eigenvector of S0 and λ is not an
eigenvalue of S0. As in the last subsection the eigenvalue
equation Sψ = λψ, the condition dTψ = 1 and (4) im-
ply that the eigenvalue λ of S is a zero of the rational
function

R(λ) = 1− dT
11

λ11 − S0
e/N = 1−

∑

j,q

Cjq

(λ− ρj)q
(15)

where we have formally expanded the vector e/N in
eigenvectors of S0 and with ρj being the eigenvalues of
S0 and q is the order of the eigenvector of ρj used in this
expansion, i.e. q = 1 for simple eigenvectors and q > 1
for generalized eigenvectors of higher order due to Jor-
dan blocks. Note that even the largest possible value of
q for a given eigenvalue may be (much) smaller than its
multiplicity m. Furthermore the case of simple repeat-
ing eigenvalues (with simple eigenvectors) with higher
multiplicity m > 1 leads only to several identical terms
∼ (λ − ρj)

−1 for any eigenvector of this eigenvalue thus
all contributing to the coefficients Cjq and whose precise
values we do not need to know in the following. For us
the important point is that the second identity in (15)
establishes that R(λ) is indeed a rational function whose
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denominator and numerator polynomials have the same
degree and whose poles are (some of) the eigenvalues of
S0.
We mention that one can also show by a simple deter-

minant calculation (similar to a calculation shown in [19]
for triangular networks with nilpotent S0) that:

PS(λ) = PS0
(λ)R(λ) (16)

where PS(λ) [or PS0
(λ)] is the characteristic polynomial

of S (S0). Therefore those zeros of R(λ) which are not
zeros of PS0

(λ) (i.e. not eigenvalues of S0) are indeed
zeros of PS(λ) (i.e. eigenvalues of S) since there are not
poles of R(λ). Furthermore, generically the simple zeros
PS0

(λ) also appear as poles in R(λ) and are therefore not
eigenvalues of S. However, for a zero of PS0

(λ) (eigen-
value of S0) with higher multiplicity m > 1 (and unless
m is equal to the maximal Jordan block order q associ-
ated to this eigenvalue of S0) the corresponding pole in
R(λ) only reduces the multiplicity to m − 1 (or m − q
in case of higher order generalized eigenvectors) and we
have also a zero of PS(λ) (eigenvalue of S). Some of the
eigenvalues of S0, whose eigenvectors ψ are orthogonal to
the dangling vector (dTψ = 0) and do not contribute in
the expansion in (15), are not poles ofR(λ) and therefore
also eigenvalues of S. This concerns essentially the direct
subspace eigenvalues of S which are also direct subspace
eigenvalues of S0 as already mentioned above. In total
the identity (16) confirms exactly the above picture that
there are two groups of eigenvalues and with the special
role of direct subspace eigenvalues belonging to the first
group.
Our aim is to determine numerically the zeros of the

rational function R(λ). In order to evaluate this function
we expand the first identity in (15) in a matrix geometric
series and we obtain

R(λ) = 1−
∞
∑

j=0

cjλ
−1−j (17)

with the coefficients cj defined in (5) and provided that
this series converges. In the last subsection, where we
discussed the case of a nilpotent matrix S0 with Sl

0 = 0,
the series was finite and for this particular case we had
R(λ) = λ−lPr(λ) where Pr(λ) was the reduced polyno-
mial defined in (8) and whose zeros provided the l non-
vanishing eigenvalues of S for nilpotent S0.
However, for the CNPR the series are infinite since all

cj are different from zero. One may first try a crude ap-
proximation and simply replace the series by a finite sum
for j < l and using some rather large cutoff value for l and
determine the zeros in the same way as for the nilpotent
case (high precision calculation of the zeros of the reduced
polynomial of degree l). It turns that in this way we ob-
tain correctly the largest core space eigenvalue of S as
λ1 = 0.999751822283878 which is also obtained by (any
variant of) the Arnoldi method. However, the other zeros
obtained by this approximation lie all on a circle of radius

≈ 0.9 in the complex plane and do not obviously repre-
sent any valid eigenvalues. Increasing the cutoff value l
does not help either and it increases only the density of
zeros on this circle. To understand this behavior we note
that in the limit j → ∞ the coefficients cj behave as

cj ∝ ρj1 where ρ1 = 0.902448280519224 is the largest
eigenvalue of the matrix S0 with an eigenvector non-
orthogonal to d. Note that the matrix S0 has also some
degenerate eigenvalues at +1 and −1 but these eigenval-
ues are obtained from the direct subspace eigenvectors of
S (which are also direct subspace eigenvectors of S0) and
which are orthogonal to the dangling vector d and do not
contribute in the rational function (15). It turns actu-
ally out that the eigenvalue ρ1 is also the largest subspace
space eigenvalue of S0 (after having removed the direct
subspace nodes of S). By analyzing explicitly the small-
dimensional subspace related to this eigenvalue one can
show that ρ1 is given as the largest solution of the poly-
nomial equation x3 − 2

3x − 2
15 = 0 and can therefore be

expressed as ρ1 = 2Re [(9 + i
√
119)1/3]/(135)1/3. The

asymptotic behavior cj ∝ ρj1 is also confirmed by the di-
rect numerical evaluation of cj . Therefore the series (17)
converges only for |λ| > ρ1 and a simple (even very large)
cutoff in the sum implies that only eigenvalues |λj | > ρ1
can be determined as a zero of the finite sum. The only
eigenvalue respecting this condition is the largest core
space eigenvalue λ1 given above.

One may try to improve this by a “better” approxima-
tion which consists of evaluating the sum exactly up to
some value l and than to replace the remaining sum as

a geometric series with the approximation: cj ≈ clρ
j−l
1

for j ≥ l and with ρ1 determined as the ratio ρ1 =
cl/cl−1 (which provides a sufficient approximation) or
taken as its exact (high precision) value. This improved
approximation results in R(λ) ≈ λ−l(λ − ρ1)

−1P(λ)
with a polynomial P(λ) whose zeros provide in total
four correct eigenvalues. Apart from λ1 it also gives
λ2 = 0.902445536212661 (note that this eigenvalue of S
is very close but different to the eigenvalue ρ1 of S0) and
λ3,4 = 0.765857950563684 ± i 0.251337495625571 such
that |λ3,4| = 0.806045245100386. All these four core
space eigenvalues coincide very well with the first four
eigenvalues obtained from the Arnoldi method. However,
the other zeros of the Polynomial P(λ) lie again on a cir-
cle, now with a reduced radius ≈ 0.7, and do not coincide
with eigenvalues of S. This can be understood by the fact
that the coefficients cj obey for j → ∞ the more precise

asymptotic expression cj ≈ C1ρ
j
1+C2ρ

j
2+C2ρ

j
3+ . . . with

the next eigenvalues ρ2 = 1/
√
2 ≈ 0.707 and ρ3 = −ρ2.

Here the first term C1ρ
j
1 is dealt with analytically by the

replacement of the geometric series but the other terms
create a new convergence problem. Therefore the im-
proved approximation allows only to determine the four
core space eigenvalues with |λj | > |ρ2,3| = 1/

√
2. To ob-

tain more valid eigenvalues it seems to be necessary to
sum up by geometric series many of the next terms, not
only the next two terms due to ρ2 and ρ3, but also the
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following terms of smaller eigenvalues ρj of S0. In other
words the exact pole structure of the rational function
R(λ) has be kept as best as possible.
Therefore due to the rational structure of the function

R(λ) with many eigenvalues ρj of S0 that determine its
precise pole structure we suggest the following numerical
approach using high precision arithmetic. For a given
number p of binary digits, e.g. p = 1024, we determine
the coefficients cj for j < l where the cutoff value

l ≈ ln(1− ρ1)− p ln(2)

ln(ρ1)
≈ 6.753 p+ const. (18)

is sufficiently large to evaluate the sum (17) accurately
in the given precision of p binary digits (error below
2−p) for all complex values λ on the unit circle, i.e.
|λ| = 1, where the series converges well. Furthermore
we choose a number nR of “eigenvalues” we want to cal-
culate, e.g. nR = 300, and evaluate the rational function
R(z) at nS = 2nR+1 support points zj = exp(2πi j/nS)
(j = 0, . . . , nS − 1) uniformly distributed on the unit
circle using the series (17). Then we calculate the ra-
tional function RI(z) which interpolates R(z) at the nS

support points zj, RI(zj) = R(zj), using Thiele’s inter-
polation formula. Then the numerator and denominator
polynomials of RI(z) are both of degree nR. Thiele’s
interpolation formula expresses RI(z) in terms of a con-
tinued fraction expansion using inverse differences. This
method is quite standard and well described in the lit-
erature of numerical mathematics, see for example [31].
After having evaluated a table of nS inverse differences
(with n2

S/2 operations) one can evaluate arbitrary values
of RI(z) using the continued fraction expansion (with
nS operations). It is not very difficult to derive from
the continued fraction expansion a recursive scheme to
evaluate the values of the numerator and denominator
polynomials separately as well as their derivatives. Us-
ing this scheme we determine the nR complex zeros of the
numerator polynomial using the (high precision variant
of the) Newton-Maehly method. These zeros correspond
to the zeros of the rational functional R(z) and are taken
as approximate eigenvalues of the matrix S of the second
group. The main idea of this approach is to evaluate
these zeros from the analytical continuation of R(z) us-
ing values for |z| = 1 to determine its zeros well inside
the unit circle.
We also consider a second variant of the method where

the number of support points nS = 2nR + 2 is even (in-
stead of nS = 2nR+1 being odd as for the first variant).
In this case the numerator polynomial is of degree nR+1
(instead of nR) while the denominator polynomial is of
degree nR and we choose to interpolate the inverse of the
rational function 1/R(z) (instead ofR(z) itself) by RI(z)
such that the zeros of R(z) are given by the nR zeros of
the denominator (instead of the numerator) polynomial
of RI(z).
The number nR must not be too small in order to well

approximate the second identity in (15) by the fit func-
tion. On the other hand for a given precision of p binary

digits the number of nR must not be too large as well
because the coefficients cj , which may be written as the
expansion cj =

∑

ν Cν ρ
j
ν , do not contain enough infor-

mation to resolve its structure for the smaller eigenvalues
ρj of S0. Therefore for too large values of nR (for a given
precision), we obtain additional artificial zeros of the nu-
merator polynomial (or of the denominator polynomial
for the second variant) of RI(z), mostly close to the unit
circle, somehow as additional nodes around the support
points.

It turns out that for the proper combination of p and
nR values the method provides highly accurate eigenval-
ues and works astonishingly well. In particular for val-
ues of nR below a certain threshold (depending on the
precision p) both variants of the method with odd or
even number of support points provide numerically iden-
tical zeros (with final results rounded to 52 binary digits)
which indeed coincide very accurately (for most of them)
with the eigenvalues of S we want to determine.

For example, as can be seen in Fig. 9, for p = 1024 we
obtain nR = 300 eigenvalues for which the big majority
coincides numerically (error ∼ 10−14) with the eigenval-
ues obtained from the high precision Arnoldi method for
768 binary digits and furthermore both variants of the
rational interpolation method provide identical spectra.

However for nR = 340 some of the zeros do not coincide
with eigenvalues of S and most of these deviating zeros
lie close to the unit circle. We can even somehow distin-
guish between “good” zeros (associated to eigenvalues of
S) being identical for both variants of the method and
“bad” artificial zeros which are completely different for
both variants (see Fig. 9). We note that for the case of
too large nR values the artificial zeros are extremely sen-
sitive to numerical round-off errors (in the high precision
variables) and that they change strongly, when slightly
modifying the support points (e.g. a random modifica-
tion ∼ 10−18 or simply changing their order in the inter-
polation scheme) or when changing the precise numeri-
cal algorithm (e.g. between direct sum or Horner scheme
for the evaluation of the series of the rational function).
Furthermore, they do not respect the symmetry that the
zeros should come in pairs of complex conjugate numbers
in case of complex zeros. This is because Thiele’s rational
interpolation scheme breaks the symmetry due to com-
plex conjugation once round-off errors become relevant.

However, we have carefully verified that for the proper
values of nR not being too large (e.g. nR = 300 for
p = 1024) the obtained zeros are numerically identical
(with 52 binary digits in the final result) with respect to
small changes of the support points (or their order) or
with respect to different numerical algorithms and that
they respect perfectly the symmetry due to complex con-
jugation.



14

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

λ-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

λ

-0.1

 0

 0.1

-0.1  0  0.1
-0.1

 0

 0.1

-0.1  0  0.1

FIG. 9: (Color online) Top Panels: Left: Comparison of
nR = 340 core space eigenvalues of S for CNPR obtained
by two variants of the rational interpolation method (see
text) with the numerical precision of p = 1024 binary dig-
its, 681 support points (first variant, red crosses) or 682
support points (second variant, blue squares). Right: Com-
parison of the core space eigenvalues of CNPR obtained by
the high precision Arnoldi method with nA = 2000 and
p = 768 binary digits (red crosses, same data as blue squares
in Fig. 7) with the eigenvalues obtained by (both variants
of) the rational interpolation method with the numerical pre-
cision of p = 1024 binary digits and nR = 300 eigenvalues
(blue squares). Here both variants with 601 or 602 support
points provide identical spectra (differences below 10−14).
Middle panels: Same as top panels with a zoomed range:
−0.5 ≤ Re(λ), Im(λ) ≤ 0.5. Bottom Panels: Left: Com-
parison of the core space spectra obtained by the high preci-
sion Arnoldi method (red crosses, nA = 2000 and p = 768)
and by the rational interpolation method with p = 12288,
nR = 2000 eigenvalues (blue squares). Right: Same as left
panel with p = 16384, nR = 2500 for the rational interpo-
lation method. Both panels are shown in a zoomed range:
−0.1 ≤ Re(λ), Im(λ) ≤ 0.1. Eigenvalues outside the shown
range coincide up to graphical precision and both variants of
the rational interpolation method provide numerically identi-
cal spectra.

This method, despite the necessity of high precision
calculations, is not very expensive, especially for the
memory usage, compared, for example, with the high
precision Arnoldi method. Furthermore, its efficiency for
the computation time can be improved by the trick of
summing up the largest terms in the series (17) as a ge-
ometrical series which allows to reduce the cutoff value

of l by a good factor 3, i.e. replacing ρ1 ≈ 0.902 by
ρ2 = 1/

√
2 ≈ 0.707 in the estimate (18) of l which

gives l ≈ 2 p + const. We have increased the number
of binary digits up to p = 16384 and we find that for
p = 1024, 2048, 4096, 6144, 8192, 12288, 16384we may use
nR = 300, 500, 900, 1200, 1500, 2000, 2500 and still avoid
the appearance of artificial zeros. In Fig. 9 we also com-
pare the result of the highest precisions p = 12288 (and
p = 16384) using nR = 2000 (nR = 2500) with the high
precision Arnoldi method with nA = 2000 and p = 768
and these spectra coincide well apart from a minor num-
ber of smallest eigenvalues. In general, the complex iso-
lated eigenvalues converge very well (with increasing val-
ues of p and nR) while the strongly clustered eigenvalues
on the real axis have more difficulties to converge. Com-
paring the results between nR = 2000 and nR = 2500
we see that the complex eigenvalues coincide on graph-
ical precision for |λ| ≥ 0.04 and the real eigenvalues for
|λ| ≥ 0.1. The Arnoldi method has even more difficulties
on the real axis (convergence roughly for |λ| ≥ 0.15) since
it has implicitly to take care of the highly degenerate
eigenvalues of the first group and for which it has diffi-
culties to correctly find the degeneracies (see also Fig. 8).

Fig. 10 shows as summary the highest precision spectra
of S with core space eigenvalues obtained by the Arnoldi
method or the rational interpolation method (both at
best parameter choices) and also taking into account the
direct subspace eigenvalues of S and the above deter-
mined eigenvalues of the first group (degenerate subspace
eigenvalues of S0).

We remind that the rational interpolation method al-
lows only to determine the eigenvalues of S of the second
group, i.e. the eigenvalues which are not eigenvalues of S0

and whose eigenvectors obey dTψ 6= 0. The eigenvalues
of the first group (with dTψ = 0) have to be determined
separately by the above described scheme of degenerate
subspace eigenvalues of S0. In particular the eigenval-
ues given in Table I and belonging to the first group are
not zeros of the rational function R(z) (they are actu-
ally poles of this function) but it turns out that there are
some zeros of R(z) which are very close but not iden-
tical to some of the values in Table I. For example the
rational interpolation method provides the following ze-
ros: 1/2 + 3.13401098× 10−5, 1/2 + 1.3279300 × 10−7,

1/
√
2− 1.1597× 10−10 or 1/

√
2− 6.419004× 10−8 which

are indeed accurate in the given precision since they are
stable for all values of p ≥ 1024 and the corresponding
maximal value of nR and we have stopped the Newton it-
eration when the error of a zero was clearly below 10−18.
These zeros are also found with the same precision in the
data of the high precision Arnoldi method for the three
different values of 256, 512 or 768 binary digits. How-
ever, based only on results of the Arnoldi method it is
not really clear if the small corrections to 1/2 or 1/

√
2 are

real and exact or numerically artificial since the Arnoldi
method has indeed problems with degenerate and clus-
tered eigenvalues [17]. Therefore the rational interpola-
tion method provides an independent and strong confir-
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mation of the accuracy of these type of eigenvalues. We
attribute their existence to a quasi-subspace structure,
similarly as discussed in [10], with a matrix subblock as
in (14) but which is still very weakly coupled (by many
indirect network links) to the core space.
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FIG. 10: (Color online) The most accurate spectrum of
eigenvalues of S for CNPR. Top panels: Left: red dots repre-
sent the core space eigenvalues obtained by the rational inter-
polation method with the numerical precision of p = 16384
binary digits, nR = 2500 eigenvalues. Green dots show the
degenerate subspace eigenvalues of the matrix S0 which are
also eigenvalues of S with a degeneracy reduced by one (eigen-
values of the first group, see text). Blue dots show the direct
subspace eigenvalues of S (same as blue dots in left upper
panel in Fig. 3). Right: red dots represent the core space
eigenvalues obtained by the high precision Arnoldi method
with nA = 2000 and the numerical precision of p = 768 binary
digits and blue dots show the direct subspace eigenvalues of
S. Note that the Arnoldi method determines implicitly also
the degenerate subspace eigenvalues of S0 which are there-
fore not shown in another color. Bottom panels: Same as top
panels with a zoomed range: −0.4 ≤ Re(λ), Im(λ) ≤ 0.4.

III. FRACTAL WEYL LAW FOR CNPR

The concept of the fractal Weyl law [32, 33],[34] states
that the number of states Nλ in a ring of complex eigen-
values with λc ≤ |λ| ≤ 1 scales in a polynomial way with
the growth of matrix size:

Nλ = aN b . (19)

where the exponent b is related to the fractal dimension
of underlying invariant set df = 2b. The fractal Weyl law
was first discussed for the problems of quantum chaotic
scattering in the semiclassical limit [32, 33],[34]. Later it
was shown that this law also works for the Ulam matrix

approximant of the Perron-Frobenius operators of dissi-
pative chaotic systems with strange attractors [6, 7]. In
[11] it was established that the time growing Linux Ker-
nel network is also characterized by the fractal Weyl law
with the fractal dimension df ≈ 1.3.
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FIG. 11: (Color online) Data for the whole CNPR at different
moments of time. Top panels: the left (right) panel shows the
number Nλ of eigenvalues with λc ≤ λ ≤ 1 for λc = 0.50
(λc = 0.65) versus the effective network size Nt where the
nodes with publication times after a cut time t are removed
from the network. The green line shows the Weyl law Nλ =
a (Nt)

b with parameters a = 0.32 ± 0.08 (a = 0.24 ± 0.11)
and b = 0.51 ± 0.02 (b = 0.47 ± 0.04) obtained from a fit in
the range 3× 104 ≤ Nt < 5 × 105. The number Nλ includes
both exactly determined invariant subspace eigenvalues and
core space eigenvalues obtained from the Arnoldi method with
double-precision (52 binary digits) for nA = 4000 (red crosses)
and nA = 2000 (blue squares). Bottom panels: Left: exponent
b with error bars obtained from the fit Nλ = a (Nt)

b in the
range 3 × 104 ≤ Nt < 5 × 105 versus cut value λc. Right:

effective network size Nt versus cut time t (in years). The

green line shows the exponential fit 2(t−t0)/τ with t0 = 1791±
3 and τ = 11.4 ± 0.2 representing the number of years after
which the size of the network (number of papers published in
all Physical Review journals) is effectively doubled.

The fact that b < 1 implies that the majority of eigen-
values drop to zero. We see that this property also ap-
pears for the CNPR if we test here the validity of the
fractal Weyl law by considering a time reduced CNPR
of size Nt including the Nt papers published until the
time t (measured in years) for different times t in order
to obtain a scaling behavior of Nλ as a function of Nt.
The data presented in Fig. 11 shows that the network
size grows approximately exponentially as Nt = 2(t−t0)/τ

with the fit parameters t0 = 1791, τ = 11.4. The time
interval considered in Fig. 11 is 1913 ≤ t ≤ 2009 since the
first data point corresponds to t = 1913 with Nt = 1500
papers published between 1893 and 1913. The results for
Nλ show that its growth is well described by the relation
Nλ = a (Nt)

b for the range when the number of articles
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becomes sufficiently large 3 × 104 ≤ Nt < 5 × 105. This
range is not very large and probably due to that there
is a certain dependence of the exponent b on the range
parameter λc. However, we have 0.47 < b < 0.6 for all
λc ≥ 0.4 that is definitely smaller than unity and thus
the fractal Weyl law is well applicable to the CNPR. The
value of b increases up to 0.7 for the data points with
λc < 0.4 but this is due to the fact here Nλ also in-
cludes some numerically incorrect eigenvalues related to
the numerical instability of the Arnoldi method at stan-
dard double-precision (52 binary digits) as discussed in
the beginning of the previous section.

We think that the most appropriate choice for the de-
scription of the data is obtained at λc = 0.4 which from
one side excludes small, partly numerically incorrect, val-
ues of λ and on the other side gives sufficiently large val-
ues of Nλ. Here we have b = 0.49± 02 corresponding to
the fractal dimension d = 0.98 ± 0.04. Furthermore, for
0.4 ≤ λc ≤ 0.7 we have a rather constant value b ≈ 0.5
with df ≈ 1.0. Of course, it would be interesting to ex-
tend this analysis to a larger size N of CNPR but for that
we still should wait about 10 years until the network size
will be doubled comparing to the size studied here.

IV. PROPERTIES OF EIGENVECTORS

The results for the eigenvalue spectra of CNPR pre-
sented in the previous sections show that most of the
visible eigenvalues on the real axis (except for the largest
one) in Figs. 9 and 10 are due to the effect of future cita-
tions. They appear either directly due to 2×2 subblocks
of the type (14) with a cycle where two papers mutu-
ally cite each other giving the degenerate eigenvalues of
the first group, or indirectly by eigenvalues of the second
group which are also numerous on the real axis. On the
other hand, as can be seen in Fig. 6, for the triangular
CNPR, where all future citations are removed, there is
only the leading eigenvalue λ = 1 and a small number
of negative eigenvalues with −0.27 < λ < 0 on the real
axis. All other eigenvalues are complex and a consid-
erable number of the largest ones are relatively close to
corresponding complex eigenvalues for the whole CNPR
with future citations.

The appearance of future citations is quite specific and
is not a typical situation for citation networks. Therefore
we consider the eigenvectors of complex eigenvalues for
the triangular CNPR which indeed represent the typi-
cal physical situation without future citations. There is
no problem to evaluate these eigenvectors by the Arnoldi
method, either with double-precision, provided the eigen-
value of the eigenvector is situated in the region of nu-
merically accurate eigenvalues, or with the high precision
variant of the Arnoldi method. However, for the trian-
gular CNPR we have, according to the semi-analytical

theory presented above, the explicit formula:

ψ ∝ (λ11− S0)
−1 e/N =

l−1
∑

j=0

λ−(1+j) Sj
0e/N (20)

where the normalization is given by
∑

i |ψ(i)| = 1. This
expression is quite convenient and we verified that it pro-
vides the same eigenvectors (up to numerical errors) as
the Arnoldi method.
In Fig. 12 we show two eigenvectors of S: one ψ0 for

the leading eigenvalue λ0 = 1 and another ψ39 for a com-
plex eigenvalue at |λ39| < 1. The eigenvector of λ0 gives
the PageRank probability for the triangular CNPR (at
α = 1). We also consider the eigenvector for the com-
plex eigenvalue λ39 = −0.3738799 + i 0.2623941 (eigen-
values are ordered by their absolute values starting from
λ0 = 1). In this figure the modulus of |ψj(Nt)| is shown
versus the time index Nt as introduced in Fig. 11. We
also indicate the positions of five famous papers: BCS
1957 [35] at K = 6, Anderson 1958 [36]K = 63, Benettin
et al. 1976 [37]K = 441, Thouless 1977 [38]K = 256 and
Abrahams et al. 1979 [39] K = 74. In the first eigenvec-
tor for λ0 = 1 all of these papers have quite dominating
positions, especially BCS 1957 and Abrahams et al. 1979
which are the most important ones if compared to papers
of comparable publication date. Only considerably older
papers have higher positions in this vector.
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FIG. 12: (Color online) Two eigenvectors of the matrix S for
the triangular CNPR. Both panels show the modulus of the
eigenvector components |ψj(Nt)| versus the time index Nt (as
used in Fig. 11) with nodes/articles ordered by the publication
time (small red dots). The blue points represent five partic-
ular articles: BCS 1957 (+), Anderson 1958 (×), Benettin et
al. 1976 (∗), Thouless 1977 (⊡) and Abrahams et al. 1979
(⊙). The left (right) panel corresponds to the real (complex)
eigenvalue λ0 = 1 (λ39 = −0.3738799 + i 0.2623941).

For the second eigenvector with complex eigenvalue
the older papers (with 103 < Nt < 104 correspond-
ing to publications times between 1910 and 1940) are
strongly enhanced in its importance while the above five
famous papers lose their importance. The top 3 po-
sitions of largest amplitude |ψ39(i)| correspond to DOI
10.1103/PhysRev.14.409 (1919), 10.1103/PhysRev.8.561
(1916), 10.1103/PhysRev.24.97 (1917). These old arti-
cles study the radiating potentials of nitrogen, ionization
impact in gases and the abnormal low voltage arc. It is
clear that this eigenvector selects a certain community of
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old articles related to a certain ancient field of interest.
This fact is in agreement with the studies of eigenvectors
of Wikipedia network [13] showing that the eigenvectors
with 0 < |λ| < 1 select specific communities.

It is interesting to note that the top node of the vector
ψ0 appears in the position K39 = 39 in local rank index
of the vector ψ39 (ranking in decreasing order by modulus
of |ψ(i)|). On the other side the top node of ψ39 appears
at position K0 = 30 of vector ψ0. This illustrates how
different nodes contribute to different eigenvectors of S.

It is useful to characterize the eigenvec-
tors by their Inverse Participation Ratio (IPR)
ξi = (

∑

j |ψi(j)|2)2/
∑

j |ψi(j)|4 which gives an ef-
fective number of nodes populated by an eigenvector
ψi (see e.g. [8, 13]). For the above two vectors we find
ξ0 = 20.67 and ξ39 = 10.76. This means that ξ39 is
mainly located on approximately 11 nodes. For ξ0 this
number is twice larger in agreement with data of Fig. 12
which show a clearly broader distribution comparing to
ξ39.

We also considered a few tens of eigenstates of S of the
whole CNPR. They are mainly located on the complex
plane around the largest oval curve well visible in the
spectrum (see Fig. 10 top right panel). The IPR value
of these eigenstates with |λ| ∼ 0.4 varies in the range
4 < ξ < 13 showing that they are located on some effec-
tive quasi-isolated communities of articles. About 10 of
them are related to the top article of ψ39 shown in Fig. 12
meaning that these ten vectors represent various linear
combinations of vectors on practically the same commu-
nity. In global, we can say that the eigenstates of G are
well localized since ξ ≪ N . A similar situation was seen
for the Wikipedia network [13].

Of course, in addition to ξ it is also useful to consider
the whole distribution of ψ amplitudes over the nodes.
Such a consideration has been done for the Wikipedia
network in [13]. For the CNPR we leave such detailed
studies for further investigations.

V. CHEIRANK VERSUS PAGERANK FOR
CNPR

The dependence of PageRank probability P (K) on
PageRank index K is shown in Fig. 13. The results are
similar to those of [22]. We note that the PageRank of
the triangular CNPR has the same top 9 articles as for
the whole CNPR (both at α = 0.85 and with a slight
interchanged order of positions 7, 8, 9). This confirms
that the future citations produce only a small effect on
the global ranking.
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FIG. 13: (Color online) Dependence of probability of Page-
Rank P (CheiRank P ∗) on corresponding index K (K∗) for
the CNPR at α = 0.85.

Following previous studies [24],[25, 26], in addition to
the Google matrix G we also construct the matrix G∗ fol-
lowing the same definition (1) but for the network with
inverted direction of links. The PageRank vector of this
matrix G∗ is called the CheiRank vector with probabil-
ity P ∗(K∗

i ) and CheiRank index K∗. The dependence of
P ∗(K∗

i ) is shown in Fig. 13. We find that the IPR values
of P and P ∗ are ξ = 59.54 and 1466.7 respectively. Thus
P ∗ is extended over significantly larger number of nodes
comparing to P . A power law fit of the decay P ∝ 1/Kβ,

P ∗ ∝ 1/K∗β , done for a range K,K∗ ≤ 2 × 105 gives
β ≈ 0.57 for P and β ≈ 0.4 for P ∗. However, this is only
an approximate description since there is a visible cur-
vature (in a double logarithmic representation) in these
distributions. The corresponding frequency distributions
of ingoing links have exponents µ = 2.87 while the dis-
tribution of outgoing links has µ ≈ 3.7 for outdegree
k ≥ 20, even if the whole frequency dependence in this
case is rather curved and a power law fit is rather approx-
imate in this case. Thus the usual relation β = 1/(µ− 1)
[4, 8, 25] approximately works.
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FIG. 14: (Color online) Density distribution W (K,K∗) =
dNi/dKdK

∗ of Physical Review articles in the PageRank-
CheiRank plane (K,K∗). Color bars show the natural log-
arithm of density, changing from minimal nonzero density
(dark) to maximal one (white), zero density is shown by black.
Left panel: all articles of CNPR; right panel: CNPR without
Rev. Mod. Phys.

The correlation between PageRank and CheiRank
vectors can be characterized by the correlator κ =

N
∑N

i=1 P (i)P
∗(i)−1 [24, 26]. Here we find κ = −0.2789

for all CNPR, and κ = −0.3187 for CNPR without Rev.
Mod. Phys. This is the most strong negative value of
κ among all directed networks studied previously [26].
In a certain sense the situation is somewhat similar to
the Linux Kernel network where κ ≈ 0 or slightly neg-
ative (κ > −0.1 [24]). For CNPR, we can say that due
to a almost triangular structure of G and G∗ there is
a very little overlap of top ranking in K and K∗ that
leads to a negative correlator value, since the components
P (i)P ∗(i) of the sum for κ are small.
Each article i has two indexes Ki,K

∗

i so that it is
convenient to see their distribution on 2D PageRank-
CheiRank plane. The density distribution W (K,K∗) =
dNi/dKdK

∗ is shown in Fig. 14. It is obtained from
100 × 100 cells equidistant in log-scale (see details in
[25, 26]). For the CNPR the density is homogeneous
along lines K = −K∗ + const that corresponds to the
absence of correlations between P and P ∗ [25, 26]. For
the CNPR without Rev. Mod. Phys. we have an addi-
tional suppression of density at low K∗ values. Indeed,
Rev. Mod. Phys. contains mainly review articles with
a large number of citations that place them on top of
CheiRank. At the top 3 positions of K∗ of CNPR we
have DOI 10.1103/PhysRevA.79.062512, 10.1103/Phys-
RevA.79.062511, 10.1103/RevModPhys.81.1551 of 2009.
These are articles with long citation lists on K shell di-
agram 4d transition elements; hypersatellites of 3d tran-
sition metals; superconducting phases of f electron com-
pounds. For CNPR without Rev. Mod. Phys. the first
two articles are the same and the third one has DOI
10.1103/PhysRevB.80.224501 being about model for the
coexistence of d wave superconducting and charge den-
sity wave order in in high temperature cuprate supercon-
ductors. We see that the most recent articles with long
citation lists are dominating.
The top PageRank articles are analyzed in detail in

[22] and we do not discuss them here.

It is also useful to consider two-dimensional rank
2DRank K2 defined by counting nodes in order of their
appearance on ribs of squares in (K,K∗) plane with
the square size growing from K = 1 to K = N
[25]. It selects highly cited articles with a relatively
long citation list. For CNPR, we have top 3 such
articles with DOI 10.1103/RevModPhys.54.437 (1982),
10.1103/RevModPhys.65.851 (1993), 10.1103/RevMod-
Phys.58.801 (1986). Their topics are electronic proper-
ties of two dimensional systems, pattern formation out-
side of equilibrium, spin glasses facts and concepts. The
1st one located at K = 183, K∗ = 49 is well visible
in the left panel of Fig. 14. For CNPR without Rev.
Mod. Phys. we find at K2 = 1 the article with DOI
10.1103/PhysRevD.54.1 (1996) entitled Review of Par-
ticle Physics with a lot of information on physical con-
stants.
For the ranking of articles about persons in Wikipedia

networks [14, 25],[40], PageRank, 2DRank, CheiRank
highlights in a different manner various sides of human
activity. For the CNPR, these 3 ranks also select dif-
ferent types of articles, however, due a triangular struc-
ture of G,G∗ and absence of correlations between PageR-
ank and CheiRank vectors the useful side of 2DRank and
CheiRank remains less evident.

VI. IMPACTRANK FOR INFLUENCE
PROPAGATION

It is interesting to quantify how an influence of a given
article propagates through the whole CNPR. To analyze
this property we consider the following propagator acting
on an initial vector v0 located on a given article:

vf =
1− γ

1− γG
v0 , v∗f =

1− γ

1− γG∗
v0 . (21)

Here G,G∗ are the Google matrices defined above, γ is a
new impact damping factor being in a range γ ∼ 0.5−0.9,
vf in the final vector generated by the propagator (21).
This vector is normalized to unity

∑

i vf (i) = 1 and one
can easily show that it is equal to the PageRank vector
of a modified Google matrix given by

G̃ = γ G+ (1 − γ) v0 e
T (22)

where e is the vector with unit elements. This modi-
fied Google matrix corresponds to a stochastic process
where at a certain time a given probability distribution
is propagated with probability γ using the initial Google
matrix G and with probability (1 − γ) the probability
distribution is reinitialized with the vector v0. Then
vf is the stationary vector from this stochastic process.
Since the initial Google matrix G has a similar form,
G = αS + (1−α)e eT /N with the damping factor α, the
modified Google matrix can also be written as:

G̃ = α̃ S + (1− α̃) vp e
T , α̃ = γα , (23)
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with the personalization vector [4]

vp =
γ(1− α)e/N + (1− γ)v0

1− γα
(24)

which is also sum normalized:
∑

i vp(i) = 1. Obviously
similar relations hold for G∗ and v∗f .
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FIG. 15: (Color online) Dependence of impact vector vf prob-
ability P and P ∗ (left and right panels) on the corresponding
ImpactRank index K and K∗ for an initial article v0 as BCS
[35] and Anderson [36] in CNPR, and Napoleon in English
Wikipedia network from [40]. Here the impact damping fac-
tor is γ = 0.5.

The relation (21) can be viewed as a Green function
with damping γ. Since γ < 1 the expansion in a geo-
metric series is convergent and vf can be obtained from
about 200 terms of the expansion for γ ∼ 0.5. The sta-
bility of vf is verified by changing the number of terms.
The obtained vectors vf , v

∗

f can be considered as effective
PageRank, CheiRank probabilities P , P ∗ and all nodes
can be ordered in the corresponding rank index K, K∗,
which we will call ImpactRank.
The results for 2 initial vectors located on BCS [35] and

Anderson [36] articles are shown in Fig. 15. In addition
we show the same probability for the Wikipedia article
Napoleon for the English Wikipedia network analyzed in
[40]. The direct analysis of the distributions shows that
the original article is located at the top position, the next
step like structure corresponds to the articles reached by
first outgoing (ingoing) links from v0 for G (G∗). The
next visible step correspond to a second link step.
Top ten articles for these 3 vectors are shown in Tables

II, III, IV, V, VI. The analysis of these top articles con-
firms that they are closely linked with the initial article
and thus the ImpactRank gives relatively good ranking
results. At the same time, some questions for such Im-
pactRanking still remain to be clarified. For example,
in Table V we find at the third position the well known
Rev. Mod. Phys. on Anderson transitions but the pa-
per of Abrahams et al. [39] appears only on far positions
K∗ ≈ 300. The situation is changed if we consider all
CNPR links as bi-directional obtaining a non-directional
network. Then the paper [39] appears on the second posi-
tion directly after initial article [36]. We think that such
a problem appears due to triangular structure of CNPR
where there is no intersection of forward and backward
flows. Indeed, for the case of Napoleon we do not see

such difficulties. Thus we hope that such an approach
can be applied to other directed networks.

VII. MODELS OF RANDOM
PERRON-FROBENIUS MATRICES

In this section we discuss the spectral properties of
several random matrix models of Perron-Frobenius oper-
ators characterized by non-negative matrix elements and
column sums normalized to unity. We call these mod-
els Random Perron-Frobenius Matrices (RPFM). To con-
struct these models for a given matrix G of dimension N
we draw N2 independent matrix elements Gij ≥ 0 from
a given distribution p(G) (with p(G) = 0 for G < 0) with
average 〈G〉 = 1/N and finite variance σ2 = 〈G2〉−〈G〉2.
A matrix obtained in this way obeys the column sum
normalization only in average but not exactly for an ar-
bitrary realization. Therefore we renormalize all columns
to unity after having drawn the matrix elements. This
renormalization provides some (hopefully small) correla-
tions between the different matrix elements.
Neglecting these correlations for sufficiently large N

the statistical average of the RPFM is simply given by
〈Gij〉 = 1/N which is a projector matrix with the eigen-
value λ = 1 of multiplicity 1 and the corresponding eigen-
vector being the uniform vector e (with ei = 1 for all i).
The other eigenvalue λ = 0 is highly degenerate of mul-
tiplicity N − 1 and its eigenspace contains all vectors or-
thogonal to the uniform vector e. Writing the matrix ele-
ments of a RPFM as Gij = 〈Gij〉+δGij we may consider
the fluctuating part δGij as a perturbation which only
weakly modifies the unperturbed eigenvector e for λ = 1
but for the eigenvalue λ = 0 we have to apply degenerate
perturbation theory which requires the diagonalization
of δGij . According to the theory of non-symmetric real
random Gaussian matrices [5, 41, 42] it is well established
that the complex eigenvalue density of such a matrix is
uniform on a circle of radius R =

√
Nσ with σ2 being the

variance of the matrix elements. One can also expect that
this holds for more general, non-Gaussian, distributions
with finite variance provided that we exclude extreme
long tail distribution where the typical values are much
smaller than σ. Therefore we expect that the eigenvalue
density of a RPFM is determined by a single parameter
being the variance σ2 of the matrix elements resulting in
a uniform density on a circle of radius R =

√
Nσ around

λ = 0, in addition to the unit eigenvalue λ = 1 which is
always an exact eigenvalue due to sum normalization of
columns.
We now consider different variants of RPFM. The first

variant is a full matrix with each element uniformly dis-
tributed in the interval [0, 2/N [ which gives the variance

σ2 = 1/(3N2) and the spectral radius R = 1/
√
3N . The

second variant is a sparse RPFM matrix with Q non-
vanishing elements per column and which are uniformly
distributed in the interval [0, 2/Q[. Then the probabil-
ity distribution is given by p(G) = (1 − Q/N)δ(G) +
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TABLE II: Spreading of impact on ”Theory of superconductivity” paper by ”J. Bardeen, L. N. Cooper and J. R. Schrieffer
(doi:10.1103/PhysRev.108.1175) by Google matrix G with α = 0.85 and γ = 0.5

ImpactRank DOI Title of paper

1 10.1103/PhysRev.108.1175 Theory of superconductivity

2 10.1103/PhysRev.78.477 Isotope effect in the superconductivity of mercury

3 10.1103/PhysRev.100.1215 Superconductivity at millimeter wave frequencies

4 10.1103/PhysRev.78.487 Superconductivity of isotopes of mercury

5 10.1103/PhysRev.79.845 Theory of the superconducting state. i. the ground . . .

6 10.1103/PhysRev.80.567 Wave functions for superconducting electrons

7 10.1103/PhysRev.79.167 The hyperfine structure of ni61

8 10.1103/PhysRev.97.1724 Theory of the Meissner effect in superconductors

9 10.1103/PhysRev.81.829 Relation between lattice vibration and London . . .

10 10.1103/PhysRev.104.844 Transmission of superconducting films . . .

TABLE III: Spreading of impact on ”Absence of diffusion in certain random lattices” paper by P. W. Anderson
(doi:10.1103/PhysRev.109.1492) by Google matrix G. with α = 0.85 and γ = 0.5

ImpactRank DOI Title of paper

1 10.1103/PhysRev.109.1492 Absence of diffusion in certain random lattices

2 10.1103/PhysRev.91.1071 Electronic structure of f centers: saturation of . . .

3 10.1103/RevModPhys.15.1 Stochastic problems in physics and astronomy

4 10.1103/PhysRev.108.590 Quantum theory of electrical transport phenomena

5 10.1103/PhysRev.48.755 Theory of pressure effects of foreign gases on spectral lines

6 10.1103/PhysRev.105.1388 Multiple scattering by quantum-mechanical systems

7 10.1103/PhysRev.104.584 Spectral diffusion in magnetic resonance

8 10.1103/PhysRev.74.206 A note on perturbation theory

9 10.1103/PhysRev.70.460 Nuclear induction

10 10.1103/PhysRev.90.238 Dipolar broadening of magnetic resonance lines . . .

TABLE IV: Spreading of impact on ”Theory of superconductivity” paper by ”J. Bardeen, L. N. Cooper and J. R. Schrieffer
(doi:10.1103/PhysRev.108.1175) by Google matrix G∗ with α = 0.85 and γ = 0.5

ImpactRank DOI Title of paper

1 10.1103/PhysRev.108.1175 Theory of superconductivity

2 10.1103/PhysRevB.77.104510 Temperature-dependent gap edge in strong-coupling . . .

3 10.1103/PhysRevC.79.054328 Exact and approximate ensemble treatments of thermal . . .

4 10.1103/PhysRevB.8.4175 Ultrasonic attenuation in superconducting molybdenum

5 10.1103/RevModPhys.62.1027 Properties of boson-exchange superconductors

6 10.1103/PhysRev.188.737 Transmission of far-infrared radiation through thin films . . .

7 10.1103/PhysRev.167.361 Superconducting thin film in a magnetic field - theory of . . .

8 10.1103/PhysRevB.77.064503 Exact mesoscopic correlation functions of the Richardson . . .

9 10.1103/PhysRevB.10.1916 Magnetic field attenuation by thin superconducting lead films

10 10.1103/PhysRevB.79.180501 Exactly solvable pairing model for superconductors with . . .

(Q/N)χ[0,2/Q[(G) where χ[0,2/Q[(G) is the characteris-
tic function on the interval [0, 2/Q[ (with values being

1 for G in this interval and 0 for G outside this inter-
val). The average is indeed 〈G〉 = 1/N and the vari-
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TABLE V: Spreading of impact on ”Absence of diffusion in certain random lattices” paper by P. W. Anderson
(doi:10.1103/PhysRev.109.1492) by Google matrix G∗. with α = 0.85 and γ = 0.5

ImpactRank DOI Title of paper

1 10.1103/PhysRev.109.1492 Absence of diffusion in certain random lattices

2 10.1103/PhysRevA.80.053606 Effects of interaction on the diffusion of atomic . . .

3 10.1103/RevModPhys.80.1355 Anderson transitions

4 10.1103/PhysRevE.79.041105 Localization-delocalization transition in hessian . . .

5 10.1103/PhysRevB.79.205120 Statistics of the two-point transmission at . . .

6 10.1103/PhysRevB.80.174205 Localization-delocalization transitions . . .

7 10.1103/PhysRevB.80.024203 Statistics of renormalized on-site energies and . . .

8 10.1103/PhysRevB.79.153104 Flat-band localization in the Anderson-Falicov-Kimball model

9 10.1103/PhysRevB.74.104201 One-dimensional disordered wires with Poschl-Teller potentials

10 10.1103/PhysRevB.71.235112 Critical wave-packet dynamics in the power-law bond . . .

TABLE VI: Spreading of impact on the article of ”Napoleon” in English Wikipedia by Google matrix G and G∗. with α = 0.85
and γ = 0.5

ImpactRank Articles (G case) Articles (G∗ case)

1 Napoleon Napoleon

2 French Revolution List of orders of battle

3 France Lists of state leaders by year

4 First French Empire Names inscribed under the Arc de Triomphe

5 Napoleonic Wars List of battles involving France

6 French First Republic Order of battle of the Waterloo Campaign

7 Saint Helena Napoleonic Wars

8 French Consulate Wagram order of battle

9 French Directory Departments of France

10 National Convention Jena-Auerstedt Campaign Order of Battle

ance is σ2 = 4/(3NQ) (for N ≫ Q) providing the
spectral radius R = 2/

√
3Q. We may also consider a

sparse RPFM where we have exactly Q non-vanishing
constant elements of value 1/Q in each column with ran-
dom positions resulting in a variance σ2 = 1/(NQ) and
R = 1/

√
Q. The theoretical predictions for these three

variants of RPFM coincide very well with numerical sim-
ulations. In Fig. 16 the complex eigenvalue spectrum for
one realization of each of the three cases is shown for
N = 400 and Q = 20 clearly confirming the circular uni-
form eigenvalue density with the theoretical values of R.
We also confirm numerically the scaling behavior of R as
a function of N or Q.

Motivated by the Google matrices of DNA sequences
[43], where the matrix elements are distributed with a
power law, we also considered a power law variant of
RPFM with p(G) = D(1 + aG)−b for 0 ≤ G ≤ 1 and
with an exponent 2 < b < 3. The condition G ≤ 1 is

required because of the column sum normalization. The
parametersD and a are determined by normalization and
the average 〈G〉 = 1/N . In the limit N b−2 ≫ 1 we find
a ≈ N/(b− 2) and D ≈ N(b − 1)/(b− 2). For b > 3 the

variance would scale with ∼ N−2 resulting in R ∼ 1/
√
N

as in the first variant with uniformly distributed matrix
elements. However, for b < 3 this scaling is different and
we find (for N b−2 ≫ 1) :

R = C(b)N1−b/2 , C(b) = (b− 2)(b−1)/2

√

b− 1

3− b
.

(25)

Fig. 17 shows the results of numerical diagonalization
for one realization with N = 400 and b = 2.5 such that
we expect R ∼ N−0.25. It turns out that the circu-
lar eigenvalue density is rather well confirmed and the
“theoretical radius” is indeed given by R =

√
Nσ if the

variance σ2 of matrix elements is determined by an av-
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erage over the N2 matrix elements of the given matrix.
A study for different values of N with 50 ≤ N ≤ 2000
also confirms the dependence R = C N−η with fit val-
ues C = 0.67 ± 0.03 and η = 0.22 ± 0.01. The value of
η = 0.22 is close to the theoretical value 1 − b/2 = 0.25
but the prefactor C = 0.67 is smaller than its theoreti-
cal value C(2.5) ≈ 1.030. This is due to the correlations
introduced by the additional column sum normalization
after drawing the random matrix elements. Furthermore
for the power law model with b < 3 we should not ex-
pect a precise confirmation of the uniform circular den-
sity obtained for Gaussian distribution matrix elements.
Actually, a more detailed numerical analysis of the den-
sity shows that the density for the power law model is
not exactly uniform, in particular for values of b close to
2.

The important observation is that a generic RPFM
(full, sparse or with power law distributed matrix ele-
ments) has a complex eigenvalue density rather close to
a uniform circle of a quite small radius (depending on
the parameters N , Q or b). The fact, that the realis-
tic networks (e.g. certain university WWW-networks)
have Google matrix spectra very different from this [10],
shows that in these networks there is indeed a subtle net-
work structure and that already slight random perturba-
tions or variations immediately result in uniform circular
eigenvalue spectra. This was already observed in [8, 9],
where it was shown that certain modest random changes
in the network links already provide such circular eigen-
value spectra.

We also determine the PageRank for the different vari-
ants of the RPFM, i.e. the eigenvector for the eigenvalue
λ = 1. It turns out that it is rather uniform that is
rather natural since this eigenvector should be close to
the uniform vector e which is the “PageRank” for the
average matrix 〈Gij〉 = 1/N . This also holds when we
use a damping factor α = 0.85 for the RPFM.

Following the above discussion about triangular net-
works (with Gij = 0 for i ≥ j) we also study numerically
a triangular RPFM where for j ≥ 2 and i < j the ma-
trix elementsGij are uniformly distributed in the interval
[0, 2/(j−1)[ and for i ≥ j we haveGij = 0. Then the first
column is empty, that means it corresponds to a dangling
node and it needs to be replaced by 1/N entries. For the
triangular RPFM the situation changes completely since
here the average matrix 〈Gij〉 = 1/(j − 1) (for i < j and
j ≥ 2) has already a non-trivial structure and eigenvalue
spectrum. Therefore the argument of degenerate per-
turbation theory which allowed to apply the results of
standard full non-symmetric random matrices does not
apply here. In Fig. 16 one clearly sees that for N = 400
the spectra for one realization of a triangular RPFM and
its average are very similar for the eigenvalues with large
modulus but both do not have at all a uniform circular
density in contrast to the RPRM models without the tri-
angular constraint discussed above. For the triangular
RPFM the PageRank behaves as P (K) ∼ 1/K with the
ranking index K being close to the natural order of nodes

{1, 2, 3, . . .} that reflects the fact that the node 1 has the
maximum of N − 1 incoming links etc.
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FIG. 16: (Color online) Top left panel shows the spectrum
(red dots) of one realization of a full uniform RPFM with di-
mension N = 400 and matrix elements uniformly distributed
in the interval [0, 2/N [. The blue circle represents the theo-

retical spectral border with radius R = 1/
√
3N ≈ 0.02887.

The unit eigenvalue λ = 1 is not shown due to the zoomed
presentation range. Top right panel shows the spectrum of
one realization of triangular RPFM (red crosses) with non-
vanishing matrix elements uniformly distributed in the inter-
val [0, 2/(j − 1)[ and a triangular matrix with non-vanishing
elements 1/(j − 1) (blue squares). Here j = 2, 3, . . . , N is
the index-number of non-empty columns and the first column
with j = 1 corresponds to a dangling node with elements 1/N
for both triangular cases. Bottom panels show the complex
eigenvalue spectrum (red dots) of a sparse RPFM with dimen-
sion N = 400 and Q = 20 non-vanishing elements per column
at random positions. The left (right) panel corresponds to
the case of uniformly distributed non-vanishing elements in
the interval [0, 2/Q[ (constant non-vanishing elements being
1/Q). The blue circle represents the theoretical spectral bor-
der with radius R = 2/

√
3Q ≈ 0.2582 (R = 1/

√
Q ≈ 0.2236).

In both bottom panels λ = 1 is shown by a larger red dot for
better visibility. The unit circle is shown by green line (top
right and bottom panels).
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FIG. 17: (Color online) Left panel shows the spectrum (red
dots) of one realization of the power law RPFM with dimen-
sion N = 400 and decay exponent b = 2.5 (see text). The unit
eigenvalue λ = 1 is shown by a large red dot, the unit circle is
shown by green curve. The blue circle represents the spectral
border with theoretical radius R =≈ 0.1850 (see text). Right
panel shows the dependence of the spectrum border radius
on matrix size N for 50 ≤ N ≤ 2000. Red crosses represent
the radius obtained from theory (see text). Blue squares cor-
respond to the spectrum border radius obtained numerically
from a small number of eigenvalues with maximal modulus.
The green line shows the fit R = C N−η of red crosses with
C = 0.67± 0.03 and η = 0.22± 0.01.

The study of above models shows that it is not so sim-
ple to find a good RPFM model which reproduces a typ-
ical spectral structure of real directed networks.

VIII. DISCUSSION

In this study we presented a detailed analysis of the
spectrum of the CNPR for the period 1893 – 2009. It
happens that the numerical simulations should be done
with a high accuracy (up to p = 16384 binary digits for
the rational interpolation method or p = 768 binary dig-
its for the high precision Arnoldi method) to determine
correctly the eigenvalues of the Google matrix of CNPR
at small eigenvalues λ. Due to the time ordering of cita-
tions, the CNPR G matrix is close to the triangular form
with a nearly nilpotent matrix structure. We show that
special semi-analytical methods allow to determine effi-
ciently the spectrum of such matrices. The eigenstates
with large modulus of λ are shown to select specific com-

munities of articles in certain research fields but there is
no clear way on how to identify a community one is in-
terested in. The obtained results show that the spectrum
of CNPR is characterized by the fractal Weyl law with
the fractal dimension df ≈ 1.

The ranking of articles is analyzed with the help of
PageRank and CheiRank vectors corresponding to for-
ward and backward citation flows in time. It is shown
that the correlations between these two vectors are small
and even negative that is similar to the case of Linux
Kernel networks [26] and significantly different from net-
works of universities and Wikipedia. The 2DRanking
on the PagRank-CheiRank plane allows to select arti-
cles which efficiently redistribute information flow on the
CNPR.
To characterize the local impact propagation for a

given article we introduce the concept of ImpactRank
which efficiently determines its domain of influence.

Finally we perform the analysis of several models of
RPFM showing that such full random matrices are very
far from the realistic cases of directed networks. Ran-
dom sparse matrices with a limited number Q of links
per nodes seem to be closer to typical Google matri-
ces concerning the matrix structure. However, still such
random models give a rather uniform eigenvalue density
with a spectral radius ∼ 1/

√
Q and also a flat PageR-

ank distribution. Furthermore they do not capture the
existence of quasi-isolated communities which generates
quasi-degenerate spectrum at λ = 1. Further develop-
ment of RPFM models is required to reproduce the spec-
tral properties of real modern directed networks.
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[33] J. Sjöstrand and M. Zworski, Duke Math. J. 137, 381

(2007).
[34] S. Nonnenmacher and M. Zworski, Commun. Math.

Phys. 269, 311 (2007).
[35] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys.

Rev. 108, 1175 (1957).
[36] P.W. Anderson, Phys. Rev. 109, 1492 (1958)
[37] G. Benettin, L. Galgani, and J.-M. Strelcyn, Phys. Rev.

A 14, 2338 (1976).
[38] D.J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).
[39] E. Abrahams, P.W. Anderson, D.C. Licciardello, and

T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[40] Y.-H. Eom and D.L. Sepelyansky, PLoS ONE 8(10),

e74554 (2013).
[41] J. Ginibre, J. Math. Phys. Sci. 6, 440 (1965).
[42] H.-J. Sommers, A. Crisanti, H. Sompolinsky and

Y. Stein, Phys. Rev. Lett. 60, 1895 (1988); N. Lehmann
and H.-J. Sommers, Phys. Rev. Lett. 67, 941 (1991).

[43] V. Kandiah and D. L. Shepelyansky, PLoS One 8(5),
e61519 (2013).

http://arxiv.org/abs/1304.6601
http://publish.aps.org/
http://www.eigenfactor.org/
http://arxiv.org/abs/1003.5455
http://gmplib.org/

		2012-10-18T14:25:13+0000
	Preflight Ticket Signature


	1: 
		2013-04-24T11:47:29+0000
	Preflight Ticket Signature





