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a b s t r a c t

We propose the PageRank model of opinion formation and investigate its rich properties
on real directed networks of the Universities of Cambridge and Oxford, LiveJournal, and
Twitter. In this model, the opinion formation of linked electors is weighted with their
PageRank probability. Such a probability is used by the Google search engine for ranking
of web pages. We find that the society elite, corresponding to the top PageRank nodes, can
impose its opinion on a significant fraction of the society. However, for a homogeneous
distribution of two opinions, there exists a bistability range of opinions which depends on
a conformist parameter characterizing the opinion formation. We find that the LiveJournal
and Twitter networks have a stronger tendency to a totalitarian opinion formation than the
university networks.We also analyze the Sznajdmodel generalized for scale-free networks
with the weighted PageRank vote of electors.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

To understand the nature and origins of mass opinion formation is an outstanding challenge of democratic societies [1].
In the last few years the enormous development of such social networks as LiveJournal [2], Facebook [3], Twitter [4], and
VKONTAKTE [5], with up to hundreds of millions of users, has demonstrated the growing influence of these networks on
social and political life. The small-world scale-free structure of the social networks (see, e.g., Refs. [6,7]), combined with
their rapid communication facilities, leads to a very fast information propagation over networks of electors, consumers, and
citizens, making them very active on instantaneous social events. This invokes the need for new theoretical models which
would allow one to understand the opinion formation process in modern society in the 21st century.

The important steps in the analysis of opinion formation have been done with the development of various voter models,
described in great detail in Refs. [8–15]. This research field became known as sociophysics [8,10,12]. In this work, we
introduce several new aspects which take into account the generic features of social networks. First, we analyze the opinion
formation on real directed networks taken from the AcademicWeb LinkDatabase Project of British university networks [16],
the LiveJournal database [17], and the Twitter dataset [18]. This allows us to incorporate the correct scale-free network
structure instead of unrealistic regular lattice networks, often considered in voter models [13,14]. Second, we assume that
the opinion at a given node is formed by the opinions of its linked neighbors weighted with the PageRank probability of
these network nodes. We argue that the introduction of such a weight represents the reality of social networks: all the
network nodes are characterized by the PageRank vector which gives the probability of finding a random surfer on a given
node, as described in Refs. [19,20]. This vector gives a steady-state probability distribution on the network which provides a
natural ranking of node importance, or elector or society member importance. The PageRank vector is the right eigenvector
with unit eigenvalue of the Google matrix constructed from the adjacency matrix of a given directed network. A detailed
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description of this vector and of Google matrix construction is given in Ref. [20]. The PageRank vector is used by the Google
search engine for an efficient ranking of web pages [19,20].

In a certain sense, the top nodes of PageRank correspond to a political elite of the social networkwhose opinion influences
the opinions of other members of the society [1]. Thus the proposed PageRank opinion formation (PROF) model takes into
account the situation in which an opinion of an influential friend from high ranks of the society countsmore than an opinion
of a friend from a lower society level. We argue that the PageRank probability is the most natural form of ranking of society
members. Indeed, the efficiency of PageRank rating is demonstrated for various types of scale-free network, including the
World Wide Web (WWW) [19,20], Physical Review citation network [21,22], scientific journal rating [23], ranking of tennis
players [24], Wikipedia articles [25], the world trade network [26], and others. Due to the above argument, we consider that
the PROF model captures the reality of social networks, and below we present an analysis of its interesting properties.

We note that social networks have typical features which also appear in various sciences, including the economy [27,28],
trader markets [29], world trade [26], and epidemic propagation [30,31], and hence we hope that the results presented in
this work will find a broad field of applications there.

The paper is composed as follows. The PROF model is described in Section 2, and the numerical results on its properties
are presented in Section 3 for British university networks. In Section 4, we combine the PROF model with the Sznajd
model [13,32] and study the properties of the PROF–Sznajd model. In Section 5, we analyze the models on an example
of a large social network, namely LiveJournal [17]. The results for the Twitter dataset [18] are presented in Section 6. A
discussion of the results is presented in Section 7.

2. PageRank opinion formation (PROF) model description

The PROFmodel is defined in the followingway. In agreement with the standard PageRank algorithm [20], we determine
the PageRank probability Pi for each node i and arrange all N nodes in monotonic decreasing order of the probability.
In this way each node i has a probability P(Ki), and the PageRank index Ki with the maximal probability is at Ki = 1
(
N

i=1 P(Ki) = 1). We use the usual damping factor value α = 0.85 to compute the PageRank vector of the Google matrix of
the network (see, e.g., Refs. [19,20,33,34]). In addition, a network node i is characterized by an Ising spin variable σi which
can take values +1 or −1, coded also by red or blue color, respectively. The sign of a node i is determined by its direct
neighbors j, which have PageRank probabilities Pj. For that we compute the sum Σi over all directly linked neighbors j of
node i:

Σi = a


j

P+

j,in + b


j

P+

j,out − a


j

P−

j,in − b


j

P−

j,out , a + b = 1, (1)

where Pj,in and Pj,out denote the PageRank probability Pj of a node j pointing to node i (incoming link) and a node j to which
node i points to (outgoing link), respectively. Here, the two parameters a and b are used to tune the importance of incoming
and outgoing links with the imposed relation a + b = 1 (0 ≤ a, b ≤ 1). The values P+ and P− correspond to red and blue
nodes, respectively. The spin σi takes the value 1 or−1, respectively, forΣi > 0 orΣi < 0. In a certain sense we can say that
a large value of parameter b corresponds to a conformist society in which an elector i takes an opinion of other electors to
which he/she points (nodes with many incoming links are on average at the top positions of PageRank). In contrast, a large
value of a corresponds to a tenacious society in which an elector i takes mainly the opinion of those electors who point to
him/her.

The condition (1) on spin inversion can bewritten via the effective Ising HamiltonianH of thewhole systemof interacting
spins:

H = −


i,j

Jijσiσj = −


i

Biσi =


i

ϵi, (2)

where the spin–spin interaction Jij determines the local magnetic field Bi on a given node i:

Bi =


j

(aPj,in + bPj,out)σj, (3)

which gives the local spin energy ϵi = −Biσi. According to (2) and (3), the interaction between a selected spin i and its
neighbors j is given by the PageRank probability: Jij = aPj,in + bPj,out . Thus from a physical viewpoint the whole system can
be viewed as a disordered ferromagnet [12,14]. In this way, condition (1) corresponds to a local energy ϵi minimization done
at zero temperature.We note that such an analogywith spin systems is well known for opinion formationmodels on regular
lattices [12–14]. However, it should be noted that generally we have asymmetric couplings Jij ≠ Jji, which is unusual for
physical problems (see the discussion in Ref. [35]). In view of this analogy, it is possible to introduce a finite temperature T
and then tomake a probabilistic Metropolis-type condition [36] for the spin i inversion determined by a thermal probability
ρi = exp(−1ϵi/T ), where 1ϵi is the energy difference between on-site energies ϵi with spin up and down. During the
relaxation process, each spin is tested on an inversion condition that requires N steps and then we do t iterations of N such
steps. We discuss the results of the relaxation process at both zero temperature and at finite temperature T in the next
section. We use a standard random number generator to create an initial random distribution of spins σi up and down on
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Fig. 1. (Color online) Time evolution of opinion given by a fraction of red nodes f (t) as a function of number of iterations t . The red and black curves (top and
bottom curves at t = 15, respectively) show evolution for two different realizations of a random distribution of color with the same initial fraction fi = 0.5
at t = 0. The green curve (middle curve at t = 15) shows the dependence f (t) for the initial state with Ntop all red nodes with top PageRank K indexes
(highest P(Ki) values, 1 ≤ K ≤ Ntop). The evolution is done at a = b = 0.5 and temperature T = 0. Left panel: Cambridge network with Ntop = 2000. Right
panel: Oxford network with Ntop = 1000.

nodes of a given network. We do averaging over Nr ≤ 104 such random generations to obtain statistically stable results for
the final opinion distributions. TheMetropolisMonte Carlo simulations follow the standard procedure described in Ref. [36].

3. Numerical results for the PROF model on university networks

Here we present results for the PROF model considered on the networks of the Universities of Cambridge and Oxford
in 2006, taken from Ref. [16]. The properties of PageRank distribution P(K) for these networks have been analyzed in
Refs. [33,34]. The total numbers of nodes N and links Nℓ are N = 212710, Nℓ = 2015265 (Cambridge); and N = 200823,
Nℓ = 1831542 (Oxford) [34]. Both networks are characterized by an algebraic decay of PageRank probability P(K) ∝ 1/Kβ

and approximately usual exponent value β ≈ 0.9; additional results on the scale-free properties of these networks are
given in Refs. [33,34]. We usually discuss the fraction of red nodes, since by definition all other nodes are blue.

Typical examples of time evolution of the fraction of red nodes f (t) with the number of time iterations t are shown
in Fig. 1. We see the presence of bistability in the opinion formation: two random states with the same initial fraction
of red nodes fi = f (t = 0) evolve to two different final fractions of red nodes ff . The process gives an impression of
convergence to a fixed state after tc ≈ 10 iterations. A special check shows that all node colors become fixed after this
time (tc). The convergence time to a fixed state is similar to those found for opinion formation on regular lattices, where
tc = O(1) [13,14,37]. The corresponding time evolution of colors is shown in Fig. 2 for the first 10% of nodes ordered by the
PageRank index K .

The results of Fig. 1 show that for a random initial distribution of colors we may have different final states with ±0.2
variation compared to the initial fi = 0.5. However, if we consider that Ntop nodes with the top K index values (from 1 to
Ntop) have the same opinion (e.g. red nodes), then we find that even a small fraction of the total number of nodes N (e.g. Ntop
of about 0.5% or 1% of N) can impose its opinion on a significant fraction of nodes of about ff ≈ 0.4. This shows that in the
frame of PROFmodel the society elite, corresponding to the top K nodes, can significantly influence the opinion of thewhole
society under the condition that the elite members have a fixed opinion between themselves.

We also considered the case when the red nodes are placed on Ntop = 2000 top nodes of the CheiRank index K ∗. This
ranking is characterized by the CheiRank probability P∗(K ∗) for a random surfer moving in the inverted direction of links,
as described in Refs. [25,34]. On average P∗(K ∗) is proportional to the number of outgoing links. However, in this case, the
top nodes with small fi values are not able to impose their opinion, and the final fraction becomes blue. We attribute this
to the fact that the opinion condition (1) is determined by the PageRank probability P(K) and that the correlations between
CheiRank and PageRank are not very strong (see the discussion in Refs. [25,34]).

To analyze how the final fraction of red nodes ff depends on its initial fraction fi, we study the time evolution f (t) for a
large number Nr of initial random realizations of colors following it up to the convergence time for each realization. We find
that the final red nodes are homogeneously distributed in K . Thus there is no specific preference for top society levels for
an initial random distribution. The probability distribution Wf of final fractions ff is shown in Fig. 3 as a function of initial
fraction fi at three values of parameter a. These results show twomain features of the model: a small fraction of red opinion
is completely suppressed if fi < fc and its larger fraction dominates completely for fi > 1 − fc ; there is a bistability phase
for the initial opinion range fb ≤ fi ≤ 1 − fb. Of course, there is a symmetry in respect to exchange of red and blue colors.
For the small value a = 0.1 we have fb ≈ fc with fc ≈ 0.25, while for the large value a = 0.9 we have fc ≈ 35, fb ≈ 0.45.

Our interpretation of these results is the following. For small values of a → 0 the opinion of a given society member
is determined mainly by the PageRank of neighbors to whom he/she points (outgoing links). The PageRank probability P
of nodes to which many nodes point is usually high, since P is proportional to the number of ingoing links [20]. Thus, at
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Fig. 2. (Color online) Time evolution of opinion colors (red/gray and blue/black) for the parameters of Fig. 1: the left/right column is for the
Cambridge/Oxford network. The initial fraction of red colors is fi = 0.5 (top panel), and Ntop nodes have red color for the bottom panels, with Ntop = 2000
and 1000 for the Cambridge network and the Oxford network, respectively. Nodes are ordered by the PageRank index K , and the color plot shows only
K ≤ 20000.

a → 0, the society is composed of members who form their opinion by listening to an elite opinion. In such a society its elite
with one color opinion can impose this opinion on a large fraction of the society. This is illustrated in Fig. 4, which shows
a dependence of the final fraction ff of red nodes on parameter a for a small initial fraction of red nodes in the top values
of the PageRank index (Ntop = 2000). We see that a = 0 corresponds to a conformist society which follows in its great
majority the opinion of its elite. For a = 1, this fraction ff drops significantly, showing that this corresponds to a regime of a
tenacious society. It is somewhat surprising that the tenacious society (a → 1) has a well-defined and relatively large fixed
opinion phasewith a relatively small region of bistability phase. This is in contrast to the conformist society at a → 0, where
the opinion is strongly influenced by the society elite. We attribute this to the fact that in Fig. 3 we start with a randomly
distributed opinion, because the opinion of the elite has two fractions of two colors that create a bistable situation, since
the two fractions of society follow the opinions of this divided elite, which makes the situation bistable on a larger interval
of fi compared to the case of a tenacious society at a → 1.

To stress the important role of PageRank in the dependence of ff on fi presented in Fig. 3, we show in Fig. 5 the same
analysis at a = 0.5, but for the case when in Eq. (1) for the spin flip we take all P = 1 (equal weight for all nodes). The
data of Fig. 5 clearly demonstrate that in this case the bistability of opinion disappears. Thus the PROFmodel is qualitatively
different from the case when only the links without their PageRank weight are counted for the spin flip condition. We also
test the sensitivity in respect to PageRank probability by replacing P by

√
P in Eq. (1), as is shown in Fig. 5 (bottom panels).

We see that compared to the case P = 1we start to have some signs of bistability, but still they remain ratherweak compared
to the case of Fig. 3.

In fact the spin flip condition (1) can be viewed as a relaxation process in a disordered ferromagnet (since all Jij ≥ 0 in (2)
and (3)) at zero temperature. Such a type of analysis of voter model relaxation processes on regular lattices is analyzed in
Refs. [13,14]. From this viewpoint it is natural to consider the effect of finite temperature T on this relaxation. At finite T ,
the flip condition is determined by the thermal Metropolis probability exp(−1ϵi/T ), as described above. We follow this
thermodynamic relaxation process at finite temperature up to t = 200 iterations, and in this way obtain the probability
distribution of the final fraction ff of red nodes obtained from the initial fraction fi of red nodes randomly distributed over
the network at t = 0. The results obtained at finite temperatures are shown in Fig. 6. They show that a finite temperature
T allows a finite fraction ff of red nodes when for their small initial fraction fi all final ff were equal to zero. Also, the
bistability splitting is reduced and it disappears at larger values of T . Thus finite T introduces a certain smoothing in the
Wf distribution.
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a

b

c

d

e

f

Fig. 3. (Color online) Density plot of probability Wf to find the dependence of the final red fraction ff , shown on the y-axis, on the initial red fraction fi ,
shown on the x-axis; data are shown inside the unit square 0 ≤ fi, ff ≤ 1. The values ofWf are defined as the relative number of realizations found inside
each of 20 × 20 cells which cover the whole unit square. Here, Nr = 104 realizations of randomly distributed colors are used to obtain the Wf values; for
each realization, the time evolution is followed up to the convergence time with up to t = 20 iterations; here T = 0. Left column: Cambridge network
(a, b, c); right column: Oxford network (d, e, f); here, a = 0.1 (a, d), 0.5 (b, e), 0.9 (c, f) from top to bottom. The probability Wf is proportional to color
changing from zero (blue/black) to unity (red/gray).

However, the relaxation process at finite temperatures does not lead to the thermal Boltzmann distribution. Indeed, in
Fig. 7, we show the probability distribution wi(ϵi) as a function of local energies ϵi defined in (2) and (3). The distribution
wi(ϵi) is obtained from the relaxation process with many initial random spin realizations Nr . Even if the temperature T is
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Fig. 4. (Color online) Dependence of the final fraction of red nodes ff on the tenacious parameter a (or conformist parameter b = 1 − a) for initial red
nodes in Ntop = 2000 values of the PageRank index (1 ≤ K ≤ Ntop); black and red/gray curves show data for Cambridge and Oxford networks; here, T = 0.

a

b

c

d

Fig. 5. (Color online) The same as in Fig. 3 (middle panels) at a = 0.5 but with uniform condition for spin flip being independent of PageRank probability
(top panels (a, c): P = 1 in Eq. (1)) and PageRank probability P replaced by

√
P in Eq. (1) (bottom panels (b, d)); the left and right panels correspond to

Cambridge (a, b) and Oxford (c, d) networks; here, T = 0, and Nr = 104 realizations are used.

comparable with typical values of local energies ϵi, we still obtain a rather peaked distribution at ϵi ≈ 0 being very different
from the Boltzmann distribution.

We argue that a physical reason of significantly non-Boltzmann distribution is related to the local nature of the spin
flip condition which does not allow the production of a good thermalization on the scale of the whole system. Indeed,
there are various energetic branches, and probably nonlocal thermalization flips of group of spins are required for a better
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a

b

c

d

Fig. 6. (Color online) The same as in Fig. 3 (middle panel) at a = 0.5, but at finite temperature T during the relaxation process with T = 0.001 (top panels
(a, c)) and T = 0.01 (bottom panels (b, d)); the number of random initial realizations is Nr = 6000, and the relaxation is done during t = 200 iterations.
Left and right columns correspond to Cambridge (a, b) and Oxford (c, d) networks.

Fig. 7. (Color online) Normalized histograms of probability distribution wi over local energies ϵi obtained from the relaxation process during t = 103

time iterations at temperatures T = 0.01 (black curve) and T = 0.05 (red/gray curve); the average is taken over Nr = 200 random initial realizations. The
insets show the distributions on a large scale including all local energies ϵi . The left and right panels show Cambridge and Oxford networks.

thermalization. However, voting is a local process that involves only direct neighbors, which seems to be not sufficient for
the emergence of a global thermal distribution. The presence of a few energy branches is well visible from the data of Fig. 8
obtained at T = 0. This figure shows the dependence of the final fraction ff of red nodes on their initial fraction fi and the
total initial energy Ei =

N
m=1 ϵm of the whole system corresponding to a chosen initial random configuration of spins.

Most probably, these different branches prevent efficient thermalization of the system with only local spin flip procedure.
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Fig. 8. (Color online) This diagram shows the final fraction of red nodes ff , coded by color from ff = 0 (black) to ff = 1 (blue/dark gray), as a function
of initial fraction of red nodes fi and the total initial energy Ei; each of Nr > 3.5 × 104 random realizations is shown by color point; data are shown after
t = 20 time iterations at T = 0. The energy E0 is the modulus of total energy with all spin up; here, a = 0.5. Left and right panels show data for Cambridge
(E0 = 341.20) and Oxford (E0 = 254.28) networks; bars show color attribution to final probability ff .

In addition to the above points, the asymmetric form of Jij couplings plays an important role, generating amore complicated
picture compared to the usual image of thermal relaxation (see, e.g., Ref. [35]). We also note that thermalization is absent
in voter models on regular lattices [13].

4. PROF–Sznajd model

The Sznajd model [32] nicely incorporates the well-known trade union principle ‘‘United we stand, divided we fall’’ into
the field of voter modeling and opinion formation on regular networks. A review of various aspects of this model is given
in Ref. [13]. Here, we generalize the Sznajd model to include in it the features of the PROF model, and consider it on social
networks with their scale-free structure. This gives us the PROF–Sznajd model, which is constructed in the following way.
For a given network, we determine the PageRank probability P(Ki) and the PageRank index Ki for all i nodes. We introduce
the definition of a group of nodes. A group of nodes is defined by the following rule applied at each time step τ .
• (i) Pick by random a node i in the network and consider the polarization of the Ng − 1 highest PageRank nodes pointing

to it.
• (ii) If node i and all other Ng − 1 nodes have the same color (same spin polarization), then these Ng nodes form a group

whose effective PageRank value is the sum of all the member values Pg =
Ng

j=1 Pj; if this is not the case, then we leave
the nodes unchanged and perform the next time step.

• (iii) Consider all the nodes pointing to any member of the group (this corresponds to model option 1) or consider all the
nodes pointing to any member of the group and all the nodes pointed by any member of the group (this corresponds to model
option 2); then check all these nodes n directly linked to the group: if an individual node PageRank value Pn is less than
Pgroup then this node joins the group by taking the same color (polarization) as the group nodes; if this is not the case,
then the node is left unchanged; the PageRank values of added nodes are then added to the group PageRank Pgroup and
the group size is increased.

The above time step is repeated many times during time τ , counting the number of steps, by choosing a random node i on
each next step. This procedure effectively corresponds to the zero-temperature case in the PROF model.

A typical example of the time evolution of the fraction of red nodes f (τ ) in the PROF–Sznajd model is shown in Fig. 9.
It shows that the system converges to a steady state after a time scale τc ≈ 10N that is comparable with the convergence
times for the PROF models studied in previous sections. We see that there are still some fluctuations in the steady-state
regime which are visibly smaller for the option 2 case. We attribute this to a larger number of direct links in this case. The
number of group nodes Ng gives some variation of ff , but these variations remain on a relatively small scale of a few percent.
Here, we should point on the important difference between the PROF and PROF–Sznajd models: for a given initial color
realization, in the first case we have convergence to a fixed state after some convergence time, while in the second case we
have convergence to a steady state which continues to fluctuate in time, keeping the color distribution only on average.

The dependence of the final fraction of red nodes ff on its initial value fi is shown by the density plot of probability Wf
in Fig. 10 (option 1 of the PROF–Sznajd model). The probability Wf is obtained from many initial random realizations in
a similar way to the case of Fig. 3. We see that there is a significant difference compared to the PROF model (Fig. 3): now
even at small values of fi we find small but finite values of ff , while in the PROF model the red color disappears at fi < fc .
This feature is related to the essence of the Sznajd model: here, even small groups can resist the totalitarian opinion. Other
features of Fig. 10 are similar to those found for the PROF model: we again observe bistability of opinion formation. The
number of nodes Ng , which form the group, does not significantly affect the distributionWf : we have smaller fluctuations at
larger Ng values but the model already works in a stable way at Ng = 3. The results for option 2 of the PROF–Sznajd model
are shown in Fig. 11. In this case, the opinions with a small initial fraction of red nodes fi are suppressed in a significantly
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Fig. 9. (Color online) Time evolution of the fraction of red nodes f (τ ) in the PROF–Sznajd model with the initial fraction of red nodes fi = 0.7 at one
random realization. The curves show data for three values of group size Ng = 3 (blue/black); 8 (green/light gray); and 13 (red/gray). Full/dashed curves
are for Cambridge/Oxford networks; the left panel is for option 1; the right panel is for option 2.

stronger way compared to option 1. We attribute this to the fact that large groups can suppress small groups in a stronger
way, since the outgoing direct links are taken into account in this option.

The significant difference between the two options of the PROF–Sznajd model is well seen from the data of Fig. 12. Here,
allNtop nodes are taken in red (comparewith the PROFmodel in Fig. 4). For option 1, the society elite succeeds in imposing its
opinion on a significant fraction of nodes, which is increased by a factor 5–10. Visibly, this increase is less significant than in
the PROFmodel. However, for option 2 of the PROF–Sznajdmodel there is practically no increase of the fraction of red nodes.
Thus, in option 2 the society members are very independent and the influence of the elite on their opinion is very weak.

5. PROF models on the LiveJournal network

Even if one can expect that the properties of university networks are similar to those of real social networks, it is important
to analyze the previous PROFmodels in the frame of a real social network. For thatwe use the LiveJournal network, collected,
described, and presented in Ref. [17]. From this database we obtain a directed network with N = 3577166 nodes and
Nℓ = 44913072 links, which are mainly directed (only about 30% of links are symmetric). The Google matrix of the network
is constructed in the usual way [20], and its PageRank vector is determined by the iteration process at damping factor
α = 0.85. For the time evolution of fraction of red nodes f we use time iterations in t and τ defined as in previous sections.

The PageRank probability decay P(K) is shown in Fig. 13. It is well described by an algebraic law P(K) ∝ 1/Kβ with
β = 0.448±0.000046. The convergence of a fraction of red nodes f (t) takes place approximately on the same convergence
time scale tc ∼ 5 ∼ O(1) even though the size of the network is increased almost by a factor 20.

In a way similar to the university networks we find that the homogeneous opinion of the society elite presented in a
small fraction of Ntop nodes influences a large fraction of the whole society especially when the parameter a is not very large
(see Fig. 14 in comparison with Fig. 4). The influence of the elite at 1% of red nodes is larger in the case of the LiveJournal
network. It is possible that this is related to a 30% larger number of links, but it is also possible that other structural network
parameters also play a role here.

In spite of certain similarities with the previous data for university networks discussed before, we find that the opinion
diagram for the LiveJournal network (see Fig. 14 right panel) is very different from those obtained for the university networks
(see Fig. 3): the bistability has practically disappeared. We think that this difference originates from a significantly slower
decay exponent for PageRank probability P(K) in the case of LiveJournal. To check this assumption we compare the
probability distribution Wf of final opinion ff for an initial opinion fixed at fi = 0.4 using the PROF model with the usual
linear weight P in Eq. (1) and a quadratic weight proportional to P2 (see Fig. 15). For the linear weight, we find that only
very small values of ff ≈ 0.005 can be found for initial fi = 0.4, while for the quadratic weight we obtain a rather broad
distribution of ff values in the main range 0 < ff < 0.15 with a few large values ff ≈ 0.6. Thus we see that the final opinion
is rather sensitive to theweight used in Eq. (1). However, in contrast to the university networks (see Figs. 3 and 5), where we
have narrow one-peak or double-peak distributions of ff , for the LiveJournal networkwith quadratic weight we find a rather
broad distribution of ff . In the spirit of a renormalization map description considered in Ref. [10] (see Figs. 1, 2 there), it is
possible to assume that one or two peaks corresponds to one or two fixed point attractors of themap.Wemake a conjecture
that a broad distribution as in Fig. 15 (right panel) can correspond to a regime of a strange chaotic attractor appearing in the
renormalization map dynamics. In principle, such a chaotic renormalization dynamics is known to appear in coupled spins
lattices when three-spin couplings are present (see Ref. [38] and the references therein). It is possible that the presence of
weight probability associated with the PageRank in a certain power may lead to chaotic dynamics which would generate a
broad distribution of final opinions ff .

We also made tests for the PROF–Sznajd model (option 1) for the LiveJournal database. However, in this case, at fi = 0.4
and a = 0.5, we found only small ff values (similar of those in Fig. 15, left panel) both for linear and quadratic weights in
Eq. (1). It is possible that the Sznajd groups are less sensitive to the probability weight.
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Fig. 10. (Color online) PROF–Sznajd model, option 1: density plot of probabilityWf to find the dependence of the final red fraction ff , shown on the y-axis,
on the initial red fraction fi , shown on the x-axis; data are shown inside the unit square 0 ≤ fi, ff ≤ 1. The values ofWf are defined as the relative number
of realizations found inside each of 100×100 cells which cover the whole unit square. Here, Nr = 104 realizations of randomly distributed colors are used
to obtained Wf values; for each realization the time evolution is followed up to the convergence time with up to τ = 107 steps. Left column: Cambridge
network (a, b, c); right column: Oxford network (d, e, f); here, Ng = 3 (a, d), 8 (b, e), 13 (c, f) from top to bottom. The probabilityWf is proportional to color
changing from zero (blue/black) to unity (red/gray).

6. PROF models for the Twitter dataset

We also analyzed the opinion formation on the Twitter dataset with N = 41 652 230, Nℓ = 1468 365 182 taken from
Ref. [18]. This is the entire size of Twitter at the corresponding moment of time [18]. The size is rather large, and due to that
we present only the main features of the PROF model for this directed network.
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Fig. 11. (Color online) The same as in Fig. 10 but for PROF–Sznajd model, option 2.

The dependence of PageRank P on its index K is shown in Fig. 16 (left panel). For the range 1 ≤ log10 K ≤ 5.5, we find
that the decay exponent β ≈ 0.51, being similar to that of the LiveJournal network (see Fig. 13) even if there is a faster drop
of P at larger K values. We note that the value β ≈ 0.5 is rather different from the value usually found for the Zipf law [39]
and the WWW [20], with β ≈ 1. It is possible that this is related to a significantly larger average number of links per node,
which is increased by a factor 3.5 for the Twitter network compared to the university networks analyzed in the previous
sections.

The effect of the homogeneous elite opinion of all red Ntop nodes is shown in Fig. 16 (right panel). We see that on the
Twitter network a small fraction of elite with fixed opinion (Ntop/N ≈ 3 × 10−5) can impose this opinion on practically
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Fig. 12. (Color online) Time evolution of the fraction of red nodes f (τ ) in the PROF–Sznajd model with the initial red nodes for the top PageRank nodes:
Ntop = 200 (blue/black); 1000 (green/light gray); 2000 (red/gray); here, Ng = 8. Full/dashed curves are for Cambridge/Oxford networks; the left panel is
for option 1; the right panel is for option 2. The color of curves is red, green, blue, from top to bottom at maximal τ on both panels.

Fig. 13. (Color online) Data for the LiveJournal network. Left panel: PageRank probability decay with PageRank index K (full curve); the fitted algebraic
dependence is shown by the dashed line y = b − βx (for 1 ≤ log10 K ≤ 5.5) with the exponent β = 0.448 ± 0.000046 and b = −3.70 ± 0.00023. Right
panel: time evolution of opinion given by a fraction of red nodes f (t) as a function of number of iterations t (cf. Fig. 1) at a = 0.5; a few random initial
realizations with fi = 0.5 are shown.

the whole community for all values of the conformist parameter 1 − a. We find that for Ntop > 1300 all ff values are very
close to unity, while for Ntop < 1200 we find ff = 0, as is seen in Fig. 16, right panel. Thus, the transition is very sharp.
We attribute such a strong influence of elite opinion to the very connected structure of Twitter network with a significantly
larger average number of links per node compared to the university and LiveJournal networks.

At a = 0.5, for a fixed fraction of initial opinion fi = 0.4, we find that the probability distribution Wf of final opinion
ff is located in the range of small values 0.0006 < Wf < 0.0007 for both the linear P and quadratic P2 weights used
in Eq. (1) (we do not show these data). For the linear weight, the situation is rather similar to the case of LiveJournal
(see Fig. 15), but for the quadratic weight we find a significant difference between the two networks (see Fig. 15). The
reason for such a significant difference for the quadratic weight case requires a more detailed comparison of network
properties.

The large size of the Twitter network makes numerical simulations of the PROF–Sznajd model rather difficult, and
therefore we did not study this model for this network.

7. Discussion

In this work we have proposed the PageRank model of opinion formation of social networks and analyzed its properties
on examples of four different networks. For two university networks we find rather similar properties of opinion formation.
Opinion formation is characterized by an important feature according to which the society elite with a fixed opinion can
impose its opinion on a significant fraction of the society members which is much larger than the initial elite fraction.
However, when the initial opinions of society members, including the elite, are presented by two options, then we find a
significant range of opinion fraction within a bistability regime. This range depends on the conformist parameter, which
characterizes the local aspects of opinion formation of linked society members. The generalization of the Sznajd model for
scale-free social networks gives interesting examples of opinion formation where finite small-size groups can keep their



V. Kandiah, D.L. Shepelyansky / Physica A 391 (2012) 5779–5793 5791

Fig. 14. (Color online) Data for the LiveJournal network. Left panel: dependence of the final fraction of red nodes ff on the tenacious parameter a
(or conformist parameter b = 1 − a) in the PROF model for initial red nodes in Ntop values of the PageRank index (1 ≤ K ≤ Ntop; cf. Fig. 4). Here,
Ntop = 2000 blue, 10,000 green, and 35,000 red curves (from bottom to top at a = 0.5); T = 0. Right panel: the same data as in Fig. 3 at a = 0.5 with the
same parameters but for the LiveJournal network.

Fig. 15. (Color online) Data for the LiveJournal network: probability distribution Wf of final opinion ff for a fixed initial opinion fi = 0.4 and a = 0.5 in
the PROF model. Left panel: usual linear weight P(K) in Eq. (1). Right panel: a quadratic weight P2(K) in Eq. (1). Histograms are obtained with Nr = 500
initial random realizations; the normalization is fixed by the condition that the sum ofWf over all histogram bins is equal to unity.

own opinion, being different from the main opinion of the majority. In this way, the proposed PROF–Sznajd model shows
that totalitarian opinions can be escaped from by small subcommunities. We find that the properties of opinion formation
are rather similar for the two university networks of Cambridge and Oxford. However, the results obtained for networks of
LiveJournal and Twitter show that the range of bistability practically disappears for these networks. Our data indicate that
this is related to a slower algebraic decay of PageRank in these cases compared to the university networks. However, the deep
reasons for such a difference require a more detailed analysis. Indeed, the LiveJournal and Twitter networks demonstrate
rather different behavior for the P2-weighted function of opinion formation. The studies performed for regular networks [10]
show the existence of stable or bistable fixed points for opinion formation models that have certain similarities with the
opinion formation properties found in our studies. At the same time the results obtained in Ref. [38] show that three-body
spin coupling can generate a chaotic renormalization dynamics. Some of our results (Fig. 15, right panel) give indications of
the possible existence of such a chaotic phase in social networks.

The enormous development of social networks in the last few years [2–5] definitely shows that the analysis of opinion
formation on such networks requires further investigations. This research can find also various other applications. One of
them could be a neuronal network of a brain which represents itself as a directed scale-free network [40]. The applications
of network science to brain networks is now under rapid development (see, e.g., Ref. [41]), and Google matrix methods can
find useful applications in this field [42].



5792 V. Kandiah, D.L. Shepelyansky / Physica A 391 (2012) 5779–5793

Fig. 16. (Color online) Data for the Twitter network. Left panel: PageRank probability decay with PageRank index K (full curve); the fitted algebraic
dependence is shown by the dashed line y = b−βx (for 1 ≤ log10 K ≤ 5.5) with the exponent β = 0.511±0.0021 and b = −3.33±0.0069 (for the range
5.5 ≤ log10 K ≤ 7 we find β = 1.23). Right panel: dependence of the final fraction of red nodes ff on the tenacious parameter a (or conformist parameter
b = 1−a) in the PROFmodel for initial red nodes in Ntop values of PageRank index (1 ≤ K ≤ Ntop; cf. Fig. 4, Fig. 14). Here, Ntop = 1200 (blue line at ff = 0);
1250 (red curve with circles); and 1300 (top green line); T = 0.
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Abstract. We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia
articles hyperlink network and other real networks. With the help of the Arnoldi method, we analyze
the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue
modulus are located on well defined network communities. We also show that the correlator between
PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le
Monde web sites.

1 Introduction

With the appearance of the world wide web (WWW) [1]
the modern society created huge directed networks where
the information retrieval and ranking of network nodes be-
comes a formidable challenge. The mathematical grounds
of ranking of nodes are based one the concept of Markov
chains [2] and related class of Perron-Frobenius operators
naturally appearing in dynamical systems (see, e.g., [3]). A
concrete implementation of these mathematical concepts
to the ranking of WWW nodes was started by Brin and
Page in 1998 [4]. It is significantly based on the PageRank
algorithm (PRA) which became a fundamental element
of the Google search engine broadly used by internet
users [5].

Already in 1998, Brin and Page pointed out that
“despite the importance of large-scale search engines on
the web, very little academic research has been done on
them” [4]. Since that time the academic studies have been
concentrated mainly on the properties of the PageRank
vector determined by the PRA (see, e.g., [5–8]). Of course,
the PageRank vector is at the basis of ranking of network
nodes but the whole description of a directed network is
given by the Google matrix G. Thus, it is important to
understand the properties of the whole spectrum of eigen-
values of Google matrix and to analyze the meaning and
significance of its eigenstates. Certain spectral properties
of G matrix have been analyzed in references [9–15]. Here,
we concentrate our spectral analysis on the Wikipedia ar-
ticles network studied in reference [16]. The advantage of
this network is due to a clear meaning of nodes, deter-
mined by the titles of Wikipedia articles thus simplify-
ing the understanding of information flow in this network.

a e-mail: dima@irsamc.ups-tlse.fr

In addition to that, we analyze the statistical properties
of eigenvalues and eigenstates of G for WWW networks
of Cambridge University, Python, BBC and Le Monde
crawled in March 2011.

The Google matrix elements of a directed network are
defined as [4,5,17]:

Gij = αSij + (1 − α)/N, (1)

where the matrix Sij is obtained from an adjacency
matrix Aij by normalizing all nonzero columns to one
(
∑

i Sij = 1) and replacing columns with only zero ele-
ments by 1/N (dangling nodes) with N being the matrix
size. For the WWW an element Aij of the adjacency ma-
trix is equal to unity if a node j points to the node i and
zero otherwise. The damping parameter α in the WWW
context describes the probability (1 − α) to jump to any
node for a random surfer. For WWW, the Google search
engine uses α ≈ 0.85 [5]. The matrixG belongs to the class
of Perron-Frobenius operators [5], its largest eigenvalue is
λ = 1 and other eigenvalues have |λ| ≤ α. The right eigen-
vector at λ = 1, which is called the PageRank, has real
nonnegative elements P (i) and gives a probability P (i) to
find a random surfer at site i. Due to the gap 1−α ≈ 0.15
between the largest eigenvalue and the other eigenvalues
the PRA permits an efficient and simple determination of
the PageRank by the power iteration method. Note that
at α = 1 the largest eigenvalue λ = 1 is typically highly
degenerate due to many invariant subspaces which define
many independent Perron-Frobenius operators which pro-
vide (at least) one eigenvalue λ = 1. This point and also
a numerical method to determine the PageRank for the
case 1 − α� 1 are described in detail in reference [13].

Once the PageRank (at α = 0.85) is found, all nodes
can be sorted by decreasing probabilities P (i). The node
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Table 1. Parameters of all networks considered in the paper.

N N� nA

Wikipedia 3282257 71012307 3000
Cam. 2011 893176 15106706 4000

Python 541545 9031262 5000
BBC 319637 7278258 4000

Le Monde 134196 10621445 5000

rank is then given by index K(i) which reflects the rele-
vance of the node i. The top PageRank nodes are located
at small values of K(i) = 1, 2, . . .

In addition to a given directed network Aij , it is use-
ful to analyze an inverse network with inverted direction
of links with elements of adjacency matrix Aij → Aji.
The Google matrix G∗ of the inverse network is then con-
structed via corresponding matrix S∗ according to the re-
lations (1) using the same value of α as for the G ma-
trix. The right eigenvector of G∗ at eigenvalue λ = 1 is
called CheiRank giving a complementary rank indexK∗(i)
of network nodes [15,16,18–20]. It is known that the
PageRank probability is proportional to the number of in-
going links characterizing how popular or known a given
node is while the CheiRank probability is proportional to
the number of outgoing links highlighting the node com-
municativity (see, e.g., [5–8,16,19]). The statistical prop-
erties of the node distribution on the PageRank-CheiRank
plane are described in reference [19] for various directed
networks.

The paper is composed as following: the spectrum of
the Google matrix of various networks is analyzed in Sec-
tion 2, statistical properties of eigenstates are discussed
in Section 3, the communities related to Wikipedia eigen-
states are examined in Section 4, the distribution of nodes
in the PageRank-CheiRank plane is studied in Section 5,
the link distribution over PageRank index is considered
in Section 6, discussion of results is given in Section 7.
An Appendix gives all parameters of the five directed
networks considered here and describes in detail certain
eigenvalues and eigenvectors.

2 Google matrix spectrum

We study the spectrum of eigenvalues of the Google ma-
trix of five directed networks. For each network the num-
ber of nodes N and the number of links N� are given in
Table 1 (see Appendix). The spectrum is obtained nu-
merically using the powerful Arnoldi method described
in [21–23]. The idea of the method is to construct a set
of orthonormal vectors by applying the matrix (G, S, G∗,
S∗ or any other matrix of which we want to determine
the largest eigenvalues) on some suitable normalized ini-
tial vector and orthonormalizing the result to the initial
vector. Then the matrix is applied to the second vector
and the result is orthonormalized to the first two vectors
and so on. The used scalar products and normalization
factors during the Gram-Schmidt process provide the ma-
trix representation of the initial big matrix on the set of

Table 2. G and G∗ eigespectrum parameters for all networks.

Ns Nd dmax Ncirc. N1

Wikipedia 515 255 11 381 255
Wikipedia∗ 21198 5355 717 8968 5365
Cam. 2011 808 329 74 343 332
Cam. 2011∗ 186062 2039 5144 2044 2041

Python 198 23 72 26 23
Python∗ 1589 25 951 35 31

BBC 50 19 28 19 19
BBC∗ 39 28 6 28 28

Le Monde 83 64 18 64 64
Le Monde∗ 789 354 15 373 361

orthonormal vectors (which span a Krylov space) in a form
of a Hessenberg matrix whose eigenvalues converge typi-
cally quite well versus the largest eigenvalues of the initial
matrix even if the chosen number of orthonormal vectors,
the Arnold dimension nA, is quite modest (3000–5000 in
this work) as compared to the initial matrix size.

In this work, we are interested in the spectrum of the
matrix S = G(α = 1) (or S∗) since the spectrum of G(α)
(or G∗(α)) is simply obtained by rescaling the complex
eigenvalues with the factor α (apart from “one” largest
eigenvalue λ = 1 which does not change).

The direct dionalization of the Google matrix G faces
a number of numerical challenges. Thus, the highly de-
generate unit eigenvalue λ = 1 of S creates convergence
problems for the Arnoldi method. To resolve this numer-
ical problem, we follow the approach developed in refer-
ences [13,15] and follow the description given there. We
first find the invariant isolated subsets. These subsets are
invariant with respect to applications of S. We merge all
subspaces with common members, and obtain a sequence
of disjoint subspaces Vj of dimension dj invariant by ap-
plications of S. The remaining part of nodes forms the
wholly connected core space. Such a classification scheme
can be efficiently implemented in a computer program and
it provides a subdivision of network nodes inNc core space
nodes and Ns subspace nodes belonging to at least one of
the invariant subspaces Vj inducing the block triangular
structure of matrix S:

S =
(
Sss Ssc

0 Scc

)
, (2)

where Sss is itself composed of many small diagonal
blocks for each invariant subspace and whose eigenvalues
can be efficiently obtained by direct (“exact”) numerical
diagonalization.

The total subspace sizeNS , the number of independent
subspaces Nd, the maximal subspace dimension dmax and
the number N1 of S eigenvalues with λ = 1 are given in
Table 2. The spectrum and eigenstates of the core space
Scc are determined by the Arnoldi method with Arnoldi
dimension nA giving the eigenvalues λi of Scc with largest
modulus and the corresponding eigenvectors ψj (Gψi =
λiψi). The values of nA we used for the different networks
are given in Table 1. According to Table 2, we have the
average number of links per node ζ� ≈ 21.63 (Wikipedia),
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Fig. 1. Spectrum of eigenvalues λ the Google matrices G
(left column) and G∗ (right column) for Wikipedia, Cambridge
2011, Python, BBC and Le Monde (α = 1). Red dots are core
space eigenvalues, blue dots are subspace eigenvalues and the
full green curve shows the unit circle. The core space eigen-
values were calculated by the projected Arnoldi method with
Arnoldi dimensions nA as given in Table 1.

16.91 (Cambridge 2011), 16.67 (Python), 22.77 (BBC),
79.14 (Le Monde).

The distributions of subspaces eigenvalues and largest
nA eigenvalues of the core space are shown in Figure 1
in the complex plane λ for all five networks. The blue
points show the eigenvalues of isolated subspaces. We note
that their number is relatively small compared to those of

Table 3. Eigenvalues of eigenvectors shown in Figures 1 and 2
by corresponding colors. Index m of λm numbers eigenvalues
in the decreasing order of |λ| in the core space.

Color Eigenvalue
Wikipedia red λ1 = 0.999987

green λ2 = 0.977237
blue λ52 = −0.35003 + i 0.77374
pink λ864 = −0.34293 + i 0.43145

Wikipedia∗ red λ1 = 0.999982
green λ2 = 0.999902
blue λ662 = 0.0000000 + i 0.84090
pink λ38 = −0.49626 + i 0.85653

Cam. 2011 red λ1 = 0.999749
green λ2 = 0.999270
blue λ350 = 0.41779 + i 0.77856
pink λ144 = −0.52909 + i 0.78693

Cam. 2011∗ red λ1 = 0.999998
green λ2 = 0.999994
blue λ765 = 0.24846 + i 0.80915
pink λ249 = −0.48736 + i 0.84568

Python red λ1 = 0.999975
green λ2 = 0.998864
blue λ3315 = 0.14484 + i 0.19215
pink λ1337 = −0.14427 + i 0.42051

Python∗ red λ1 = 0.999995
green λ2 = 0.999991
blue λ2559 = 0.37694 + i 0.45231
pink λ3076 = 0.12214 + i 0.47416

BBC red λ1 = 0.99883
green λ2 = 0.99251
blue λ1276 = −0.12414 + i 0.24795
pink λ1148 = −0.22459 + i 0.20024

BBC∗ red λ1 = 0.999999
green λ2 = 0.999994
blue λ16 = −0.00067 + i 0.99930
pink λ90 = −0.49635 + i 0.85848

Le Monde red λ1 = 0.998837
green λ2 = 0.983123
blue λ926 = 0.10295 + i 0.22890
pink λ1118 = 0.08023 + i 0.20595

Le Monde∗ red λ1 = 0.999999
green λ2 = 0.999959
blue λ2093 = 0.15987 + i 0.48502
pink λ2474 = 0.17637 + i 0.40917

British University networks [24] (up to year 2006) ana-
lyzed in reference [13]. We attribute this to a larger num-
ber of ζ� links per node that reduces an effective size of
isolated parts of network. Between 2006 and 2011, espe-
cially for Cambridge, it seems that the increased use of
PHP and similar web software tends to considerably in-
crease the value of ζ�. Indeed, we have ζ� ≈ 10 for univer-
sity networks up to 2006 [13] which used less this kind of
PHP software. In Figure 1 the red points show nA eigen-
values of the core space with largest |λ|. Due to finite nA

value there is an empty white space around λ = 0. There
is no significant gap for core eigenvalues since λ1 is rather
close to 1 (see Tab. 3).

In global, we can say that the structure of the
Wikipedia spectrum of S and S∗ is somewhat similar to



Page 4 of 10 Eur. Phys. J. B (2013) 86: 193

those of Cambridge 2006 (see Fig. 2 in Ref. [13]). For
Cambridge 2011, the spectrum of S is drastically changed
compared to the year 2006 but for S∗ certain features
remain common both for 2006 and 2011 (e.g., a circle
|λ| ≈ 0.5, triplet-star). For Python, BBC and Le Monde
the imaginary parts Im(λ) of eigenvalues of S are rela-
tively small compared to the networks of Wikipedia and
Cambridge. We suppose that there are less symmetric
links in the later cases. It is interesting that for S∗ of
Python, BBC and Le Monde the imaginary parts Im(λ)
are significantly larger than for S.

The origin of nontrivial structures of the spectrum ofG
and G∗ for directed networks discussed here and in refer-
ences [11–13,15] still require detailed analysis. We note
that well visible triplet and cross structures (see, e.g.,
Wikipedia spectrum in Fig. 1 and Fig. 2 of [13]) naturally
appear in the spectra of random unistochastic matrices of
size N = 3 and 4, which have been analyzed analytically
and numerically in reference [25]. In view of this similarity,
we suppose that networks with such structures have some
triplet or quartet subgroup of nodes weakly coupled to
the rest of the network. However, a detailed understand-
ing of the spectrum requires a deeper analysis. In the next
section, we turn to a study of eigenstate properties.

3 Statistical properties of eigenstates

The dependence of PageRank P and CheiRank P ∗ vec-
tors on their indexes K and K∗ at α = 0.85; 1 − 10−8

are shown in Figure 2. At α = 0.85, we have an ap-
proximate algebraic decay of probability according to
the Zipf law P ∼ 1/Kβ, P ∗ ∼ 1/K∗β (see, e.g., [14]
and references therein). We find the following values β
for PageRank (CheiRank): 0.96 ± 0.002 (0.73 ± 0.003)
Wikipedia; 0.81 ± 0.007 (0.90 ± 0.004) Cambridge 2011;
1.12±0.01 (1.17±0.006) Python; 1.20±0.006 (0.96±0.004)
BBC; 1.08± 0.009 (0.55± 0.002) Le Monde. Formally, the
statistical errors in β are relatively small but in some cases
there are variations of slope in the decay of PageRank
(CheiRank) probability that gives a dependence of β on
a fitting range (e.g., that is why β here is a bit different
from its values for Wikipedia given in Ref. [16]). We note
that the value β ≈ 1 for the PageRank remains relatively
stable to all networks corresponding to the usual exponent
μ ≈ 2.1 of algebraic decay of the ingoing link distribution
leading to β = 1/(μ− 1) ≈ 0.9 (see, e.g., [6,7,14–16]).

For CheiRank the variations of β from one network to
another are more significant being in agreement with the
fact that for outgoing links the exponent μ ≈ 2.7 varies in
a more significant manner.

For α = 1 − 10−8, we find that the main probability
of PageRank and CheiRank eigenvectors is located on iso-
lated subspaces with Ns nodes; after that value there is a
significant drop of probability for K,K∗ > Ns. This effect
was already found and explained in detail in reference [13]
and our new data confirm that it is indeed rather generic.

The modulus of four eigenfuctions |ψi(j)| from the core
space are shown in Figure 2 by color curves as a function
of their own index Ki which order |ψi(j)| in a monotonic
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Fig. 2. PageRank P (left column) and CheiRank P ∗ (right
column) vectors are shown as a function of the corresponding
rank indexes K or K∗ for the Google matrices of Wikipedia,
Cambridge 2011, Python, BBC and Le Monde at the damping
parameter α = 0.85 (thick black curve) and α = 1 − 10−8

(thick gray curve). The thin color curves show for each panel
the modulus of four core space eigenvectors |ψi| of S (left col-
umn) and |ψ∗

i | of S∗ (right column) versus their ranking in-
dexes Ki or K∗

i . Red and green curves are the eigenvectors
corresponding to the two largest core space eigenvalues (in
modulus) which are real and close to 1; blue and pink curves
are the eigenvectors corresponding to two complex eigenvalues
with large imaginary part. The chosen eigenvalues and other
relevant quantities for each case are listed in Tables 1–3.

decreasing order. For Python, BBC and Le Monde
the decay of |ψi(j)| with Ki is similar to the decay
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Fig. 3. A selection of 200 complex core space eigenvalues clos-
est to the unit circle for the matrices S (left column) and S∗

(right column) of Wikipedia and Cambridge 2011 networks.
The characteristics of corresponding eigenvectors are shown in
Figures 4 and 5.
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Fig. 4. Left column: algebraic exponent b obtained from a
power law fit |ψi(Ki)| ∼ Kb

i for Ki ≥ 104 shown as a func-
tion of the phase ϕ = arg(λi) of the complex eigenvalue λi

associated to the eigenvector ψi of S. The shown data points
correspond to the eigenvalue selection of Figure 3 for networks
of Wikipedia and Cambridge 2011. Right column: the same as
in the left column for the eigenvectors of S∗.

of PageRank probability with K. For Wikipedia and
Cambridge 2011 we see that eigenvectors |ψi(j)| are more
localized. The eigenstates of S∗ have a significantly more
irregular decay compared to the eigenstates of S.

To analyze the properties of core eigenstates of
Wikipedia and Cambridge 2011 in a better way, we se-
lect 200 core space eigenvalues of S and S∗ being closest
to the unitary circle |λ| = 1. These eigenvalues are shown
in Figure 3. For these eigenvalues, we compute the cor-
responding eigenvectors ψi(j) and by fitting a power law
dependence |ψi(Ki)| ∼ Kb

i at Ki ≥ 104 we determine the
dependence of the exponent b on the phase of the eigen-
value ϕ = arg(λi). For Wikipedia, we have values of |b|
distributed mainly in the range (1–2) for S and in the
range (0.5–1.5) for S∗. For Cambridge 2011, we have a
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Fig. 5. Left column: inverse participation ratio ξIPR =
(
∑

j |ψi(j)|2)2/∑
j |ψi(j)|4 shown as a function of the phase

ϕ = arg(λi) of the complex eigenvalue λi associated to the
eigenvector ψi of S. The data points correspond to the eigen-
value selection of Figure 3 for networks of Wikipedia and
Cambridge 2011. Right column: the same as in the left col-
umn for the eigenvectors of S∗.

more compact range (0.5–1) for S while for S∗ there is a
very broad variation of |b| values in the range (1–4).

The above approximate power law description of the
eigenstate decay characterizes their behavior at large K
values. The behavior at low K values can be charac-
terized by the inverse participation ratio (IPR) ξIPR =
(
∑

j |ψi(j)|2)2/
∑

j |ψi(j)|4, which gives an approximate
number of nodes on which the main probability of an
eigenstate ψi(j) is located. We note that such a charac-
teristic is broadly used in disordered mesoscopic systems
allowing to detect the Anderson transition from localized
phase with finite ξ to delocalized phase with ξ value com-
parable with the system size [26]. The IPR data are pre-
sented in Figure 5 for eigenvalues selection of Figure 3. We
find that ξIPR values are by a factor 104 to 105 smaller
than the network size N . This means that these eigen-
states are well localized on a restricted number of nodes.
We try to analyze what are these nodes in next section for
the example of Wikipedia where the meaning of a node is
clearly defined by the title of the corresponding Wikipedia
article.

4 Communities of Wikipedia eigenstates

To understand the meaning of other eigenstates in the
core space we order selected eigenstates by their decreas-
ing value |ψi(j)| and apply a frequency analysis on the
first 1000 articles with Ki ≤ 1000. The mostly frequent
word of a given eigenvector is used to label the eigen-
vector name. These labels with corresponding eigenval-
ues are shown in Figure 6 in λ-plane. We identify four
main categories for the selected eigenvectors shown by
different colors in Figure 6: countries (red), biology and
medicine (orange), mathematics (blue) and others (green).
The category of others contains rather diverse articles
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Fig. 6. Complex eigenvalue spectrum of the matrices S for
Wikipedia. Highlighted eigenvalues represent different commu-
nities of Wikipedia and are labeled by the most repeated and
important words following word counting of first 1000 nodes.
Color are used in the following way: red for countries, orange
for biology, blue for mathematics and green for others. Top
panel shows complex plane for positive imaginary part of eigen-
values, while middle and bottom panels focus in the negative
and positive real parts. Top 20 nodes with largest values of
eigenstates |ψi| and their eigenvalues λi are given in Tables 4–7
(4 names marked by dotted boxes in figure panels).

about poetry, Bible, football, music, American TV se-
ries (e.g., Quantum Leap), small geographical places (e.g.,
Gaafru Alif Atoll). Clearly these eigenstates select certain
specific communities which are relatively weakly coupled
with the main bulk part of Wikipedia that generates rel-
atively large modulus of |λi|. The top 20 articles of eigen-
state PageRank index Ki are listed in Tables 4–7.

The eigenvector of Table 4 has a positive real λ and
is linked to the main article Gaafu Alif Atoll which in its
turn is linked mainly to atolls in this region. Clearly this
case represents well localized community of articles mainly
linked between themselves that gives slow relaxation rate
of this eigenmode with λ = 0.9772 being rather close to
unity.

In Table 5, we have an eigenvector with real negative
eigenvalue λ = −0.8165 with the top node Photoactivat-
able fluorescent protein. This node is linked to Kaede (pro-
tein) and Eos (protein) with the later being isolated from
coral. Its picture is listed in Portal:Berkshire/Selected
picture which has pictures of St Paul’s Cathedral and
Legoland Windsor that generates appearance of these,
on a first glance unrelated articles, to be present in this
eigenvector. Thus, this eigenvector also highlights a spe-
cific community which is somewhat stronger coupled to
the global Wikipedia core, due to a link to selected pic-
tures, with a smaller modulus of λ compared to the case
of Table 4.

The eigenvector of Table 6 has a complex eigenvalue
with |λ| = 0.3733 and the top article Portal:Bible. The
top three articles of this eigenvector have very close val-
ues of |ψi(j)| that seems to be the reason why we have

Table 4. Node rank for decreasing modulus of eigenstate |ψi|
corresponding to the eigenvalue λ2 = 0.97724 (see Fig. 6).

λ2 = 0.9772 (“Gaafu Alif Atol”) |ψi|
1 Gaafu Alif Atoll 0.00816
2 Kureddhoo (Gaafu Alif Atoll) 0.00812
3 Hithaadhoo (Gaafu Alif Atoll) 0.00808
4 Dhigurah (Gaafu Alif Atoll) 0.00806
5 Maarandhoo (Gaafu Alif Atoll) 0.00806
6 Hulhimendhoo (Gaafu Alif Atoll) 0.00805
7 Araigaiththaa 0.00798
8 Baavandhoo 0.00798
9 Baberaahuttaa 0.00798
10 Bakeiththaa 0.00798
11 Beyruhuttaa 0.00798
12 Beyrumaddoo 0.00798
13 Boaddoo 0.00798
14 Budhiyahuttaa 0.00798
15 Dhevvalaabadhoo 0.00798
16 Dhevvamaagalaa 0.00798
17 Dhigudhoo 0.00798
18 Dhonhuseenahuttaa 0.00798
19 Falhumaafushi 0.00798
20 Falhuverrehaa 0.00798

Table 5. Node rank for decreasing modulus of eigenstate |ψi|
corresponding to the eigenvalue λ80 = −0.8165 (see Fig. 6).

λ80 = −0.8165 (“protein”) |ψi|
1 Photoactivatable fluorescent protein 0.22767
2 Kaede (protein) 0.13942
3 Eos (protein) 0.13942
4 Fusion protein 0.05946
5 Green fluorescent protein 0.05723
6 Portal:Berkshire/Selected picture 0.01019
7 Persistent tunica vasculosa lentis 0.00552
8 Portal:Berkshire/Selected picture/Layout 0.00416
9 Portal:Berkshire/Selected picture/1 0.00416
10 Portal:Berkshire/Nominate/ 0.00416

Selected picture
11 Persistent hyperplastic primary vitreous 0.00338
12 Tunica vasculosa lentis 0.00338
13 Tpr-met fusion protein 0.00319
14 St Paul’s Cathedral 0.00256
15 Legoland Windsor 0.00255
16 Complementary DNA 0.00252
17 Gené 0.00221
18 Gene 0.00215
19 Gag-onc fusion protein 0.00181
20 Protein 0.00177

ϕ = arg(λi) = π × 0.3496 being very close to π/3. The
Bible is strongly linked to various aspects of human soci-
ety that leads to a relatively small modulus value of this
well defined community.

In Table 7, we have an eigenvector which starts from
the article Lower Austria with the eigenvalue modulus
|λ| = 0.3869. This article is linked to such articles as
Austria and Upper Austria with historical links to Styria.
It also links to its city capital Krems an der Donau. The
articles World War II and Jew appear due to a sentence
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Table 6. Node rank for decreasing modulus of eigenstate |ψi|
corresponding to the eigenvalue λ1481 = 0.1699 + i0.3325 (see
Fig. 6).

λ1481 = 0.1699 + i0.3325 (“Bible”) |ψi|
1 Portal:Bible 0.02311
2 Portal:Bible/Featured chapter/archives 0.02201
3 Portal:Bible/Featured article 0.02063
4 Bible 0.01684
5 Portal:Bible/Featured chapter 0.01644
6 Books of Samuel 0.00852
7 Books of Kings 0.00849
8 Books of Chronicles 0.00840
9 Book of Leviticus 0.00426
10 Book of Ezra 0.00425
11 Book of Ruth 0.00420
12 Book of Deuteronomy 0.00417
13 Book of Joshua 0.00400
14 Book of Exodus 0.00397
15 Book of Judges 0.00395
16 Book of Genesis 0.00394
17 Book of Numbers 0.00389
18 Portal:Bible/Featured chapter/1 Kings 0.00347
19 Portal:Bible/Featured chapter/Numbers 0.00347
20 Portal:Bible/Featured chapter/2 Samuel 0.00347

Table 7. Node rank for decreasing modulus of eigenstate |ψi|
corresponding to the eigenvalue λ1395 = −0.3149+ i0.2248 (see
Fig. 6).

λ1395 = −0.3149 + i0.2248 (“Austria”) |ψi|
1 Lower Austria 0.04284
2 Austria 0.03112
3 Upper Austria 0.00817
4 Styria 0.00781
5 Burgenland 0.00307
6 World War II 0.00304
7 Krems an der Donau 0.00282
8 Jew 0.00272
9 Slovakia 0.00268
10 Bruck an der Leitha (district) 0.00265
11 History of Austria 0.00263
12 Wiener Neustadt 0.00260
13 Mostviertel 0.00251
14 States of Austria 0.00250
15 Waidhofen an der Ybbs 0.00249
16 MELK 0.00246
17 Melk 0.00246
18 Bundesland (Austria) 0.00239
19 Wachau 0.00233
20 Waldviertel 0.00226

“Before World War II, Lower Austria had the largest num-
ber of Jews in Austria”. Due to links with very popular
nodes the eigenvector of this community has a relative
small modulus of λ.

Let us make here a few additional remarks about other
eigenvectors. For example, we analyzed the meaning of
eigenvector with λ = −0.3500 + i0.7737 = |λ| exp(iθ) (lo-
cated slightly above the word England in Fig. 6). Its top
five amplitude modulus are Screen Producers Association

of Australia, Screen Producers Association of Australia
(SPAA), SPAA Conference, SPAA Fringe, Sydney. This
clearly shows that this vector selects a certain community
of Australian Screen Producers. It is interesting to note
that we have here θ = 114◦ being close to the angle 2π/3
corresponding to 1/3 resonance rotations mainly between
first three top nodes.

In fact, there are other eigenvalues which have θ being
close to resonance values with θ/2π = 1/3, 1/4 . . . Thus,
the eigenvector England has λ = −0.2613 + i0.4527 with
θ = 120◦ corresponding to the resonance rotation between
three nodes. Indeed, the top amplitudes of this eigenvec-
tor have titles Charles William Hempel, Charles Frederick
Hempel, Carl Frederick Hempel with strong links between
these titles leading to 1/3 rotation (this vector is marked
as England since this word is the most frequent among top
1000 titles).

There are other eigenvalues close to 1/3 resonance
rotation. Thus, we have λ = −0.2621 + i0.4346 with
θ = 121◦ marked as poetry in Figure 6. This eigenvec-
tor has top amplitude modulus: Poetry (0.0622), Por-
tal:Poetry/poem archive (0.03339), Portal:Poetry/poem
archive/2006 archive (0.03289), Portal:Poetry (0.03180),
Walter Raleigh (0.0064). We think that the top nodes 2,
3, 4 have practically the same amplitudes thus correspond-
ing to the resonance 1/3 rotation between these three
nodes.

There is also another eigenvector marked poetry in Fig-
ure 6 with λ = −0.0026 + i0.4297 and θ ≈ 90◦. In fact
this article speaks about 1000s in poetry with approxi-
mately equal 6 amplitudes about poetry in various years
that corresponds to a resonance 1/6 rotation generating
θ ≈ 90◦. There are also other vectors with resonance val-
ues 1/2, 1/4, 1/6 that produce eigenvalues with a domi-
nant imaginary part. We also note that there are other res-
onance eigenvalues among those given in Table 3 (e.g., λ38

with θ = 120.1◦). We think that such resonance θ values
have close similarity with those of random matrix mod-
els of small size N = 3, 4, 5, 6 analyzed in reference [25]
corresponding to the main part of information exchange
between a small number of nodes.

The above analysis shows that the eigenvectors of the
Google matrix of Wikipedia clearly identify certain com-
munities which are relatively weakly connected with the
Wikipedia core when the modulus of corresponding eigen-
value is close to unity. For moderate values of |λ|, we
still have well defined communities which however have
stronger links with some popular articles (e.g., countries)
that lead to a more rapid decay of such eigenmodes.

The above results show that the analysis of eigenvec-
tors highlights interesting features of communities and
network structure. However, a priori it is not evident
what is a correspondence between the numerically ob-
tained eigenvectors and the specific community features in
which someone has a specific interest. It is possible that for
a well defined community it can be useful to construct a
personalized Google matrix (see, e.g., [5]) and to perform
analysis of its eigenstates.
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Fig. 7. Top 5000 values in PageRank-CheiRank plane (K,K∗)
of Wikipedia. All nodes and all links in this region are shown
by black circles and red arrows, respectively.

5 CheiRank versus PageRank plane

As it is discussed in references [15,16,18,19], it is useful to
look on the distribution of network nodes on PageRank-
CheiRank plane (K,K∗). For Wikipedia a large scale dis-
tribution is analyzed in references [16,19] and the networks
of British Universities, Linux Kernel and Twitter are con-
sidered in references [15,19].

In Figure 7, we show for Wikipedia the distribution of
nodes in (K,K∗) plane for a relatively small range of top
5000 values of K,K∗. All directed links in this region are
also shown. In fact the number of such links and number
of nodes in this region are relatively small. Indeed, a large
scale density of nodes (see Fig. 3 in Ref. [16]) shows that
the density of nodes is not very high at the top corner of
PageRank-CheiRank plane. This happens due to the fact
that top nodes of PageRank, whose components are pro-
portional to the number of ingoing links, are usually not
those of CheiRank, whose components are proportional to
the number to outgoing links.

The correlation between PageRank and CheiRank vec-
tors can be characterized by their correlator [18,19]:

κ = N

N∑
i=1

P (K(i))P ∗(K∗(i)) − 1. (3)

For our networks we find its values to be κ = 4.08
(Wikipedia), 41.5 (Cambridge 2011), 12.9 (Python), 140.2
(BBC), 0.85 (Le Monde). Except for the case of Le Monde,
these values are relatively high showing that there is a
significant correlation between PageRank and CheiRank
probabilities on corresponding networks. We remind that
for Linux Kernel networks the values of κ are close to zero
corresponding to absence of correlations there [18,19].

The strong difference between κ values for BBC and Le
Monde shows that the structure of these two web sites is
very different. To analyze this difference in a better way we
show the density of nodes for these two networks on small
and large scales in Figure 8. For small scale, shown by top

Fig. 8. Density of nodes W (K,K∗) on PageRank-CheiRank
plane (K,K∗) for the networks of BBC (left panels) and Le
Monde (right panels). Top panels show density in the range
1 ≤ K,K∗ ≤ 104 with averaging over cells of size 100 × 100;
bottom panels show density averaged over 100 × 100 logarith-
mically equidistant grids for 0 ≤ lnK, lnK∗ ≤ lnN , the den-
sity is averaged over all nodes inside each cell of the grid, the
normalization condition is

∑
K,K∗ W (K,K∗) = 1. Color varies

from blue at zero value to red at maximal density value. At
each panel the x-axis corresponds to K (or lnK for the bot-
tom panels) and the y-axis to K∗ (or lnK∗ for the bottom
panels).

panels, it is clear that the density of nodes is significantly
larger for BBC network. However, this difference becomes
even more drastic on the large logarithmic scale of the
whole network shown in bottom panels. Indeed, on a log-
arithmic scale we see that BBC network has a square like
distribution region with a certain probability maximum
around the diagonalK ≈ K∗ while Le Monde network has
a triangular type distribution which is typical for networks
without correlations between PageRank and CheiRank
vectors, like it is the case for the Linux Kernel networks
(see Fig. 4 in Ref. [19]). Indeed, a random procedure of
node generation on (K,K∗) plane gives such a triangu-
lar distribution without correlations between PageRank
and CheiRank nodes (see procedure description and right
panel of Fig. 4 in Ref. [16]). This analysis shows that BBC
and Le Monde agencies handle information flows on their
web sites in a drastically different manner. Thus for the
BBC web site the most popular articles are at the same
time also the most communicative ones while in contrast
to that for the Le Monde web site the most popular and
most communicative articles are very different.

6 Links distribution over PageRank nodes

To understand the properties of directional flow on a net-
work it is also useful to analyze the distribution of links
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Fig. 9. Number of links between or inside sets A and B de-
fined by the index Ki ordered by decreasing absolute value of
Wikipedia eigenstates. The number of links starting and point-
ing to nodes inside the set A (NAA) is shown in top panel as a
function of Ki. The cases of links from set A to set B (NAB)
and from B to A (NBA) are shown in middle and bottom panel,
respectively. Note that the total number of links is conserved
and the quantity NBB can be obtained as NBB = N� −NAA −
NAB −NBA. The case of PageRank vector with damping pa-
rameter α = 0.85 is shown by a black curve versus K index.
The color curves show the cases of four core space eigenvec-
tors |ψi| of S versus their ranking indexes Ki. Red and green
curves are the eigenvectors corresponding to the two largest
core space eigenvalues (in modulus) being λ1 = 0.99998702 and
λ2 = 0.97723699, respectively; blue and pink curves are the
eigenvectors corresponding to two complex eigenvalues with
large imaginary part being λ52 = −0.35003316 + i0.77373677
and λ864 = −0.34293502 + i0.43144930, respectively.

over PageRank nodes. We illustrate this approach for the
Wikipedia network. Suppose that all nodes are ordered
in a decreasing order of modulus of a given eigenvector.
For the PageRank vector all nodes are numbered by the
PageRank index K, while for a given eigenstate ψi(j) all
nodes are numbered by a local corresponding indexKi. We
now divide all nodes on two parts A and B with 1, . . . ,Ki

nodes for A and Ki + 1, . . . , N nodes for B. Then we de-
termine the number of links NAA starting and ending in
part A, the number of links NAB pointing from part A
to part B and the number of links NBA pointing from
part B to part A. The number of links inside part B is
then NBB = N� −NAA −NAB −NBA. For the PageRank
vector, the dependence of NAA on K was analyzed for dif-
ferent networks in reference [15]. Here we generalize this
concept to consider links between two parts A,B for var-
ious eigenvectors of the Google matrix.

According to the data of Figure 9, we find that for
all eigenvectors NAA ∝ K1.5

i grows approximately in an
algebraic way with the exponent being close to 1.5 being

similar to the PageRank case considered in reference [15].
However, the dependence of NAB andNBA onKi is rather
different for different eigenstates. For the PageRank and
the λ1 eigenvector, we find practically the same behavior
linked to the fact that at α = 0.85, the PageRank vector
is rather close to the first core space eigenvector (see dis-
cussion in Ref. [13]). Here, the interesting point is that at
small values of Ki we have NBA being larger than NAB al-
most by a factor 100. This is due to the fact that low rank
nodes at large Ki point preferentially to high rank nodes
at low Ki. For other three eigenvectors with λ2, λ52, λ864,
we find well pronounced step-like behavior of NAB, NBA

on Ki. We argue that the step size in Ki is given by the
size of a community which has preferential links mainly
inside the community. Indeed, for the eigenvector of λ2

(see Tab. 3) we see that the community size is approxi-
mately Ncs ≈ 1/|ψ1| ≈ 100 that corresponds to the step
size in Ki ≈ 70 for this case.

These results show that the analysis of the link distri-
bution over the PageRank index provides interesting and
useful information about characteristics and properties of
directed networks.

7 Discussion

In this work, we performed a spectral analysis of eigen-
values and eigenstates of the Google matrix of Wikipedia
and other networks. Our study shows that the spectrum of
the core space component has eigenvalues in a close vicin-
ity of λ = 1 and that there are isolated subspaces which
give a degeneracy of the eigenvalue λ = 1. The eigenval-
ues and eigenstates with relatively large values of |λ| can
be efficiently determined by the powerful Arnoldi method.
These eigenstates are mainly located on well defined net-
work communities. We also find that the spectrum changes
drastically from one network to another even if the distri-
bution of links and decay of PageRank is rather similar
for the networks considered. This means that the proper-
ties of directed networks strongly depend on the internal
network structure. We show that the correlation between
PageRank and CheiRank vectors highlights specific prop-
erties of information flow on directed network. For exam-
ple, this correlation demonstrates a drastic difference be-
tween web sites of BBC and Le Monde. The distribution
of links between PageRank nodes also provides an inter-
esting information about the network structure. On the
basis of our studies, we argue that the developed spectral
analysis of Google matrix brings a deeper understanding
of information flow on real directed networks.

We thank A.D. Chepelianskii for making to us available net-
work data collected by him for networks of Cambridge Univer-
sity, Python, BBC, Le Monde in March 2011. Our research
presented here is supported in part by the EC FET Open
project “New tools and algorithms for directed network anal-
ysis” (NADINE No. 288956). This work was granted access to
the HPC resources of CALMIP (Toulouse) under the allocation
2012-P0110.
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Appendix

The tables are given in the text of the paper. The nota-
tions used in the tables are: N is network size, N� is the
number of links, nA is the Arnoldi dimension used for the
Arnoldi method for the core space eigenvalues, Nd is the
number of invariant subspaces, dmax gives a maximal sub-
space dimension, Ncirc. notes number of eigenvalues on the
unit circle with |λi| = 1,N1 notes number of unit eigenval-
ues with λi = 1. We remark that Ns ≥ Ncirc. ≥ N1 ≥ Nd

and Ns ≥ dmax and the average subspace dimension is
given by: 〈d〉 = Ns/Nd. We note that the values of N , N�

for network of Cambridge 2011 are slightly different from
those given in [19] due to a slightly different procedure
of cleaning of row data collection (e.g., count of pdf and
other type nodes). Eigenvalues for eigenvectors are shown
in Figure 1 with the colors red, green, blue or pink cor-
responding to colors of Table 3. The index m of λm in
Tables 3–7 counts the order number of core eigenvalues in
a decreasing order of |λm|.
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Abstract

We consider a PageRank model of opinion formation on Ulam networks, generated by the intermit-
tency map and the typical Chirikov map. The Ulam networks generated by these maps have certain
similarities with such scale-free networks as the World Wide Web (WWW), showing an algebraic de-
cay of the PageRank probability. We find that the opinion formation process on Ulam networks have
certain similarities but also distinct features comparing to the WWW. We attribute these distinctions
to internal differences in network structure of the Ulam and WWW networks. We also analyze the
process of opinion formation in the frame of generalized Sznajd model which protects opinion of small
communities.

Keywords:

PageRank, Ulam networks, opinion formation

1. Introduction

The understanding of mechanisms of opinion
formation in the modern society is at the heart
of a newly emerged research field, known as so-
ciophysics [1]. A number of voter models has
been developed during the last few decades for un-
derstanding of nontrivial features of opinion for-
mation in a society (see Refs. [2–6] for details).
However, these models are generally considered
on abstract regular lattices, which are very dif-
ferent from a scale-free structure of modern so-
cial networks with hundreds of millions of users.
In particular, such social networks as LiveJournal
[7], Facebook [8] or Twitter [9] allow to have a
rapid information exchange over a large fraction
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(L. Chakhmakhchyan), dima@irsamc.ups-tlse.fr
(D. Shepelyansky)

URL: http://www.quantware.ups-tlse.fr/dima
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of network users and to share social events, mak-
ing an essential contribution to the mass opinion
formation. These social networks have a growing
influence on the social and political life.

A straightforward way of taking into account
the main features of such networks was recently
proposed in Ref. [10]: the opinion on each
given node of a scale-free network is assumed to
be formed by opinions of its linked neighbors,
weighted with their PageRank probability. The
latter quantity is interpreted as a probability of
finding a random surfer on a given node [11, 12].
Obviously, this approach introduces the notion of
importance of a node, naturally reproducing the
real society, where each person has its degree of
authority. Mathematically the PageRank is de-
fined as the right eigenvector with unit eigenvalue
of Google matrix of a given network [12]. Al-
though the PageRank algorithm was initially pro-
posed for an efficient ranking of web pages [11], it
turned out to be useful for the analysis of broad
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class of real networks including e.g. scientific jour-
nal rating, neuronal and world trade networks,
etc. [13–16]. The rules of Google matrix construc-
tion for a given directed network are described in
[11, 12, 15].

In the present work we study the PageRank
Opinion Formation (PROF) model, proposed in
[10], on another family of directed networks,
known as Ulam networks. The Ulam method, in-
troduced in Ref. [17], was initially proposed for
constructing a matrix approximant for a Perron-
Frobenius operator of dynamical systems (we note
that the Google matrix also falls in the same
class of operators). The Ulam conjecture [17] was
shown to be true for various types of generic fully
chaotic maps on an interval [18–21]. Recent stud-
ies have shown that this method naturally gen-
erates a class of directed networks, which prop-
erties have certain similarities with the WWW
directed networks [22, 23]. Thus the Ulam net-
works demonstrate a sensitivity to the damping
parameter α of the corresponding Google matrix
and a power law decay of its PageRank. Here
we are interested in two particular examples: the
typical Chirikov map with dissipation and the one
dimensional intermittency map. The first one, in-
troduced in Ref. [24] for a description of contin-
uous chaotic flows, has been studied in [22, 25].
The second one is generated from intermittency
maps, studied in systems exhibiting intermittency
phenomenon, featuring anomalous diffusion and
transport [26–30].

In this work we analyze the properties of PROF
model on the Ulam networks and study the influ-
ence of network elite on opinion formation pro-
cess. We also consider the Sznajd model [31],
generalized for scale-free networks following [10].
This model incorporates the effect of groups, con-
sisting of voters of the same opinion following the
trade union slogan united we stand, divided we

fall.

In the rest, the paper is organized as follows:
in the next section we give a brief description of
the Ulam method and PROF model and present
our numerical results. In Section 3 we combine
the PROF and Sznajd models and analyze their
properties on Ulam networks. The discussion of

the results is given in Section 4.

2. The PROF model and Ulam networks

We start with a brief outline of the Ulam
method for dynamical maps following the descrip-
tion given in [22, 23]. As the first model we use
the one-dimensional (1d) intermittency map de-
scribed in [23]:

x̄ = f(x) =







x+ (2x)z1/2, for 0 ≤ x < 1/2
(2x− 1− (1− x)z2 + 1/2z2)/
(1 + 1/2z2), for 1/2 ≤ x < 1

(1)

where x̄ notes the new value of variable x. The
Ulam network generated by this map is con-
structed in the following way: the whole interval
0 < x < 1 is divided to N equal cells and Nc

trajectories (randomly distributed inside a cell)
are iterated on one map iteration from cell j, to
obtain matrix elements for transitions to cell i:
Sij = Ni(j)/Nc, where Ni(j) is the number of tra-
jectories arrived from cell j to cell i. From the
matrix Sij, one constructs the Google matrix G,
defined as:

G = αS+ (1− α)E/N, (2)

where Eij = 1 and α is the damping factor. We
use a probability normalization of the eigenstate
|ψ1〉 (with a unit eigenvalue) of the matrix (2),
which results in the PageRank Pj of the network
(see [23] for a detailed description of its proper-
ties). We also arrange all N nodes in monotonic
decreasing order of the PageRank probability. In
what follows we set the damping factor of the
Google matrix of the intermittency map (1) to
α = 1. We also fix the parameters of (1) to z1 = 2
and z2 = 0.2. This choice gives a power law de-
cay of the PageRank (sorted in descending order):
Pj ∝ 1/j [23].

We construct the PROF model for the Google
matrix of the intermittency map (1) in the fol-
lowing way. We associate each node of the net-
work with a spin variable σi, taking values +1
(red color) or −1 (blue color). Afterwards, we
compute the quantity Σi over all directly linked

2



neighbors j of a node i:

Σi = a
∑

j

P+
j,in + b

∑

j

P+
j,out (3)

−a
∑

j

P−

j,in − b
∑

j

P−

j,out,

where Pj,in and Pj,out denote the PageRank prob-
ability Pj of a node j pointing to node i (incom-
ing link) and a node j to which node i points to
(outgoing link). The two parameters a and b are
used to tune the importance of incoming and out-
going links with the imposed relation a + b = 1
(0 < a, b < 1). The values P+ and P− correspond
to red and blue nodes respectively. On one iter-
ation the value of a spin σi is fixed to +1 (red)
for Σi > 0 or −1 (blue) for Σi < 0. We note that
the a and b parameters define the type of a soci-
ety: for a large value a a person takes mainly the
opinion of those electors who point to him/her (a
tenacious society) and the opposite for large val-
ues of b (a conformist society).
In Fig. 1 we present the evolution of the fraction

of red nodes f(t) (f(t) = Nred/N) versus the iter-
ation time t. We distinguish two important cases,
namely, when initially opinions are randomly dis-
tributed over the network, and when the first Ntop

nodes of the highest PageRank probability are of
the same opinion, e.g. of a red color. For a ran-
dom distribution the system converges to its final
state after tc ≈ 25 iterations for a = b = 0.5.
Iterations are defined as in [10].
In Fig. 1 we show the time evolution of opin-

ion for the initial state where the society elite,
corresponding to the top nodes Ntop of highest
PageRank probability, has the same opinion (dot-
ted curves). In this case the elite can impose its
opinion to a faction of society which is by a factor
2− 3 larger than the initial fraction. However, in
comparison with the social or university networks
considered in [10] this increase is less significant
that is due to a smaller number of linked nodes
for the Ulam network of intermittency map.
For a comprehensive analyzes of the depen-

dence of the final fraction of red nodes ff on the
initial state fi, we consider below the evolution
of f(t) for a large number of Nr initial (random)
distributions of red nodes (Fig. 2). We find that

0 5 10 15 20 25 30

0.1

0.3

0.5

0.7

t

f(
t)

Figure 1: Time evolution of the opinion, given by a fraction
of red nodes f(t), as a function of number of time iteration
t (a = b = 0.5). Full curves correspond to different initial
fractions fi = f(0) at a random realization: fi = 0.45
(red); 0.5 (green); 0.55 (blue). The dotted curves stand
for the initial state with the first Ntop nodes of the highest
PageRank probability being red: Ntop = 100 (red); Ntop =
500 (green); Ntop = 1000 (blue). The total matrix size is
N = 104; α = 1.

there is a certain critical value fc such, that ini-
tial fractions fi of red nodes completely die out
if fi < fc, or become dominant for fi > 1 − fc.
For a = 0.2 the value of fc is fc ≈ 0.45, while for
a = 0.65 we have fc ≈ 0.35. In contrast to re-
sults obtained in [10] we find that the system has
no bistability for a < 0.7: the final state is fixed
for a concrete homogeneous initial distribution of
opinions. However, for a dominating tenacious so-
ciety at a > 0.7 there is a small probability that a
small initial fraction of red nodes leads to a com-
plete domination of red color for values of fi > fc
(see Fig. 2 left bottom panel). For the case of
a = 0.8, we have fc ≈ 0.3. Obviously, the results
are symmetric with respect to a change of red and
blue colors.

We also analyze how the final state depends on
the number of the elite members Ntop with the
highest PageRank of the same opinion (Fig. 3).
We see that for any type of a society (any a) there
exists a value of N c

top such that the elite can con-
vince the whole society, if Ntop > N c

top. Note that
the value of N c

top depends on the tenacious param-
eter a. The larger the tenacious parameter is, the
smaller number of the elite members of a same
opinion can bring the system to unanimity.

3



Figure 2: Density plot of probability Wf to find a final red
fraction ff , shown in y-axis, in dependence on an initial
red fraction fi, shown in x-axis; data are shown inside the
unit square 0 < fi, ff < 1. The values of Wf are defined
as a relative number of realizations found inside each of
20 × 20 cells, which cover the whole unit square. Here
Nr = 103 realizations of randomly distributed red and
blue colors are used to obtain Wf values (with convergence
time up to t = 150). Here a = 0.2 (left top panel), 0.5 (left
bottom panel), 0.65 (right top panel), 0.8 (right bottom
panel); N = 104. The probability Wf is proportional to
color changing from zero (blue) to unity (brown).

3. The generalized PROF-Sznajd model

In this section we consider the properties of the
combination of PROF and Sznajd models [31].
The Sznajd model features the idea of groups of a
society and thus incorporates a well-known prin-
ciple ”United we stand, divided we fall”. A thor-
ough analyzes of the problem on regular lattice
networks can be found in Ref. [32]. The present
generalization (which results in the PROF-Sznajd
model) is applicable to scale-free and Ulam net-
works. We define the notion of group of nodes at
each discrete time step τ following Ref. [10]:

1. we pick randomly a node i in the network
and consider the state of the Ng − 1 highest
PageRank nodes pointing to it;

2. if the node i and all other Ng − 1 nodes
have the same color (same spin orientation),
these Ng nodes form a group, whose effective
PageRank value is the sum of all the member
values Pg =

∑Ng

j Pj. If it is not the case, we

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

N
top

/N

f f
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0

0.2
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0.6

0.8

1

a

f f

Figure 3: Left panel: final fraction of red nodes ff versus
Ntop/N , for a = 0.4 (red), 0.6 (green), 0.8 (blue). Right
panel: dependence of the final fraction of red nodes ff on
the parameter a, for initial state with different number of
the first Ntop nodes of the highest PageRank being red:
Ntop = 100 (red); 1000 (green). Here N = 104.

leave the nodes unchanged and perform the
next time step;

3. consider all the nodes pointing to any mem-
ber of the group and check all these nodes n
directly linked to the group: if an individual
node PageRank value Pn is less than the de-
fined above Pg, the node joins the group by
taking the same color (polarization) as the
group nodes and increase Pg by the value of
Pn; if it is not the case, a node is left un-
changed.

In Fig. 4 we present a typical behavior of the
PROF-Sznajd model on Ulam network generated
by the intermittency map. Firstly, we find that
the convergence time is longer than that of the
PROF model, which is the generic feature of the
Sznajd model. The system converges to its final
state after a time τc of the order of τc ∼ 10N .
Note that there are still some fluctuations in the
steady state regime, which were absent in the con-
ventional PROF model. Another observation con-
cerns the group size Ng: we find that the size of
the group does not affect much the properties of
the model: there is a small decrease in the resis-
tivity of minorities with the group size increase
(of around 2% with a change from Ng = 3 to
Ng = 4). Furthermore, the network practically
does not have nodes with more than four incom-
ing links, hence, we find that considering a group
size with Ng > 5 loses its sense.
The right panel of Fig. 4 shows a density plot of

probability Wf , constructed in a similar to Fig. 2
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Figure 4: Left panel: time evolution of the fraction of
red nodes f(τ) of the PROF-Sznajd model, with different
initial fractions of red nodes and the group size Ng (at
one random realization each): fi = 0.55, Ng = 3 (red);
fi = 0.55, Ng = 4 (green); fi = 0.7, Ng = 3 (blue);
fi = 0.7, Ng = 4 (black). Right panel: the same as in
Fig. 2, but for the PROF-Sznajd model with group size
Ng = 3, with convergence time up to τ = 5 · 105; colors
are as in Fig. 2. Here N = 104.

way. We see, that the rate of surviving of small
fractions of (red) nodes is drastically small (we ad-
dress this result to the poor incoming link struc-
ture of the Ulam network). The initial states are
suppressed if fi . 0.45. But for 0.45 < fi < 0.5
(0.5 < fi < 0.55) there is a small probability of
approximately 8% that the fraction will become
dominant (be suppressed). Outside of this small
range of fi we don’t find any regions of bistability:
the final state of the system is fixed.
For the PROF-Sznajd model we are addition-

ally interested in the Ulam network, generated by
another dynamical map, the typical Chirikov map
with dissipation:

{

yt+1 = ηyt + k sin(xt + θt),
xt+1 = xt + yt+1.

(4)

Here the dynamical variables x and y are taken
at integer moments of time t. Also x has a mean-
ing of phase variable and y is a conjugated mo-
mentum or action. For a detailed description of
this dynamical system, see Ref. [22]. The map
region is 0 ≤ x < 2π and −π ≤ y < π, with
2π-periodic boundary conditions. The phases
θt = θt+T are T random phases periodically re-
peated along time t. Here we consider the T10
case with T = 10, analyzed in Ref. [22]. The val-
ues of parameters are set to η = 0.99, k = 0.22.
The list of 10 values of θt phases can be found in
the Appendix of Ref. [22]. For the construction

of the Ulam network we divide the phase space to
nx × ny cells (nx = ny = 100). Afterwards, Nc

trajectories are propagated from each given cell j
during T map iterations to obtain elements of the
adjacency matrix Sij for transitions to cell i (in
the same manner as for the mapping (1)). The
total matrix size is N = 104.

For this network we find a higher strength of
resistivity of minorities, since it has a richer link
structure. On Fig. 5 we plot the average of the
final fraction of red nodes ff versus the initial
fraction fi. We see here that minor opinions die
out if fi . 0.3. The damping factor of the Google
matrix here is set to α = 0.95, which gives a power
law decay of the PageRank with a slope of 0.48
(see Ref. [22]). We also looked at the ff versus fi
behavior for other values of the damping factor.
As mentioned above, the Google matrix proper-
ties of Ulam networks are sensitive to the values of
α. Nevertheless, our calculations showed, that for
0.95 < α < 1, qualitative behavior of the PROF-
Sznajd model remains similar to that of Fig. 5.
On the other hand, as pointed out in Ref. [10],
the increase of the slope of the power law decay of
the PageRank should result in a bistable behavior
of the PROF and PROF-Sznajd models on social
and university networks. However, this argument
does not hold true for Ulam networks: although
the slope of the PageRank increases with growth
of α (e.g. for α = 0.98 we have Pj ∝ 1/j0.7, while
for α = 0.99 we have Pj ∝ 1/j0.9), bistability
does not emerge. Thus we conclude that a pres-
ence of bistability behavior is associated not only
with the slope of the PageRank decay, but also
with the intrinsic structure of the network itself.

For the PROF-Sznajd T10 model we find that
the elite of the society cannot convince any elec-
tor, if its fraction is initially relatively small. In
particularly, the first Ntop nodes of the highest
PageRank with the same opinion are suppressed
for Ntop/N . 0.2. For Ntop/N & 0.2, the elite
becomes capable to influence the opinion of other
electors, but the convergence process as well as
the final state starts exhibiting fluctuations of a
significant amplitude. These fluctuations become
smaller for higher values of Ntop and almost dis-
appear for Ntop/N & 0.7 where the society comes
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Figure 5: Left panel: The average of the final fraction of
red nodes 〈ff 〉 versus the initial fraction fi for the PROF-
Sznajd model of T10 model of the typical Chirikov map
(α = 0.95, nx = ny = 100, N = 104). Here, Nr = 103

realizations with a convergence time up to τ = 3 · 105 are
used to obtain the average 〈ff 〉 (the group size is Ng = 3).
Right panel: time evolution of the fraction of red nodes
f(τ) for the same model, for the initial state with the first
Ntop nodes of the highest PageRank being red: Ntop =
1500 (red); Ntop = 4000 (green); Ntop = 8000 (blue).

to unanimity.

Finally, we shortly describe the initial and final
distributions of red nodes in the coordinate space.
It is of interest to consider the case of initial state
with Ntop red nodes with the highest PageRank,
since for random distributions the final and initial
states are homogeneously distributed over phase
plane. Figure 6 shows the initial and final distri-
butions for Ntop = 2200. We find that the top
elite nodes first tend to convince other members
of the elite corresponding to the denser regions on
the right panel of Fig. 6 with high values of the
PageRank probability.

Figure 6: Coordinate distribution of red nodes in (y, x)
phase space of the PROF-Sznajd T 10 model (α = 0.95,
nx = ny = 100, N = 104); the phase plane is shown in
2π × 2π square. Left panel shows the initial state with
Ntop = 2200 nodes of the highest PageRank being red and
fi = 0.22; right panel corresponds to the final state with
ff = 0.5758.

4. Discussion

In this work we analyzed the features of
a recently proposed PageRank opinion forma-
tion model on two examples of Ulam networks.
The Ulam networks generated by the discussed
above one dimensional intermittency and typical
Chrikov maps exhibit some intrinsic properties
similar to the WWW. This fact makes the ana-
lyzes relevant to the opinion formation process in
real societies. We pointed out that the elite of a
society does not have a considerable influence on
the decision making process of the electors for an
equal mixture of conformist and tenacious society.
However, the influence of the elite becomes tangi-
ble for a dominating tenacious society. In contrast
to the university networks analyzed in [10] we find
practically no regions of bistability behaviour for
a random distribution of initial opinions. Only a
dominating tenacious society shows some signs of
bistability.
We also considered a generalization of the Sz-

najd model for Ulam networks (PROF-Sznajd
model). We found here that the system still prac-
tically does not feature bistable regimes. On the
basis of our studies we conclude that the PageR-
ank decay exponent does not influence the bista-
bility for the Ulam networks considered in this
work. We argue that the chaotic maps consid-
ered generate strong stretching of small regions of
phase space but do not generate significant num-
ber of loop returns. We think that this feature is
different from university networks which are char-
acterized by a significant number of loops. We
presume that this internal feature of the Ulam
networks is at the origin of significant difference
in opinion formation on these two types of scale-
free networks. The presented results can be useful
for analysis of opinion formation on other types
of scale-free directed networks.
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Google matrix of the citation network of Physical Review
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We study the statistical properties of spectrum and eigenstates of the Google matrix of the
citation network of Physical Review for the period 1893 - 2009. The main fraction of complex
eigenvalues with largest modulus is determined numerically by different methods based on high
precision computations with up to p = 16384 binary digits that allows to resolve hard numerical
problems for small eigenvalues. The nearly nilpotent matrix structure allows to obtain a semi-
analytical computation of eigenvalues. We find that the spectrum is characterized by the fractal
Weyl law with a fractal dimension df ≈ 1. It is found that the majority of eigenvectors are located
in a localized phase. The statistical distribution of articles in the PageRank-CheiRank plane is
established providing a better understanding of information flows on the network. The concept of
ImpactRank is proposed to determine an influence domain of a given article. We also discuss the
properties of random matrix models of Perron-Frobenius operators.

PACS numbers: 89.75.Hc, 89.20.Hh, 89.75.Fb

I. INTRODUCTION

The development of Internet led to emergence of vari-
ous types of complex directed networks created by mod-
ern society. The size of such networks grows rapidly go-
ing beyond ten billions in last two decades for the World
Wide Web (WWW). Thus the development of mathe-
matical tools for the statistical analysis of such networks
becomes of primary importance. In 1998, Brin and Page
proposed the analysis of WWW on the basis of PageRank
vector of the associated Google matrix constructed for a
directed network [1]. The mathematical foundations of
this analysis are based on Markov chains [2] and Perron-
Frobenius operators [3]. The PageRank algorithm allows
to compute the ranking of network nodes and is known to
be at the heart of modern search engines [4]. However, in
many respects the statement of Brin and Page that “De-
spite the importance of large-scale search engines on the
web, very little academic research has been done on them”

[1] still remains valid at present. In our opinion, this is
related to the fact that the Google matrix G belongs to a
new class of operators which had been rarely studied in
physical systems. Indeed, the physical systems are usu-
ally described by Hermitian or unitary matrices for which
the Random Matrix Theory [5] captures many universal
properties. In contrast, the Perron-Frobenium operators
and Google matrix have eigenvalues distributed in the
complex plane belonging to another class of operators.
The Google matrix is constructed from the adjacency

matrixAij which has unit elements if there is a link point-
ing from node j to node i and zero otherwise. Then the
matrix of Markov transitions is constructed by normaliz-
ing elements of each column to unity (Sij = Aij/

∑

iAij ,
∑

j Sij = 1) and replacing columns with only zero ele-

ments (dangling nodes) by 1/N , with N being the matrix
size. After that the Google matrix of the network takes
the form [1, 4]:

Gij = αSij + (1− α)/N . (1)

The damping parameter α in the WWW context de-
scribes the probability (1 − α) to jump to any node for
a random surfer. For WWW the Google search engine
uses α ≈ 0.85 [4]. The PageRank vector Pi is the right
eigenvector of G at λ = 1 (α < 1). According to the
Perron-Frobenius theorem [3], Pi components are posi-
tive and represent the probability to find a random surfer
on a given node i (in the stationary limit) [4]. All nodes
can be ordered in a decreasing order of probability P (Ki)
with highest probability at top values of PageRank index
Ki = 1, 2, .....

The distribution of eigenvalues of G can be rather non-
trivial with appearance of the fractal Weyl law and other
unusual properties (see e.g. [6, 7]). For example, a ma-
trix G with random positive matrix elements, normalized
to unity in each column, has N −1 eigenvalues λ concen-
trated in a small radius |λ| < 1/

√
3N and one eigenvalue

λ = 1 (see below in section VII). Such a distribution
is drastically different from the eigenvalue distributions
found for directed networks with algebraic distribution
of links [8] or those found numerically for other directed
networks including WWW of universities [9, 10], Linux
Kernel and Twitter networks [11, 12], Wikipedia net-
works [13, 14]. In fact even the Albert-Barabási model
of preferential attachment [16] still generates the com-
plex spectrum of λ with a large gap (|λ| < 1/2) [8] be-
ing very different from the gapless and strongly degen-
erate G spectrum of WWW of British universities [10]
and Wikipedia [13, 14]. Thus it is useful to get a deeper
understanding of the spectral properties of directed net-
works and to develop more advanced models of complex
networks which have a spectrum similar to such networks
as British universities and Wikipedia.

With the aim to understand the spectral properties of
Google matrix of directed networks we study here the Ci-
tation Network of Physical Review (CNPR) for the whole
period up to 2009 [15]. This network has N = 463348
nodes (articles) and Nℓ = 4691015 links. Its network
structure is very similar to the tree network since the

http://arxiv.org/abs/1310.5624v1
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citations are time ordered (with only a few exceptions
of mutual citations of simultaneously published articles).
As a result we succeed to develop powerful tools which
allowed us to obtain the spectrum of G in semi-analytical
way. These results are compared with the spectrum ob-
tained numerically with the help of the powerful Arnoldi
method (see its description in [17, 18]). Thus we are able
to get a better understanding of the spectral properties
of this network. Due to time ordering of article citations
there are strong similarities between the CNPR and the
network of integers studied recently in [19].
We note that the PageRank analysis of the CNPR had

been performed in [20, 21],[22] showing its efficiency in
determining the influential articles of Physical Review.
The citation networks are rather generic (see e.g. [23])
and hence the extension of PageRank analysis of such
networks is an interesting and important task. Here we
put the main accent on the spectrum and eigenstates
properties of the Google matrix of the CNPR but we also
discuss the properties of two-dimensional (2D) ranking
on PageRank-CheiRank plane developed recently in [24,
25],[26]. We also analyze the properties of ImpactRank
which shows a domain of influence of a given article.
In addition to the whole CNPR we also consider the

CNPR without Rev. Mod. Phys. articles which has
N = 460422, Nℓ = 4497707. If in the whole CNPR we
eliminate future citations (see description below) then
this triangular CNPR has N = 463348, Nℓ = 4684496.
Thus on average we have approximately 10 links per
node. The network includes all articles of Physical Re-
view from its foundation in 1893 till the end of 2009.
The paper is composed as follows: in Section II we

present a detailed analysis of the Google matrix spectrum
of CNPR, the fractal Weyl law is discussed in Section
III, properties of eigenstates are discussed in Section IV,
CheiRank versus PageRank distributions are considered
in Section V, properties of impact propagation through
the network are studied in Section VI, certain random
matrix models of Google matrix are studied in Section
VII, the discussion of the results is given in Section VIII.

II. EIGENVALUE SPECTRUM

The Google matrix of CNPR is constructed on the ba-
sis of Eq.(1) using citation links from one article to an-
other (see also [22]). The matrix structure for different
order representations of articles is shown in Fig. 1. In the
top left panel all articles are ordered by time that gen-
erates almost perfect triangular structure corresponding
to time ordering of citations. Still there are a few cases
with joint citations of articles which appear almost at the
same time. This breaks the triangular structure but the
weight of such cases is small and we will see that with a
good approximation one can neglect such links in a first
approximation. The triangular matrix structure is also
well visible in the middle left panel where articles are
time ordered within each Phys. Rev. journal. The left

FIG. 1: (Color online) Different order representations of the
Google matrix of the CNPR (α = 1). Left column: The top
panel shows the density of matrix elements Gtt′ in the basis
of the publication time index t (and t′). The middle panel
shows the density of matrix elements in the basis of jour-
nal ordering according to: Phys. Rev. Series I, Phys. Rev.,
Phys. Rev. Lett., Rev. Mod. Phys., Phys. Rev. A, B, C, D, E,
Phys. Rev. STAB and Phys. Rev. STPER with time order-
ing inside each journal. The bottom panel shows the same
as middle panel but with PageRank index ordering inside
each journal. Note that the journals Phys. Rev. Series I,
Phys. Rev. STAB and Phys. Rev. STPER are not clearly
visible due to a small number of published papers. Also
Rev. Mod. Phys. appears only as a thin line with 2-3 pix-
els (out of 500) due to a limited number of published papers.
The three left panels and the bottom right panel show the
coarse-grained density of matrix elements done on 500 × 500
square cells for the entire network. Right column: Matrix
elements GKK′ are shown in the basis of PageRank index
K (and K′) with the range 1 ≤ K,K′ ≤ 200 (top panel);
1 ≤ K,K′ ≤ 400 (middle panel); 1 ≤ K,K′ ≤ N (bottom
panel). Color shows the amplitude (or density) of matrix
elements G changing from blue for zero value to red at max-
imum value. The PageRank index K is determined from the
PageRank vector at α = 0.85.

bottom panel shows the matrix elements for each Phys
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Rev journal when inside each journal the articles are or-
dered by their PageRank index K. The right panels show
the matrix elements of G on different scales, when all ar-
ticles are ordered by the PageRank index K.
The dependence of number of no-zero links NG, be-

tween nodes with PageRank index being less than K,
on K is shown in Fig. 2 (left panel). We see that com-
pared to the other networks of universities, Wikipedia
and Twitter studied in [13] we have for CNPR the low-
est values of NG/K practically for all available K values.
This reflects weak links between top PageRank articles
of CNPR being in contrast with Twitter which has very
high interconnection between top PageRank nodes. Since
the matrix elements GKK′ are inversely proportional to
the number of links we have very strong average matrix
elements for CNPR at top K values (see Fig. 2 (right
panel)).
In the following we present the results of numerical and

analytical analysis of the spectrum of the CNPR matrix
G.

A. Nearly nilpotent matrix structure

The triangular structure of the CNPR Google matrix
in time index (see Fig. 1) has important consequences
for the eigenvalue spectrum λ defined by the equation
for the eigenstates ψi(j):

∑

j′

Gjj′ψi(j
′) = λiψi(j) . (2)

The spectrum of G at α = 1, or the spectrum of S,
obtained by the Arnoldi method [17, 18] with the Arnoldi
dimension nA = 8000, is shown in Fig. 3. For comparison
we also show the case of reduced CNPR without Rev.
Mod. Phys.. We see that the spectrum of the reduced
case is rather similar to the spectrum of the full CNPR.
The matrix S can be decomposed on invariant sub-

spaces Sss, the core space Scc with fully connected nodes,
and the coupling block Ssc, thus being presented in the
form [10]:

S =

(

Sss Ssc

0 Scc

)

. (3)

The subspace-subspace block Sss is actually composed
of many diagonal blocks for each of the invariant sub-
spaces. Each of these blocks corresponds to a column
sum normalized matrix of the same type as G and has
therefore at least one unit eigenvalue thus explaining the
high degeneracy of S eigenvalue λ = 1. This structure is
discussed in detail in [10].
A network with a similar triangular structure, con-

structed from factor decompositions of integer numbers,
was previously studied in [19]. There it was analytically
shown that the corresponding G has only a small num-
ber of non-vanishing eigenvalues and that the numerical
diagonalization methods, including the Arnoldi method,

are facing subtle difficulties of numerical stability due to
large Jordan blocks associated to the highly degenerate
zero eigenvalue. The numerical diagonalization of these
Jordan blocks is highly sensitive to numerical round-off
errors. For example a perturbed Jordan block of dimen-
sion D associated to the eigenvalue zero and with a per-
turbation ε in the opposite corner has eigenvalues on a
complex circle of radius ε1/D [19] which may became very
large for sufficient large D even for ε ∼ 10−15. There-
fore in presence of many such Jordan blocks the numer-
ical diagonalization methods create rather big “artificial
clouds” of incorrect eigenvalues.

In the examples studied in [19] these clouds extended
up to eigenvalues |λ| ≈ 0.01. The spectrum for the Phys-
ical Review network shown in Fig. 3 shows also a sudden
increase of the density of eigenvalues below |λ| ≈ 0.3−0.4
and one needs to be concerned if these eigenvalues are
“real” or only an artifact of the same type of numeri-
cal instability. Actually, we find that the eigenvalues of
Fig. 3 below |λ| ≈ 0.3− 0.4 are changed completely in a
random way if we apply to the network or the numerical
algorithm certain transformations or modifications which
are mathematically neutral but which have a different ef-
fect on the numerical round-off errors (e.g. a permuta-
tion of the network nodes, keeping the same network-
link structure, or simply changing the evaluation order
of the sums used for the scalar products between vectors
in the Gram-Schmidt orthogonalization for the Arnoldi
method). This clearly indicates that these eigenvalues
are not reliable due to problems in the numerical evalu-
ation.
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FIG. 2: (Color online) Left panel: dependence of the linear
density NG/K of nonzero elements of the adjacency matrix
among top PageRank nodes on the PageRank index K for
the networks of Twitter (blue curve), Wikipedia (red curve),
Oxford University 2006 (magenta curve), Cambridge Univer-
sity 2006 (green curve), with data taken from Ref. [12],
and Physical Review all journals (cyan curve) and Physi-
cal Review without Rep. Mod. Phys. (black curve) (curves
from top to bottom at K = 100). Right panel: depen-
dence of the quantity Σ/K on the PageRank index K with
Σ =

∑
K1<K,K2<K GK1,K2

being the weight of the Google
matrix elements inside the K×K square of top PageRank in-
dexes. The curves correspond to the same networks as in
the left panel: Physical Review without Rep. Mod. Phys.
(black curve), Physical Review all journals (cyan curve), Ox-
ford University 2006 (magenta curve), Cambridge University
2006 (green curve), Wikipedia (red curve), and Twitter (blue
curve) (curves from top to bottom at K = 1).
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The theory of [19] is based on the exact triangular
structure of the matrix S0 which appears in the repre-
sentation of S = S0 + edT /N (see also below Eq. 4). In
fact the matrix S0 is obtained from the adjacency matrix
by normalizing the sum of the elements in non-vanishing
columns to unity and simply keeping at zero vanishing
columns. For the network of integers [19] this matrix is
nilpotent with Sl

0 = 0 for a certain modest value of l
being much smaller than the network size l ≪ N . How-
ever, for CNPR the matrix S0 is not exactly nilpotent
despite the overall triangular matrix structure visible in
Fig. 1. Even though most of the non-vanishing matrix
elements (S0)tt′ (whose total number is equal to the num-
ber of links Nℓ = 4691015) are in the upper triangle t < t′

there are a few non-vanishing elements in the lower trian-
gle t > t′ (whose number is 12126 corresponding to 0.26
% of the total number of links [27]). The reason is that
in most cases papers cite other papers published earlier
but in certain situations for papers with close publication
date the citation order does not always coincide with the
publication order. In some cases two papers even mutu-
ally cite each other. In the following we will call these
cases “future citations”. The rare non-vanishing matrix
elements due to future citations are not visible in the
coarse grained matrix representation of Fig. 1 but they
are responsible for the fact that S0 of CMPR is not nilpo-
tent and that there are also a few invariant subspaces.
On a purely triangular network one can easily show the
absence of invariant subspaces (smaller than the full net-
work size) when taking into account the extra columns
due to the dangling nodes.

However, despite the effect of the future citations the
matrix S0 is still partly nilpotent. This can be seen by
multiplying a uniform initial vector e (with all compo-
nents being 1) by the matrix S0 and counting after each
iteration the number Ni of non-vanishing entries [28] in
the resulting vector Si

0e. For a nilpotent matrix S0 with
Sl
0 = 0 the number Ni becomes obviously zero for i ≥ l.

On the other hand, since the components of e and the
non-vanishing matrix elements of S0 are positive, one can
easily verify that the condition Sl

0e = 0 for some value l
also implies Sl

0ψ = 0 for an arbitrary initial (even com-
plex) vector ψ which shows that S0 must be nilpotent
with Sl

0 = 0.
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FIG. 3: (Color online) Spectrum of S for CNPR (reduced
CNPR without Rev. Mod. Phys.) shown on left panels (right
panels). Top panels: Subspace eigenvalues (blue dots) and
core space eigenvalues (red dots) in λ-plane (green curve
shows unit circle); there are 27 (26) invariant subspaces, with
maximal dimension 6 (6) and the sum of all subspace dimen-
sions is Ns = 71 (75). The core space eigenvalues are obtained
from the Arnoldi method applied to the core space subblock
Scc of S with Arnoldi dimension nA = 8000 as explained in
Ref. [10] and using standard double-precision arithmetic. Bot-
tom panels: Fraction j/N of eigenvalues, shown in a logarith-
mic scale, with |λ| > |λj | for the core space eigenvalues (red
bottom curve) and all eigenvalues (blue top curve) from raw
data of top panels. The number of eigenvalues with |λj | = 1
is 45 (43) of which 27 (26) are at λj = 1; this number is iden-
tical to the number of invariant subspaces which have each
one unit eigenvalue.

In Fig. 4 we see that for the CNPR the value of Ni sat-
urates at a value Nsat = 273490 for i ≥ 27 which is 59%
of the total number of nodes N = 463348 in the network.
On one hand the (small) number of future citations en-
sures that the saturation value of Ni is not zero but on
the other hand it is smaller than the total number of
nodes by a macroscopic factor. Mathematically the first
iteration e → S0e removes the nodes corresponding to
empty (vanishing) lines of the matrix S0 and the next it-
erations remove the nodes whose lines in S0 have become
empty after having removed from the network the non-
occupied nodes due to previous iterations. For each node
removed during this iteration process one can construct
a vector belonging to the Jordan subspace of S0 associ-
ated to the eigenvalue 0. In the following we call this
subspace generalized kernel. It contains all eigenvectors
of Sj

0 associated to the eigenvalue 0 where the integer j
is the size of the largest 0-eigenvalue Jordan block. Ob-
viously the dimension of this generalized kernel of S0 is
larger or equal than N −Nsat = 189857 but we will see
later that its actual dimension is even larger and quite
close to N . We will argue below that most (but not all)
of the vectors in the generalized kernel of S0 also belong
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to the generalized kernel of S which differs from S0 by
the extra contributions due to the dangling nodes. The
high dimension of the generalized kernel containing many
large 0-eigenvalue Jordan subspaces explains very clearly
the numerical problem due to which the eigenvalues ob-
tained by the double-precision Arnoldi method are not
reliable for |λ| < 0.3− 0.4.
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FIG. 4: (Color online) Number of occupied nodes Ni (i.e.
positive elements) in the vector Si

0 e versus iteration number
i (red crosses) for the CNPR (left panel) and the triangular
CNPR (right panel). In both cases the initial value is the
network size N0 = N = 463348. For the CNPR Ni saturates
at Ni = Nsat = 273490 ≈ 0.590N for i ≥ 27 while for the
triangular CNPR Ni saturates at Ni = 0 for i ≥ 352 con-
firming the nilpotent structure of S0. In the left panel the
quantity Ni −Nsat is shown in order to increase visibility in
the logarithmic scale.

B. Spectrum for the triangular CNPR

In order to extend the theory for the triangular matri-
ces developed in [19] we consider the triangular CNPR
obtained by removing all future citation links t′ → t with
t ≥ t′ from the original CNPR. The resulting matrix
S0 of this reduced network is now indeed nilpotent with
Sl−1
0 6= 0, Sl

0 = 0 and l = 352 which is much smaller
than the network size. This is clearly seen from Fig. 4
showing that Ni, calculated from the triangular CNPR,
indeed saturates at Ni = 0 for i ≥ 352. According to the
arguments of [19], and additional demonstrations given
below, there are at most only l = 352 non-zero eigenval-
ues of the Google matrix at α = 1. This matrix has the
form

S = S0 + (1/N) e dT (4)

where d and e are two vectors with e(n) = 1 for all nodes
n = 1, . . . , N and d(n) = 1 for dangling nodes n (corre-
sponding to vanishing columns in S0) and d(n) = 0 for
the other nodes. In the following we call d the dangling
vector. The extra contribution e dT /N just replaces the
empty columns (of S0) with 1/N entries at each element
and dT is the line vector obtained as the transpose of the
column vector d.
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FIG. 5: (Color online) Left Panel: Comparison of the core
space eigenvalue spectrum of S for CNPR (blue squares) and
triangular CNPR (red crosses). Both spectra are calculated
by the Arnoldi method with nA = 4000 and standard double-
precision. Right Panel: Comparison of the numerically deter-
mined non-vanishing 352 eigenvalues obtained from the rep-
resentation matrix (12) (blue squares) with the spectrum of
triangular CNPR (red crosses) already shown in the left panel.
Numerics is done with standard double-precision.

In the left panel of Fig. 5 we compare the core space
spectrum of S for CNPR and triangular CNPR (data
are obtained by the Arnoldi method with nA = 4000
and standard double-precision). We see that the largest
complex eigenvalues are rather close for both cases but
in the full network we have a lot of eigenvalues on the
real axis (with λ < −0.3 or λ > 0.4) which are absent
for the triangular CNPR. Furthermore, both cases suffer
from the same problem of numerical instability due to
large Jordan blocks.

Let us briefly remind the analytical theory of [19] for
pure triangular networks with a nilpotent matrix S0 such
that Sl

0 = 0. For this we define the coefficients:

cj = dTSj
0 e/N , bj = eTSj

0 e/N (5)

which are non-zero only for j = 0, 1, . . . , l− 1. The fact
that the non-vanishing columns of S0 are sum normalized
and that the other columns (corresponding to dangling
nodes) are zero can be written as: eTS0 = eT − dT im-
plying dT = eT (11− S0). Using this identify and the fact
that Sk

0 = 0 for k ≥ l we find:

l−1
∑

k=j

ck = dT (11− S0)
−1Sj

0 e/N = eTSj
0 e/N = bj (6)

and in particular for j = 0 we obtain the sum rule
∑l−1

k=0 ck = 1 and for j = l − 1 the identity bl−1 = cl−1.

Consider now a right eigenvector ψ of S with eigen-
value λ. If dTψ = 0 we find from (4) that ψ is also an
eigenvector of S0 and since S0 is nilpotent the eigenvalue
must be λ = 0. Therefore for λ 6= 0 we have necessarily
dTψ 6= 0 and with the appropriate normalization of ψ we
have dTψ = 1 that implies together with the eigenvalue
equation: ψ = (λ11−S0)

−1 e/N where the matrix inverse
is well defined for λ 6= 0. The eigenvalue is determined
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by the condition:

0 = λl(1 − dTψ) = λl
(

1− dT
11

λ11 − S0
e/N

)

. (7)

Since S0 is nilpotent we may expand the matrix inverse
in a finite series and therefore the eigenvalue λ is the zero
of the reduced polynomial of degree l:

Pr(λ) = λl −
l−1
∑

j=0

λl−1−j cj (8)

where the coefficients cj are given by (5). Using dT =
eT (11− S0) we may rewrite (7) in the form:

0 = λl
(

1− eT
11− S0

λ11− S0
e/N

)

= (λ−1)λl eT
11

λ11− S0
e/N

(9)
which gives another expression for the reduced polyno-
mial:

Pr(λ) = (λ − 1)

l−1
∑

j=0

λl−1−j bj (10)

using the coefficients bj and confirming explicitly that
λ = 1 is indeed an eigenvalue of S. The expression (10)
can also be obtained by a direct calculation from (6) and
(8).
Since the reduced polynomial has at most l zeros λj

(6= 0 since cl−1 = bl−1 6= 0) we find that there are at most
l non-vanishing eigenvalues of S given by these zeros.
They can also be obtained as the eigenvalues of a “small”
l× l matrix. To see this let us define the following set of
vectors vj for j = 1, . . . , l by vj = c−1

j−1 S
j−1
0 e/N where

we have chosen to apply the prefactor c−1
j−1 to the vector

Sj−1
0 e/N [29]. From (4) and (5) one finds that Svj can

be expanded in the other vectors vk as

Svj =
cj
cj−1

vj+1 + c0 v1 =

l
∑

k=1

S̄kj vk (11)

where S̄kj are the matrix elements of the l × l represen-
tation matrix

S̄ =













c0 c0 · · · c0 c0
c1/c0 0 · · · 0 0
0 c2/c1 · · · 0 0
...

...
. . .

...
...

0 0 · · · cl−1/cl−2 0













. (12)

Note that for the last vector vl we have Svl = c0 v1
since cl = 0 and therefore the matrix S̄ provides a closed
and mathematically exact representation of S on the l-
dimensional subspace generated by v1, . . . , vl. Further-
more one can easily verify (by a recursive calculation in
l) that the characteristic polynomial of S̄ coincides with

the reduced polynomial (8). Therefore numerical diago-
nalization of S̄ provides an alternative method to com-
pute the non-vanishing eigenvalues of S. In principle
one can also determine directly the zeros of the reduced
polynomial by the Newton-Maehly method and in [19]
this was indeed done for cases with very modest values
of l ≤ 29. However, here for the triangular CNPR we
have l = 352 and the coefficients cj become very small,
especially: cl−1 ≈ 3.6 × 10−352 a number which is (due
to the exponent) outside the range of 64 bit standard
double-precision numbers (IEEE 754) with 52 bits for
the mantissa, 10 bits for the exponent (with respect to
2) and two bits for the signs of mantissa and exponent.
This exponent range problem is not really serious and
can for example be circumvented by a smart reformula-
tion of the algorithm to evaluate the ratio Pr(λ)/P ′

r(λ)
using only ratios cj/cj−1 which do not have this expo-
nent range problem. However, it turns out that in this
approach the convergence of the Newton-Maehly method
using double-precision arithmetic is very bad for many ze-
ros and does not provide reliable results. Below we show
how this problem can be solved using high precision cal-
culations but for the moment we mention that one may
also try another approach by diagonalizing numerically
the representation matrix S̄ given in (12) which also de-
pends on the ratios cj/cj−1.

In the right panel of Fig. 5 we compare the numeri-
cal double-precision spectra of S̄ with the results of the
Arnoldi method with double-precision and the uniform
initial vector e as start vector for the Arnoldi iterations.
We remind that the Arnoldi method determines an or-
thonormal set of vectors ζ1, ζ2, ζ3, . . . , ζnA

where the
first vector ζ1 is obtained by normalizing a given ini-
tial vector and ζj+1 is obtained by orthonormalizing Sζj
to the previous vectors determined so far. It is obvious
due to (11) that for the initial uniform vector e each ζj
is given by a linear combination of the vectors vk with
k = 1, . . . , j. Since the subspace of vk for k = 1, . . . , l
is closed with respect to applications of S the Arnoldi
method should, in theory, break off at nA = l with a
zero coupling element. The latter is given as the norm of
Sζl othogonalized to ζ1, . . . , ζl and if this norm vanishes
the vector ζl+1 cannot be constructed and the Arnoldi
method has completely explored an S-invariant subspace
of dimension l.

However, due to a strong effect of round-off errors and
the fact that the vectors vj are numerically “nearly” lin-
early dependent the last coupling element does not van-
ish numerically (when using double-precision) and the
Arnoldi method produces a cloud of numerically incorrect
eigenvalues due to the Jordan blocks which are mathe-
matically outside the representation space (defined by the
vectors vj) but which are still explored due to round-off
errors and clearly visible in Fig. 5. The double-precision
spectrum of S̄ seems to provide well defined eigenval-
ues in the range where the Arnoldi method produces the
“Jordan block cloud” but outside this cloud both spec-
tra coincide only partly, mainly for the eigenvalues with
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largest modulus and positive real part. For the eigenval-
ues with negative real part there are considerable devia-
tions. As we will see later the eigenvalues produced by
the Arnoldi method at double-precision are reliable pro-
vided that they are well outside the Jordan block cloud
of incorrect eigenvalues. Therefore the deviations outside
the Jordan block cloud show that the numerical double-
precision diagonalization of the representation matrix S̄
is not reliable as well but here the effect of numerical er-
rors is quite different as for the Arnoldi method as it is
explained below.

We have tried to determine the zeros of the reduced
polynomial using higher precision numbers with 80 or
even 128 bits (quadruple precision) which helps to solve
the (minor) exponent range problem because these for-
mats use more bits for the exponent. However, there are
indeed two other serious numerical problems. First it
turns out that in a certain range of the complex plane
around Re(λ) ≈ −0.1 to −0.2 and Im(λ) ≤ 0.1 the nu-
merical evaluation of the polynomial suffers in a severe
way from an alternate sign problem with a strong loss of
significance. Second the zeros of the polynomial depend
in a very sensitive way on the precision of the coefficients
cj (see below). We have found that even 128 bit numbers
are not sufficient to obtain all zeros with a reasonable
graphical precision.

Therefore we use the very efficient GNU Multiple Pre-
cision Arithmetic Library (GMP library) [30]. With this
library one has 31 bits for the exponent and one may
chose an arbitrary number of bits for the mantissa. We
find that using 256 bits (binary digits) for the mantissa
the complex zeros of the reduced polynomial can be de-
termined with a precision of 10−18. In this case the con-
vergence of the Newton-Maehly method is very nice and
we obtain that the sum (and product) of the complex
zeros coincide with a high precision with the theoreti-
cal values c0 (respectively: (−1)l−1cl−1) due to (8). We
have also tested different ways to evaluate the polyno-
mial, such as Horner scheme versus direct evaluation of
the sum and for both methods using both expressions (8)
and (10). It turns out that with 256 binary digits during
the calculation the zeros obtained by the different vari-
ants of the method coincide very well within the required
precision of 10−18. Of course the coefficients cj or bj
given by (5) need also to be evaluated with the precision
of 256 binary digits but there is no problem of using high
precision vectors since the non-vanishing matrix elements
of S0 are rational numbers that allow to perform the
evaluation of the vectors Sj

0e/N with arbitrary precision.
We also tested a random modification of cj according to
cj → cj(1+10−16X) where X is a random number in the
interval ] − 0.5, 0.5[. This modification gives significant
differences of the order of 10−2 to 10−1 for some of the
complex zeros and which are well visible in the graphical
representation of the spectra. Therefore, the spectrum
depends in a very sensitive way on these coefficients and
it is now quite clear that numerical double-precision di-
agonalization of S̄, which depends according to (12) on

the values cj , cannot provide accurate eigenvalues simply
because the double-precision round-off errors of cj imply
a sensitive change of eigenvalues. In particular some of
the numerical eigenvalues of S̄ differ quite strongly from
the high precision zeros of the reduced polynomial.

In order to study more precisely the effect of the nu-
merical instability of the Arnoldi method due to the Jor-
dan blocks we also use the GMP library to increase the
numerical precision of the Arnoldi method. To be precise
we implement the first part of this method, the Arnold
iteration in which the nA × nA Arnoldi representation
matrix is determined by the Gram-Schmidt orthogonal-
ization procedure, using high precision numbers while
for the second step, the numerical diagonalization of
this representation matrix, we keep the standard double-
precision. It turns that only the first step is numerically
critical. Once the Arnoldi representation matrix is ob-
tained in a careful and precise way, it is numerically well
conditioned and its numerical diagonalization works well
with only double-precision.

In Fig. 6 we compare the exact spectrum obtained by
the high precision determination of the zeros of the re-
duced polynomial (using 256 bits) with the spectra of the
Arnold method for 52 bits (corresponding to the man-
tissa of double-precision numbers), 256 bits, 512 bits and
1280 bits. Here we use for the Arnoldi method a uniform
initial vector and the Arnold dimension nA = l = 352.
In this case, as explained above, in theory the Arnoldi
method should provide the exact l = 352 non-vanishing
eigenvalues (in absence of round-off errors).

However, with the precision of 52 bits we have a con-
siderable number of eigenvalues on a circle of radius≈ 0.3
centered at 0.05 indicating a strong influence of round-off
errors due to the Jordan blocks. Increasing the precision
to 256 (or 512) bits implies that the number of correct
eigenvalue increases and the radius of this circle decreases
to 0.13 (or 0.1) and in particular it does not extend to all
angles. We have to increase the precision of the Arnoldi
method to 1280 bits to have a perfect numerical confir-
mation that the Arnoldi method explores the exact in-
variant subspace of dimension l = 352 and generated by
the vectors vj . In this case the eigenvalues obtained from
the Arnoldi method and the high-precision zeros of the
reduced polynomial coincide with an error below 10−14

and in particular the Arnoldi method provides a nearly
vanishing coupling matrix element at the last iteration
confirming that there is indeed an exact decoupling of
the Arnoldi matrix and an invariant closed subspace of
dimension 352.
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FIG. 6: (Color online) Comparison of the numerically accu-
rate 352 non-vanishing eigenvalues of S matrix of triangular
CNPR, determined by the Newton-Maehly method applied
to the reduced polynomial (8) with a high-precision calcula-
tion of 256 binary digits (red crosses, all panels), with eigen-
values obtained by the Arnoldi method at different numeri-
cal precisions (for the determination of the Arnoldi matrix)
for triangular CNPR and Arnoldi dimension nA = 352 (blue
squares, all panels). The first row corresponds to the numeri-
cal precision of 52 binary digits for standard double-precision
arithmetic. The second (third, fourth) row corresponds to
the precision of 256 (512, 1280) binary digits. All high pre-
cision calculations are done with the library GMP [30]. The
panels in the left column show the complete spectra and the
panels in the right columns show the spectra in a zoomed
range: −0.4 ≤ Re(λ), Im(λ) ≤< 0.4 for the first row or
−0.2 ≤ Re(λ), Im(λ) ≤ 0.2 for the second, third and fourth
rows.

The results shown in Fig.6 clearly confirm the above
theory and the scenario of the strong influence of Jordan
blocks on the round-off errors. In particular, we find
that in order to increase the numerical precision it is only
necessary to implement the first step of the method, the
Arnoldi iteration, using high precision numbers while the
numerical diagonalization of the Arnoldi representation
matrix can still be done using standard double-precision
arithmetic. We also observe, that even for the case with
lowest precision of 52 bits the eigenvalues obtained by the
Arnoldi method are numerically accurate provided that
there are well outside the circle (or cloud) of numerically
incorrect eigenvalues.

C. High precision spectrum of the whole CNPR

Based on the observation that a high precision imple-
mentation of the Arnoldi method is useful for the trian-
gular CNPR, we now apply the high precision Arnoldi
method with 256, 512 and 756 bits and nA = 2000 to the
original CNPR. The results for the core space eigenvalues
are shown in Fig. 7 where we compare the spectrum of the
highest precision of 756 bits with lower precision spectra
of 52, 256 and 512 bits. As in Fig. 6 for the triangular
CNPR, for CNPR we also observe that the radius and
angular extension of the cloud or circle of incorrect Jor-
dan block eigenvalues decreases with increasing precision.
Despite the lower number of nA = 2000 as compared to
nA = 8000 of Fig. 3 the number of accurate eigenvalues
with 756 bit precision is certainly considerably higher.

The higher precision Arnoldi method certainly im-
proves the quality of the smaller eigenvalues, e.g. for
|λ| < 0.3− 0.4, but it also implies a strange shortcoming
as far as the degeneracies of certain particular eigenvalues
are concerned. This can be seen in Fig. 8 which shows
the core space eigenvalues |λj | versus the level number j
for various values of the Arnoldi dimension and the pre-
cision. In these curves we observe flat plateaux at certain
values |λj | = 1/

√
n with n = 2, 3, 4, 5, . . . correspond-

ing to degenerate eigenvalues which turn out to be real
but with positive or negative values: λj = ±1/

√
n. For

fixed standard double-precision arithmetic with 52 binary
digits the degeneracies increase with increasing Arnoldi
dimension and seem to saturate for nA ≥ 4000. However
at the given value of nA = 2000 the degeneracies de-

crease with increasing precision of the Arnoldi method.
Apparently the higher precision Arnoldi method is less
able to determine the correct degeneracy of a degenerate
eigenvalue.



9

-0.5

 0

 0.5

-0.5  0  0.5  1

λ

-0.2

-0.1

 0

 0.1

 0.2

-0.2 -0.1  0  0.1  0.2

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05  0  0.05  0.1

FIG. 7: (Color online) Comparison of the core space eigen-
value spectrum of S of CNPR, obtained by the high preci-
sion Arnoldi method using 768 binary digits (blue squares,
all panels), with lower precision data of the Arnoldi method
(red crosses). In both top panels the red crosses correspond
to double-precision with 52 binary digits (extended range in
left top panel and zoomed range in right top panel). In the
bottom left (right) panel red crosses correspond to the numer-
ical precision of 256 (512) binary digits. In these two cases
only a zoomed range is shown. The eigenvalues outside the
zoomed ranges coincide for both data sets up to graphical
precision. In all cases the Arnoldi dimension is nA = 2000.
High precision calculations are done with the library GMP
[30].

This point can be understood as follows. In theory,
assuming perfect precision, the simple version of Arnoldi
method used here (in contrast to more complicated block
Arnoldi methods) can only determine one eigenvector for
a degenerate eigenvalue. The reason is that for a degen-
erate eigenvalue we have a particular linear combination
of the eigenvectors for this eigenvalue which contribute in
any initial vector (in other words “one particular” eigen-
vector for this eigenvalue) and during the Arnoldi iter-
ation this particular eigenvector will be perfectly con-
served and the generated Krylov space will only contain
this and no other eigenvector for this eigenvalue. How-
ever, due to round-off errors we obtain at each step new
random contributions from other eigenvectors of the same
eigenvalue and it is only due to these round-off errors
that we can see the flat plateaux in Fig. 8. Obviously,
increasing the precision reduces this round-off error effect
and the flat plateaux are indeed considerably smaller for
higher precisions.
The question arises about the origin of the degenerate

eigenvalues in the core space spectrum. In other exam-
ples, such as the WWW for certain university networks
[10], the degeneracies, especially of the leading eigenvalue

1, could be treated by separating and diagonalizing the
exact subspaces and the remaining core space spectrum
contained much less or nearly no degenerate eigenvalues.
However, here for the CNPR we have “only” 27 subspaces
with maximal dimension of 6 containing 71 nodes in total.
The eigenvalues due to these subspaces are 1, −1, −0.5, 0
with degeneracies 27, 18, 4, 22 (see blue dots in the up-
per panels of Fig. 3). These exact subspaces exist only
due to the modest number of future citation links. Even
when we take care that in all cases the Arnoldi method
is applied to the core space without these 71 subspace
nodes, there are still remain a lot of degenerate eigenval-
ues in the core space spectrum.
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FIG. 8: (Color online) Modulus |λj | of the core space eigen-
values of S of CNPR, obtained by the Arnoldi method, shown
versus level number j. Left panel: data for standard double-
precision with 52 binary digits with different Arnoldi dimen-
sions 1000 ≤ nA ≤ 8000. Right panel: data for Arnoldi dimen-
sion nA = 2000 with different numerical precisions between
52 and 768 binary digits.

In order to understand the mechanism of these degen-
erate core space eigenvalues we extend the argumentation
of the last subsection for triangular CNPR to the case of
nearly triangular networks. Consider again the matrix
S given by Eq. (4) but now S0 is not nilpotent. There
are two groups of eigenvectors ψ of S with eigenvalue
λ. The first group is characterized by the orthogonality
dTψ = 0 of the eigenvector ψ with respect to the dan-
gling vector d and the second group is characterized by
the non-orthogonality dTψ 6= 0. In the following, we de-
scribe efficient methods to determine all eigenvalues of
the first group and a considerable number of eigenvalues
of the second group. We note that for the case of a purely
triangular network the first group contains only eigenvec-
tors for the eigenvalue 0 and the second group contains
the eigenvectors for the l non-vanishing eigenvalues as
discussed in the last subsection. In principle there are
also complications due to generalized eigenvectors (as-
sociated to non-trivial Jordan blocks) but they appear
mainly for zero eigenvalue and we for the moment do not
discuss these complications.
First we note that the subspace eigenvectors of S be-

long to the first group because the nodes of the subspaces
of S cannot contain dangling nodes which are by con-
struction of S are linked to any other node and therefore
belong to the core space. Since any subspace eigenvec-
tor ψ has non-vanishing values only for subspace nodes
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being different from dangling nodes we have obviously
dTψ = 0. We also note that an eigenvector of S of the
first group with dTψ = 0 is due to (4) also an eigenvector
of S0 with the same eigenvalue.

For the remaining eigenvectors in the first group one
might try to diagonalize the matrix S0 and check for
each eigenvector of S0 if the identity dTψ = 0 holds in
which case we would obtain an eigenvector of S of the
first group but generically, and apart from the subspace
eigenvectors, there is no reason that eigenvectors of S0

with isolated non-degenerate eigenvalues obey this iden-
tity. However, if we have an eigenvalue of S0 with a
degeneracy m ≥ 2 we may construct by suitable linear
combinations m− 1 linearly independent eigenvectors of
S0 which also obey dTψ = 0 and therefore this eigen-
value with degeneracy m of S0 is also an eigenvalue with
degeneracy m − 1 of S. In order to determine the de-
generate eigenvalues of S0 it is useful to determine the
subspaces of S0 which (in contrast to the subspaces of
S) may contain dangling nodes. Actually, each dangling
node is a trivial subspace of dimension 1 with a network
matrix of size 1 × 1 and being zero. Explicitly we have
implemented the following procedure: first we determine
the subspaces of S (with 71 nodes in total) and remove
these nodes from the network. Then we determine all
subspaces of S0 whose dimension is below 10. Each time
such a subspace is found its nodes are immediately re-
moved from the network. When we have tested in a first
run all nodes as potential subspace nodes the procedure
is repeated until no new subspaces of maximal dimension
10 are found since removal of former subspaces may have
created new subspaces. Then the limit size of 10 is dou-
bled to 20, 40, 80 etc. to ensure that we do not miss large
subspaces. However, for the CNPR it turns out that the
limit size of 10 allows to find all subspaces. In our proce-
dure a subsequently found subspace may potentially have
links to a former subspace leading to a block-triangular
(and not block-diagonal structure as it was done in ref.
[10]). This method to determine “relative” subspaces of
a network already reduced by former subspaces is more
convenient for the CNPR which is nearly triangular and
it allows also to determine correctly all subspace eigen-
values by diagonalizing each relative subspace network.
The removal of subspace nodes of S and S0 reduces the
network size from N = 463348 to 404959. In the next
step we remove in the same way the subspaces of the
transpose ST

0 of S0 (since the eigenvalues of ST
0 and S0

are the same) which reduces the network size further-
more to 90965. In total this procedure provides a block

triangular structure of S0 as:

S0 =



































S1 ∗ · · · · · · ∗
0 S2 ∗

...
...

. . .
. . .

. . .
...

0 B ∗
... 0 T1 ∗

...
... 0 T2 ∗
0 · · · · · · . . .

. . .



































(13)

where S1, S2, . . . represent the diagonal subblocks associ-
ated to the subspaces of S and S0 while T1, T2, . . . repre-
sent the diagonal subblocks associated to the subspaces of
ST
0 and B is the “bulk” part for the remaining network of

90965 nodes. The stars represent potential non-vanishing
entries whose values do not influence the eigenvalues of
S0. The subspace blocks S1, S2, . . . and T1, T2, . . . which
are individually of maximal dimension 10 can be directly
diagonalized and it turns that out of 372382 eigenval-
ues in these blocks only about 4000 eigenvalues (counting
degeneracies) or 950 eigenvalues (non-counting degenera-
cies) are different from zero. Most of these eigenvalues
are not degenerate and are therefore not eigenvalues of S
but there are still quite many degenerate eigenvalues at
λ = ±1/

√
n with n ≥ 2 taking small integer values and

who are also eigenvalues of S with a degeneracy reduced
by one.
Concerning the bulk block B we can write it in the

form B = B0 + f1 e
T
1 where f1 is the first column vector

of B and eT1 = (1, 0, . . . , 0). The matrix B0 is obtained
from B by replacing its first column to zero. We can
apply the above argumentation between S and S0 in the
same way to B and B0, i.e. the degenerate eigenvalues
of B0 with degeneracy m are also eigenvalues of B with
degeneracy m − 1 (with eigenvectors obeying eT1 ψ = 0)
and therefore eigenvalues of S with degeneracy m − 2.
The matrix B0 is decomposed in a similar way as in (13)
with subspace blocks, which can be diagonalized numer-
ically, and a new bulk block B̃ of dimension 63559 and
which may be treated in the same way by taking out its
first column. This procedure provides a recursive scheme
which after 9 iterations stops with a final bulk block of
zero size. At each iteration we keep only subspace eigen-
values with degeneracies m ≥ 2 and which are joined
with reduced degeneracies m − 1 to the subspace spec-
trum of the previous iteration. For this joined spectrum
we keep again only eigenvalues with degeneracies m ≥ 2
which are joined with the subspace spectrum of the next
higher level etc.
In this way we have determined all eigenvalues of S0

with a degeneracy m ≥ 2 which belong to the eigen-
values of S of the first group. Including the direct
subspace of S there are 4999 non-vanishing eigenvalues
(counting degeneracies) or 442 non-vanishing eigenvalues
(non-counting degeneracies). The degeneracy of the zero
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λ degeneracy

1 27

−1 18

±1/
√
2 27

±1/
√
3 20

1/2 58

−1/2 52

±1/
√
5 20

±1/
√
6 52

±1/
√
7 6

±1/
√
8 44

1/3 47

−1/3 39

±1/
√
10 33

±1/
√
11 1

±1/
√
12 85

±1/
√
14 15

±1/
√
15 46

1/4 52

−1/4 42

±1/
√
18 29

±1/
√
20 60

±1/
√
21 30

±1/
√
22 3

±1/
√
24 69

1/5 20

−1/5 11

TABLE I: Degeneracies of the eigenvalues with largest mod-
ulus for the whole CNPR whose eigenvectors ψ belong to the
first group and obey the orthogonality dTψ = 0 with the dan-
gling vector d.

eigenvalue (or the dimension of the generalized kernel) is
found by this procedure to be 455789 but this would only
be correct assuming that there are no general eigenvec-
tors of higher order (representation vectors of non-trivial
Jordan blocks) which is clearly not the case. The Jordan
subspace structure of the zero eigenvalue complicates the
argumentation. Here at each iteration step the degener-
acy has to be reduced fromm tom−D whereD > 1 is the
dimension of the maximal Jordan block since each gen-
eralized eigenvector at a given order has to be treated as
an independent vector when constructing vectors obeying
the orthogonality with respect to the dangling vector d.
Therefore the degeneracy of the zero eigenvalue cannot
be determined exactly but we may estimate its degener-
acy of about ∼ 455000 out of 463348 nodes in total. This
implies that the number of non-vanishing eigenvalues is
about ∼ 8000 − 9000 which is considerably larger than
the value of 352 for the triangular CNPR but still much
smaller than the total network size.

In Table I we provide the degeneracies for some of the

eigenvalues ±1/
√
n for integer n in the range 1 ≤ n ≤ 25.

The degeneracies for +1/
√
n and −1/

√
n are identical for

non-square numbers n (with non-integer
√
n) and differ-

ent for square numbers (with integer
√
n). Apparently

for non-square numbers the eigenvalues are only gener-
ated from effective 2× 2 blocks:

(

0 1/n1

1/n2 0

)

⇒ λ = ± 1√
n1 n2

(14)

with positive integers n1 and n2 such that n = n1 n2

while for square numbers n = m2 they may be gener-
ated by such blocks or by simple 1 × 1 blocks contain-
ing 1/m such that the degeneracy for +1/

√
n = +1/m

is larger than the degeneracy for −1/
√
n = −1/m. Fur-

thermore, statistically the degeneracy is smaller for prime
numbers n or numbers with less factorization possibili-
ties and larger for numbers with more factorization pos-
sibilities. The Arnoldi method (with 52 bits for double-
precision arithmetic and nA = 8000) provides according
to the sizes of the plateaux visible in Fig. 8 the overall ap-
proximate degeneracies ∼ 60 for |λ| = 1/

√
2 (i.e. ±1/

√
2

counted together), ∼ 50 for |λ| = 1/
√
3 and ∼ 115 for

|λ| = 1/2. These values are coherent with (but slightly
larger than) the values 54, 40 and 110 taken from Ta-
ble I. Actually, as we will see below, the slight differences
between the degeneracies obtained from Fig. 8 and from
Table I are indeed relevant and correspond to some eigen-
values of the second group which are close but not iden-
tical to ±1/

√
2, ±1/

√
3 or ±1/2 and do not contribute

in Table I.
We now consider the eigenvalues λ of S for the

eigenvectors of the second group with non-orthogonality
dTψ 6= 1 or dTψ = 1 after proper renormalization of ψ.
Now ψ cannot be an eigenvector of S0 and λ is not an
eigenvalue of S0. As in the last subsection the eigenvalue
equation Sψ = λψ, the condition dTψ = 1 and (4) im-
ply that the eigenvalue λ of S is a zero of the rational
function

R(λ) = 1− dT
11

λ11 − S0
e/N = 1−

∑

j,q

Cjq

(λ− ρj)q
(15)

where we have formally expanded the vector e/N in
eigenvectors of S0 and with ρj being the eigenvalues of
S0 and q is the order of the eigenvector of ρj used in this
expansion, i.e. q = 1 for simple eigenvectors and q > 1
for generalized eigenvectors of higher order due to Jor-
dan blocks. Note that even the largest possible value of
q for a given eigenvalue may be (much) smaller than its
multiplicity m. Furthermore the case of simple repeat-
ing eigenvalues (with simple eigenvectors) with higher
multiplicity m > 1 leads only to several identical terms
∼ (λ − ρj)

−1 for any eigenvector of this eigenvalue thus
all contributing to the coefficients Cjq and whose precise
values we do not need to know in the following. For us
the important point is that the second identity in (15)
establishes that R(λ) is indeed a rational function whose
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denominator and numerator polynomials have the same
degree and whose poles are (some of) the eigenvalues of
S0.
We mention that one can also show by a simple deter-

minant calculation (similar to a calculation shown in [19]
for triangular networks with nilpotent S0) that:

PS(λ) = PS0
(λ)R(λ) (16)

where PS(λ) [or PS0
(λ)] is the characteristic polynomial

of S (S0). Therefore those zeros of R(λ) which are not
zeros of PS0

(λ) (i.e. not eigenvalues of S0) are indeed
zeros of PS(λ) (i.e. eigenvalues of S) since there are not
poles of R(λ). Furthermore, generically the simple zeros
PS0

(λ) also appear as poles in R(λ) and are therefore not
eigenvalues of S. However, for a zero of PS0

(λ) (eigen-
value of S0) with higher multiplicity m > 1 (and unless
m is equal to the maximal Jordan block order q associ-
ated to this eigenvalue of S0) the corresponding pole in
R(λ) only reduces the multiplicity to m − 1 (or m − q
in case of higher order generalized eigenvectors) and we
have also a zero of PS(λ) (eigenvalue of S). Some of the
eigenvalues of S0, whose eigenvectors ψ are orthogonal to
the dangling vector (dTψ = 0) and do not contribute in
the expansion in (15), are not poles ofR(λ) and therefore
also eigenvalues of S. This concerns essentially the direct
subspace eigenvalues of S which are also direct subspace
eigenvalues of S0 as already mentioned above. In total
the identity (16) confirms exactly the above picture that
there are two groups of eigenvalues and with the special
role of direct subspace eigenvalues belonging to the first
group.
Our aim is to determine numerically the zeros of the

rational function R(λ). In order to evaluate this function
we expand the first identity in (15) in a matrix geometric
series and we obtain

R(λ) = 1−
∞
∑

j=0

cjλ
−1−j (17)

with the coefficients cj defined in (5) and provided that
this series converges. In the last subsection, where we
discussed the case of a nilpotent matrix S0 with Sl

0 = 0,
the series was finite and for this particular case we had
R(λ) = λ−lPr(λ) where Pr(λ) was the reduced polyno-
mial defined in (8) and whose zeros provided the l non-
vanishing eigenvalues of S for nilpotent S0.
However, for the CNPR the series are infinite since all

cj are different from zero. One may first try a crude ap-
proximation and simply replace the series by a finite sum
for j < l and using some rather large cutoff value for l and
determine the zeros in the same way as for the nilpotent
case (high precision calculation of the zeros of the reduced
polynomial of degree l). It turns that in this way we ob-
tain correctly the largest core space eigenvalue of S as
λ1 = 0.999751822283878 which is also obtained by (any
variant of) the Arnoldi method. However, the other zeros
obtained by this approximation lie all on a circle of radius

≈ 0.9 in the complex plane and do not obviously repre-
sent any valid eigenvalues. Increasing the cutoff value l
does not help either and it increases only the density of
zeros on this circle. To understand this behavior we note
that in the limit j → ∞ the coefficients cj behave as

cj ∝ ρj1 where ρ1 = 0.902448280519224 is the largest
eigenvalue of the matrix S0 with an eigenvector non-
orthogonal to d. Note that the matrix S0 has also some
degenerate eigenvalues at +1 and −1 but these eigenval-
ues are obtained from the direct subspace eigenvectors of
S (which are also direct subspace eigenvectors of S0) and
which are orthogonal to the dangling vector d and do not
contribute in the rational function (15). It turns actu-
ally out that the eigenvalue ρ1 is also the largest subspace
space eigenvalue of S0 (after having removed the direct
subspace nodes of S). By analyzing explicitly the small-
dimensional subspace related to this eigenvalue one can
show that ρ1 is given as the largest solution of the poly-
nomial equation x3 − 2

3x − 2
15 = 0 and can therefore be

expressed as ρ1 = 2Re [(9 + i
√
119)1/3]/(135)1/3. The

asymptotic behavior cj ∝ ρj1 is also confirmed by the di-
rect numerical evaluation of cj . Therefore the series (17)
converges only for |λ| > ρ1 and a simple (even very large)
cutoff in the sum implies that only eigenvalues |λj | > ρ1
can be determined as a zero of the finite sum. The only
eigenvalue respecting this condition is the largest core
space eigenvalue λ1 given above.

One may try to improve this by a “better” approxima-
tion which consists of evaluating the sum exactly up to
some value l and than to replace the remaining sum as

a geometric series with the approximation: cj ≈ clρ
j−l
1

for j ≥ l and with ρ1 determined as the ratio ρ1 =
cl/cl−1 (which provides a sufficient approximation) or
taken as its exact (high precision) value. This improved
approximation results in R(λ) ≈ λ−l(λ − ρ1)

−1P(λ)
with a polynomial P(λ) whose zeros provide in total
four correct eigenvalues. Apart from λ1 it also gives
λ2 = 0.902445536212661 (note that this eigenvalue of S
is very close but different to the eigenvalue ρ1 of S0) and
λ3,4 = 0.765857950563684 ± i 0.251337495625571 such
that |λ3,4| = 0.806045245100386. All these four core
space eigenvalues coincide very well with the first four
eigenvalues obtained from the Arnoldi method. However,
the other zeros of the Polynomial P(λ) lie again on a cir-
cle, now with a reduced radius ≈ 0.7, and do not coincide
with eigenvalues of S. This can be understood by the fact
that the coefficients cj obey for j → ∞ the more precise

asymptotic expression cj ≈ C1ρ
j
1+C2ρ

j
2+C2ρ

j
3+ . . . with

the next eigenvalues ρ2 = 1/
√
2 ≈ 0.707 and ρ3 = −ρ2.

Here the first term C1ρ
j
1 is dealt with analytically by the

replacement of the geometric series but the other terms
create a new convergence problem. Therefore the im-
proved approximation allows only to determine the four
core space eigenvalues with |λj | > |ρ2,3| = 1/

√
2. To ob-

tain more valid eigenvalues it seems to be necessary to
sum up by geometric series many of the next terms, not
only the next two terms due to ρ2 and ρ3, but also the
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following terms of smaller eigenvalues ρj of S0. In other
words the exact pole structure of the rational function
R(λ) has be kept as best as possible.
Therefore due to the rational structure of the function

R(λ) with many eigenvalues ρj of S0 that determine its
precise pole structure we suggest the following numerical
approach using high precision arithmetic. For a given
number p of binary digits, e.g. p = 1024, we determine
the coefficients cj for j < l where the cutoff value

l ≈ ln(1− ρ1)− p ln(2)

ln(ρ1)
≈ 6.753 p+ const. (18)

is sufficiently large to evaluate the sum (17) accurately
in the given precision of p binary digits (error below
2−p) for all complex values λ on the unit circle, i.e.
|λ| = 1, where the series converges well. Furthermore
we choose a number nR of “eigenvalues” we want to cal-
culate, e.g. nR = 300, and evaluate the rational function
R(z) at nS = 2nR+1 support points zj = exp(2πi j/nS)
(j = 0, . . . , nS − 1) uniformly distributed on the unit
circle using the series (17). Then we calculate the ra-
tional function RI(z) which interpolates R(z) at the nS

support points zj, RI(zj) = R(zj), using Thiele’s inter-
polation formula. Then the numerator and denominator
polynomials of RI(z) are both of degree nR. Thiele’s
interpolation formula expresses RI(z) in terms of a con-
tinued fraction expansion using inverse differences. This
method is quite standard and well described in the lit-
erature of numerical mathematics, see for example [31].
After having evaluated a table of nS inverse differences
(with n2

S/2 operations) one can evaluate arbitrary values
of RI(z) using the continued fraction expansion (with
nS operations). It is not very difficult to derive from
the continued fraction expansion a recursive scheme to
evaluate the values of the numerator and denominator
polynomials separately as well as their derivatives. Us-
ing this scheme we determine the nR complex zeros of the
numerator polynomial using the (high precision variant
of the) Newton-Maehly method. These zeros correspond
to the zeros of the rational functional R(z) and are taken
as approximate eigenvalues of the matrix S of the second
group. The main idea of this approach is to evaluate
these zeros from the analytical continuation of R(z) us-
ing values for |z| = 1 to determine its zeros well inside
the unit circle.
We also consider a second variant of the method where

the number of support points nS = 2nR + 2 is even (in-
stead of nS = 2nR+1 being odd as for the first variant).
In this case the numerator polynomial is of degree nR+1
(instead of nR) while the denominator polynomial is of
degree nR and we choose to interpolate the inverse of the
rational function 1/R(z) (instead ofR(z) itself) by RI(z)
such that the zeros of R(z) are given by the nR zeros of
the denominator (instead of the numerator) polynomial
of RI(z).
The number nR must not be too small in order to well

approximate the second identity in (15) by the fit func-
tion. On the other hand for a given precision of p binary

digits the number of nR must not be too large as well
because the coefficients cj , which may be written as the
expansion cj =

∑

ν Cν ρ
j
ν , do not contain enough infor-

mation to resolve its structure for the smaller eigenvalues
ρj of S0. Therefore for too large values of nR (for a given
precision), we obtain additional artificial zeros of the nu-
merator polynomial (or of the denominator polynomial
for the second variant) of RI(z), mostly close to the unit
circle, somehow as additional nodes around the support
points.

It turns out that for the proper combination of p and
nR values the method provides highly accurate eigenval-
ues and works astonishingly well. In particular for val-
ues of nR below a certain threshold (depending on the
precision p) both variants of the method with odd or
even number of support points provide numerically iden-
tical zeros (with final results rounded to 52 binary digits)
which indeed coincide very accurately (for most of them)
with the eigenvalues of S we want to determine.

For example, as can be seen in Fig. 9, for p = 1024 we
obtain nR = 300 eigenvalues for which the big majority
coincides numerically (error ∼ 10−14) with the eigenval-
ues obtained from the high precision Arnoldi method for
768 binary digits and furthermore both variants of the
rational interpolation method provide identical spectra.

However for nR = 340 some of the zeros do not coincide
with eigenvalues of S and most of these deviating zeros
lie close to the unit circle. We can even somehow distin-
guish between “good” zeros (associated to eigenvalues of
S) being identical for both variants of the method and
“bad” artificial zeros which are completely different for
both variants (see Fig. 9). We note that for the case of
too large nR values the artificial zeros are extremely sen-
sitive to numerical round-off errors (in the high precision
variables) and that they change strongly, when slightly
modifying the support points (e.g. a random modifica-
tion ∼ 10−18 or simply changing their order in the inter-
polation scheme) or when changing the precise numeri-
cal algorithm (e.g. between direct sum or Horner scheme
for the evaluation of the series of the rational function).
Furthermore, they do not respect the symmetry that the
zeros should come in pairs of complex conjugate numbers
in case of complex zeros. This is because Thiele’s rational
interpolation scheme breaks the symmetry due to com-
plex conjugation once round-off errors become relevant.

However, we have carefully verified that for the proper
values of nR not being too large (e.g. nR = 300 for
p = 1024) the obtained zeros are numerically identical
(with 52 binary digits in the final result) with respect to
small changes of the support points (or their order) or
with respect to different numerical algorithms and that
they respect perfectly the symmetry due to complex con-
jugation.
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FIG. 9: (Color online) Top Panels: Left: Comparison of
nR = 340 core space eigenvalues of S for CNPR obtained
by two variants of the rational interpolation method (see
text) with the numerical precision of p = 1024 binary dig-
its, 681 support points (first variant, red crosses) or 682
support points (second variant, blue squares). Right: Com-
parison of the core space eigenvalues of CNPR obtained by
the high precision Arnoldi method with nA = 2000 and
p = 768 binary digits (red crosses, same data as blue squares
in Fig. 7) with the eigenvalues obtained by (both variants
of) the rational interpolation method with the numerical pre-
cision of p = 1024 binary digits and nR = 300 eigenvalues
(blue squares). Here both variants with 601 or 602 support
points provide identical spectra (differences below 10−14).
Middle panels: Same as top panels with a zoomed range:
−0.5 ≤ Re(λ), Im(λ) ≤ 0.5. Bottom Panels: Left: Com-
parison of the core space spectra obtained by the high preci-
sion Arnoldi method (red crosses, nA = 2000 and p = 768)
and by the rational interpolation method with p = 12288,
nR = 2000 eigenvalues (blue squares). Right: Same as left
panel with p = 16384, nR = 2500 for the rational interpo-
lation method. Both panels are shown in a zoomed range:
−0.1 ≤ Re(λ), Im(λ) ≤ 0.1. Eigenvalues outside the shown
range coincide up to graphical precision and both variants of
the rational interpolation method provide numerically identi-
cal spectra.

This method, despite the necessity of high precision
calculations, is not very expensive, especially for the
memory usage, compared, for example, with the high
precision Arnoldi method. Furthermore, its efficiency for
the computation time can be improved by the trick of
summing up the largest terms in the series (17) as a ge-
ometrical series which allows to reduce the cutoff value

of l by a good factor 3, i.e. replacing ρ1 ≈ 0.902 by
ρ2 = 1/

√
2 ≈ 0.707 in the estimate (18) of l which

gives l ≈ 2 p + const. We have increased the number
of binary digits up to p = 16384 and we find that for
p = 1024, 2048, 4096, 6144, 8192, 12288, 16384we may use
nR = 300, 500, 900, 1200, 1500, 2000, 2500 and still avoid
the appearance of artificial zeros. In Fig. 9 we also com-
pare the result of the highest precisions p = 12288 (and
p = 16384) using nR = 2000 (nR = 2500) with the high
precision Arnoldi method with nA = 2000 and p = 768
and these spectra coincide well apart from a minor num-
ber of smallest eigenvalues. In general, the complex iso-
lated eigenvalues converge very well (with increasing val-
ues of p and nR) while the strongly clustered eigenvalues
on the real axis have more difficulties to converge. Com-
paring the results between nR = 2000 and nR = 2500
we see that the complex eigenvalues coincide on graph-
ical precision for |λ| ≥ 0.04 and the real eigenvalues for
|λ| ≥ 0.1. The Arnoldi method has even more difficulties
on the real axis (convergence roughly for |λ| ≥ 0.15) since
it has implicitly to take care of the highly degenerate
eigenvalues of the first group and for which it has diffi-
culties to correctly find the degeneracies (see also Fig. 8).

Fig. 10 shows as summary the highest precision spectra
of S with core space eigenvalues obtained by the Arnoldi
method or the rational interpolation method (both at
best parameter choices) and also taking into account the
direct subspace eigenvalues of S and the above deter-
mined eigenvalues of the first group (degenerate subspace
eigenvalues of S0).

We remind that the rational interpolation method al-
lows only to determine the eigenvalues of S of the second
group, i.e. the eigenvalues which are not eigenvalues of S0

and whose eigenvectors obey dTψ 6= 0. The eigenvalues
of the first group (with dTψ = 0) have to be determined
separately by the above described scheme of degenerate
subspace eigenvalues of S0. In particular the eigenval-
ues given in Table I and belonging to the first group are
not zeros of the rational function R(z) (they are actu-
ally poles of this function) but it turns out that there are
some zeros of R(z) which are very close but not iden-
tical to some of the values in Table I. For example the
rational interpolation method provides the following ze-
ros: 1/2 + 3.13401098× 10−5, 1/2 + 1.3279300 × 10−7,

1/
√
2− 1.1597× 10−10 or 1/

√
2− 6.419004× 10−8 which

are indeed accurate in the given precision since they are
stable for all values of p ≥ 1024 and the corresponding
maximal value of nR and we have stopped the Newton it-
eration when the error of a zero was clearly below 10−18.
These zeros are also found with the same precision in the
data of the high precision Arnoldi method for the three
different values of 256, 512 or 768 binary digits. How-
ever, based only on results of the Arnoldi method it is
not really clear if the small corrections to 1/2 or 1/

√
2 are

real and exact or numerically artificial since the Arnoldi
method has indeed problems with degenerate and clus-
tered eigenvalues [17]. Therefore the rational interpola-
tion method provides an independent and strong confir-
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mation of the accuracy of these type of eigenvalues. We
attribute their existence to a quasi-subspace structure,
similarly as discussed in [10], with a matrix subblock as
in (14) but which is still very weakly coupled (by many
indirect network links) to the core space.
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FIG. 10: (Color online) The most accurate spectrum of
eigenvalues of S for CNPR. Top panels: Left: red dots repre-
sent the core space eigenvalues obtained by the rational inter-
polation method with the numerical precision of p = 16384
binary digits, nR = 2500 eigenvalues. Green dots show the
degenerate subspace eigenvalues of the matrix S0 which are
also eigenvalues of S with a degeneracy reduced by one (eigen-
values of the first group, see text). Blue dots show the direct
subspace eigenvalues of S (same as blue dots in left upper
panel in Fig. 3). Right: red dots represent the core space
eigenvalues obtained by the high precision Arnoldi method
with nA = 2000 and the numerical precision of p = 768 binary
digits and blue dots show the direct subspace eigenvalues of
S. Note that the Arnoldi method determines implicitly also
the degenerate subspace eigenvalues of S0 which are there-
fore not shown in another color. Bottom panels: Same as top
panels with a zoomed range: −0.4 ≤ Re(λ), Im(λ) ≤ 0.4.

III. FRACTAL WEYL LAW FOR CNPR

The concept of the fractal Weyl law [32, 33],[34] states
that the number of states Nλ in a ring of complex eigen-
values with λc ≤ |λ| ≤ 1 scales in a polynomial way with
the growth of matrix size:

Nλ = aN b . (19)

where the exponent b is related to the fractal dimension
of underlying invariant set df = 2b. The fractal Weyl law
was first discussed for the problems of quantum chaotic
scattering in the semiclassical limit [32, 33],[34]. Later it
was shown that this law also works for the Ulam matrix

approximant of the Perron-Frobenius operators of dissi-
pative chaotic systems with strange attractors [6, 7]. In
[11] it was established that the time growing Linux Ker-
nel network is also characterized by the fractal Weyl law
with the fractal dimension df ≈ 1.3.
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FIG. 11: (Color online) Data for the whole CNPR at different
moments of time. Top panels: the left (right) panel shows the
number Nλ of eigenvalues with λc ≤ λ ≤ 1 for λc = 0.50
(λc = 0.65) versus the effective network size Nt where the
nodes with publication times after a cut time t are removed
from the network. The green line shows the Weyl law Nλ =
a (Nt)

b with parameters a = 0.32 ± 0.08 (a = 0.24 ± 0.11)
and b = 0.51 ± 0.02 (b = 0.47 ± 0.04) obtained from a fit in
the range 3× 104 ≤ Nt < 5 × 105. The number Nλ includes
both exactly determined invariant subspace eigenvalues and
core space eigenvalues obtained from the Arnoldi method with
double-precision (52 binary digits) for nA = 4000 (red crosses)
and nA = 2000 (blue squares). Bottom panels: Left: exponent
b with error bars obtained from the fit Nλ = a (Nt)

b in the
range 3 × 104 ≤ Nt < 5 × 105 versus cut value λc. Right:

effective network size Nt versus cut time t (in years). The

green line shows the exponential fit 2(t−t0)/τ with t0 = 1791±
3 and τ = 11.4 ± 0.2 representing the number of years after
which the size of the network (number of papers published in
all Physical Review journals) is effectively doubled.

The fact that b < 1 implies that the majority of eigen-
values drop to zero. We see that this property also ap-
pears for the CNPR if we test here the validity of the
fractal Weyl law by considering a time reduced CNPR
of size Nt including the Nt papers published until the
time t (measured in years) for different times t in order
to obtain a scaling behavior of Nλ as a function of Nt.
The data presented in Fig. 11 shows that the network
size grows approximately exponentially as Nt = 2(t−t0)/τ

with the fit parameters t0 = 1791, τ = 11.4. The time
interval considered in Fig. 11 is 1913 ≤ t ≤ 2009 since the
first data point corresponds to t = 1913 with Nt = 1500
papers published between 1893 and 1913. The results for
Nλ show that its growth is well described by the relation
Nλ = a (Nt)

b for the range when the number of articles
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becomes sufficiently large 3 × 104 ≤ Nt < 5 × 105. This
range is not very large and probably due to that there
is a certain dependence of the exponent b on the range
parameter λc. However, we have 0.47 < b < 0.6 for all
λc ≥ 0.4 that is definitely smaller than unity and thus
the fractal Weyl law is well applicable to the CNPR. The
value of b increases up to 0.7 for the data points with
λc < 0.4 but this is due to the fact here Nλ also in-
cludes some numerically incorrect eigenvalues related to
the numerical instability of the Arnoldi method at stan-
dard double-precision (52 binary digits) as discussed in
the beginning of the previous section.

We think that the most appropriate choice for the de-
scription of the data is obtained at λc = 0.4 which from
one side excludes small, partly numerically incorrect, val-
ues of λ and on the other side gives sufficiently large val-
ues of Nλ. Here we have b = 0.49± 02 corresponding to
the fractal dimension d = 0.98 ± 0.04. Furthermore, for
0.4 ≤ λc ≤ 0.7 we have a rather constant value b ≈ 0.5
with df ≈ 1.0. Of course, it would be interesting to ex-
tend this analysis to a larger size N of CNPR but for that
we still should wait about 10 years until the network size
will be doubled comparing to the size studied here.

IV. PROPERTIES OF EIGENVECTORS

The results for the eigenvalue spectra of CNPR pre-
sented in the previous sections show that most of the
visible eigenvalues on the real axis (except for the largest
one) in Figs. 9 and 10 are due to the effect of future cita-
tions. They appear either directly due to 2×2 subblocks
of the type (14) with a cycle where two papers mutu-
ally cite each other giving the degenerate eigenvalues of
the first group, or indirectly by eigenvalues of the second
group which are also numerous on the real axis. On the
other hand, as can be seen in Fig. 6, for the triangular
CNPR, where all future citations are removed, there is
only the leading eigenvalue λ = 1 and a small number
of negative eigenvalues with −0.27 < λ < 0 on the real
axis. All other eigenvalues are complex and a consid-
erable number of the largest ones are relatively close to
corresponding complex eigenvalues for the whole CNPR
with future citations.

The appearance of future citations is quite specific and
is not a typical situation for citation networks. Therefore
we consider the eigenvectors of complex eigenvalues for
the triangular CNPR which indeed represent the typi-
cal physical situation without future citations. There is
no problem to evaluate these eigenvectors by the Arnoldi
method, either with double-precision, provided the eigen-
value of the eigenvector is situated in the region of nu-
merically accurate eigenvalues, or with the high precision
variant of the Arnoldi method. However, for the trian-
gular CNPR we have, according to the semi-analytical

theory presented above, the explicit formula:

ψ ∝ (λ11− S0)
−1 e/N =

l−1
∑

j=0

λ−(1+j) Sj
0e/N (20)

where the normalization is given by
∑

i |ψ(i)| = 1. This
expression is quite convenient and we verified that it pro-
vides the same eigenvectors (up to numerical errors) as
the Arnoldi method.
In Fig. 12 we show two eigenvectors of S: one ψ0 for

the leading eigenvalue λ0 = 1 and another ψ39 for a com-
plex eigenvalue at |λ39| < 1. The eigenvector of λ0 gives
the PageRank probability for the triangular CNPR (at
α = 1). We also consider the eigenvector for the com-
plex eigenvalue λ39 = −0.3738799 + i 0.2623941 (eigen-
values are ordered by their absolute values starting from
λ0 = 1). In this figure the modulus of |ψj(Nt)| is shown
versus the time index Nt as introduced in Fig. 11. We
also indicate the positions of five famous papers: BCS
1957 [35] at K = 6, Anderson 1958 [36]K = 63, Benettin
et al. 1976 [37]K = 441, Thouless 1977 [38]K = 256 and
Abrahams et al. 1979 [39] K = 74. In the first eigenvec-
tor for λ0 = 1 all of these papers have quite dominating
positions, especially BCS 1957 and Abrahams et al. 1979
which are the most important ones if compared to papers
of comparable publication date. Only considerably older
papers have higher positions in this vector.
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FIG. 12: (Color online) Two eigenvectors of the matrix S for
the triangular CNPR. Both panels show the modulus of the
eigenvector components |ψj(Nt)| versus the time index Nt (as
used in Fig. 11) with nodes/articles ordered by the publication
time (small red dots). The blue points represent five partic-
ular articles: BCS 1957 (+), Anderson 1958 (×), Benettin et
al. 1976 (∗), Thouless 1977 (⊡) and Abrahams et al. 1979
(⊙). The left (right) panel corresponds to the real (complex)
eigenvalue λ0 = 1 (λ39 = −0.3738799 + i 0.2623941).

For the second eigenvector with complex eigenvalue
the older papers (with 103 < Nt < 104 correspond-
ing to publications times between 1910 and 1940) are
strongly enhanced in its importance while the above five
famous papers lose their importance. The top 3 po-
sitions of largest amplitude |ψ39(i)| correspond to DOI
10.1103/PhysRev.14.409 (1919), 10.1103/PhysRev.8.561
(1916), 10.1103/PhysRev.24.97 (1917). These old arti-
cles study the radiating potentials of nitrogen, ionization
impact in gases and the abnormal low voltage arc. It is
clear that this eigenvector selects a certain community of
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old articles related to a certain ancient field of interest.
This fact is in agreement with the studies of eigenvectors
of Wikipedia network [13] showing that the eigenvectors
with 0 < |λ| < 1 select specific communities.

It is interesting to note that the top node of the vector
ψ0 appears in the position K39 = 39 in local rank index
of the vector ψ39 (ranking in decreasing order by modulus
of |ψ(i)|). On the other side the top node of ψ39 appears
at position K0 = 30 of vector ψ0. This illustrates how
different nodes contribute to different eigenvectors of S.

It is useful to characterize the eigenvec-
tors by their Inverse Participation Ratio (IPR)
ξi = (

∑

j |ψi(j)|2)2/
∑

j |ψi(j)|4 which gives an ef-
fective number of nodes populated by an eigenvector
ψi (see e.g. [8, 13]). For the above two vectors we find
ξ0 = 20.67 and ξ39 = 10.76. This means that ξ39 is
mainly located on approximately 11 nodes. For ξ0 this
number is twice larger in agreement with data of Fig. 12
which show a clearly broader distribution comparing to
ξ39.

We also considered a few tens of eigenstates of S of the
whole CNPR. They are mainly located on the complex
plane around the largest oval curve well visible in the
spectrum (see Fig. 10 top right panel). The IPR value
of these eigenstates with |λ| ∼ 0.4 varies in the range
4 < ξ < 13 showing that they are located on some effec-
tive quasi-isolated communities of articles. About 10 of
them are related to the top article of ψ39 shown in Fig. 12
meaning that these ten vectors represent various linear
combinations of vectors on practically the same commu-
nity. In global, we can say that the eigenstates of G are
well localized since ξ ≪ N . A similar situation was seen
for the Wikipedia network [13].

Of course, in addition to ξ it is also useful to consider
the whole distribution of ψ amplitudes over the nodes.
Such a consideration has been done for the Wikipedia
network in [13]. For the CNPR we leave such detailed
studies for further investigations.

V. CHEIRANK VERSUS PAGERANK FOR
CNPR

The dependence of PageRank probability P (K) on
PageRank index K is shown in Fig. 13. The results are
similar to those of [22]. We note that the PageRank of
the triangular CNPR has the same top 9 articles as for
the whole CNPR (both at α = 0.85 and with a slight
interchanged order of positions 7, 8, 9). This confirms
that the future citations produce only a small effect on
the global ranking.
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FIG. 13: (Color online) Dependence of probability of Page-
Rank P (CheiRank P ∗) on corresponding index K (K∗) for
the CNPR at α = 0.85.

Following previous studies [24],[25, 26], in addition to
the Google matrix G we also construct the matrix G∗ fol-
lowing the same definition (1) but for the network with
inverted direction of links. The PageRank vector of this
matrix G∗ is called the CheiRank vector with probabil-
ity P ∗(K∗

i ) and CheiRank index K∗. The dependence of
P ∗(K∗

i ) is shown in Fig. 13. We find that the IPR values
of P and P ∗ are ξ = 59.54 and 1466.7 respectively. Thus
P ∗ is extended over significantly larger number of nodes
comparing to P . A power law fit of the decay P ∝ 1/Kβ,

P ∗ ∝ 1/K∗β , done for a range K,K∗ ≤ 2 × 105 gives
β ≈ 0.57 for P and β ≈ 0.4 for P ∗. However, this is only
an approximate description since there is a visible cur-
vature (in a double logarithmic representation) in these
distributions. The corresponding frequency distributions
of ingoing links have exponents µ = 2.87 while the dis-
tribution of outgoing links has µ ≈ 3.7 for outdegree
k ≥ 20, even if the whole frequency dependence in this
case is rather curved and a power law fit is rather approx-
imate in this case. Thus the usual relation β = 1/(µ− 1)
[4, 8, 25] approximately works.



18

100 101 102 103 104 105

K

100

101

102

103

104

105
K

*

 0

 2

 4

 6

 8

 10

 12

100 101 102 103 104 105

K

100

101

102

103

104

105

K
*

 0

 2

 4

 6

 8

 10

 12

FIG. 14: (Color online) Density distribution W (K,K∗) =
dNi/dKdK

∗ of Physical Review articles in the PageRank-
CheiRank plane (K,K∗). Color bars show the natural log-
arithm of density, changing from minimal nonzero density
(dark) to maximal one (white), zero density is shown by black.
Left panel: all articles of CNPR; right panel: CNPR without
Rev. Mod. Phys.

The correlation between PageRank and CheiRank
vectors can be characterized by the correlator κ =

N
∑N

i=1 P (i)P
∗(i)−1 [24, 26]. Here we find κ = −0.2789

for all CNPR, and κ = −0.3187 for CNPR without Rev.
Mod. Phys. This is the most strong negative value of
κ among all directed networks studied previously [26].
In a certain sense the situation is somewhat similar to
the Linux Kernel network where κ ≈ 0 or slightly neg-
ative (κ > −0.1 [24]). For CNPR, we can say that due
to a almost triangular structure of G and G∗ there is
a very little overlap of top ranking in K and K∗ that
leads to a negative correlator value, since the components
P (i)P ∗(i) of the sum for κ are small.
Each article i has two indexes Ki,K

∗

i so that it is
convenient to see their distribution on 2D PageRank-
CheiRank plane. The density distribution W (K,K∗) =
dNi/dKdK

∗ is shown in Fig. 14. It is obtained from
100 × 100 cells equidistant in log-scale (see details in
[25, 26]). For the CNPR the density is homogeneous
along lines K = −K∗ + const that corresponds to the
absence of correlations between P and P ∗ [25, 26]. For
the CNPR without Rev. Mod. Phys. we have an addi-
tional suppression of density at low K∗ values. Indeed,
Rev. Mod. Phys. contains mainly review articles with
a large number of citations that place them on top of
CheiRank. At the top 3 positions of K∗ of CNPR we
have DOI 10.1103/PhysRevA.79.062512, 10.1103/Phys-
RevA.79.062511, 10.1103/RevModPhys.81.1551 of 2009.
These are articles with long citation lists on K shell di-
agram 4d transition elements; hypersatellites of 3d tran-
sition metals; superconducting phases of f electron com-
pounds. For CNPR without Rev. Mod. Phys. the first
two articles are the same and the third one has DOI
10.1103/PhysRevB.80.224501 being about model for the
coexistence of d wave superconducting and charge den-
sity wave order in in high temperature cuprate supercon-
ductors. We see that the most recent articles with long
citation lists are dominating.
The top PageRank articles are analyzed in detail in

[22] and we do not discuss them here.

It is also useful to consider two-dimensional rank
2DRank K2 defined by counting nodes in order of their
appearance on ribs of squares in (K,K∗) plane with
the square size growing from K = 1 to K = N
[25]. It selects highly cited articles with a relatively
long citation list. For CNPR, we have top 3 such
articles with DOI 10.1103/RevModPhys.54.437 (1982),
10.1103/RevModPhys.65.851 (1993), 10.1103/RevMod-
Phys.58.801 (1986). Their topics are electronic proper-
ties of two dimensional systems, pattern formation out-
side of equilibrium, spin glasses facts and concepts. The
1st one located at K = 183, K∗ = 49 is well visible
in the left panel of Fig. 14. For CNPR without Rev.
Mod. Phys. we find at K2 = 1 the article with DOI
10.1103/PhysRevD.54.1 (1996) entitled Review of Par-
ticle Physics with a lot of information on physical con-
stants.
For the ranking of articles about persons in Wikipedia

networks [14, 25],[40], PageRank, 2DRank, CheiRank
highlights in a different manner various sides of human
activity. For the CNPR, these 3 ranks also select dif-
ferent types of articles, however, due a triangular struc-
ture of G,G∗ and absence of correlations between PageR-
ank and CheiRank vectors the useful side of 2DRank and
CheiRank remains less evident.

VI. IMPACTRANK FOR INFLUENCE
PROPAGATION

It is interesting to quantify how an influence of a given
article propagates through the whole CNPR. To analyze
this property we consider the following propagator acting
on an initial vector v0 located on a given article:

vf =
1− γ

1− γG
v0 , v∗f =

1− γ

1− γG∗
v0 . (21)

Here G,G∗ are the Google matrices defined above, γ is a
new impact damping factor being in a range γ ∼ 0.5−0.9,
vf in the final vector generated by the propagator (21).
This vector is normalized to unity

∑

i vf (i) = 1 and one
can easily show that it is equal to the PageRank vector
of a modified Google matrix given by

G̃ = γ G+ (1 − γ) v0 e
T (22)

where e is the vector with unit elements. This modi-
fied Google matrix corresponds to a stochastic process
where at a certain time a given probability distribution
is propagated with probability γ using the initial Google
matrix G and with probability (1 − γ) the probability
distribution is reinitialized with the vector v0. Then
vf is the stationary vector from this stochastic process.
Since the initial Google matrix G has a similar form,
G = αS + (1−α)e eT /N with the damping factor α, the
modified Google matrix can also be written as:

G̃ = α̃ S + (1− α̃) vp e
T , α̃ = γα , (23)
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with the personalization vector [4]

vp =
γ(1− α)e/N + (1− γ)v0

1− γα
(24)

which is also sum normalized:
∑

i vp(i) = 1. Obviously
similar relations hold for G∗ and v∗f .
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FIG. 15: (Color online) Dependence of impact vector vf prob-
ability P and P ∗ (left and right panels) on the corresponding
ImpactRank index K and K∗ for an initial article v0 as BCS
[35] and Anderson [36] in CNPR, and Napoleon in English
Wikipedia network from [40]. Here the impact damping fac-
tor is γ = 0.5.

The relation (21) can be viewed as a Green function
with damping γ. Since γ < 1 the expansion in a geo-
metric series is convergent and vf can be obtained from
about 200 terms of the expansion for γ ∼ 0.5. The sta-
bility of vf is verified by changing the number of terms.
The obtained vectors vf , v

∗

f can be considered as effective
PageRank, CheiRank probabilities P , P ∗ and all nodes
can be ordered in the corresponding rank index K, K∗,
which we will call ImpactRank.
The results for 2 initial vectors located on BCS [35] and

Anderson [36] articles are shown in Fig. 15. In addition
we show the same probability for the Wikipedia article
Napoleon for the English Wikipedia network analyzed in
[40]. The direct analysis of the distributions shows that
the original article is located at the top position, the next
step like structure corresponds to the articles reached by
first outgoing (ingoing) links from v0 for G (G∗). The
next visible step correspond to a second link step.
Top ten articles for these 3 vectors are shown in Tables

II, III, IV, V, VI. The analysis of these top articles con-
firms that they are closely linked with the initial article
and thus the ImpactRank gives relatively good ranking
results. At the same time, some questions for such Im-
pactRanking still remain to be clarified. For example,
in Table V we find at the third position the well known
Rev. Mod. Phys. on Anderson transitions but the pa-
per of Abrahams et al. [39] appears only on far positions
K∗ ≈ 300. The situation is changed if we consider all
CNPR links as bi-directional obtaining a non-directional
network. Then the paper [39] appears on the second posi-
tion directly after initial article [36]. We think that such
a problem appears due to triangular structure of CNPR
where there is no intersection of forward and backward
flows. Indeed, for the case of Napoleon we do not see

such difficulties. Thus we hope that such an approach
can be applied to other directed networks.

VII. MODELS OF RANDOM
PERRON-FROBENIUS MATRICES

In this section we discuss the spectral properties of
several random matrix models of Perron-Frobenius oper-
ators characterized by non-negative matrix elements and
column sums normalized to unity. We call these mod-
els Random Perron-Frobenius Matrices (RPFM). To con-
struct these models for a given matrix G of dimension N
we draw N2 independent matrix elements Gij ≥ 0 from
a given distribution p(G) (with p(G) = 0 for G < 0) with
average 〈G〉 = 1/N and finite variance σ2 = 〈G2〉−〈G〉2.
A matrix obtained in this way obeys the column sum
normalization only in average but not exactly for an ar-
bitrary realization. Therefore we renormalize all columns
to unity after having drawn the matrix elements. This
renormalization provides some (hopefully small) correla-
tions between the different matrix elements.
Neglecting these correlations for sufficiently large N

the statistical average of the RPFM is simply given by
〈Gij〉 = 1/N which is a projector matrix with the eigen-
value λ = 1 of multiplicity 1 and the corresponding eigen-
vector being the uniform vector e (with ei = 1 for all i).
The other eigenvalue λ = 0 is highly degenerate of mul-
tiplicity N − 1 and its eigenspace contains all vectors or-
thogonal to the uniform vector e. Writing the matrix ele-
ments of a RPFM as Gij = 〈Gij〉+δGij we may consider
the fluctuating part δGij as a perturbation which only
weakly modifies the unperturbed eigenvector e for λ = 1
but for the eigenvalue λ = 0 we have to apply degenerate
perturbation theory which requires the diagonalization
of δGij . According to the theory of non-symmetric real
random Gaussian matrices [5, 41, 42] it is well established
that the complex eigenvalue density of such a matrix is
uniform on a circle of radius R =

√
Nσ with σ2 being the

variance of the matrix elements. One can also expect that
this holds for more general, non-Gaussian, distributions
with finite variance provided that we exclude extreme
long tail distribution where the typical values are much
smaller than σ. Therefore we expect that the eigenvalue
density of a RPFM is determined by a single parameter
being the variance σ2 of the matrix elements resulting in
a uniform density on a circle of radius R =

√
Nσ around

λ = 0, in addition to the unit eigenvalue λ = 1 which is
always an exact eigenvalue due to sum normalization of
columns.
We now consider different variants of RPFM. The first

variant is a full matrix with each element uniformly dis-
tributed in the interval [0, 2/N [ which gives the variance

σ2 = 1/(3N2) and the spectral radius R = 1/
√
3N . The

second variant is a sparse RPFM matrix with Q non-
vanishing elements per column and which are uniformly
distributed in the interval [0, 2/Q[. Then the probabil-
ity distribution is given by p(G) = (1 − Q/N)δ(G) +
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TABLE II: Spreading of impact on ”Theory of superconductivity” paper by ”J. Bardeen, L. N. Cooper and J. R. Schrieffer
(doi:10.1103/PhysRev.108.1175) by Google matrix G with α = 0.85 and γ = 0.5

ImpactRank DOI Title of paper

1 10.1103/PhysRev.108.1175 Theory of superconductivity

2 10.1103/PhysRev.78.477 Isotope effect in the superconductivity of mercury

3 10.1103/PhysRev.100.1215 Superconductivity at millimeter wave frequencies

4 10.1103/PhysRev.78.487 Superconductivity of isotopes of mercury

5 10.1103/PhysRev.79.845 Theory of the superconducting state. i. the ground . . .

6 10.1103/PhysRev.80.567 Wave functions for superconducting electrons

7 10.1103/PhysRev.79.167 The hyperfine structure of ni61

8 10.1103/PhysRev.97.1724 Theory of the Meissner effect in superconductors

9 10.1103/PhysRev.81.829 Relation between lattice vibration and London . . .

10 10.1103/PhysRev.104.844 Transmission of superconducting films . . .

TABLE III: Spreading of impact on ”Absence of diffusion in certain random lattices” paper by P. W. Anderson
(doi:10.1103/PhysRev.109.1492) by Google matrix G. with α = 0.85 and γ = 0.5

ImpactRank DOI Title of paper

1 10.1103/PhysRev.109.1492 Absence of diffusion in certain random lattices

2 10.1103/PhysRev.91.1071 Electronic structure of f centers: saturation of . . .

3 10.1103/RevModPhys.15.1 Stochastic problems in physics and astronomy

4 10.1103/PhysRev.108.590 Quantum theory of electrical transport phenomena

5 10.1103/PhysRev.48.755 Theory of pressure effects of foreign gases on spectral lines

6 10.1103/PhysRev.105.1388 Multiple scattering by quantum-mechanical systems

7 10.1103/PhysRev.104.584 Spectral diffusion in magnetic resonance

8 10.1103/PhysRev.74.206 A note on perturbation theory

9 10.1103/PhysRev.70.460 Nuclear induction

10 10.1103/PhysRev.90.238 Dipolar broadening of magnetic resonance lines . . .

TABLE IV: Spreading of impact on ”Theory of superconductivity” paper by ”J. Bardeen, L. N. Cooper and J. R. Schrieffer
(doi:10.1103/PhysRev.108.1175) by Google matrix G∗ with α = 0.85 and γ = 0.5

ImpactRank DOI Title of paper

1 10.1103/PhysRev.108.1175 Theory of superconductivity

2 10.1103/PhysRevB.77.104510 Temperature-dependent gap edge in strong-coupling . . .

3 10.1103/PhysRevC.79.054328 Exact and approximate ensemble treatments of thermal . . .

4 10.1103/PhysRevB.8.4175 Ultrasonic attenuation in superconducting molybdenum

5 10.1103/RevModPhys.62.1027 Properties of boson-exchange superconductors

6 10.1103/PhysRev.188.737 Transmission of far-infrared radiation through thin films . . .

7 10.1103/PhysRev.167.361 Superconducting thin film in a magnetic field - theory of . . .

8 10.1103/PhysRevB.77.064503 Exact mesoscopic correlation functions of the Richardson . . .

9 10.1103/PhysRevB.10.1916 Magnetic field attenuation by thin superconducting lead films

10 10.1103/PhysRevB.79.180501 Exactly solvable pairing model for superconductors with . . .

(Q/N)χ[0,2/Q[(G) where χ[0,2/Q[(G) is the characteris-
tic function on the interval [0, 2/Q[ (with values being

1 for G in this interval and 0 for G outside this inter-
val). The average is indeed 〈G〉 = 1/N and the vari-
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TABLE V: Spreading of impact on ”Absence of diffusion in certain random lattices” paper by P. W. Anderson
(doi:10.1103/PhysRev.109.1492) by Google matrix G∗. with α = 0.85 and γ = 0.5

ImpactRank DOI Title of paper

1 10.1103/PhysRev.109.1492 Absence of diffusion in certain random lattices

2 10.1103/PhysRevA.80.053606 Effects of interaction on the diffusion of atomic . . .

3 10.1103/RevModPhys.80.1355 Anderson transitions

4 10.1103/PhysRevE.79.041105 Localization-delocalization transition in hessian . . .

5 10.1103/PhysRevB.79.205120 Statistics of the two-point transmission at . . .

6 10.1103/PhysRevB.80.174205 Localization-delocalization transitions . . .

7 10.1103/PhysRevB.80.024203 Statistics of renormalized on-site energies and . . .

8 10.1103/PhysRevB.79.153104 Flat-band localization in the Anderson-Falicov-Kimball model

9 10.1103/PhysRevB.74.104201 One-dimensional disordered wires with Poschl-Teller potentials

10 10.1103/PhysRevB.71.235112 Critical wave-packet dynamics in the power-law bond . . .

TABLE VI: Spreading of impact on the article of ”Napoleon” in English Wikipedia by Google matrix G and G∗. with α = 0.85
and γ = 0.5

ImpactRank Articles (G case) Articles (G∗ case)

1 Napoleon Napoleon

2 French Revolution List of orders of battle

3 France Lists of state leaders by year

4 First French Empire Names inscribed under the Arc de Triomphe

5 Napoleonic Wars List of battles involving France

6 French First Republic Order of battle of the Waterloo Campaign

7 Saint Helena Napoleonic Wars

8 French Consulate Wagram order of battle

9 French Directory Departments of France

10 National Convention Jena-Auerstedt Campaign Order of Battle

ance is σ2 = 4/(3NQ) (for N ≫ Q) providing the
spectral radius R = 2/

√
3Q. We may also consider a

sparse RPFM where we have exactly Q non-vanishing
constant elements of value 1/Q in each column with ran-
dom positions resulting in a variance σ2 = 1/(NQ) and
R = 1/

√
Q. The theoretical predictions for these three

variants of RPFM coincide very well with numerical sim-
ulations. In Fig. 16 the complex eigenvalue spectrum for
one realization of each of the three cases is shown for
N = 400 and Q = 20 clearly confirming the circular uni-
form eigenvalue density with the theoretical values of R.
We also confirm numerically the scaling behavior of R as
a function of N or Q.

Motivated by the Google matrices of DNA sequences
[43], where the matrix elements are distributed with a
power law, we also considered a power law variant of
RPFM with p(G) = D(1 + aG)−b for 0 ≤ G ≤ 1 and
with an exponent 2 < b < 3. The condition G ≤ 1 is

required because of the column sum normalization. The
parametersD and a are determined by normalization and
the average 〈G〉 = 1/N . In the limit N b−2 ≫ 1 we find
a ≈ N/(b− 2) and D ≈ N(b − 1)/(b− 2). For b > 3 the

variance would scale with ∼ N−2 resulting in R ∼ 1/
√
N

as in the first variant with uniformly distributed matrix
elements. However, for b < 3 this scaling is different and
we find (for N b−2 ≫ 1) :

R = C(b)N1−b/2 , C(b) = (b− 2)(b−1)/2

√

b− 1

3− b
.

(25)

Fig. 17 shows the results of numerical diagonalization
for one realization with N = 400 and b = 2.5 such that
we expect R ∼ N−0.25. It turns out that the circu-
lar eigenvalue density is rather well confirmed and the
“theoretical radius” is indeed given by R =

√
Nσ if the

variance σ2 of matrix elements is determined by an av-
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erage over the N2 matrix elements of the given matrix.
A study for different values of N with 50 ≤ N ≤ 2000
also confirms the dependence R = C N−η with fit val-
ues C = 0.67 ± 0.03 and η = 0.22 ± 0.01. The value of
η = 0.22 is close to the theoretical value 1 − b/2 = 0.25
but the prefactor C = 0.67 is smaller than its theoreti-
cal value C(2.5) ≈ 1.030. This is due to the correlations
introduced by the additional column sum normalization
after drawing the random matrix elements. Furthermore
for the power law model with b < 3 we should not ex-
pect a precise confirmation of the uniform circular den-
sity obtained for Gaussian distribution matrix elements.
Actually, a more detailed numerical analysis of the den-
sity shows that the density for the power law model is
not exactly uniform, in particular for values of b close to
2.

The important observation is that a generic RPFM
(full, sparse or with power law distributed matrix ele-
ments) has a complex eigenvalue density rather close to
a uniform circle of a quite small radius (depending on
the parameters N , Q or b). The fact, that the realis-
tic networks (e.g. certain university WWW-networks)
have Google matrix spectra very different from this [10],
shows that in these networks there is indeed a subtle net-
work structure and that already slight random perturba-
tions or variations immediately result in uniform circular
eigenvalue spectra. This was already observed in [8, 9],
where it was shown that certain modest random changes
in the network links already provide such circular eigen-
value spectra.

We also determine the PageRank for the different vari-
ants of the RPFM, i.e. the eigenvector for the eigenvalue
λ = 1. It turns out that it is rather uniform that is
rather natural since this eigenvector should be close to
the uniform vector e which is the “PageRank” for the
average matrix 〈Gij〉 = 1/N . This also holds when we
use a damping factor α = 0.85 for the RPFM.

Following the above discussion about triangular net-
works (with Gij = 0 for i ≥ j) we also study numerically
a triangular RPFM where for j ≥ 2 and i < j the ma-
trix elementsGij are uniformly distributed in the interval
[0, 2/(j−1)[ and for i ≥ j we haveGij = 0. Then the first
column is empty, that means it corresponds to a dangling
node and it needs to be replaced by 1/N entries. For the
triangular RPFM the situation changes completely since
here the average matrix 〈Gij〉 = 1/(j − 1) (for i < j and
j ≥ 2) has already a non-trivial structure and eigenvalue
spectrum. Therefore the argument of degenerate per-
turbation theory which allowed to apply the results of
standard full non-symmetric random matrices does not
apply here. In Fig. 16 one clearly sees that for N = 400
the spectra for one realization of a triangular RPFM and
its average are very similar for the eigenvalues with large
modulus but both do not have at all a uniform circular
density in contrast to the RPRM models without the tri-
angular constraint discussed above. For the triangular
RPFM the PageRank behaves as P (K) ∼ 1/K with the
ranking index K being close to the natural order of nodes

{1, 2, 3, . . .} that reflects the fact that the node 1 has the
maximum of N − 1 incoming links etc.
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FIG. 16: (Color online) Top left panel shows the spectrum
(red dots) of one realization of a full uniform RPFM with di-
mension N = 400 and matrix elements uniformly distributed
in the interval [0, 2/N [. The blue circle represents the theo-

retical spectral border with radius R = 1/
√
3N ≈ 0.02887.

The unit eigenvalue λ = 1 is not shown due to the zoomed
presentation range. Top right panel shows the spectrum of
one realization of triangular RPFM (red crosses) with non-
vanishing matrix elements uniformly distributed in the inter-
val [0, 2/(j − 1)[ and a triangular matrix with non-vanishing
elements 1/(j − 1) (blue squares). Here j = 2, 3, . . . , N is
the index-number of non-empty columns and the first column
with j = 1 corresponds to a dangling node with elements 1/N
for both triangular cases. Bottom panels show the complex
eigenvalue spectrum (red dots) of a sparse RPFM with dimen-
sion N = 400 and Q = 20 non-vanishing elements per column
at random positions. The left (right) panel corresponds to
the case of uniformly distributed non-vanishing elements in
the interval [0, 2/Q[ (constant non-vanishing elements being
1/Q). The blue circle represents the theoretical spectral bor-
der with radius R = 2/

√
3Q ≈ 0.2582 (R = 1/

√
Q ≈ 0.2236).

In both bottom panels λ = 1 is shown by a larger red dot for
better visibility. The unit circle is shown by green line (top
right and bottom panels).
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FIG. 17: (Color online) Left panel shows the spectrum (red
dots) of one realization of the power law RPFM with dimen-
sion N = 400 and decay exponent b = 2.5 (see text). The unit
eigenvalue λ = 1 is shown by a large red dot, the unit circle is
shown by green curve. The blue circle represents the spectral
border with theoretical radius R =≈ 0.1850 (see text). Right
panel shows the dependence of the spectrum border radius
on matrix size N for 50 ≤ N ≤ 2000. Red crosses represent
the radius obtained from theory (see text). Blue squares cor-
respond to the spectrum border radius obtained numerically
from a small number of eigenvalues with maximal modulus.
The green line shows the fit R = C N−η of red crosses with
C = 0.67± 0.03 and η = 0.22± 0.01.

The study of above models shows that it is not so sim-
ple to find a good RPFM model which reproduces a typ-
ical spectral structure of real directed networks.

VIII. DISCUSSION

In this study we presented a detailed analysis of the
spectrum of the CNPR for the period 1893 – 2009. It
happens that the numerical simulations should be done
with a high accuracy (up to p = 16384 binary digits for
the rational interpolation method or p = 768 binary dig-
its for the high precision Arnoldi method) to determine
correctly the eigenvalues of the Google matrix of CNPR
at small eigenvalues λ. Due to the time ordering of cita-
tions, the CNPR G matrix is close to the triangular form
with a nearly nilpotent matrix structure. We show that
special semi-analytical methods allow to determine effi-
ciently the spectrum of such matrices. The eigenstates
with large modulus of λ are shown to select specific com-

munities of articles in certain research fields but there is
no clear way on how to identify a community one is in-
terested in. The obtained results show that the spectrum
of CNPR is characterized by the fractal Weyl law with
the fractal dimension df ≈ 1.

The ranking of articles is analyzed with the help of
PageRank and CheiRank vectors corresponding to for-
ward and backward citation flows in time. It is shown
that the correlations between these two vectors are small
and even negative that is similar to the case of Linux
Kernel networks [26] and significantly different from net-
works of universities and Wikipedia. The 2DRanking
on the PagRank-CheiRank plane allows to select arti-
cles which efficiently redistribute information flow on the
CNPR.
To characterize the local impact propagation for a

given article we introduce the concept of ImpactRank
which efficiently determines its domain of influence.

Finally we perform the analysis of several models of
RPFM showing that such full random matrices are very
far from the realistic cases of directed networks. Ran-
dom sparse matrices with a limited number Q of links
per nodes seem to be closer to typical Google matri-
ces concerning the matrix structure. However, still such
random models give a rather uniform eigenvalue density
with a spectral radius ∼ 1/

√
Q and also a flat PageR-

ank distribution. Furthermore they do not capture the
existence of quasi-isolated communities which generates
quasi-degenerate spectrum at λ = 1. Further develop-
ment of RPFM models is required to reproduce the spec-
tral properties of real modern directed networks.
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Abstract—Several recent results show the influence of social
contacts to spread certain properties over the network, but others
question the methodology of these experiments by proposing that
the measured effects may be due to homophily or a shared
environment. In this paper we justify the existence of the social
influence by considering the temporal behavior of Last.fm users.
In order to clearly distinguish between friends sharing the same
interest, especially since Last.fm recommends friends based on
similarity of taste, we separated the timeless effect of similar
taste from the temporal impulses of immediately listening to
the same artist after a friend. We measured strong increase
of listening to a completely new artist in a few hours period
after a friend compared to non-friends representing a simple
trend or external influence. In our experiment to eliminate
network independent elements of taste, we improved collaborative
filtering and trend based methods by blending with simple time
aware recommendations based on the influence of friends. Our
experiments are carried over the two-year “scrobble” history of
70,000 Last.fm users.

I. INTRODUCTION

Several results show the influence of friends and contacts
to spread obesity [1], loneliness [2], alcohol consumption
[3], religious belief [4] and many similar properties in social
networks. Others question the methodology of these exper-
iments [5] by proposing that the measured effects may be
due to homophily, the fact that people tend to associate with
others like themselves, and a shared environment also called
confounding or contextual influence.

Part of the appeal of Web 2.0 is to find other people who
share similar interests. Last.fm organizes its social network
around music recommendation: users may automatically share
their listening habits and at the same time grow their friend-
ship. Based on the profiles shared, users may see what artists

Research supported in part by the EC FET Open project “New tools
and algorithms for directed network analysis” (NADINE No 288956) and
by the grant OTKA NK 105645. The work of Robert Palovics reported in
this paper has been developed in the framework of the project “Talent care
and cultivation in the scientific workshops of BME” project. This project is
supported by the grant TAMOP - 4.2.2.B-10/1–2010-0009. Work conducted
at the Eötvös University, Budapest was partially supported by the European
Union and the European Social Fund through project FuturICT.hu (grant
no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013). The research was carried out
as part of the EITKIC_12-1-2012-0001 project, which is supported by the
Hungarian Government, managed by the National Development Agency,
financed by the Research and Technology Innovation Fund and was performed
in cooperation with the EIT ICT Labs Budapest Associate Partner Group.
(www.ictlabs.elte.hu)

friends really listen to the most. Companies such as Last.fm
use this data to organize and recommend music to people.

In this paper we exploit the timely information gathered by
the Last.fm service on users with public profile to investigate
how members of the social network may influence their
friends’ taste. Last.fm’s service is unique in that we may obtain
a detailed timeline and catch immediate effects by comparing
the history of friends in time and comparing to pairs of random
users instead of friends.

Our contribution to the dispute on whether social contacts
influence one another or whether the observed similarity in
taste and behavior is only due to homophily, we show a
carefully designed experiment to subtract external effects that
may result in friends listening to similar music. Homophily is
handled by collaborative filtering, a method that is capable of
learning patterns of similarity in taste without using friendship
information. Another possible source for users listening to the
same music may come from traditional media: news, album
releases, concerts and ads. While the sources are hard to
identify, common in them is that they cause temporal increase
in popularity for the targeted artist. These effects are filtered
by another method that measures popularity at the given time
and recommends based on the momentary popularity.

We blend collaborative filtering and temporal popularity
recommenders with a method for influence prediction that we
describe in this paper. We consider events where a user listens
to an artist for the first time closely after a friend listened to
the same artist. We obtain a 4% of increase in recommendation
quality, a strong result in view of the three-year Netflix Prize
competition [6] to improve recommender quality by 10%. Note
that we only give a single method that results in a stable strong
improvement over the baselines.

Our new method is a lightweight recommender based on
friends’ past items that can be very efficiently computed
even in real time. Part of the efficiency comes from the
fact that potential items from influencing friends are relative
rare. For this reason, the method in itself performs worse
than the baselines, however it combines very well with them.
Indeed, influence based predictions improve the accuracy of
a traditional factor model recommender by nearly as much
as measuring popularity at the given time, a prediction that
is strong in itself. The fact that influences bend well prove
that close events in the network bring in new information that
can be exploited in a recommender system and also prove the
existence of influence from friends beyond homophily.

www.ictlabs.elte.hu
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A. Related results

The Netflix Prize competition [6] has recently generated
increased interest in recommender algorithms in the research
community and put recommender algorithms under a sys-
tematic thorough evaluation on standard data [7]. The final
best results blended a very large number of methods whose
reproduction is out of the scope of this paper. As one of
our baselines we selected a successful matrix factorization
recommender described by Simon Funk in [8] that is based
on an approach reminiscent of gradient boosting [9].

Closest to our results are the applications of network influ-
ence in collaborative filtering [10]. However in their data only
ratings and no social contacts are given. In another result [11]
over Flickr, both friendship and view information was present,
but the main goal was to measure the strength of the influence
and no measurements were designed to separate influence from
other effects.

Bonchi [12] summarizes the data mining aspects of research
on social influence. He concludes that “another extremely
important factor is the temporal dimension: nevertheless the
role of time in viral marketing is still largely (and surprisingly)
unexplored”, an aspect that is key in our result.

Since our goal is to recommend different artists at different
times, our evaluation must be based on the quality of the
top list produced by the recommender. This so-called top-k
recommender task is known to be hard [13]. For a recent result
on evaluating top-k recommenders is found in [14].

Music recommendation is considered in several results or-
thogonal to our methods that will likely combine well. Mood
data set is created in [15]. Similarity search based on audio
is given in [16]. Tag based music recommenders [17], [18,
and many more], a few of them based on Last.fm tags, use
annotation and fall into the class of content based methods
as opposed to collaborative filtering considered in our paper.
Best starting point for tag recommendation in general are the
papers [19], [20], [21]. Note that the Netflix Prize competition
put a strong vote towards the second class of methods [22].

As a social media service, Twitter is widely investigated
for influence and spread of information. Twitter influence
as followers has properties very different from usual social
networks [23]. Deep analysis of influence in terms of retweets
and mentions is given in [24]. Notion of influence similar to
ours is derived in [25], [26] for Fickr and Twitter cascades,
respectively. Note that by our measurement the Last.fm data
contains only a negligible amount of cascades as opposed to
Twitter or Flickr.

II. THE LAST.FM DATA SET

Last.fm became a relevant online service in music based
social networking. The idea of Last.fm is to create a rec-
ommendation system based on plugins nearly for all kind
of music listening platforms. For registered users it collects,
“scrobbles”1 what they have listened. Each user has its own
statistics on listened music that is shown in her profile.

1The name “scrobbling” is a word by Last.fm, meaning the collection of
information about user listening.
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Most user profiles are public, and each user of Last.fm may
have friends inside the Last.fm social network. Therefore one
relevant information for the users is that they see their own
and their friends’ listening statistics. We focus on two types
of user information,
• the timeline information of users: user u “scrobbled”

artist a at time t (u, a, t),
• and the social network of users.

Our data set hence consists of the contacts and the musical
taste of the users. Our goal is to justify the existence of the
influence of social contacts, i.e. certain correlation the taste
of friends in the user network. For privacy considerations,
throughout our research, we selected an anonymous sample
of users. Anonymity is provided by selecting random users
while maintaining a connected friendship network. We set the
following constraints for random selection:
• User location is stated in UK;
• Age between 14 and 50, inclusive;
• Profile displays scrobbles publicly (privacy constraint);
• Daily average activity between 5 and 500.
• At least 10 friends that meet the first four conditions.



3

P 
(d

(i)
=

k)

1e−05

0.0001

0.001

0.01

0.1

1

 

degree k
1 10 100 1,000

2
2

Fig. 3. Degree distribution in the friendship network.

The above selection criteria were set to select a representative
part of Last.fm users and as much as possible avoid users
who artificially generate inflated scrobble figures. In this
anonymized data set of two years of artist scrobble timelime,
edges of the social network are undirected and timestamped
by creation date (Fig. 1). Note that no edges are ever deleted
from the network.

The number of users both in the time series and in the
network is 71,000 with 285,241 edges. The average degree
is therefore 8, while the degree distribution follows shifted
power-law as seen in Fig. 3

P (d(i) = k) ∼ (x+ s)−α

with exponent 3.8.
The time series contain 979,391,001 scrobbles from

2,073,395 artists and were collected between 01 January 2010
and 31 December 2011. Note that one user can scrobble an
artist at different times. The number of unique user-artist
scrobbles is 57,274,158. Fig. 2 shows the daily fluctuations
in the users scrobbling activity.

III. NOTION OF NETWORK INFLUENCE

The key concept in this paper is a user v influencing another
u to scrobble a. This happens if u scrobbles artist a the first
time at time t, after v last scrobbling the same artist at some
time t′ < t before. The time difference ∆t = t−t′ is the delay
of the influence, as seen in Fig. 4. Our key assumption is that,
in the above definition, we observe influences between non-
friends only by coincidence while some of the observed influ-
ence between friends is the result of certain interaction between
them. Our goal is to prove that friends indeed influence each
other and this effect can be exploited for recommendations.

Similar influence definitions are given in [11], [25], [26]. As
detailed in [26], one main difference between these definitions
is that in some papers t′ is defined as the first and not the last
time when user v scrobbles a.

For smaller influence delay ∆t, we are more certain that u
is affected by the previous scrobble of v. The distribution of
delay with respect to friends and non-friends will help us in

Fig. 4. Potential influence on u by some other user to scrobble (u, a, t).

determining the frequency and strength of influence over the
Last.fm social network. Each time user u first scrobbles a, we
compute the delay ∆t for all users v who scrobbled a before
u, if such users exist (see Fig. 4).

Out of the 57,274,158 first-time scrobbles of certain artist
a by some user, we find a friend who scrobbled a before
10,993,042 times (19%). Note that one user can be influenced
by more friends therefore the total number of influences is
24,204,977. There is no influencing user for the very first
scrobbler of a in the data set. For other scrobbles there is
always an earlier scrobble by some other user, however that
user may not be a friend of u.

Some of the observed influences may result by pure co-
incidence, especially when a new album is released or the
popularity of the artist increases for some other reason. In
order to identify real influence, we compare the frequency of
influence from friends and from non-friends along delay ∆t
as parameter. We compute the cumulative distribution function
of all influences as a function of the delay,

CDFA(t) = fraction of influences with delay ∆t ≤ t
among all influences.

(1)
Similarly, CDFF (t) stands for the same function among in-
fluences between friends only. Fig. 5 shows the functions for
all users and friends. The function of friends is above that of
all users, i.e. we observe shorter delay more frequently among
friends.

Next we quantify the importance of friendship in influencing
others as the effectivity function. The effectivity at ∆t is
defined as the increase of influenced scrobbles among friends
relative to all users that happen with delay at most t:

Eff(t) =
CDFF (t)− CDFA(t)

CDFF (t)
. (2)
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Fig. 6 shows the measured effectivity curve in the community.
As expected, Eff(t) is a monotonically decreasing function of t.
However, the decrease is slow unlike in some recent influence
models that propose exponential decay in time [11]. Therefore,
we approximate Eff(t) with a slowly decreasing logarithmic
function instead of an exponential decay.

IV. INFLUENCE BASED RECOMMENDATION

Next we use our notion of influence in the task of artist
recommendation. Influence depends on time and no matter how
relative slow but the effectivity of a friend scrobbling an artist
decays. For this reason the influence based recommendation
must be updated more frequently than traditional collaborative
filtering methods. Also note that for a given user, our recom-
mendation can be computed very efficiently by a pass over the
recent history of friends.

Based on the measurements in the previous Section, we give
a temporal network influence based recommender algorithm.
For a user u at time t, we recommend based on friends’
scrobbles before t. The predicted score r̂(u, a, t) of an artist a
is based on a function Γ of the time elapsed since the friend v
scrobbling a (the delay ∆t) and a function ω of the observed
frequency of v influencing u in the past, as summarized in
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Fig. 6. The measured effectivity of the influence (ratio of increase among
friends compared to all users) as in (2) very closely follows a logarithmic
function of delay ∆t.

Fig. 7. Scheme of the influence based recommender algorithm.

Fig. 7. Formally the predicted rating becomes

r̂(u, a, t) =
∑

v∈n(u)

Γ(v, a,∆t)ω(v, u, t), (3)

where n(u) denotes the friends of u, ω(v, u, t) is the strength
of the influence between users u and v, and Γ(v, a,∆t) is the
weight between user v and artist a based on the delay.

Our implementation depends on the two functions ω and Γ
defined in the next two subsections. In an efficient algorithm,
the value of ω can be stored in memory for all pairs of friends.
Alternately, ω can only be batch updated as the strength
between two users are less time sensitive. The values of Γ,
however, depend on the actual time when the recommendation
is requested. As Γ quickly decays with ∆t, we only need to
retrieve the past srobbles of all v, the friends of u. This step can
be efficiently implemented unless u has too many friends. In
this latter case we could select only a few influencing friends
based on the values of ω, otherwise the recommendation is
noisy anyway. Our algorithm can hence be implemented even
in real time.
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A. Influence as function of delay
The potential of influence decays as time elapses since

the influencer v scrobbled the given artist a. Based on the
effectivity curve (see Fig. 6) we approximate the strength of the
influence with a monotonically decreasing logarithmic function

Γ(v, a,∆t) = 1− C · log(∆t), (4)

where C is a global constant.

B. Strength of influence between user pairs
We recommend a recent scrobble by a friend by taking both

the recency of the scrobble and the observed relation between
the two users. For each pair of users u, the influenced and
v, the influencer, we define the strength ω(v, u, t) as a step
function in time as follows:
• We initialize ω(v, u, 0) = 0 for all pairs.
• Assume that u and v become friends at time t0. We take

a step and set ω(u, v, t0) = ω(v, u, t0) = 1.
• If we observe an influence from v to u at time t >

t0 with time difference ∆t, we take another step and
increase ω(v, u, t) by

ω(v, u, t)← ω(v, u, t) + (1− C · log(∆t)) , (5)

where C is a global constant. For simplicity we use the
same logarithmic function of the delay as in (4).

To speed up computations, we only consider influence with
delay not more than a predefined time frame τ . We apply τ
for defining both ω in (5) and Γ in (4) and hence in both cases
we set

C = 1/ log(τ). (6)

V. REAL TIME RECOMMENDATION EVALUATION

Recommender systems in practice need to rank the best k
items for the user in real time. In the so-called top-k rec-
ommendation task [13], [14], potentially we have to compute
a new top list for every single scrobble in the test period.
The top-k task is different from the standard recommender
evaluation settings and needs carefully selected metrics that
we describe next.

Out of the two year scrobbling data, we use the full first
year as training period. The second year becomes the testing
period where we consider scrobbles one by one. We allow a
recommender algorithm to use part or full of the data before
the scrobble in question for training and require a ranked top
list of artists as output. We evaluate the given single actual
scrobble a in question against the recommended top list by
computing the discounted cumulative gain with treshold K

DCG@K(a) =

{
0 if rank (a) > K;

1
log2(rank(a) + 1)

otherwise.
(7)

Note that in this unusual setting there is a single relevant
item and hence for example no normalization is needed as
in case of the NDCG measure. Also note that the DCG
values will be small since the NDCG of a relative short
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sequence of actual scrobbles will roughly be equal to the sum
of the individual DCG values. The DCG measured over 100
subsequent scrobbles of different artists cannot be more than
the ideal DCG, which is

∑100
i=1 1/ log2(i+ 1) = 20.64 in this

case (the ideal value is 6.58 for K = 20). Hence the DCG of
an individual scrobble will on average be less than 0.21 for
K = 100 and 0.33 for K = 20.

In our evaluation we discard infrequent artists from the data
set both for efficiency considerations and due to the fact that
our item based recommenders will have too little information
on them. As seen in Fig. 8, the number of artists with a given
scrobble count follow a power law distribution with near 60%
of the artists appearing only once. While 90% of the artists
gathered less than 20 scrobbles in two years, as seen in Fig. 9,
they attribute to only less than 10% of the data set. In other
words by discarding a large number of artists, we only loose a
small fraction of the scrobbles. For efficiency we only consider
artists of frequency more than 14.

As time elapses, we observe near linear increase in the
number of artists that appear in the data set in Fig. 10. This
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Fig. 10. The number of different artists scrobbled before a given time in the
two year period of the data set.

figure shows artists with at least 14 scrobbles separately. Their
count grows slower but still we observe a large number of new
artist that appear in time and exceed the minimum count of
14. Very fast growth for infrequent artists may be a result of
noise and unidentified artists from e.g. YouTube videos and
similar Web sources.

VI. MUSIC RECOMMENDATION BASELINE METHODS

We describe one baseline method based on dynamic pop-
ularity in Section VI-A and one based on factorization in
Section VI-B.

A. Dynamic popularity based recommendation

Given a predefined time frame τ as in Section IV, at time
t we recommend an artist based on the popularity in time not
earlier than t − τ but before t. In our algorithm we update
the counts and store artists sorted by the current popularity.
In one time step we may either add a new scrobble event or
remove the earliest one, corresponding to a count increment
or decrement. For globally popular items the sorted order can
be maintained by a few changes in the order only. To speed
up the procedure, we may completely ignore part of the long
tail and for others update the position only after a sufficiently
large change in count. As future work we could also consider
bursts and predict the popularity increase or decrease.

B. Factor model based recommendation

For our factor model based recommender we selected the
implementation of Funk [8]. In the testing period we trained
weekly models based on all data before the given week.
For each user, we constructed three times as many negative
training instances as positive by selecting random artists with
probability proportional to their popularity in the training
period. Each testing period lasted one week. For each user,
we compute a top list of predictions once for the entire week
and evaluate against the sequence of scrobbles in that week.
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Fig. 11. Daily average DCG@K as in (7) in a 70-day sample of the test
period. We show the three basic methods, from strongest to weakest, the
factorization, temporal popularity, and the network influence recommenders.
For K we measure two values, 20 and 100, except for network influence where
we also show K = ∞ as the entire ranked list can be efficiently computed
in this case.
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VII. EXPERIMENTS

First we give the daily average DCG@K defined by equation
(7) in the second year testing period for the influence based and
the two baseline recommenders. Parameter K in equation (7)
controls the length of the top list considered for evaluation.
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In other words, K can be interpreted as the size of the list
presented to the user. Practically K must be small in order not
to flood the user with information. The performance of the
three basic methods is shown in Fig. 11 for K = 20 and 100
and a time window τ in Section IV-A equal to one week.

The dependence on the top list size K is measured in Fig. 12
for K ≤ 100. We observe that our influence based method
saturates the fastest. This is due to the fact that the number of
items recommended to a given user is usually small unless the
user has a large number of very active friends. For this reason
we give blending results not just for the value K = 20 that we
consider practically feasible but also for 100 for comparison.

Next we investigate the parameters of the individual algo-
rithms. For a matrix factorization based method we use Funk’s
algorithm [8] with the following parameters that turned out to
perform best in our experiments: learning rate = 0.001, feature
number = 20, and initial feature value = 0.1. We re-train the
algorithm each week based on all past data. For this reason
we see weekly periodicity in the 10-week timeline of Fig. 11:
the factor model performs best immediately after the training
period and slowly degrades in the testing period.

The popularity and influence based methods depend on the
time frame: the longer we look back in time, the more artists
we can recommend. If we carefully set the rank as a function
of time, wider time frames are advantageous for quality but
put extra computational load. For the influence recommender τ
is the maximum delay ∆t that we consider as influence while
for the popularity one τ is the time interval that we use for
frequency computation. We ran measurements in the second
year test period with different time frames τ and computed
the average DCG performance of the recommender systems.
Figure 13 shows the average DCG scores with different time
frames. The performance only slowly increases for time frames
longer than a day. In what follows we set τ to be one week.

The final conclusion of the experiments is drawn by blend-
ing the three recommenders as shown in Figs. 15–14. In our
experiments we obtained the best results by linearly combining
1/rank instead of the predicted score. As an advantage of
1/rank, we need no score normalization.
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Fig. 14. Blending DCG@K defined by (7) as the function of the linear
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model; temporal popularity and factor model; network influence and factor
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popularity.

Figure 14 shows the relative improvement of the rec-
ommenders as the function of the blending weights. After
blending the recommenders pairwise, we selected the strongest
popularity-factor combinations (3:7 and 2:8) and blended it
with the network recommender. One can see that the influence
recommender not only improves the results of the factor and
popularity recommenders, but combines well with their best
blended result: the combination of the three methods outper-
forms the best blend of the factor and popularity models both
for DCG@20 and DCG@100. The improvement is roughly
4%. Figure 15 shows the monthly average DCG@20 and
DCG@100 curves in the testing period in case of the different
blended recommenders. Each curve shows the result of the
best combination of the corresponnding recommenders. In each
case we observe stable improvement over the entire testing
period.
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CONCLUSIONS

Based on a 70,000 sample of Last.fm users, we were
able to measure the effect of certain user recommending an
artist to her friends. Our results confirm the existence of
influence through the social network as opposed to the pure
similarity of taste between friends. We disproved the opinion
that homophily could be the reason for friends listening to the
same music or behave similarly by constructing a baseline that
takes homophily and temporal effects into account. Over the
baseline recommender, we achieved a 4% improvement in rec-
ommendation accuracy when presenting artists from friends’
past scrobbles that the given user had never seen before. Our
system has very strong time awareness: when we recommend,
we look back in the near past and combine friends’ scrobbles
with the baseline methods. The influence from a friend at a
given time is certain function of the observed influence in the
past and the time elapsed since the friend scrobbled the given
artist. In addition, our method can efficiently be computed even
in real time.

For future work we plan to investigate whether the temporal
social influence is specific to Last.fm dataset or can match to
other kind of social network, e.g. Twitter. We also plan to
break down the analysis of influence spread by type of music,
by age range, or by artist.
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Abstract

Frigyes Karinthy, in his 1929 short story “Láncszemek”
(“Chains”) suggested that any two persons are distanced by
at most six friendship links.1 Stanley Milgram in his famous
experiment [20, 23] challenged people to route postcards to a
fixed recipient by passing them only through direct acquain-
tances. The average number of intermediaries on the path
of the postcards lay between 4.4 and 5.7, depending on the
sample of people chosen.

We report the results of the first world-scale social-network
graph-distance computations, using the entire Facebook net-
work of active users (≈ 721 million users, ≈ 69 billion friend-
ship links). The average distance we observe is 4.74, cor-
responding to 3.74 intermediaries or “degrees of separation”,
showing that the world is even smaller than we expected, and
prompting the title of this paper. More generally, we study
the distance distribution of Facebook and of some interest-
ing geographic subgraphs, looking also at their evolution over
time.

The networks we are able to explore are almost two orders
of magnitude larger than those analysed in the previous liter-
ature. We report detailed statistical metadata showing that
our measurements (which rely on probabilistic algorithms)
are very accurate.

1 Introduction

At the 20th World–Wide Web Conference, in Hyderabad, In-
dia, one of the authors (Sebastiano) presented a new tool for

∗Facebook.
†DSI, Università degli Studi di Milano, Italy. Paolo Boldi, Marco

Rosa and Sebastiano Vigna have been partially supported by a Ya-
hoo! faculty grant and by MIUR PRIN “Query log e web crawling”.

1The exact wording of the story is slightly ambiguous: “He bet us
that, using no more than five individuals, one of whom is a personal ac-
quaintance, he could contact the selected individual [. . . ]”. It is not com-
pletely clear whether the selected individual is part of the five, so this
could actually allude to distance five or six in the language of graph the-
ory, but the “six degrees of separation” phrase stuck after John Guare’s
1990 eponymous play. Following Milgram’s definition and Guare’s inter-
pretation (see further on), we will assume that “degrees of separation”
is the same as “distance minus one”, where “distance” is the usual path
length (the number of arcs in the path).

studying the distance distribution of very large graphs: Hy-
perANF [3]. Building on previous graph compression [4] work
and on the idea of diffusive computation pioneered in [21],
the new tool made it possible to accurately study the dis-
tance distribution of graphs orders of magnitude larger than
it was previously possible.

One of the goals in studying the distance distribution is the
identification of interesting statistical parameters that can
be used to tell proper social networks from other complex
networks, such as web graphs. More generally, the distance
distribution is one interesting global feature that makes it
possible to reject probabilistic models even when they match
local features such as the in-degree distribution.

In particular, earlier work had shown that the spid2,
which measures the dispersion of the distance distribution,
appeared to be smaller than 1 (underdispersion) for so-
cial networks, but larger than one (overdispersion) for web
graphs [3]. Hence, during the talk, one of the main open
questions was “What is the spid of Facebook?”.

Lars Backstrom happened to listen to the talk, and sug-
gested a collaboration studying the Facebook graph. This
was of course an extremely intriguing possibility: beside test-
ing the “spid hypothesis”, computing the distance distribution
of the Facebook graph would have been the largest Milgram-
like [20] experiment ever performed, orders of magnitudes
larger than previous attempts (during our experiments Face-
book has ≈ 721 million active users and ≈ 69 billion friend-
ship links).

This paper reports our findings in studying the distance
distribution of the largest electronic social network ever cre-
ated. That world is smaller than we thought: the average
distance of the current Facebook graph is 4.74. Moreover, the
spid of the graph is just 0.09, corroborating the conjecture [3]
that proper social networks have a spid well below one. We
also observe, contrary to previous literature analysing graphs
orders of magnitude smaller, both a stabilisation of the aver-
age distance over time, and that the density of the Facebook
graph over time does not neatly fit previous models.

Towards a deeper understanding of the structure of the
Facebook graph, we also apply recent compression techniques

2The spid (shortest-paths index of dispersion) is the variance-to-
mean ratio of the distance distribution.
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that exploit the underlying cluster structure of the graph to
increase locality. The results obtained suggests the existence
of overlapping clusters similar to those observed in other so-
cial networks.

Replicability of scientific results is important. While for
obvious nondisclosure reasons we cannot release to the pub-
lic the actual 30 graphs that have been studied in this paper,
we distribute freely the derived data upon which the tables
and figures of this papers have been built, that is, the Web-
Graph properties, which contain structural information about
the graphs, and the probabilistic estimations of their neigh-
bourhood functions (see below) that have been used to study
their distance distributions. The software used in this paper
is distributed under the (L)GPL General Public License.3

2 Related work
The most obvious precursor of our work is Milgram’s cele-
brated “small world” experiment, described first in [20] and
later with more details in [23]: Milgram’s works were actually
following a stream of research started in sociology and psy-
chology in the late 50s [12]. In his experiment, Milgram aimed
at answering the following question (in his words): “given two
individuals selected randomly from the population, what is
the probability that the minimum number of intermediaries
required to link them is 0, 1, 2, . . . , k?”.

The technique Milgram used (inspired by [22]) was the fol-
lowing: he selected 296 volunteers (the starting population)
and asked them to dispatch a message to a specific individ-
ual (the target person), a stockholder living in Sharon, MA,
a suburb of Boston, and working in Boston. The message
could not be sent directly to the target person (unless the
sender knew him personally), but could only be mailed to
a personal acquaintance who is more likely than the sender
to know the target person. The starting population was se-
lected as follows: 100 of them were people living in Boston,
100 were Nebraska stockholders (i.e., people living far from
the target but sharing with him their profession) and 96 were
Nebraska inhabitants chosen at random.

In a nutshell, the results obtained from Milgram’s exper-
iments were the following: only 64 chains (22%) were com-
pleted (i.e., they reached the target); the average number of
intermediaries in these chains was 5.2, with a marked dif-
ference between the Boston group (4.4) and the rest of the
starting population, whereas the difference between the two
other subpopulations was not statistically significant; at the
other end of the spectrum, the random (and essentially clue-
less) group from Nebraska needed 5.7 intermediaries on av-
erage (i.e., rounding up, “six degrees of separation”). The
main conclusions outlined in Milgram’s paper were that the
average path length is small, much smaller than expected,

3See http://{webgraph,law}.dsi.unimi.it/.

and that geographic location seems to have an impact on the
average length whereas other information (e.g., profession)
does not.

There is of course a fundamental difference between our ex-
periment and what Milgram did: Milgram was measuring the
average length of a routing path on a social network, which is
of course an upper bound on the average distance (as the peo-
ple involved in the experiment were not necessarily sending
the postcard to an acquaintance on a shortest path to the
destination).4 In a sense, the results he obtained are even
more striking, because not only do they prove that the world
is small, but that the actors living in the small world are able
to exploit its smallness. It should be remarked, however, that
in [20, 23] the purpose of the authors is to estimate the num-
ber of intermediaries: the postcards are just a tool, and the
details of the paths they follow are studied only as an artifact
of the measurement process. The interest in efficient routing
lies more in the eye of the beholder (e.g., the computer scien-
tist) than in Milgram’s: with at his disposal an actual large
database of friendship links and algorithms like the ones we
use, he would have dispensed with the postcards altogether.

Incidentally, there have been some attempts to repro-
duce Milgram-like routing experiments on various large net-
works [18, 14, 11], but the results in this direction are still
very preliminary because notions such as identity, knowledge
or routing are still poorly understood in social networks.

We limited ourselves to the part of Milgram’s experiment
that is more clearly defined, that is, the measurement of
shortest paths. The largest experiment similar to the ones
presented here that we are aware of is [15], where the authors
considered a communication graph with 180 million nodes
and 1.3 billion edges extracted from a snapshot of the Mi-
crosoft Messenger network; they find an average distance of
6.6 (i.e., 5.6 intermediaries; again, rounding up, six degrees of
separation). Note, however, that the communication graph
in [15] has an edge between two persons only if they com-
municated during a specific one-month observation period,
and thus does not take into account friendship links through
which no communication was detected.

The authors of [24], instead, study the distance distribu-
tion of some small-sized social networks. In both cases the
networks were undirected and small enough (by at least two
orders of magnitude) to be accessed efficiently in a random
fashion, so the authors used sampling techniques. We re-
mark, however, that sampling is not easily applicable to di-

4Incidentally, this observation is at the basis of one of the most in-
tense monologues in Guare’s play: Ouisa, unable to locate Paul, the
con man who convinced them he is the son of Sidney Poitier, says “I
read somewhere that everybody on this planet is separated by only six
other people. Six degrees of separation. Between us and everybody else
on this planet. [. . . ] But to find the right six people.” Note that this
fragment of the monologue clearly shows that Guare’s interpretation of
the “six degree of separation” idea is equivalent to distance seven in the
graph-theoretical sense.
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rected networks (such as Twitter) that are not strongly con-
nected, whereas our techniques would still work (for some
details about the applicability of sampling, see [8]).

Analysing the evolution of social networks in time is also
a lively trend of research. Leskovec, Kleinberg and Faloutsos
observe in [16] that the average degree of complex networks
increase over time while the effective diameter shrinks. Their
experiments are conducted on a much smaller scale (their
largest graph has 4 millions of nodes and 16 millions of arcs),
but it is interesting that the phenomena observed seems quite
consistent. Probably the most controversial point is the hy-
pothesis that the number of edges m(t) at time t is related
to the number of nodes n(t) by the following relation:

m(t) ∝ n(t)a,

where a is a fixed exponent usually lying in the interval
(1 . . 2). We will discuss this hypothesis in light of our find-
ings.

3 Definitions and Tools
The neighbourhood function NG(t) of a graph G returns for
each t ∈ N the number of pairs of nodes 〈x, y〉 such that
y is reachable from x in at most t steps. It provides data
about how fast the “average ball” around each node expands.
From the neighbourhood function it is possible to derive the
distance distribution (between reachable pairs), which gives
for each t the fraction of reachable pairs at distance exactly
t.

In this paper we use HyperANF, a diffusion-based algo-
rithm (building on ANF [21]) that is able to approximate
quickly the neighbourhood function of very large graphs; our
implementation uses, in turn, WebGraph [4] to represent in
a compressed but quickly accessible form the graphs to be
analysed.

HyperANF is based on the observation (made in [21]) that
B(x, r), the ball of radius r around node x, satisfies

B(x, r) =
⋃
x→y

B(y, r − 1) ∪ {x }.

Since B(x, 0) = {x }, we can compute each B(x, r) incremen-
tally using sequential scans of the graph (i.e., scans in which
we go in turn through the successor list of each node). The
obvious problem is that during the scan we need to access
randomly the sets B(x, r − 1) (the sets B(x, r) can be just
saved on disk on a update file and reloaded later).

The space needed for such sets would be too large to be
kept in main memory. However, HyperANF represents these
sets in an approximate way, using HyperLogLog counters [10],
which should be thought as dictionaries that can answer reli-
ably just questions about size. Each such counter is made of

a number of small (in our case, 5-bit) registers. In a nutshell,
a register keeps track of the maximum number M of trail-
ing zeroes of the values of a good hash function applied to
the elements of a sequence of nodes: the number of distinct
elements in the sequence is then proportional to 2M . A tech-
nique called stochastic averaging is used to divide the stream
into a number of substreams, each analysed by a different reg-
ister. The result is then computed by aggregating suitably
the estimation from each register (see [10] for details).

The main performance challenge to solve is how to quickly
compute the HyperLogLog counter associated to a union of
balls, each represented, in turn, by a HyperLogLog counter:
HyperANF uses an algorithm based on word-level parallelism
that makes the computation very fast, and a carefully engi-
neered implementation exploits multicore architectures with
a linear speedup in the number of cores.

Another important feature of HyperANF is that it uses
a systolic approach to avoid recomputing balls that do not
change during an iteration. This approach is fundamental to
be able to compute the entire distance distribution, avoiding
the arbitrary termination conditions used by previous ap-
proaches, which have no provable accuracy (see [3] for an
example).

3.1 Theoretical error bounds

The result of a run of HyperANF at the t-th iteration is an
estimation of the neighbourhood function in t. We can see it
as a random variable

N̂G(t) =
∑

0≤i<n

Xi,t

where each Xi,t is the HyperLogLog counter that counts
nodes reached by node i in t steps (n is the number of nodes of
the graph). When m registers per counter are used, each Xi,t

has a guaranteed relative standard deviation ηm ≤ 1.06/
√
m.

It is shown in [3] that the output N̂G(t) of HyperANF
at the t-th iteration is an asymptotically almost unbiased
estimator of NG(t), that is

E[N̂G(t)]

NG(t)
= 1 + δ1(n) + o(1) for n→∞,

where δ1 is the same as in [10][Theorem 1] (and |δ1(x)| <
5 · 10−5 as soon as m ≥ 16). Moreover, N̂G(t) has a relative
standard deviation not greater than that of the Xi’s, that is√

Var[N̂G(t)]

NG(t)
≤ ηm.

In particular, our runs used m = 64 (ηm = 0.1325) for all
graphs except for the two largest Facebook graphs, where we
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used m = 32 (ηm = 0.187). Runs were repeated so to obtain
a uniform relative standard deviation for all graphs.

Unfortunately, the relative error for the neighbourhood
function becomes an absolute error for the distance distri-
bution. Thus, the theoretical bounds one obtains for the
moments of the distance distribution are quite ugly. Actu-
ally, the simple act of dividing the neighbourhood function
values by the last value to obtain the cumulative distribution
function is nonlinear, and introduces bias in the estimation.

To reduce bias and provide estimates of the standard er-
ror of our measurements, we use the jackknife [9], a classical
nonparametric method for evaluating arbitrary statistics on
a data sample, which turns out to be very effective in prac-
tice [3].

4 Experiments

The graphs analysed in this paper are graphs of Facebook
users who were active in May of 2011; an active user is one
who has logged in within the last 28 days. The decision to
restrict our study to active users allows us to eliminate ac-
counts that have been abandoned in early stages of creation,
and focus on accounts that plausibly represent actual indi-
viduals. In accordance with Facebook’s data retention poli-
cies, historical user activity records are not retained, and his-
torical graphs for each year were constructed by considering
currently active users that were registered on January 1st of
that year, along with those friendship edges that were formed
prior that that date. The “current” graph is simply the graph
of active users at the time when the experiments were per-
formed (May 2011). The graph predates the existence of
Facebook “subscriptions”, a directed relationship feature in-
troduced in August 2011, and also does not include “pages”
(such as celebrities) that people may “like”. For standard
user accounts on Facebook there is a limit of 5 000 possible
friends.

We decided to extend our experiments in two directions:
regional and temporal. We thus analyse the entire Facebook
graph (fb), the USA subgraph (us), the Italian subgraph (it)
and the Swedish (se) subgraph. We also analysed a com-
bination of the Italian and Swedish graph (itse) to check
whether combining two regional but distant networks could
significantly change the average distance, in the same spirit
as in the original Milgram’s experiment.5 For each graph we
compute the distance distribution from 2007 up to today by
performing several HyperANF runs, obtaining an estimate
of values of neighbourhood function with relative standard
deviation at most 5.8%: in several cases, however, we per-

5To establish geographic location, we use the users’ current geo-IP
location; this means, for example, that the users in the it-2007 graph
are users who are today in Italy and were on Facebook on January 1,
2007 (most probably, American college students then living in Italy).

formed more runs, obtaining a higher precision. We report
the jackknife [9] estimate of derived values (such as average
distances) and the associated estimation of the standard er-
ror.

4.1 Setup

The computations were performed on a 24-core machine with
72GiB of memory and 1TiB of disk space.6 The first task
was to import the Facebook graph(s) into a compressed form
for WebGraph [4], so that the multiple scans required by
HyperANF’s diffusive process could be carried out relatively
quickly. This part required some massaging of Facebook’s
internal IDs into a contiguous numbering: the resulting cur-
rent fb graph (the largest we analysed) was compressed to
345GB at 20 bits per arc, which is 86% of the information-
theoretical lower bound (log

(
n2

m

)
bits, there n is the number

of nodes and m the number of arcs).7 Whichever coding we
choose, for half of the possible graphs with n nodes and m

arcs we need at least
⌊
log
(
n2

m

)⌋
bits per graph: the purpose of

compression is precisely to choose the coding so to represent
interesting graphs in a smaller space than that required by
the bound.

To understand what is happening, we recall that Web-
Graph uses the BV compression scheme [4], which applies
three intertwined techniques to the successor list of a node:

• successors are (partially) copied from previous nodes
within a small window, if successors lists are similar
enough;

• successors are intervalised, that is, represented by a left
extreme and a length, if significant contiguous successor
sequences appear;

• successors are gap-compressed if they pass the previous
phases: instead of storing the actual successor list, we
store the differences of consecutive successors (in increas-
ing order) using instantaneous codes.

Thus, a graph compresses well when it exhibits similarity
(nodes with near indices have similar successor lists) and lo-
cality (successor lists have small gaps).

The better-than-random result above (usually, randomly
permuted graphs compressed with WebGraph occupy 10 −
20% more space than the lower bound) has most likely been
induced by the renumbering process, as in the original stream
of arcs all arcs going out from a node appeared consecutively;

6We remark that the commercial value of such hardware is of the
order of a few thousand dollars.

7Note that we measure compression with respect to the lower bound
on arcs, as WebGraph stores directed graphs; however, with the addi-
tional knowledge that the graph is undirected, the lower bound should
be applied to edges, thus doubling, in practice, the number of bits used.
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Figure 1: The change in distribution of the logarithm of the
gaps between successors when the current fb graph is per-
muted by layered label propagation. See also Table 1.

as a consequence, the renumbering process assigned consec-
utive labels to all yet-unseen successors (e.g., in the initial
stages successors were labelled contiguously), inducing some
locality.

It is also possible that the “natural” order for Facebook
(essentially, join order) gives rise to some improvement over
the information-theoretical lower bound because users often
join the network at around the same time as several of their
friends, which causes a certain amount of locality and simi-
larity, as circle of friends have several friends in common.

We were interested in the first place to establish whether
more locality could be induced by suitably permuting the
graph using layered labelled propagation [2] (LLP). This ap-
proach (which computes several clusterings with different lev-
els of granularity and combines them to sort the nodes of a
graph so to increase its locality and similarity) has recently
led to the best compression ratios for social networks when
combined with the BV compression scheme. An increase in
compression means that we were able to partly understand
the cluster structure of the graph.

We remark that each of the clusterings required by LLP is
in itself a tour de force, as the graphs we analyse are almost
two orders of magnitude larger than any network used for
experiments in the literature on graph clustering. Indeed,
applying LLP to the current Facebook graph required ten
days of computation on our hardware.

We applied layered labelled propagation and re-compressed
our graphs (the current version), obtaining a significant im-
provement. In Table 1 we show the results: we were able to
reduce the graph size by 30%, which suggests that LLP has
been able to discover several significant clusters.

The change in structure can be easily seen from Figure 1,
where we show the distribution of the binary logarithm of
gaps between successors for the current fb graph. The
smaller the gaps, the higher the locality. In the graph with
renumbered Facebook IDs, the distribution is bimodal: there

is a local maximum at two, showing that there is some lo-
cality, but the bulk of the probability mass is around 20–21,
which is slightly less than the information-theoretical lower
bound (≈ 23).

In the graph permuted with LLP, however, the distribu-
tion radically changes: it is now (mostly) beautifully mono-
tonically decreasing, with a very small bump at 23, which
testifies the existence of a small core of “randomness” in the
graph that LLP was not able to tame.

Regarding similarity, we see an analogous phenomenon:
the number of successors represented by copy has doubled,
going from 9% to 18%. The last datum is in line with other
social networks (web graphs, on the contrary, are extremely
redundant and more than 80% of the successors are usually
copied). Moreover, disabling copying altogether results in
modest increase in size (≈ 5%), again in line with other so-
cial networks, which suggests that for most applications it
is better to disable copying at all to obtain faster random
access.

The compression ratio is around 53%, which is similar to
other similar social networks, such as LiveJournal (55%) or
DBLP (40%) [2]8. For other graphs (see Table 1), however,
it is slightly worse. This might be due to several phenomena:
First, our LLP runs were executed with only half the number
or clusters, and for each cluster we restricted the number of
iterations to just four, to make the whole execution of LLP
feasible. Thus, our runs are capable of finding considerably
less structure than the runs we had previously performed for
other networks. Second, the number of nodes is much larger:
there is some cost in writing down gaps (e.g., using γ, δ or
ζ codes) that is dependent on their absolute magnitude, and
the lower bound does not take into account that cost.

4.2 Running
Since most of the graphs, because of their size, had to be ac-
cessed by memory mapping, we decided to store all counters
(both those for B(x, r − 1) and those for B(x, r)) in main
memory, to avoid eccessive I/O. The runs of HyperANF on
the current whole Facebook graph used 32 registers, so the
space for counters was about 27GiB (e.g., we could have
analysed a graph with four times the number of nodes on
the same hardware). As a rough measure of speed, a run on
the LLP-compressed current whole Facebook graph requires
about 13.5 hours. Note that this timings would scale linearly
with an increase in the number of cores.

4.3 General comments
In September 2006, Facebook was opened to non-college stu-
dents: there was an instant surge in subscriptions, as our

8The interested reader will find similar data for several type of net-
works at the LAW web site (http://law.dsi.unimi.it/).
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it se itse us fb
Original 14.8 (83%) 14.0 (86%) 15.0 (82%) 17.2 (82%) 20.1 (86%)
LLP 10.3 (58%) 10.2 (63%) 10.3 (56%) 11.6 (56%) 12.3 (53%)

Table 1: The number of bits per link and the compression ratio (with respect to the information-theoretical lower bound)
for the current graphs in the original order and for the same graphs permuted by layered label propagation [2].
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Figure 2: The probability mass functions of the distance dis-
tributions of the current graphs (truncated at distance 10).

data shows. In particular, the it and se subgraphs from
January 1, 2007 were highly disconnected, as shown by the
incredibly low percentage of reachable pairs we estimate in
Table 9. Even Facebook itself was rather disconnected, but
all the data we compute stabilizes (with small oscillations)
after 2009, with essentially all pairs reachable. Thus, we con-
sider the data for 2007 and 2008 useful to observe the evolu-
tion of Facebook, but we do not consider them representative
of the underlying human social-link structure.

it se itse us fb
2007 1.31 3.90 1.50 119.61 99.50
2008 5.88 46.09 36.00 106.05 76.15
2009 50.82 69.60 55.91 111.78 88.68
2010 122.92 100.85 118.54 128.95 113.00
2011 198.20 140.55 187.48 188.30 169.03

current 226.03 154.54 213.30 213.76 190.44

Table 4: Average degree of the datasets.
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Figure 3: The average distance graph. See also Table 6.

it se itse us fb
2007 0.04 10.23 0.19 100.00 68.02
2008 25.54 93.90 80.21 99.26 89.04

Table 9: Percentage of reachable pairs 2007–2008.

4.4 The distribution

Figure 2 displays the probability mass functions of the cur-
rent graphs. We will discuss later the variation of the average
distance and spid, but qualitatively we can immediately dis-
tinguish the regional graphs, concentrated around distance
four, and the whole Facebook graph, concentrated around
distance five. The distributions of it and se, moreover, have
significantly less probability mass concentrated on distance
five than itse and us. The variance data (Table 7 and Fig-
ure 4) show that the distribution became quickly extremely
concentrated.

6



it se itse us fb
2007 159.8K (105.0K) 11.2K (21.8K) 172.1K (128.8K) 8.8M (529.3M) 13.0M (644.6M)
2008 335.8K (987.9K) 1.0M (23.2M) 1.4M (24.3M) 20.1M (1.1G) 56.0M (2.1G)
2009 4.6M (116.0M) 1.6M (55.5M) 6.2M (172.1M) 41.5M (2.3G) 139.1M (6.2G)
2010 11.8M (726.9M) 3.0M (149.9M) 14.8M (878.4M) 92.4M (6.0G) 332.3M (18.8G)
2011 17.1M (1.7G) 4.0M (278.2M) 21.1M (2.0G) 131.4M (12.4G) 562.4M (47.5G)

current 19.8M (2.2G) 4.3M (335.7M) 24.1M (2.6G) 149.1M (15.9G) 721.1M (68.7G)

Table 2: Number of nodes and friendship links of the datasets. Note that each friendship link, being undirected, is represented
by a pair of symmetric arcs.

it se itse us fb
2007 387.0K 51.0K 461.9K 1.8G 2.3G
2008 3.9M 96.7M 107.8M 4.0G 9.2G
2009 477.9M 227.5M 840.3M 9.1G 28.7G
2010 3.6G 623.0M 4.5G 26.0G 93.3G
2011 8.0G 1.1G 9.6G 53.6G 238.1G

current 8.3G 1.2G 9.7G 68.5G 344.9G

Table 3: Size in bytes of the datasets.

Lower bounds from HyperANF runs
it se itse us fb

2007 41 17 41 13 14
2008 28 17 24 17 16
2009 21 16 17 16 15
2010 18 19 19 19 15
2011 17 20 17 18 35

current 19 19 19 20 58
Exact diameter of the giant component
current 25 23 27 30 41

Table 10: Lower bounds for the diameter of all graphs, and
exact values for the giant component (> 99.7%) of current
graphs computed using the iFUB algorithm.

4.5 Average degree and density

Table 4 shows the relatively quick growth in time of the av-
erage degree of all graphs we consider. The more users join
the network, the more existing friendship links are uncovered.
In Figure 6 we show a loglog-scaled plot of the same data:
with the small set of points at our disposal, it is difficult to
draw reliable conclusions, but we are not always observing
the power-law behaviour suggested in [16]: see, for instance,
the change of the slope for the us graph.9

9We remind the reader that on a log-log plot almost anything “looks
like” a straight line. The quite illuminating examples shown in [17], in
particular, show that goodness-of-fit tests are essential.

The density of the network, on the contrary, decreases.10
In Figure 5 we plot the density (number of edges divided
by number of nodes) of the graphs against the number of
nodes (see also Table 5). There is some initial alternating
behaviour, but on the more complete networks (fb and us)
the trend in sparsification is very evident.

Geographical concentration, however, increases density: in
Figure 5 we can see the lines corresponding to our regional
graphs clearly ordered by geographical concentration, with
the fb graph in the lowest position.

4.6 Average distance

The results concerning average distance11 are displayed in
Figure 3 and Table 6. The average distance12 on the Face-

10We remark that the authors of [16] call densification the increase
of the average degree, in contrast with established literature in graph
theory, where density is the fraction of edges with respect to all possi-
ble edges (e.g., 2m/(n(n − 1))). We use “density”, “densification” and
“sparsification” in the standard sense.

11The data we report is about the average distance between reach-
able pairs, for which the name average connected distance has been
proposed [5]. This is the same measure as that used by Travers and
Milgram in [23]. We refrain from using the word “connected” as it
somehow implies a bidirectional (or, if you prefer, undirected) connec-
tion. The notion of average distance between all pairs is useless in a
graph in which not all pairs are reachable, as it is necessarily infinite,
so no confusion can arise.

12In some previous literature (e.g., [16]), the 90% percentile (possibly
with some interpolation) of the distance distribution, called effective
diameter, has been used in place of the average distance. Having at
our disposal tools that can compute easily the average distance, which
is a parameterless, standard feature of the distance distribution that
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it se itse us fb
2007 8.224E-06 3.496E-04 8.692E-06 1.352E-05 7.679E-06
2008 1.752E-05 4.586E-05 2.666E-05 5.268E-06 1.359E-06
2009 1.113E-05 4.362E-05 9.079E-06 2.691E-06 6.377E-07
2010 1.039E-05 3.392E-05 7.998E-06 1.395E-06 3.400E-07
2011 1.157E-05 3.551E-05 8.882E-06 1.433E-06 3.006E-07

current 1.143E-05 3.557E-05 8.834E-06 1.434E-06 2.641E-07

Table 5: Density of the datasets.

it se itse us fb
2007 10.25 (±0.17) 5.95 (±0.07) 8.66 (±0.14) 4.32 (±0.02) 4.46 (±0.04)
2008 6.45 (±0.03) 4.37 (±0.03) 4.85 (±0.05) 4.75 (±0.02) 5.28 (±0.03)
2009 4.60 (±0.02) 4.11 (±0.01) 4.94 (±0.02) 4.73 (±0.02) 5.26 (±0.03)
2010 4.10 (±0.02) 4.08 (±0.02) 4.43 (±0.03) 4.64 (±0.02) 5.06 (±0.01)
2011 3.88 (±0.01) 3.91 (±0.01) 4.17 (±0.02) 4.37 (±0.01) 4.81 (±0.04)

current 3.89 (±0.02) 3.90 (±0.04) 4.16 (±0.01) 4.32 (±0.01) 4.74 (±0.02)

Table 6: The average distance (± standard error). See also Figure 3 and 7.

book current graph is 4.74.13 Moreover, a closer look at the
distribution shows that 92% of the reachable pairs of individ-
uals are at distance five or less.

We note that both on the it and se graphs we find a sig-
nificantly lower, but similar value. We interpret this result as
telling us that the average distance is actually dependent on
the geographical closeness of users, more than on the actual
size of the network. This is confirmed by the higher average
distance of the itse graph.

During the fastest growing years of Facebook our graphs
show a quick decrease in the average distance, which how-
ever appears now to be stabilizing. This is not surprising, as
“shrinking diameter” phenomena are always observed when
a large network is “uncovered”, in the sense that we look at
larger and larger induced subgraphs of the underlying global
human network. At the same time, as we already remarked,
density was going down steadily. We thus see the small-world
phenomenon fully at work: a smaller fraction of arcs connect-
ing the users, but nonetheless a lower average distance.

To make more concrete the “degree of separation” idea, in
Table 11 we show the percentage of reachable pairs within
the ceiling of the average distance (note, again, that it is the
percentage relatively to the reachable pairs): for instance,
in the current Facebook graph 92% of the pairs of reachable
users are within distance five—four degrees of separation.

has been used in social sciences for decades, we prefer to stick to it.
Experimentally, on web and social graphs the average distance is about
two thirds of the effective diameter plus one [3].

13Note that both Karinthy and Guare had in mind the maximum, not
the average number of degrees, so they were actually upper bounding
the diameter.

4.7 Spid

The spid is the index of dispersion σ2/µ (a.k.a. variance-to-
mean ratio) of the distance distribution. Some of the authors
proposed the spid [3] as a measure of the “webbiness” of a so-
cial network. In particular, networks with a spid larger than
one should be considered “web-like”, whereas networks with a
spid smaller than one should be considered “properly social”.
We recall that a distribution is called under- or over-dispersed
depending on whether its index of dispersion is smaller or
larger than 1 (e.g., variance smaller or larger than the aver-
age distance), so a network is considered properly social or
not depending on whether its distance distribution is under-
or over-dispersed.

The intuition behind the spid is that “properly social” net-
works strongly favour short connections, whereas in the web
long connection are not uncommon. As we recalled in the in-
troduction, the starting point of the paper was the question
“What is the spid of Facebook”? The answer, confirming the
data we gathered on different social networks in [3], is shown
in Table 8. With the exception of the highly disconnected
regional networks in 2007–2008 (see Table 9), the spid is well
below one.

Interestingly, across our collection of graphs we can confirm
that there is in general little correlation between the average
distance and the spid: Kendall’s τ is −0.0105; graphical ev-
idence of this fact can be seen in the scatter plot shown in
Figure 7.

If we consider points associated with a single network,
though, there appears to be some correlation between av-
erage distance and spid, in particular in the more connected

8



it se itse us fb
2007 32.46 (±1.49) 3.90 (±0.12) 16.62 (±0.87) 0.52 (±0.01) 0.65 (±0.02)
2008 3.78 (±0.18) 0.69 (±0.04) 1.74 (±0.15) 0.82 (±0.02) 0.86 (±0.03)
2009 0.64 (±0.04) 0.56 (±0.02) 0.84 (±0.02) 0.62 (±0.02) 0.69 (±0.05)
2010 0.40 (±0.01) 0.50 (±0.02) 0.64 (±0.03) 0.53 (±0.02) 0.52 (±0.01)
2011 0.38 (±0.03) 0.50 (±0.02) 0.61 (±0.02) 0.39 (±0.01) 0.42 (±0.03)

current 0.42 (±0.03) 0.52 (±0.04) 0.57 (±0.01) 0.40 (±0.01) 0.41 (±0.01)

Table 7: The variance of the distance distribution (± standard error). See also Figure 4.

it se itse us fb
2007 3.17 (±0.106) 0.66 (±0.016) 1.92 (±0.078) 0.12 (±0.003) 0.15 (±0.004)
2008 0.59 (±0.026) 0.16 (±0.008) 0.36 (±0.028) 0.17 (±0.003) 0.16 (±0.005)
2009 0.14 (±0.007) 0.14 (±0.004) 0.17 (±0.004) 0.13 (±0.003) 0.13 (±0.009)
2010 0.10 (±0.003) 0.12 (±0.005) 0.14 (±0.006) 0.11 (±0.004) 0.10 (±0.002)
2011 0.10 (±0.006) 0.13 (±0.006) 0.15 (±0.004) 0.09 (±0.003) 0.09 (±0.005)

current 0.11 (±0.007) 0.13 (±0.010) 0.14 (±0.003) 0.09 (±0.003) 0.09 (±0.003)

Table 8: The index of dispersion of distances, a.k.a. spid (± standard error). See also Figure 7.

networks (the values for Kendall’s τ are all above 0.6, except
for se). However, this is just an artifact, as the correlation
between spid and average distance is inverse (larger average
distance, smaller spid). What is happening is that in this
case the variance (see Table 7) is changing in the same direc-
tion: smaller average distances (which would imply a larger
spid) are associated with smaller variances. Figure 8 displays
the mild correlation between average distance and variance in
the graphs we analyse: as a network gets tighter, its distance
distribution also gets more concentrated.

4.8 Diameter
HyperANF cannot provide exact results about the diameter:
however, the number of steps of a run is necessarily a lower
bound for the diameter of the graph (the set of registers can
stabilize before a number of iterations equal to the diameter
because of hash collisions, but never after). While there are
no statistical guarantees on this datum, in Table 10 we re-
port these maximal observations as lower bounds that differ
significantly between regional graphs and the overall Face-
book graph—there are people that are significantly more “far
apart” in the world than in a single nation.14

To corroborate this information, we decided to also ap-
proach the problem of computing the exact diameter directly,
although it is in general a daunting task: for very large graphs
matrix-based algorithms are simply not feasible in space, and
the basic algorithm running n breadth-first visits is not fea-
sible in time. We thus implemented a highly parallel version

14Incidentally, as we already remarked, this is the measure that
Karinthy and Guare actually had in mind.

of the iFUB (iterative Fringe Upper Bound) algorithm intro-
duced in [6] (extending the ideas of [7, 19]) for undirected
graphs.

The basic idea is as follows: consider some node x, and
find (by a breadth-first visit) a node y farthest from x. Find
now a node z farthest from y: d(y, z) is a (usually very good)
lower bound on the diameter, and actually it is the diameter
if the graph is a tree (this is the “double sweep” algorithm).

We now consider a node c halfway between y and z: such
a node is “in the middle of the graph” (actually, it would be
a center if the graph was a tree), so if h is the eccentricy of
c (the distance of the farthest node from c) we expect 2h to
be a good upper bound for the diameter.

If our upper and lower bound match, we are finished. Oth-
erwise, we consider the fringe: the nodes at distance exactly
h from c. Clearly, if M is the maximum of the eccentrici-
ties of the nodes in the fringe, max{ 2(h − 1),M } is a new
(and hopefully improved) upper bound, andM is a new (and
hopefully improved) lower bound. We then iterate the pro-
cess by examining fringes closer to the root until the bounds
match.

Our implementation uses a multicore breadth-first visit:
the queue of nodes at distance d is segmented into small
blocks handled by each core. At the end of a round, we
have computed the queue of nodes at distance d + 1. Our
implementation was able to discover the diameter of the cur-
rent us graph (which fits into main memory, thanks to LLP
compression) in about twenty minutes. The diameter of Face-
book required ten hours of computation of a machine with
1TiB of RAM (actually, 256GiB would have been sufficient,
always because of LLP compression).
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it se itse us fb
2007 65% (11) 64% (6) 67% (9) 95% (5) 91% (5)
2008 77% (7) 93% (5) 77% (5) 83% (5) 91% (6)
2009 90% (5) 96% (5) 75% (5) 86% (5) 94% (6)
2010 98% (5) 97% (5) 91% (5) 91% (5) 97% (6)
2011 90% (4) 86% (4) 95% (5) 97% (5) 89% (5)

current 88% (4) 86% (4) 97% (5) 97% (5) 91% (5)

Table 11: Percentage of reachable pairs within the ceiling of the average distance (shown between parentheses).
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Figure 4: The graph of variances of the distance distributions.
See also Table 7.

The values reported in Table 10 confirm what we discov-
ered using the approximate data provided by the length of
HyperANF runs, and suggest that while the distribution has
a low average distance and it is quite concentrated, there
are nonetheless (rare) pairs of nodes that are much farther
apart. We remark that in the case of the current fb graph,
the diameter of the giant component is actually smaller than
the bound provided by the HyperANF runs, which means
that long paths appear in small (and likely very irregular)
components.

4.9 Precision

As already discussed in [3], it is very difficult to obtain strong
theoretical bounds on data derived from the distance distri-
bution. The problem is that when passing from the neigh-
bourhood function to the distance distribution, the relative
error bound becomes an absolute error bound: since the dis-
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Figure 9: The evolution of the relative error in a Hyper-
ANF computation with relative standard deviation 9.25% on
a small social network (dblp-2010).

tance distribution attains very small values (in particular in
its tail), there is a concrete risk of incurring significant errors
when computing the average distance or other statistics. On
the other hand, the distribution of derived data is extremely
concentrated [3].

There is, however, a clear empirical explanation of the un-
expected accuracy of our results that is evident from an anal-
ysis of the evolution of the empirical relative error of a run
on a social network. We show an example in Figure 9.

• In the very first steps, all counters contain essentially
disjoint sets; thus, they behave as independent random
variables, and under this assumption their relative error
should be significantly smaller than expected: indeed,
this is clearly visible from Figure 9.

• In the following few steps, the distribution reaches its
highest value. The error oscillates, as counters are now
significantly dependent from one another, but in this
part the actual value of the distribution is rather large,
so the absolute theoretical error turns out to be rather
good.

• Finally, in the tail each counter contains a very large
subset of the reachable nodes: as a result, all counters
behave in a similar manner (as the hash collisions are
essentially the same for every counter), and the rela-
tive error stabilises to an almost fixed value. Because
of this stabilisation, the relative error on the neighbour-
hood function transfers, in practice, to a relative error
on the distance distribution. To see why this happen,
observe the behaviour of the variation of the relative er-
ror, which is quite erratic initially, but then converges
quickly to zero. The variation is the only part of the
relative error that becomes an absolute error when pass-
ing to the distance distribution, so the computation on
the tail is much more accurate than what the theoretical
bound would imply.
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We remark that our considerations remain valid for any
diffusion-based algorithm using approximate, statistically de-
pendent counters (e.g., ANF [21]).

5 Conclusions

In this paper we have studied the largest electronic social net-
work ever created (≈ 721 million active Facebook users and
their ≈ 69 billion friendship links) from several viewpoints.

First of all, we have confirmed that layered labelled prop-
agation [2] is a powerful paradigm for increasing locality of
a social network by permuting its nodes. We have been able
to compress the us graph at 11.6 bits per link—56% of the
information-theoretical lower bound, similarly to other, much
smaller social networks.

We then analysed using HyperANF the complete Facebook
graph and 29 other graphs obtained by restricting geographi-
cally or temporally the links involved. We have in fact carried
out the largest Milgram-like experiment ever performed. The
average distance of Facebook is 4.74, that is, 3.74 “degrees of
separation”, prompting the title of this paper. The spid of
Facebook is 0.09, well below one, as expected for a social
network. Geographically restricted networks have a smaller
average distance, as it happened in Milgram’s original exper-
iment. Overall, these results help paint the picture of what
the Facebook social graph looks like. As expected, it is a
small-world graph, with short paths between many pairs of
nodes. However, the high degree of compressibility and the
study of geographically limited subgraphs show that geog-
raphy plays a huge role in forming the overall structure of
network. Indeed, we see in this study, as well as other stud-
ies of Facebook [1] that, while the world is connected enough
for short paths to exist between most nodes, there is a high
degree of locality induced by various externalities, geography
chief amongst them, all reminiscent of the model proposed in
[13].

When Milgram first published his results, he in fact offered
two opposing interpretations of what “six degrees of separa-
tion” actually meant. On the one hand, he observed that
such a distance is considerably smaller than what one would
naturally intuit. But at the same time, Milgram noted that
this result could also be interpreted to mean that people are
on average six “worlds apart”: “When we speak of five15 in-
termediaries, we are talking about an enormous psychological
distance between the starting and target points, a distance
which seems small only because we customarily regard ‘five’
as a small manageable quantity. We should think of the two
points as being not five persons apart, but ‘five circles of ac-

15Five is the median of the number of intermediaries reported in the
first paper by Milgram [20], from which our quotation is taken. More
experiments were performed with Travers [23] with a slightly greater
average, as reported in Section 2.

quaintances’ apart—five ‘structures’ apart.” [20]. From this
gloomier perspective, it is reassuring to see that our findings
show that people are in fact only four world apart, and not
six: when considering another person in the world, a friend
of your friend knows a friend of their friend, on average.
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Four Degrees of Separation, Really
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Abstract—We recently measured the average distance
of users in the Facebook graph, spurring comments in the
scientific community as well as in the general press [1]. A
number of interesting criticisms have been made about
the meaningfulness, methods and consequences of the
experiment we performed. In this paper we want to discuss
some methodological aspects that we deem important to
underline in the form of answers to the questions we
have read in newspapers, magazines, blogs, or heard
from colleagues. We indulge in some reflections on the
actual meaning of “average distance” and make a number
of side observations showing that, yes, 3:74 “degrees of
separation” are really few.

FOUR DEGREES OF SEPARATION

In 2011, together with Marco Rosa, we developed
a new tool for studying the distance distribution
of very large (unweighted) graphs, called Hyper-
ANF [2]: this algorithm built on powerful graph
compression techniques [3] and on the idea of
diffusive computation pioneered in [4]. The new
tool made it possible to accurately study the dis-
tance distribution of graphs orders of magnitude
larger than it was previously possible. The work
on HyperANF was presented at the 20th World-
Wide Web Conference, in Hyderabad (India), and
Lars Backstrom happened to listen to the talk; he
was intrigued by the possibility of experimenting
our software on the Facebook graph and suggested
a collaboration.

Experiments were performed in the summer
of 2011, resulting in the first world-scale social-
network graph-distance computations, using the en-
tire Facebook network of active users (721 million
users, 69 billion friendship links). The average dis-
tance (i.e., shortest-path length) observed was 4:74,
corresponding to 3:74 intermediaries (or “degrees
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of separation”, in Milgram’s parlance). These and
other findings were finally presented in [1] and
made public by Facebook through its technical
blog on November 19, 2011. Immediately after the
announcement, the news appeared in the general
press, starting from the New York Times [5]1 and
soon spreading worldwide in newspapers, blogs and
forums.

A number of interesting criticisms have been
made about the meaningfulness, methods and con-
sequences of the experiment we performed. In this
paper we want to discuss some methodological
aspects that we deem important. We shall consider
such issues in an answer-to-question style, with the
double aim of replying to doubts and attacks and of
stimulating new discussions and further interest.

I. NOT ALL PAIRS ARE CONNECTED: HOW CAN
THE AVERAGE DISTANCE BE EVEN FINITE?

If by “average distance” we mean “average of the
distances between all pairs”, of course Facebook has
an infinite average distance, as we know that there is
a very large connected component containing almost
all (99:9%) nodes, but there are also some (few)
unreachable pairs.

This is an interesting comment, as it shows an
actual black hole in all the literature: people study-
ing social problems (starting with the 50s, at least)
had in mind very small groups, possibly groups
that would fit one room (actually, in some cases,
just sitting around a table). Or small communities.
The very idea of “unreachable” was not part of
the picture. In the famous paper by Travers and
Milgram [6], the vast majority of postcards did not

1Incidentally, with an off-by-one error, as 4:74 is the average
distance, whereas the average number of degrees of separation is
3:74 (see [1]).
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reach the target2. Nonetheless, the “six degrees of
separation” idea came from the average distance
(5:4 to 6:7, depending on the group) obtained in
the experiment, computed just on reachable pairs.3

We discuss here in some detail two possible
mathematical solutions to this problem—not only
because they are interesting, but because we want to
urge researchers to take the problem into considera-
tion more seriously, and to remark to those objecting
to the use of reachable pairs that old results would
be really stated differently if unreachable pairs were
correctly taken into account.

An obvious patch is to quote the average distance
between reachable pairs, sided by the percentage of
reachable pairs, which should be considered as a
sort of confidence on the measure. If the percentace
of reachable pairs is low, the average distance is
telling us little. On a completely disconnected graph,
the average distance is 0, but with “confidence” 1=n.
On a perfect match,4 the average distance is 1=2, but
the “confidence” is 2=n (in both cases, almost zero
for large graphs).

Seen in this perspective, Milgram’s experiment
proposes an average distance of 6:2 but provides
an incredibly low level of confidence—just 22%,5

whereas in our case we can claim confidence 99:9%
for our value (4:74).

The problem is that we like to compare results,
and comparing two pairs of numbers can be difficult,
if not impossible (see, e.g., the plethora of methods
used to combine somehow precision and recall in
information retrieval).

A solution that does not show the latter drawback
is to consider harmonic means when working with
distances. We recall that the harmonic mean is the
reciprocal of the mean of the reciprocals. It is

2It should be noted, as an aside, that in Milgram’s experiment the
interrupted chains do not actually imply unreachability, a point that
will be better discussed later.

3Indeed, the authors of one of the first studies of the web as a
whole [7] noted the same problem, and proposed the name aver-
age connected distance. We refrain, however, from using the word
“connected” as it somehow implies a bidirectional (or, if you prefer,
undirected) connection. The notion of average distance between all
pairs is useless in a graph in which not all pairs are reachable, as it
is necessarily infinite, so no confusion can arise.

4A perfect match is an undirected 1-regular graph, that is, a set of
disconnected edges.

5Travers and Milgram’s paper [6] reports 29%, as this is the
percentage of chains that started and completed with respect to those
that started. Some of the chains did not start at all, and we are
considering them as incomplete, which explains the slightly slower
value we are reporting.

always smaller than the arithmetic mean, as it tends
to give less relevance to large outliers and more
relevance to small values, and it is used in a number
of contexts6.

The important feature of the harmonic mean is
that if we stipulate that 1=1 D 0, it can take
in 1 as a perfectly valid distance. Its effect is
that of making the mean larger in a hyperbolic
fashion. This is why Marchiori and Latora [9]
proposed to consider the harmonic mean of all
distances between distinct nodes7, which we call
harmonic diameter following Fogaras [10] (rather
than “average distance between reachable pairs”),
as a measure of tightness of a network. For instance,
a disconnected graph has average distance zero, but
infinite harmonic diameter; and a perfect match has
average distance 1=2, but harmonic diameter n� 1.

What happens if we switch from the average dis-
tance to the harmonic diameter? On highly discon-
nected network, with many missing paths, we get a
larger number. On the LAW web site8 you can find
the basic statistics of several web-graph snapshots,
and the harmonic diameter is always significantly
larger than the average distance between reachable
pairs.

In the case of Facebook, the harmonic diameter is
4:59—even smaller than the average distance. The
situation, however, is quite different if we make
the same computation with Milgrams’ experiment
and assume that incomplete chains correspond to
unreachable pairs: overall, the harmonic mean is
18:29, almost four times larger than the average
distance. If we restrict to the Nebraska random
group (i.e., we avoid geographical or cultural clues),
the harmonic mean is more than five times larger.
By this measure, the improvement described in [1]
is even more impressive.

The problem with the harmonic diameter is that
even if it is a clearly and sensibly defined mathe-
matical feature, it deprives us from the “degree of
separation” metaphore. The fact that in 2007 the
harmonic diameter of it was more than 15 000 does
not mean, of course, that you need to pass through

6Incidentally, the HyperLogLog counters [8] used by Hyper-
ANF [2], the algorithm with which the average distance of Face-
book was computed, use the harmonic mean to perform stochastic
averaging.

7The fact that we do not consider the distances d.x; x/ is essential,
as otherwise the harmonic mean becomes zero.

8http://law.dsi.unimi.it/
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TABLE I
HARMONIC DIAMETER OF THE GRAPHS FROM [1].

it se itse us fb
2007 15083.99 (˙298.82) 51.07 (˙1.50) 3760.77 (˙161.28) 4.16 (˙0.14) 6.33 (˙0.26)
2008 23.66 (˙0.75) 4.37 (˙0.15) 6.44 (˙0.21) 4.61 (˙0.16) 5.74 (˙0.24)
2009 4.74 (˙0.11) 4.37 (˙0.11) 4.71 (˙0.11) 4.67 (˙0.16) 5.07 (˙0.21)
2010 3.92 (˙0.13) 3.90 (˙0.16) 4.24 (˙0.18) 4.68 (˙0.15) 5.03 (˙0.21)
2011 3.76 (˙0.11) 3.93 (˙0.16) 4.29 (˙0.18) 4.23 (˙0.13) 4.70 (˙0.30)

current 3.68 (˙0.10) 3.69 (˙0.20) 3.90 (˙0.13) 4.45 (˙0.11) 4.59 (˙0.13)

TABLE II
THE HARMONIC MEAN AND THE MEAN OF ALL DISTANCES

(INCLUDING1 FOR BROKEN CHAINS) FOR THE GROUPS
DETAILED IN TRAVERS AND MILGRAM’S PAPER [6]. NOTE THE

SIGNIFICANTLY LOWER VALUE OF THE HARMONIC MEAN FOR THE
BOSTON GROUP.

Group Harmonic mean Median distance
Nebraska random 26:68 1

Nebraska stockholders 19:37 1

All Nebraska 22:40 1

Boston random 12:63 1

All 18:29 1

15 000 friendship links!
Another possibility for taking into account infinite

distances is to use the median of all distances as a
measure of closeness. That is, we list in increasing
order the n2 values of d.x; y/, and we take that of
index bn2=2c (numbering from zero). This number
is significantly larger than the average distance if
several pairs are unreachable because the 1 values
at the end of the list “push” the median to the
right. Again, on the LAW web site you can see that
in several web graphs the median of all distances
is significantly larger than the average distance, as
it takes into account the existence of unreachable
pairs. It is a good idea to complement the median
with the fraction of pairs within its value: in any
case, we know that at least 50% of the pairs (of
all pairs, not just the reachable ones) are within its
value, which gives us a concrete handle.

The median of all distances for Facebook is 5
(and 92% of all pairs is within this distance). So,
again, “four degrees of separation”. Obviously, for
Milgram in all cases the median is 1. So, using
this measure we progressed really a lot.

With the collaboration of Jure Leskovec we were
able to compute similar measures for Horvitz and
Leskovec’s Messenger experiment [11]: the average
distance, 6:618, has confidence 71:3%; the harmonic
diameter is 8:935, whereas the median distance is 7,

covering 78:7% of all pairs.9 Note that these figures
are due to the presence of isolated nodes, that is,
nodes that did not participate in any communication
in the observed month: if the graph is reduced to non
isolated nodes, essentially all values collapse.

II. THE SAMPLE IS BIASED, AND ANYWAY IT
JUST REPRESENTS 10% OF HUMANITY!

As a first consideration, we invite the reader to
observe that there is no such things as a “uniform”
or “unbiased” sample of a graph. One can, of
course, sample the nodes or the arcs of a graph,
and consider the induced subgraph, but there is no
guarantee that the induced subgraph preserves the
properties of interest of the whole graph—much
more sophisticated strategies are necessary, and in
any case, it must be proved beforehand that the
selected strategy creates an induced subgraph that
is sufficiently similar to the whole graph (whatever
notion of “similar” we want to take into account).

In any case, let us take a step back and look for a
moment at the conditions of Milgram’s experiment:
� number of pairs examined: 296;
� sample of the population: 100 United States cit-

izens living in Boston, 96 random United States
citizens living in Nebraska, 100 stockholders
living in Nebraska;

� completed chains: � 22%;
� definition of link: instructions to send the letter

only to a “first-name acquaintance”.
Our case:
� number of pairs examined: 250 millions of

billions;
� sample of the population: 721 million people

spread in several continents;
� completed chains: � 99:8%;

9We cannot report statistical metadata such as the standard error,
because we were provided with already-aggregated breadth-first sam-
ples only.
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� definition of link: sharing a friendship link on
Facebook.

We realize, obviously, that Facebook is not a
random sample, and that being on Facebook im-
plies already sharing a mindset, or certain areas of
interest. We are also aware of the digital divide
problem (that introduces a strong geopolitical and
economical bias) and that there are links on Face-
book between people that never met each other in
person (e.g., gamers).

On the other hand, a random sample of 96 people
from Nebraska is not a random sample of the
world population, either. And, again, we will never
know if some letters in the experiment actually
passed through, say, two pen pals who never met
in person. What a lot of people did not realize
is that, essentially, the only thing we know about
how people were involved in Milgram’s experiment
is that the sender judged that it had a “first-name
acquaintance” with the receiver. The link between
sender and receiver might have been in some cases
even weaker than sharing a friendship link of Face-
book.

There is, moreover, another important factor to
take into account: since there will be many first-
name acquaintances who are not on Facebook (and
hence not Facebook friends) some short paths will
be missing. These two phenomena will likely, at
least in part, balance each other; so, although we
do not have (and cannot obtain) a precise proof of
this fact, we do not think we are losing or gaining
much in considering the notion of Facebook friend
as a surrogate of first-name friendship.

All in all, we see a definite progress in stating
that the world is small. Thanks to Facebook, which
is the largest ever-created database of human rela-
tionships, we have been able to make Milgram’s
experiment (or at least the part of it that has to do
with measuring shortest paths) much more concrete
and objectively measurable.

Nonetheless, let us take another step back and
consider, for a moment, the genius of a man who
approached a mind-boggling (even for us, now)
problem on a worldwide scale armed with three hun-
dred postcards and an incredibly clever experiment.
Obtaining a result almost unbelievably close to what
we obtained using a number of pairs that is fifteen
orders of magnitude larger. One is tempted to draw
a comparison with Galileo’s celebrated mental ex-
periment in the Dialogo sopra i due massimi sistemi

del mondo [12]: you do not need an expensive lab
to test the principle of relativity—you just need a
ship, some butterflies and some fish. Of course, once
you do it, an expensive lab to check it thoroughly
is definitely not a bad idea.

III. YOU MEASURED THE AVERAGE DISTANCE,
BUT DEGREES OF SEPARATION ARE

ALGORITHMIC

Just after we disseminated our paper, we learned
that an experiment was trying to settle the “degree of
separation” problem, which was “still unresolved”
using Facebook.10 We were, of course, quite sur-
prised. While we certainly did not “resolve” any-
thing, it was difficult to imagine an experiment at
present time with a larger sample or significantly
more precise measurements.

The point is the distinction between “routing” and
“distance”. Milgram’s postcard were routed locally
(each sender did not know whether the recipient was
the best choice to get to the destination, i.e., if it lay
on a shortest path to the destination). Apparently,
the question is still unresolved because by studying
Facebook we have only computed the “topological”,
not the “algorithmic” degrees of separation.

We believe, however, that this is a red her-
ring. Reading carefully Travers and Milgram’s pa-
pers [13], [6], it is clear that the very purpose of
the authors was to estimate the number of inter-
mediaries: the postcards were just a tool, and the
details of the paths they followed were studied only
as an artifact of the measurement process. In the
words of Milgram, the problem was defined by
“given two individuals selected randomly from the
population, what is the probability that the minimum
number of intermediaries required to link them is
0, 1, 2, . . . , k?”. Said otherwise, Milgram was
interested in estimating the distance distribution of
the acquaintance graph.

The interest in efficient routing lies more in the
eye of the beholder (e.g., the computer scientist)
than in Milgram’s: if he had at his disposal an actual
large database of friendship links and algorithms
like the ones we used, he would have dispensed
with the postcards altogether. Thus, the fact that we
measured actual shortest paths between individuals,
instead of the paths of a greedy routing, is a definite
progress. Routing is an interesting computer-science

10http://smallworld.sandbox.yahoo.com/.
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(and sociological) problem, but it had little or no in-
terest for Milgram—actually, the main interest in the
routing process was understanding the convergence
of paths. From the paper:

The theoretical machinery needed to deal
with social networks is still in its infancy.
The empirical technique of this research
has two major contribution to make to the
development of that theory. First it sets an
upper bound on the minimum number of
intermediaries required to link widely sep-
arated Americans. Since subjects cannot
always foresee the most efficient path to a
targer, our trace procedure must inevitably
produce chains longer than those gen-
erated by an accurate theoretical model
which takes full account of all paths em-
anating from an individual.

That said, the results obtained in Milgram’s
experiment are even more stunning because the
average routing distance they computed (with the
provisos about uncompleted chains discussed above)
is so close to the average shortest-path length.
The latter observation seems to suggest that human
beings are extremely good at routing, so good
that they almost route messages along the shortest
possible path. However, taking uncompleted paths
into consideration gives a slightly different twist
to this remark: it seems that when someone felt
confident enough to continue the experiment, (s)he
did so almost in the best possible way; but more
often than not, the experiment was stopped probably
because the message arrived at an individual that did
not know how to route it further efficiently.

Apart for the attempts to measure the routing
distance in real-world social graphs, there is an
ever increasing focus on developing a theory of
distributed efficient routing on small worlds, starting
from Kleinberg’s intriguing notion of navigabil-
ity [14], [15]; this is however outside of the scope
of our paper.

IV. JUST ADD A FEW LINKS HERE AND THERE
AND WE’LL ALL BE AT ONE DEGREE OF

SEPARATION

Another, closely related, question is: “We have
seen that the degree of separation has constantly
decreased since 2008, reaching its current value.
What can we expect for the future?”

To answer the above comment/question, notice
that the average distance isX

k>0

kPk=r;

where Pk is the number of pairs at distance exactly
k and r is the number of reachable pairs, which is
n2 if and only if the graph is strongly connected. Of
course, if we have bounds Bk � Pk for some 1 �
k � `, it is immediate to see that, if

P`�1
kD1Bk � r

then X
k>0

kPk �

`�1X
kD1

kBk C `
�
r �

X
k>0

Bk

�
: (1)

Now, depending on how much you want to consider
a graph similar to the Facebook graph described
in [1], there are many ways to generate some Bk’s.

a) First bound (depending on n, m and D).:
There are instrinsic bounds on the number of short
paths you can generate when the number of neigh-
bours of a node is limited. The simplest observation
is that (letting D be the maximum degree and m
be the number of arcs in the graph, i.e., twice the
number of edges) you cannot have more than m
pairs at distance one, mD pairs at distance 2, and
so on; more precisely, we can set Bk D mDk�1,
getting (from (1)) the lower boundX

k>0

kPk � mC 2mD C 3.r �m �mD/

provided that mCmD � r ; in the case of Facebook
(D D 5000, n � 721�106, r D 5�1017, m � 69�
109) the inequality mCmD � r is satisfied and the
lower bound obtained is � 2:999. In other words,
no graphs with the same number of nodes, arcs and
maximum outdegree of the graph we considered can
have an average distance smaller than 2:999.

b) Second bound (depending on the degree
sequence).: To improve over the previous trivial
bound, we can use the actual degree distribution.11

This is a bit like answering to the question: what
if some omniscent being “rewired” Facebook in an
optimised way to reduce the average distance as
much as possible, but leaving each user with its
current number of friends? Let us first notice that P2

can be bounded by
P

x d.x/
2, which, being the sum

of entries of the square of the adjacency matrix, is

11The degree distribution is publicly available as part of the dataset
associated with [1].
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an upper bound for the number of pairs at distance
2. Providing a good bound for P3 is slightly more
difficult:

Theorem 1 Let d0 � d1 � : : : dn�1 be the degree
sequence of the graph, s D

Pn�1
iD0 d

2
i and define,

for every t ,

ı.t/ D

dt�1X
iD0

di :

Then P3 (the number of pairs of nodes at distance
exactly 3) can be bounded by

P3 �

X̀
kD0

dkı.k/C d`C1

�
s �

X̀
kD0

ı.k/
�

where ` is the greatest integer such thatP`
kD0 ı.k/ < s.

Proof: We can bound P3 from above by
counting the number p of tuples .ui ; vi ; wi ; zi/
corresponding to paths of length 3. Let V D

fv0; : : : ; vk�1g be the set of nodes appearing as
second component in at least one such tuple,
sorted by non-increasing node degree; clearly p �
d.v0/�.v0/C � � � C d.vk�1/�.vk�1/ where d.x/ is
as usual the degree of x and �.x/ is the number of
paths of length 2 starting from x: this is because ev-
ery single path of length 3 of the form .�; vi ;�;�/
is obtained by choosing a neighbor of vi and a path
of length 2 leaving from vi .

Observe that �.v0/ C � � � C �.vk�1/ cannot be
larger than s (because the latter is an upper bound to
the number of paths of length 2 in the graph). Now,
of course, for every t D 0; : : : ; k�1, d.vt/ � dt , so
p � d0�.v0/C � � � C dk�1�.vk�1/; it is convenient
to think of the latter as a summation of a list L of
length s � �.v0/C � � � C�.vk�1/, where d0 occurs
�.v0/ times, d1 occurs �.v1/ times etc., and at the
end of the list 0 occurs enough times to reach the
desired length.

Now �.vt/ can be bounded from above by the
number of paths of length 2 leaving from a node of
degree dt . But the latter can be obtained by choosing
at the first step the dt nodes with largest degree,
and summing up their degree; that is, �.vt/ � ı.t/.
So we can safely substitute the above list L with
another list L0 of the same length where d0 is
repeated ı.0/ � �.v0/ times, d1 is repeated ı.1/ �
�.v1/ times etc. The resulting list L0 dominates L
elementwise, hence the thesis.

Plugging B1 D m, B2 D
Pn�1

iD0 d
2
i and B3 as in

Theorem 1, and using the actual degree sequence
of Facebook, we obtain � 3:6. Thus, Facebook is
essentially just one step (distance or degree doesn’t
matter) away from the best possible, given that every
individual keeps the current number of friends.

V. IT’S JUST BECAUSE OF THE NODES WITH
VERY HIGH DEGREE THAT WE OBSERVE SUCH A

LOW VALUE

Since the first studies on the structure of complex
graphs [16], and in particular of social networks, the
degree distributions have been a central topic on
which many authors focused, concluding that both
in- and out-degrees exhibit a heavy-tailed distribu-
tion: this fact implies that there are many nodes
whose degree largely exceeds the average. It is a
widely assumed tenet that those nodes, sometimes
referred to as hubs, represent a sort of “social glue”
that keeps the whole network structure together
and that shortcut friendship paths. In the case of
social networks, such as Twitter or Facebook, hubs
are superstars like Lady Gaga or Barack Obama,
whose account often do not even correspond to real
persons.

But, is this the case? In our analysis of the
Facebook graph we excluded pages (the accounts
that people may “like”), and standard accounts have
a hardwired limit of 5 000 friends. Nonetheless, we
cannot rule out the possibility that there are some
fake celebrity accounts remaining in the graph we
studied.

The general question we are asking can be re-
stated as follows: take a social network and start re-
moving the nodes of largest degrees; how much does
the distribution of distances change? in particular:
how does the average distance change (presumably:
increase)? We considered this question in a previ-
ous paper [17] (see also [18]), where we actually
studied the more general problem of which removal
strategies are more disruptive under the viewpoint
of distance distributions.

We report an anticipation of a subset of the
results of [18], as they suggest that high-degree node
removal is not going to cause drastic changes in
the structure of the network. We show results for a



7

TABLE III
CHANGE IN AVERAGE DISTANCE OF WEB AND SOCIAL GRAPHS

AFTER REMOVING THE LARGEST (IN-)DEGREE NODES. THE
REMOVAL PROCESS IS STOPPED WHEN THE NUMBER OF ARCS

REMOVED REACHES THE 10% AND 30%.

Graph original 10% 30%
.in 15:34 16:11 .C5:0%/ 18:98 .C23:7%/
Hollywood 3:92 4:02 .C2:5%/ 4:23 .C7:9%/
LiveJournal 5:99 6:15 .C2:7%/ 6:55 .C9:3%/
Orkut 4:21 4:43 .C5:2%/ 4:67 .C10:9%/

small12 snapshot of the Indian web (.in), for the
Hollywood co-starship graph, for a snapshot of the
LiveJournal network kindly provided by the authors
of [19], and a snapshot of the Orkut network kindly
provided by the authors of [20].13

The results we obtained are the following. Re-
moving largest-degree nodes does affect the average
distance on web graphs: after the removal of 30%
of the arcs14 the average distance gets increased of
about 24%. Nonetheless, the same removal strategy
seems to have a weaker impact on genuine social
networks: under the same condition, the increase in
average distance ranges between 8% and 11% (see
Table III).

Nonetheless, we are actually missing a very im-
portant point: in the social networks we studied,
removing 30% of the arcs actually does not change
the percentage of reachable pairs, whereas in web
graphs the percentage (which is already lower) is
reduced by a half. As we discussed in Section I,
the average distance turns out again to be a very
rough and unrealiable measure when the number of
unreachable pairs is large.

Thus, in Table IV we show what happens to
the harmonic diameter. The results show that the
increase for social networks is very modest (less
than 20% after the removal of as many as the 30%
of the arcs), whereas for web graphs the harmonic

12Similar results have been obtained with a lesser degree of
precision on a snapshot of a 100 million pages in [17]; computations
are underway to obtain high-precision data similar to what we report
here about the smaller snapshot, and the results will be included in
the final version of this paper.

13All these datasets are public and available at
http://law.dsi.unimi.it/. The identifiers of the datasets
are in-2004, hollywood-2011, ljournal-2008 and
orkut-2007.

14We emphasize that we remove nodes (in decreasing order of
their in-degree) and all incident edges, but count how many arcs are
removed, because it is the number of deleted arcs that determines the
expected loss in connectivity. We invite the reader to consult [17] for
more details.

TABLE IV
CHANGE IN HARMONIC DIAMETER OF WEB AND SOCIAL GRAPHS

AFTER REMOVING THE LARGEST (IN-)DEGREE NODES. THE
REMOVAL PROCESS IS STOPPED WHEN THE NUMBER OF ARCS

REMOVED REACHES THE 10% AND 30%.

Graph original 10% 30%
.in 32:26 47:03 .C45:8%/ 87:68 .C171:8%/
Hollywood 4:08 4:12 .C1:0%/ 4:40 .C7:8%/
LiveJournal 7:36 7:74 .C5:2%/ 8:67 .C17:8%/
Orkut 4:06 4:33 .C6:7%/ 4:61 .C13:6%/

diameter almost triplicates! This confirms again that
the harmonic diameter is more reliable value to be
associated to the “tightness” or “connectedness” of
a network.

We remark that LiveJournal and Orkut are people-
to-people friendship networks as Facebook (note,
however, that LiveJournal is directed). We believe
that the resistance to high-degree removal is actually
a common phenomenon in such networks, which
prompts us to conjecture that similar node-removal
prodedures will not change Facebook average dis-
tance or harmonic diameter significantly, albeit we
have no empirical data to support our hypothesis at
this point.

Actually, a more general conclusion obtained in
the cited paper [17] is that social networks seem
very robust to node removal, and we could not find
any node order that determined radical changes in
the distance distribution. This observation leaves an
intriguing question still open to debate: if hubs are
not the inherent cause behind short distances, then
what is the real reason of this phenomenon?

VI. ARE YOU SAYING THAT FACEBOOK
REDUCED THE AVERAGE DISTANCE BETWEEN

PEOPLE?

Some of the comments in the general press took
the outcomes of our experiments as an evidence that
online social networks (such as Facebook) reduced
the average distance between people; of course,
this was not the purpose (neither the content) of
the experiment and in any case there is no direct
way to know if this is true or not, because our
measurements are performed on Facebook. We can
see, however, that the distance between Facebook
users constantly decreased over time: it used to
be 5:28 in 2008, 5:06 in 2010 and 4:74 in our
most recent dataset. Whether this decrease is due to
Facebook, or whether it simply Facebook reflecting
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better and better the situation in the “real world”
is hard to say. In the former case, as someone
suggested, we would be observing a reduction in
path lengths due probably to the presence of weak
ties [21] that hardly correspond to a real friendship
relation and would probably not even show up in a
non–electronically-mediated environment.

Understanding how online social networks are
changing our way of interacting, communicating
and thinking is absolutely beyond the scope of our
paper, whose aim was much humbler and certainly
not as far-reaching. We believe, however, that giving
a concrete and realistic explanation of what is
going on requires a co-ordinated effort and calls
for an interdisciplinary endeavor, putting together
sociology, psychology, computer science and math-
ematics. This is, we think, one of the most important
challenges for people working in these disciplines,
with yet unknown consequences of philosophical,
social and even economical value.
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Arc-Community Detection via Triangular Random
Walks

Paolo Boldi Marco Rosa
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Abstract—Community detection in social networks is a topic of
central importance in modern graph mining, and the existence of
overlapping communities has recently given rise to new interest in
arc clustering. In this paper, we propose the notion of triangular
random walk as a way to unveil arc-community structure in
social graphs: a triangular walk is a random process that insists
differently on arcs that close a triangle. We prove that triangular
walks can be used effectively, by translating them into a standard
weighted random walk on the line graph; our experiments show
that the weights so defined are in fact very helpful in determining
the similarity between arcs and yield high-quality clustering.
Even if our technique gives a weighting scheme on the line graph
and can be combined with any node-clustering method in the final
phase, to make our approach more scalable we also propose an
algorithm (ALP) that produces the clustering directly without the
need to build the weighted line graph explicitly. Our experiments
show that ALP, besides providing the largest accuracy, it is also
the fastest and most scalable among all arc-clustering algorithms
we are aware of.

I. INTRODUCTION

Complex networks and, especially, social networks often
exhibit a finer internal structure where individuals interact
in small subgroups (called communities or modules), based
on the individuals’ common interests, geographic location,
political opinions etc. Understanding how such subgroups are
structured and evolve in time is essential for applications like
targeted advertising, viral marketing, friend suggestion etc.
Social-network mining traditionally identifies a community as
a densely connected set of nodes that is in turn only loosely
attached to the rest of the network [9]; in this view, community
detection translates into finding a partition of the nodes that
optimizes some quality function. Most of the literature on this
topic focused on the discussion of the mutual merits of various
quality functions and on the comparison of algorithms that try
to optimize (in an exact or approximate way) some of those
functions. It is worth noticing that we are here thinking of
the clustering problem in a situation where the only available
information is the (directed or undirected) graph underlying
the social network, possibly with some weights on its arcs
denoting the strength of that bound1.

The main limit of the approach discussed above is that rarely
a node is part of a single community: more often than not,
communities overlap giving rise to a complex intertwining that

Partially supported by a Yahoo! faculty grant and by by the EU-FET grant
NADINE (GA 288956).

1Even if other information about vertices and edges may be available, it is
usually computationally unfeasible to leverage it to detect communities.

can hardly be reflected into a node partition. For this reason,
recent research (see, for example, [2], [17]) has turned its
attention to the problem of finding overlapping communities,
where each node can be a member of more than one module.

This idea is well motivated and neat for those (frequent)
situations in which membership to multiple communities is an
exception more than a rule, and most nodes belong clearly to
one single communities, with a number of borderline individ-
uals for whom membership is less straightforward. In a large
number of scenarioes, however, belonging to more groups is a
rule more than an exception, and actually the notion of node
community hardly makes sense: like a point in the Cartesian
plane belongs to infinitely many lines, an individual in a
social network plays potentially infinitely many roles. In those
cases, it is often more sensible and interesting to individuate
communities of arcs rather than communities of nodes: this
shift of interest (witnessed in the most recent literature [27])
can be thought of as trying to find the reasons behind relations
rather than trying to find the reason behind individuals. Or,
going on with our metaphor, it is like determining the line to
which two given points belong—a single point lies on infinitely
many lines, but there is only a single line passing through two
given points.

This idea is clear if one thinks of social networks such as
Facebook: every Facebook user has probably many interests
and belongs to a multiplicity of communities; however, every
friendship is probably due to one main reason (working
together, being relatives, having the same hobby etc.). This
thought is so natural that GoogleC has explicitly introduced
the notion of “circle”, later adopted also by Facebook.

In this work, we propose to continue along this line of
research trying to exploit the following simple observation:
if xy and yz are two relations that have the same motivation
(e.g., working together), then probably xz will also be present:
in other words, triangles tend to live inside communities.
Based on this intuition, we propose the notion of triangular
random walk, a stochastic process that treats differently tri-
angular and non-triangular arcs; although this process is not
memoryless, we can reduce it to a standard Markov chain on
the line graph (using a tool similar to [8], but in a different
way). With our approach, we obtain a weighted version of
the line graph (a graph whose nodes correspond to the arcs
of the original network). The weighted line graph can in turn
be clustered using standard tools, hence employing state-of-
the-art algorithms for the actual clustering phase: the main
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limit of this approach is that the line graph is itself some
orders of magnitudes larger than the original graph, so even
its construction can become a computational burden (let alone
the time and resources that the clustering algorithm will then
require). For this reason, we develop an ad hoc version, called
ALP, of a well-known clustering technique that carries out
the clustering on the weighted line graph without having to
compute it explicitly. Experiments on real-world networks of
different sizes and types show that triangular walks can be
extremely helpful in finding meaningful communities, out-
performing significantly all other approaches; moreover, ALP
turns out to be very efficient and can be used on large networks
for which all other approaches would be prohibitive.

To summarize, the main contributions of this paper are: a)
the definition of two weighting schemes (called wT and vT
in this paper) for the arcs of the line graph that allow one
to individuate arc-communities in the underlying graph; b) a
clustering algorithm (ALP) that is able to use such schemes
without the need to compute the line graph explicitly; c)
a series of experiments proving that the weighting schemes
proposed produce a significant improvement over all known
techniques (in terms of quality, independently of the clustering
algorithm adopted), and that ALP in itself can obtain the same
results much more efficiently; in fact, it is the fastest and most
scalable among all arc-clustering algorithms we are aware of.

II. TRIANGULAR RANDOM WALKS

Given a (directed) graph G D .VG ; AG/ with no self-loops,
we let nG D jVG j and mG D jAG j be the number of nodes and
arcs of G, respectively; for every node x we let NG.x/ be the
set of successors of x and dG.x/ D jNG.x/j (the (out)degree
of x). If G is symmetric (i.e., undirected), we use the term
edge to refer to an unordered pair of nodes that are connected
by an arc. We sometimes write xy to denote the arc .x; y/ (or
the edge f.x; y/; .y; x/g, if the graph is undirected).

A random walk on a directed graph G is a stochastic process
X0; X1; : : : where X0; � � � 2 V , and for each x; y 2 V ,
P ŒX0 D x� D 1=n and P ŒXtC1 D y j Xt D x� is 1=d.x/ if
y 2 N.x/, 0 otherwise2; this definition can be easily extended
to positively weighted graphs (making P ŒXtC1 D y j Xt D x�
proportional to the weight of .x; y/). Intuitively, a random
walk describes the behavior of a surfer wandering in the graph,
who starts from a random node and at each step chooses
uniformly at random (or proportionally to the weights) among
the successors of the current node (jumping to a random node
if the current one has no successors).

The random walk is a Markov chain and if G is undirected,
connected and not bipartite, then the random walk has a unique
stationary distribution v with vx D d.x/=2m [22]. For a
general graph, however, the random walk is not ergodic, hence
the stationary distribution may not be unique; to circumvent
this problem, one can introduce [4], [13], [24] the notion of
restart.

2For the sake of completeness, when d.x/ D 0 we let PŒXtC1 D y j
Xt D x� D 1=n for all y.

For a fixed ˛ 2 Œ0; 1�, a random walk with restart with
damping factor ˛ on G is a stochastic process X0; X1; : : : as
before, but where the surfer chooses the next node as follows:
with probability ˛ she picks a node uniformly at random
among the successors of the current node; with probability
1 � ˛, instead, she jumps to a random node in the graph3.
The latter event is called teleportation or “restart”. It can be
shown [4] that for all ˛ < 1 the random walk with restart
has a unique stationary distribution (actually, the PageRank of
G with damping factor ˛); when ˛ D 1 we get back to the
standard random walks, instead.

One suggestive way to think of this random process is the
following: a random surfer is trying to collect some knowledge
and every node represents an expert that may provide some
piece of information. After the surfer has finished visiting
expert x she receives a list of other possible people that x
trusts; the surfer may decide (with probability ˛) to accept
x’s suggestion and to visit one of them, or may rather decide
to do it her way and to teleport to a random expert instead.

It is interesting to observe that one may also actually
consider the stationary distribution on the arcs of G: the
probability P ŒXt D x;XtC1 D y� that the random surfer
goes along the arc .x; y/ is P ŒXtC1 D y j Xt D x�P ŒXt D

x� D vx.˛w.x; y/ C .1 � ˛/=n/, where v is the stationary
distribution on the nodes and w.x; y/ is the weight on the arc
.x; y/ (that is, 1=d.x/ in the unweighted case). We will refer
to this distribution as the arc-stationary distribution.

The main idea of this paper is that we want to introduce
a bias in the behavior of the random surfer, by allowing her
some amount of short-term memory; in particular, the choice
of the next node will not depend only on the current node but
also on the previous one. The bias is finalized to privilege
(or punish) triangles, i.e., suggestions of the current node
that were also suggested by the previous node. Whether we
decide to privilege triangles or to punish them depends on
our interpretation of triangles: if we think that the double
suggestion reinforces the idea that the suggested node is
reliable, we will privilege triangles; if otherwise we suspect
that the double suggestion is rather a form of lobbying, we
will tend to avoid triangles.

Thus, we will define a triangular random walk X0; X1; : : :
on an unweighted4 graph using two parameters, ˛; ˇ 2 Œ0; 1�: ˛
is a damping factor and will have the same meaning as before
(it is used to decide whether to follow a link or to teleport);
ˇ will instead be used to determine whether triangles or non-
triangles should be privileged.

Two subtly different definitions of triangular random walks
can be given, depending on the specific meaning of ˇ: we will
call them mass-triangular and ratio-triangular, respectively. In
a triangular random walk with parameters ˛ and ˇ, the next
node (xtC1) is chosen depending on the current node xt and

3As before, if the current node has no successors then the next node is
chosen at random among all nodes in the graph.

4As before, extending this notion to weighted graphs is trivial, but for the
sake of readability in this paper we prefer to limit ourselves to the unweighted
case.
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on the previous node xt�1, as follows: (i) with probability
1 � ˛, we teleport: xtC1 is a randomly chosen node; (ii)
otherwise, we choose among the successors N.xt / of the
current node, but treating differently the triangular successors
(the set N.xt / \ N.xt�1/) and the non-triangular successors
(the set N.xt / nN.xt�1/)5; here, the two definitions differ: in
the (mass-)triangular random walk, we first decide whether
we shall select a non-triangular successor (with probability ˇ)
or a triangular one (with probability 1� ˇ); then, the specific
non-triangular or triangular successor is chosen uniformly at
random; in the ratio-triangular random walk, all triangular
successors are selected with the same probability, say p, and
all non-triangular successors with probability ˇp (p should be
chosen so that the sum of such probabilities is 1).

The names we adopted for the two kinds of random walks
should be evocative of the meaning of ˇ: in the mass-triangular
random walk, ˇ is the overall amount of probability of choos-
ing a non-triangular successor; in the ratio-triangular random
walk, it is the ratio between the probability of choosing a(ny)
non-triangular successor over the probability of choosing a(ny)
triangular one.

The two kinds of processes coincide when ˇ D 0 (in
that case, they both only choose triangular successors, except
when teleporting). Moreover, ratio-triangular random walks
reduce to standard random walks with restart when ˇ D 1

(because, in that case, the probability of choosing triangles
and non-triangles is the same), whereas there is no choice
of ˇ that makes a mass-triangular random walk the same as
a standard random walk. The latter observation may suggest
that ratio-triangular random walks should be preferred, but the
mathematical treatment of mass-triangular walks is simpler,
and for this reason we shall actually treat the latter as our
“default” type of triangular walk (and omit “mass” in the
following). Triangular walks can have a number of potential
applications; for example, they may be used fruitfully in
bibliometrics to moderate the problem of nepotistic citations
in scientific works (in this case, triangles should be punished
rather than promoted). In this paper, however, we wish to
speculate on the possible usage of triangular walks to single
out arc-communities in social networks, where triangles are
used as a form of reinforcement.

To start playing with our idea, let us consider Zachary’s
famous karate club network [28]: this is an undirected graph
whose nodes represent the members of a karate club and with
an edge between two individuals if they happened to have seen
each other outside of the club for some reason; the club ended
up splitting in two (in our drawings, the nodes are depicted
differently according to the group they will end up in), and
one can hope to find information about how the members
will decide to group based solely on their friendship relations.
We first tried a standard random walk on this dataset to see
how frequently each edge was run through in either direction

5If either set is empty (or if t D 1) we choose uniformly in N.xt / (or in
V , if the latter is empty), as in a standard random walk. The rationale behind
this choice is that, based on the knowledge that we have (the current node
and the previous one), all the outgoing arcs are equivalent.

(Figure 1): no pattern is evident. But if we do the same with a
triangular walk some edges get more emphasis, witnessing that
some bounds are stronger than others (Figure 2, with ˇ D 0:2):
those edges are usually between members that will end up in
the same group (with an exception concerning node 9 that
indeed seems to be more strictly bound to the group of circles
than to the group of squares). If we decrease ˇ to 0:01, some
clans would become almost grotesquely evident.
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Fig. 1. Standard random walk on the karate club dataset; edge width is
proportional to the frequency with which that edge was run through in either
direction.
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Fig. 2. Triangular random walk on the karate club dataset, with ˇ D 0:2
(see also Figure 1).

A. Triangular walks and line graphs

A triangular random walk is a Markov chain of order 2 [22],
because the next state depends on the current state and on the
previous one. To study the long-term behavior of higher order
chains, it is customary to change the state space and reduce
the stochastic process to an equivalent one that is memoryless;
this is easily solved by using the notion of line graph.

Given a graph G, its line graph L D L.G/ has the arcs
of G as vertices (i.e., VL D AG), and arcs of the form
.xy; yz/ (where xy and yz are two arcs of G). Note that
even when G is symmetric, L.G/ is not; for example, if G is
the undirected graph in Figure 3, its corresponding line graph
L.G/ is represented in Figure 3 (for the time being, ignore the
colors on its arcs). The idea of using line graphs to study the
behavior of an arc-aware random surfer was already proposed
in [8], but they adopt a subtly different notion of line graph that
is undirected; for our purposes, instead, the directed definition
is much more well-suited (also because it adapts readily to the
case when the original graph is itself directed).
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Fig. 3. A small undirected graph G (left) and the corresponding line graph
L.G/. Continuous (red) arcs correspond to choosing triangular successors;
dashed (black) arcs correspond to the choice of non-triangular successors;
dotted (blue) arcs are used for the cases where either set is empty.

Now, it is easy to see that a triangular random walk with
parameters ˛; ˇ on the (unweighted) graph G is equivalent to
a random walk with damping factor ˛ on the weighted line
graph L.G/, where

wT .xy; yz/ ,

(
1�ˇ

jN.y/\N.x/j
if z 2 N.y/ \N.x/

ˇ
jN.y/nN.x/j

if z 2 N.y/ nN.x/.
(1)

In other words, every arc in L.G/ (that is to say, every two-
step walk x ! y ! z in the original graph) has a different
weight depending on whether it can be closed by a triangle
(i.e., if x ! z was also an arc of G) or not. If you look again
at Figure 3, continuous (red) arcs correspond to the first case
(e.g., 10 ! 03 is one such arc, because 13 is also an arc of
G), whereas dashed (black) arcs correspond to the second case
(e.g., 31 ! 12); note, in particular, that all arcs of the form
xy ! yx fall in the second class6. Some nodes of L.G/
(i.e., arcs of G) require some care, because their outgoing
arcs are all non-triangular; those outgoing arcs are hence not
weighted using the formula above (it would not make sense
since one of the denominators is zero), but they have a constant
weight instead (such arcs are drawn as dotted (blue) arrows in
Figure 3).

For ˛ < 1 the random walk with restart on L.G/ weighted
by wT has a stationary distribution vT : note that, since the
nodes of L.G/ are arcs of G, vT assigns a probability vT .xy/
with each arc xy of the original graph. Note also that, as
explained in the previous section, the stationary distribution
on the nodes of L.G/ induces a stationary distribution on its
arcs:

vT .xy; yz/ , vT .xy/.˛wT .xy; yz/C .1 � ˛/=nL.G//: (2)

This is the fraction of time that the random surfer walking on
L.G/ with weights wT spends on the path x ! y ! z, and
can be used as way of weighting the graph L.G/ alternative
to (1).

Computing the stationary distribution vT is a well-under-
stood task (it amounts to a weighted version of PageRank)
for which efficient and computationally sound algorithms

6Differently from [8], we do not reserve stuttering walks (walks of the form
x! y! x) a special treatment.

exist [13], [26]; of course, L.G/ is larger than G (it has
mG nodes and

P
x dG.x/

2 arcs), but not much larger actually
because of the sparsity of G and of the way its degrees are
distributed. In particular, if G is undirected and has � Ck�˛

nodes of degree k, then L.G/ will have � C 2k�2˛ nodes of
outdegree k.

III. ARC-CLUSTERING VIA TRIANGULAR RANDOM WALKS:
A) USING AN OFF-THE-SHELF ALGORITHM

As outlined in the previous sections, along the same line
as [8], instead of clustering directly the arcs of G (as done,
for example, by [12]), we turn to some suitably weighted
version of the line graph L.G/, where we can make good
use of all the paraphernalia for node-clustering of a directed
graph. In other words, we can use an off-the-shelf node-
clustering algorithm feeding it with the weighted (directed)
graph L.G/. As weighting function (on the arcs of L.G/), we
can use either of the weighting schemes defined in (1) and (2).
For comparison, we may consider the weights of a standard
random walk wS .xy; yz/ D 1=d.y/ or the corresponding
arc stationary distribution vS .xy; yz/ (as before, vS .xy/ is
the stationary distribution of the standard random surfer on
the node xy); here, the subscript “S” stands for “standard”.
Another baseline is to feed the clustering algorithm with the
unweighted graph L.G/ itself.

The main limit of the proposed method is that it cannot
be directly applied to truly undirected graphs: since it is
designed for directed graphs, reciprocal arcs (i.e., parallel
arcs in opposite directions) may end up in two different
communities. In cases when this fact can be a problem, one
has to decide what to do about reciprocal arcs that happened to
be clustered differently—one possible solution is to place the
corresponding edge in either community, or to use a special
community that corresponds to the given pair.

a) Computational issues: Computing the line graph
L.G/ and its weights wT is straightforward and can be
performed in time O.mL.G// (i.e., linear in the output size),
provided that one has direct access to G; moreover, although
their size is obviously larger than the original graph (see
Table I), line graphs turn out to be easily compressible
(about 2 to 3 bits/link in their natural order, much less
if suitably permuted [5]). After L.G/ has been produced,
weighted PageRank can be computed very quickly (using
for example the techniques of [7]), and in our experiments
always resulted to converge in less than 20 iterations even for
˛ D 1�10�2. The final node-clustering phase clearly depends
on the algorithm used, but our method of choice [3] turns out
to be reasonably fast — actually, the line graph construction
is almost as expensive as the clustering itself. In fact, the
explicit construction of the line graph is the main limit of
this approach, especially for networks that are comparatively
denser (such as Hollywood).
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nG mG D nL.G/ mL.G/
free word assoc. 10 225 71 679 955 552
DBLP 986 324 6 707 236 211 808 396
Hollywood 2 180 759 228 985 632 242 026 293 162

TABLE I
SIZE OF LINE GRAPHS FOR SOME OF THE DATASETS WE SHALL USE IN

SECTION VI; OBSERVE THAT HOLLYWOOD IS COMPARATIVELY DENSER
THAN THE OTHER GRAPHS (WITH AN AVERAGE DEGREE OF ABOUT 105),

WHICH IS WHY THE NUMBER OF ARCS IN L.G/ IS SO LARGE (THE
AVERAGE DEGREE IS IN THIS CASE 1057).

IV. ARC-CLUSTERING VIA TRIANGULAR RANDOM WALKS:
B) USING ALP

When the graph is comparatively denser having to compute
explicitly L.G/ can become a serious limitation; nonetheless,
there is conceptually no need to do so—the graph L.G/ might
be handled implicitly. If we want to approach the problem
this way, however, we need to develop a specially tailored
clustering algorithm that mimics what it would do on the
(weighted version of) L.G/ without having it represented
explicitly.

We tackled this idea by writing an implementation of the
LP (Label Propagation) algorithm [18] that clusters the arcs
of G based on an implicit representation of L.G/, weighted
as in (1) or (2): we call this implementation ALP (for “Arc
Label Propagation”); the reason behind the choice of LP with
respect to other clustering algorithms is that it provides a
good compromise between quality and speed. Moreover, due
to its very diffusive nature, LP is best suited to translate into
an algorithm that implicitly propagates information on the
line graph. ALP takes G as input and works almost exactly
as a standard LP [18] would do if run on L.G/, with the
following adjustments: (a) LP is natively intended to be run
on unweighted graphs, and it is based on a diffusive process
where each node (arc, for ALP) decides whether to change its
own label based on the majority of the labels in its neighboring
nodes (arcs, for ALP); our adaptation to weighted graphs just
changes the way majority is computed (summing up weights of
neighbors instead of counting them); (b) Since LP is designed
for undirected graphs, ALP actually considers the symmetrized
version of L.G/ when being executed; in other words, an
execution of ALP on G is equivalent to an execution of LP
on a symmetrized weighted version of L.G/.

A final remark is that, if ALP is to be run with the weights
vT of (2), a preliminary computation of weighted PageRank
on L.G/ should be performed; also this step can be carried
out implicitly, without ever having to deal with L.G/.

V. RELATED WORK

Although node-clustering is traditionally much more de-
veloped and better understood (see [21] for an up-to-date
survey), recently many authors advocated the adoption of link-
clustering [27], [8], [12] as a way to overcome the problem of
overlapping communities in complex networks. The advantage
of this approach over the solution of soft or hierarchical node-
clustering [15], [11] is that the latter is better suited for

situations where the presence of a node in many communities
is an exception rather than a rule; on the contrary, using link-
clustering allows one to give multiple membership a more
understandable meaning in the common situations when every
single node is likely to belong to more than one cluster but
each node-to-node relation can be explained as co-affiliation to
some community (like in the well-known model of affiliation
networks [14]). Of course, even in the latter situation co-
affiliation can be due to many reasons (co-affiliation to many
communities), one reason usually prevails.

The usage of line graphs to model link-clustering is espe-
cially promoted by Evans and Lambiotte [8] (who also take
into consideration notions of weighting that deal with the prob-
lem of over-representing high-degree nodes), but they exploit
the undirected version of line graphs instead of the directed
one [10], and they do not distinguish between triangular and
non-triangular arcs. It should be noted that the roles of (open
and closed) triangles in social networks is well known and
studied in the realm of SNA, under the name of triads [25].

As explained, our technique relies on some external node-
clustering algorithm that uses a weighted version of L.G/,
with the hope that triangular random walks highlight clear cuts
between communities as they should. To test our hypothesis,
we obviously need a clustering algorithm that can handle large
weighted directed graphs; we tried three different clustering
algorithms which satisfy our requirements and are considered
the state of the art for massive complex networks: clustering
via Potts’ model as proposed in [19], the hierarchical Infomap
algorithm presented in [20] and the Louvain method [3]. In our
tests the latter proved to be the fastest among these candidates
and produces also the best results in term of accuracy, so we
will adopt it in our experiments. Actually, however, all the
tested methods improve their performance on the versions of
L.G/ that were weighted according to our criterion.

VI. EXPERIMENTS

The experiments that we are going to describe have been run
using public datasets and relying heavily on the WebGraph [6]
framework (in particular, the line-graph transformation was
implemented as a part of it). The remaining tools are available
as “Satellite Software” in the http://law.dsi.unimi.it/ website.
In most of the experiments, we shall need a way to evaluate
the clustering quality. More precisely, we suppose to be given
a graph G with a measure of similarity � between its arcs.
The output of an arc-clustering algorithm is going to be a
labelling function � providing a label for every arc xy of the
input graph. To evaluate the quality of the given arc-clustering
� with respect to the similarity � , we shall use a variant of
the Probabilistic Rand Index (PRI) [23]:

PRI.�; �/ D
X

�.xy/D�.x0y0/

�.xy; x0y0/�
X

�.xy/¤�.x0y0/

�.xy; x0y0/:

The cost of evaluating this quantity is prohibitive (quadratic in
the number of arcs), thus we shall instead estimate its value by
sampling pairs of arcs fxy; x0y0g according to the following
criteria: (i) the two arcs xy and x0y0 are sampled uniformly
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at random (PRIu); (ii) a node x D x0 is chosen uniformly at
random, and we select two of its successors y and y0 again
at random (PRIn); (iii) a node x D x0 is chosen at random
proportionally to its degree, and we select two of its successors
y and y0 at random (PRId ). While the first is an unbiased
estimator of the PRI, the latter two aim at providing a more
fine-grained understanding of the local quality of the clustering
obtained. PRI is a quality measure that indirectly takes the
number of clusters into account: an excessive fragmentation,
for example, will produce bad PRI values, because similar arcs
that are put in different clusters contribute negatively to the
score. Nonetheless, we will also discuss the number of clusters
obtained in our experiments.

b) Parameter tuning: For this set of experiments, we
worked on the DBLP graph7; The DBLP graph is a scientific
collaboration network where each vertex represents a scientist
and two vertices are connected if they have worked together
on an article. The current version (July 2011) of the DBLP
dataset contains 986 324 authors and 2 684 847 publications,
giving rise to 3 353 618 co-authorship edges. This network
corresponds to the typical situation in which every author
can belong to more than one scientific community (because
typically, during their life, scientists work on many different
and often scarcely related topics), but collaborations usually
correspond to a specific topic. Based on this interpretation,
we labelled each edge of DBLP with the concatenation of all
titles of the co-authored papers, and the similarity between
two edges is computed as the cosine distance between the
corresponding term vectors (we normalized the words though
a Porter’s stemmer and used TF-IDF [1] for term weighting);
this measure of similarity � between edges is our ground truth.

In this experiment we used the weights vT of (2) computed
with different values of ˛ and ˇ to see how they impact on the
quality of the clustering obtained with respect to similarity; we
used ALP as a clustering algorithm, but in our experiments it
seems that parameter can be tuned pretty much independently
from the clustering algorithm employed. Most probably, it
depends instead from the type of social network considered
(e.g., as observed, whether triangles should be promoted or
demoted); in all the graphs we are using here, however, the
behavior was the same.

In Figure 4 we show the values of PRIu for different
combinations of ˛ and ˇ; we did a similar evaluation for
PRIn, PRId and for the number of communities obtained (the
corresponding graphs are not shown).
� For ˛ D 0, the weights vT of (2) become constant and

the behavior of the clustering algorithm degrades (for the
sake of readability, this is not shown in the figure);

� As long as ˛ > 0, its value does not seem to impact much
on the local quality measures (PRIn, PRId ) but the overall
quality PRIu decreases for large ˛’s: our interpretation for
this behavior is that larger values of ˛ produce a more
fragmented clustering (as also witnessed by the number
of communities obtained) because infrequent teleporting

7http://www.informatik.uni-trier.de/~ley/db/.

reduces transitivity.
As far as ˇ is concerned, small values of ˇ (i.e., more
importance to triangles) produce the best results. As a rule of
thumb, we think that ˛ should be taken small (in the remaining
experiments, we set ˛ D 0:1) at least for sparse networks;
on denser graphs, larger values of ˛ can be a better option
to avoid that few communities flood all the arcs. As for ˇ,
we used ˇ D 0:01 in our experiments, but the actual value
should be adapted to the specific network under examination,
as already discussed.
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Fig. 4. PRIu computed on DBLP (using the weights vT of (2) and ALP
for clustering) as a function of ˛ and ˇ .

c) Quality: We then faced the problem of directly eval-
uating the clustering quality, for the values of the parameters
determined above (˛ D 0:1 and ˇ D 0:01). We performed
our experiments on DBLP and on the Hollywood graph:
the latter was obtained from the Internet Movie Database8;
this undirected graph has, in its current version (July 2011),
2 180 759 nodes (actors and actresses) and 114 492 816 edges
corresponding to having acted together in some movie. Here
the edge xy is labelled with the multiset of directors that
directed the movies co-acted by x and y, with the interpreta-
tion that a specific actor may have worked in many different
movies, but directors tend often to collaborate with the same
set of “trusted” actors. Similarity between arcs is once again
computed using TF-IDF (here, the vocabulary is made by
director IDs); the idea, this time, is to individuate the “clans”
that typically pop up in the film industry around the figure of
most directors. Note that, again, this idea would not fit with
node clustering (because an actor is often part of more clans,
but typically co-actorship individuates a clan in a quite specific
way).

For this set of experiments, and for each of the two
networks, we clustered the arcs in various ways (see below).

8http://www.imdb.com/.
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We considered the following combinations:
� we tried our weighting schemes wT and vT of (1) and (2),

and for comparison the standard random surfer weights
wS and vS (see Section III), as well as the unweighted
version;

� for each weighting scheme above, we used two clustering
algorithms: ALP (Section IV), that is fed directly with
G (and computes L.G/ and its weights only implicitly)
and the Louvain [3] algorithm, that is given the weighted
version of L.G/ instead ([3] clusters the nodes of an arc-
weighted graph);

� as baseline, we tried to cluster the arcs using the system
proposed by [8] (that works on the undirected version
of the link graph) and LINK, a link clustering technique
proposed in [27]9; both algorithms are specifically aimed
at arc-clustering so they are the natural competitors of
our method; unfortunately (as better explained below) we
could run them only on the smallest of the two datasets,
because of their lack of scalability;

� finally, as further baseline, we tried to cluster the arcs
indirectly, through some of the best node clustering tech-
niques; we transform a node clustering into an arc clus-
tering with the following strategy: since a node clustering
algorithm produces a labeling function f W VG ! N, we
map each arc xy to the pair .f .x/; f .y// 2 N2, and use
the latter as arc label. If the original graph is symmetric,
we can forget about the order of labels and assign an
unique identifier to each unordered pair of labels.

The results obtained for DBLP 10 are shown in Table II,
along with the computation time11: when using the Louvain [3]
algorithm, we highlight the pre-computation time required to
produce the weighted line graph to be fed to the algorithm;
note also that for the PageRank-based weights vT , there is
some pre-computation time needed to obtain the PageRank
vector (this is true also for ALP). As for Hollywood, the
only arc-clustering method that can be applied is ALP and the
results obtained are also shown in Table II—building explicitly
the line graph is out of question and anyway it would be far
too large to be handled by (the current implementation of) [3];
hence, our only baseline is Louvain run on the base graph G
(we did not get any result from Infomap on the base graph,
and we decided to stop it after 60h). Some comments are in
order:
� Our weighting schemes aim at capturing local communi-

ties more than global ones, and indeed the local measures
of quality (PRIn and PRId ) we obtain outperform signifi-
cantly all other approaches; the best competitors, that still

9We used the LINK Python implementation that automatically optimizes
its parameters. We also experimented with the software described in [12], but
could not have it work on networks of more than about 100 nodes.

10All tests on DBLP were run only on the giant component of the graph
because some of the baseline algorithms (in particular, LINK) requires the
input graph to be connected; we verified, however, that the quality obtained
by ALP is consistently the same even outside of the giant component.

11All experiments were performed on a Linux server equipped with Intel
Xeon X5660 CPUs (2:80GHz, 12MB cache size) for overall 24 cores and
128GB of RAM.

do not quite reach the same results, are Evans et al. [8]
and LINK [27]. Both, however, do a rather poor job when
the results are considered globally, but for opposite rea-
sons: [27] seems to fragment the communities too much
(many of them constitute of a single arc), whereas [8]
produces too few communities (putting together too many
“dissimilar” arcs). Apparently this problem presents itself
also when we use our weighting scheme with [3], whereas
ALP is able to produce a more balanced output, giving
good results even on a global scale.

� Comparing our results with all the node-oriented ap-
proaches, it seems clear that arc-communities have a
much more distinct structure than node-communities in
the networks we examined.

� As far as the difference between the two types of weights,
the gain in using the arc-stationary state vT instead of the
simple triangular weights wT is marginal; yet PageRank
computation is so fast that the effort is anyway worth.

d) Karate club (revisited): To visually appreciate the
results of our clustering technique, we tried it on the karate
club dataset; we set ˛ D 0:1 as usual, but this time the density
of the network suggests using a larger ˇ than we did with
the other graphs. Figure 5 shows the outcome obtained for
ˇ D 0:2 (smaller values of ˇ tend to fragment the network
too much). The algorithm finds 6 communities, but two of
them (the red and green arcs) are definitely dominant and cor-
respond largely to the edges between homogeneous members.
The two second-largest communities, in blue and violet, are
rather dense internally but poorly linked to the other nodes.
For comparison, in Figure 5 you can see the same network
clustered with LINK, that individuates 22 communities.

e) Clustering of the word association network: For this
experiment, we considered the Free Word Association net-
work [16]; this is a directed graph describing the results of an
experiment of free word association performed by more than
6 000 participants in the United States: its nodes correspond
to words and arcs represent a cue-target pair (the arc xy

means that the word y was output by some of the participants
based on the stimulus x). This graph contains 10 617 words
and 71 176 associations (arcs). We used ALP and Louvain
to cluster it according to our two schemes (as usual, we set
˛ D 0:1 and ˇ D 0:01). For comparison, we considered also
the communities found by Evans et al. [8] and by LINK [27]
on the same graph. In this case we do not have any ground
truth to compare to, hence our analysis can only be based on
some preliminary observations.

The number of communities found by ALP is 7 070 with wT
and 7 221 with vT , showing that the use of PageRank tends in
this case to obtain slightly smaller communities (the average
size passes from 10:06 to 9:86). As for the other methods, [8]
produces only 33 huge communities (the average size is 2 157),
whereas [27] fragments the graph into 43 182 communities
(the average size is 1:65).

An interesting observation is that of the 8 384 reciprocal
arcs (an arc xy is reciprocal if also yx is an arc, the 11:8% of
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clusters PRIu PRIn PRId computing time

DBLP

ALP (Section IV)

vT 613203 0:74 0:71 0:75 1s+32s
wT 592562 0:72 0:75 0:75 32s
vS 48025 0:02 0:16 0:18 24s
wS 38498 0:02 0:08 0:03 22s
- 38498 0:02 0:08 0:03 22s

Louvain [3]

vT 1493 0:01 0:69 0:53 157s+337s
wT 2116 0:02 0:71 0:53 122s+334s
vS 230� 0:01 0:44 0:39 137s+943s
wS 232 0:01 0:43 0:39 114s+914s
- 250 0:01 0:16 0:15 92s+224s

Evans et al. [8] - 200 0:01 0:58 0:44 46min
LINK [27] - 1415245 0:28 0:31 0:51 50h
Infomap [20] - 62680 0:05 0:27 0:29 874s
Louvain (on G) [3] - 6442 0:01 0:28 0:28 13s

Hollywood
ALP (Section IV)

vT 383780 0:80 0:78 0:56 1h+16h
wT 424094 0:77 0:71 0:48 13h
vS 255247 0:00 0:03 0:03 3h
wS 277859 0:00 0:02 0:01 3h
- 277859 0:00 0:02 0:01 3h

Infomap [20] - - - - - > 60h
Louvain (on G) [3] - 23807 0:01 0:18 0:19 242s

TABLE II
CLUSTERING QUALITY OBTAINED USING DIFFERENT TECHNIQUES ON THE DBLP AND HOLLYWOOD GRAPHS (IN BOLDFACE, THE TWO TRIANGULAR
WEIGHTS SUGGESTED IN THIS PAPER, USING ˛ D 0:1 AND ˇ D 0:01). THE UPPER GROUP REFERS TO THE APPLICATION OF THE ALP OR LOUVAIN

ALGORITHM TO VARIOUS (WEIGHTED OR UNWEIGHTED) VERSIONS OF L.G/ (IN THE CASE OF LOUVAIN, THE LINE GRAPH MUST BE EXPLICITLY
BUILT); THE MIDDLE GROUP CONSISTS OF ALGORITHMS THAT PRODUCE AN ARC-CLUSTERING ON G ; THE BOTTOM GROUP, INSTEAD, PRODUCE A

NODE-CLUSTERING ON G , THAT WE INTERPRET AS AN ARC-CLUSTERING.
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Fig. 5. Clustering of the karate club dataset: (top) using triangular weights (vT ) and the ALP clustering algorithm, (bottom) using LINK [27].

the arcs are such in this graph), only a minority are assigned
by ALP the same label in the two directions (3 038 for wT ,
3 028 for vT ): this witnesses the fact that ALP does not behave
“as if” the graph was symmetric.

On a purely anecdotal base, we present in Figure 6 the
subgraph induced by the word “KEYBOARD” and its succes-
sors, as it is clustered by Louvain with vT (top) and by Evans
et al. [8] (bottom); note that the algorithm used is actually
the same, so the difference is only in the weighting scheme.
Although there is clearly a group of successors that are related

to music and another one that is related to computers, [8] puts
all arcs going out of “KEYBOARD” in the same community
(even if the community of computer-related word is in fact
recognized, because the internal arcs connecting the three
words “COMPUTER”, “TYPEWRITER” and “TYPE” have
a different colour than the other ones). With our weighting
scheme the arcs going toward the music group are clearly
separated from the other.
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Fig. 6. Clustering of the word association network (subgraph around
“KEYBOARD”): (top) using Louvain with vT as weighting scheme, (bottom)
using Evans et al. [8].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new kind of random process
that helps in singling out arc communities in social networks;
this can be seen as a Markov chain on the line graph whose
arc-stationary state contains a big deal of information on
the communities, and can be fruitfully used to gain a more
accurate and fine-grained resolution, at least at a local level.
In our experiments, using this information ended up in pro-
ducing more reasonable and significant clusters, with a limited
computational cost. These results are preliminary but very
encouraging; we also believe that the weights proposed here
can be beneficial for other types of mining tasks. Such tasks
can be made reasonably scalable by exploiting the possibility
(here explored with ALP) of writing implicit versions of
mining algorithms that work on the weighted line graph
without having to build it explicitly.
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Abstract

Given a social network, which of its nodes have a stronger impact in determining its structure?
More formally: which node-removal order has the greatest impact on the network structure? We
approach this well-known problem for the first time in a setting that combines both web graphs
and social networks, using datasets that are orders of magnitude larger than those appearing in the
previous literature, thanks to some recently developed algorithms and software tools that make it
possible to approximate accurately the number of reachable pairs and the distribution of distances
in a graph. Our experiments highlight deep differences in the structure of social networks and
web graphs, show significant limitations of previous experimental results, and at the same time
reveal clustering by label propagation as a new and very effective way of locating nodes that are
important from a structural viewpoint.

1 Introduction
In the last years, there has been an ever-increasing research activity in the study of real-world com-
plex networks [WF94] (the world-wide web, the Internet autonomous-systems graph, coauthorship
graphs, phone call graphs, email graphs and biological networks, to cite a few). These networks,
typically generated directly or indirectly by human activity and interaction, appear in a large variety
of contexts and often exhibit a surprisingly similar structure. One of the most important notions that
researchers have been trying to capture is “node centrality”: ideally, every node (often representing an
individual) has some degree of influence or importance within the social domain under consideration,
and one expects such importance to be reflected in the structure of the social network; centrality is a
quantitative measure that aims at revealing the importance of a node.

Among the types of centrality that have been considered in the literature (see [Bor05] for a good
survey), many have to do with shortest paths between nodes; for example, the betweenness centrality
of a node v is the sum, over all pairs of nodes x and y, of the fraction of shortest paths from x to
y passing through v. The role played by shortest paths is justified by one of the most well known
features of complex networks, the so-called small-world phenomenon.

A small-world network [CH10] is a graph where the average distance between nodes is logarith-
mic in the size of the network, whereas the clustering coefficient is large (that is, neighbourhoods
tend to be denser) than in a random Erdős-Rényi graph with the same size and average distance.1

Here, and in the following, by “distance” we mean the length of the shortest path between two nodes.
The fact that social networks (either electronically mediated or not) exhibit the small-world property
is known at least since Milgram’s famous experiment [Mil67] and is arguably the most popular of all
features of complex networks.

1The reader might find this definition a bit vague, and some variants are often spotted in the literature: this is a general
problem, also highlighted recently in [LADW05].
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Based on the above observation that the small-world property is by far the most crucial of all
the features that social networks exhibit, it is quite natural to consider centrality measures that are
based on node distance, like betweenness. On the other hand, albeit interesting and profound, such
measures are often computationally too expensive to be actually computed on real-world graphs; for
example, the best known algorithm to compute betweenness centrality [Bra01] takes time O.nm/
and requires space for O.n C m/ integers (where n is the number of nodes and m is the number of
arcs): both bounds are infeasible for large networks, where typically n � 109 and m � 1011. For
this reason, in most cases other strictly local measures of centrality are usually preferred (e.g., degree
centrality).

One of the ideas that have emerged in the literature is that node centrality can be evaluated based
on how much the removal of the node “disrupts” the graph structure [AJB00]. This idea provides
also a notion of robustness of the network: if removing few nodes has no noticeable impact, then the
network structure is clearly robust in a very strong sense. On the other hand, a node-removal strategy
that quickly affects the distribution of distances probably reflects an importance order of the nodes.

Previous literature has used mainly the diameter or some analogous measure to establish whether
the network structure changed. Recently, though, there have been some successful attempts to pro-
duce reliable estimates of the neighbourhood function of very large graphs [PGF02, BRV11a]; an
immediate application of these approximate algorithms is the computation of the number of reach-
able pairs of the graph (the number of pairs hx; yi such there is a directed path from x to y) and its
distance distribution (the distance distribution of a graph is a discrete distribution that gives, for every
t , the fraction of pairs of nodes that are at distance t ). From this data, a number of existing measures
can be computed quickly and accurately, and new one can be conceived.

We thus consider a certain ordering of the nodes of a graph (that is supposed to represent their
“importance” or “centrality”). We remove nodes (and of course their incident arcs) following this
order, until a certain percentage # of the arcs have been deleted2; finally, we compare the number of
reachable pairs and distance distribution of the new graph with the original one. The chosen ordering
is considered to be a reliable measure of centrality if the measured difference increases rapidly with #
(i.e., it is sufficient to delete a small fraction of important nodes to change the structure of the graph).

In this work, we applied the described approach to a number of complex networks, considering
different orderings, and obtained the following results:

� In all complex networks we considered, the removal of a limited fraction of randomly chosen
nodes does not change the distance distribution significantly, confirming previous results.

� We test strategies based on PageRank and on clustering (see Section 4.1 for more information
about this), and show that they (in particular, the latter) disrupt quickly the structure of a web
graph.

� Maybe surprisingly, none of the above strategies seem to have an impact when applied to social
networks other than web graphs. This is yet another example of a profound structural difference
between web graphs and social networks,3 on the same line as those discussed in [BRV11a]
and [CKLC09]. This observation, in particular, suggests that social networks tend to be much
more robust and cohesive than web graphs, at least as far as distances are concerned, and that
“scale-free” models, which are currently proposed for both type of networks, do not to capture
this important difference.

2Observe that we delete nodes but count the percentage of arcs removed, and not of nodes: this choice is justified by the
fact that otherwise node orderings that put large-degree nodes first would certainly be considered (unfairly) more disruptive.

3We remark that several proposals have been made to find features that highlight such structural differences in a
computationwise-feasible way (e.g., assortative mixing [NP03]), but all instances we are aware of have been questioned by the
subsequent literature, so no clear-cut results are known as yet.
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2 Related work
The idea of grasping information about the structure of a network by repeatedly removing nodes out of
it is not new: Albert, Jeong and Barabási [AJB00] study experimentally the variation of the diameter
on two different models of undirected random graphs when nodes are removed either randomly or in
“connectedness order” and report different behaviours. They also perform tests on some small real
data set, and we will compare their results with ours in Section 6.

More recently, node-centrality measures that look at how some graph invariant changes when
some vertices or edges are deleted (sometimes called “vitality” [BE05] or “induced” measures) have
been studied for example in [Bor06] (identifying nodes that maximally disconnect the network) or
in [BCK06] (related to the uncertainty of data).

Donato, Leonard, Millozzi and Tsaparas [DLMT08] study how the size of the giant component
changes when nodes of high indegree or outdegree are removed from the graph. While this is an
interesting measure, it does not provide information about what happens outside the component.
They develop a library for semi-external visits that make it possible to compute in an exact way the
strongly connected components on large graphs.

Finally, Fogaras [Fog03] considers how the harmonic diameter4 (the harmonic mean of the dis-
tances) changes as nodes are deleted from a small (less than one million node) snapshot of the .ie

domain, reporting a large increase (100%) when as little as 1000 nodes with high PageRank are re-
moved. The harmonic diameter is estimated by a small number of visits, however, which gives no
statistical guarantee on the accuracy of the results.

Our study is very different. First of all, we use graphs that are two orders of magnitude larger
than those considered in [AJB00] or [Fog03]; moreover, we study the impact of node removal on
the whole spectrum of distances. Second, we apply removal procedures to large social networks
(previous literature used only web or Internet graphs), and the striking difference in behaviour shows
that “scale-free” models fail to capture essential differences between these kind of networks and
web graphs. Third, we document in a reproducible way all our experiments, which have provable
statistical accuracy.

3 Computing the distance distribution
Given a directed graph G, its neighbourhood function NG.t/ returns for each t 2 N the number of
pairs of nodes hx; yi such that y is reachable from x in no more than t steps. From the neighbourhood
function, several interesting features of a graph can be estimated, and in this paper we are especially
interested in the distance distribution of the graph G , represented by the cumulative distribution
function HG.t/, which returns the fraction of reachable pairs at distance at most t , that is, HG.t/ D

NG.t/=maxt NG.t/. The corresponding probability density function will be denoted by hG.�/.
Recently, HyperANF [BRV11a] emerged as an evolution of the ANF tool [PGF02]. HyperANF

can compute for the first time in a few hours the neighbourhood function of graphs with billions of
nodes with a small error and good confidence using a standard workstation. The free availability of
HyperANF opens new and interesting ways to study large graphs, of which this paper is an example.

4 Removal strategies and their analysis
In the previous section, we discussed how we can effectively approximate the distance distribution of
a given graph G; we shall use such a distribution as the graph structural property of interest.

4Actually, the notion had been introduced before by Marchiori and Latora and named connectivity length [ML00], but we
find the name “harmonic diameter” much more insightful.
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Consider now a given total order � on the nodes of G; we think of � as a removal strategy in the
following sense: when we want to remove #m arcs, we start removing the �-largest node (and its
incident arcs), go on removing the second-�-largest node etc. and stop as soon as � #m arcs have
been removed. The resulting graph will be denoted by G.�; #/. Of course, G.�; 0/ D G whereas
G.�; 1/ is the empty graph. We are interested in applying some measure of divergence5 between the
distribution HG and the distribution HG.�;#/. By looking at the divergence when # varies, we can
judge the ability of � to identify nodes that will disrupt the network.

4.1 Some removal strategies
We considered several different strategies for removing nodes from a graph. Some of them embody
actually significant knowledge about the structure of the graph, whereas others are very simple (or
even independent of the graph) and will be used as baseline. Some of them have been used in the
previous literature, and will be useful to compare our results.

As a first observation, some strategies requires a symmetric graph (a.k.a., undirected). In this
case, we symmetrise the graph by adding the missing arcs6.

The second obvious observation is that some strategies might depend on available metadata (e.g.,
URLs for web graphs) and might not make sense for all graphs.

Random. No strategy: we pick random nodes and remove them from the graph. It is important to
test against this “nonstrategy” as we can show that the phenomena we observe are due to the
peculiar choice of nodes involved, and not to some generic property of the graph.

Largest-degree first. We remove nodes in decreasing (out)degree order. This strategy is an obvious
baseline, as degree centrality is the first shot at centrality in a network.

Near-Root. In web graphs, we can assume that nodes that are roots of web sites and their (quasi-
)immediate successors (e.g., pages linked by the root) are most important in establishing the
distance distribution, as people tend to link higher levels of web sites. This strategy removes
essentially first root nodes, then the nodes that are children of a root on, and so on.

PageRank. PageRank [PBMW98] is an well-known algorithm that assigns ranks to nodes using a
Markov chain based on the structure of the graph. It has been designed as an improvement
over degree centrality, because nodes with high degree which however are connected to nodes
of low rank will have a rather low rank, too (the definition is indeed recursive). There is a vast
body of literature on the subject: see [BSV09, LM04] and the references therein.

Label propagation. Label propagation [RAK07] is a powerful technique for clustering symmetric
graphs. Each node has a label (initially, the node number itself) and through a number of rounds
each node changes its label by taking the label of the majority of its neighbours. At the end,
node labels are used as cluster identifiers. Our removal strategy picks first, for each cluster
in decreasing size order, the node with the highest number of neighbours in other clusters:
intuitively, it is a representative of a set of tightly connected nodes (the cluster) which however
has a very significant connection with the outside world (the other clusters) and thus we expect
that its removal should seriously disrupt the distance distribution. Once we have removed all
such nodes, we proceed again, cluster by cluster, using the same criterion (thus picking the
second node of each cluster that has more connection towards other clusters), and so on.

5We purposedly use the word “divergence” between distributions, instead of “distance”, to avoid confusion with the notion
of distance in a graph.

6It is mostly a matter of taste whether to use directed symmetric graphs or simple undirected graphs. In our case, since we
have to cope with both directed and undirected graph, we prefer to speak of directed graphs that are symmetric, that is, for
every arc x! y there is a symmetric arc y! x.
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4.2 Measures of divergence
Once we changed the structure of a graph by deleting some of its nodes (and arcs), there are several
ways to measure whether the structure of the graph has significantly changed. The first, basic raw
datum we consider is the number of pairs of nodes that are still reachable divided by the number of
pairs initially reachable, expressed as a percentage. Then, to estimate the change of the distance dis-
tribution we considered the following possibilities (here P denotes the original distance distribution,
and Q the distribution after node removal):

Relative average-distance change. This is somehow the simplest and most natural measure: how
much has the average distance changed? We use the measure

ı.P;Q/ D
�Q

�P

� 1

where� denotes the average; in other words, we measure how much the average value changed.
This measure is non-symmetric, but it is of course easy to obtain ı.P;Q/ from ı.Q;P /.

Relative harmonic-diameter change. This measure is analogous to the relative average-distance
change, but the average on distances is harmonic and computed on all pairs, that is:

n.n � 1/P
x¤y

1
d.x;y/

D n.n � 1/
ıX

t>0

1

t
.NG.t/ �NG.t � 1//;

where n is the number of nodes of the graph. This measure, used in [Fog03], combines reach-
ability information, as unreachable pairs contribute zero to the sum. It is easily computable
from the neighbourhood function, as shown above.

Kullback-Leibler divergence. This is a measure of information gain, in the sense that it gives the
number of additional bits that are necessary to code samples drawn from P when using an opti-
mal code forQ. Also this measure is non-symmetric, but there is no way obtain the divergence
from P to Q given that from Q to P .

` norms. A further alternative is given by viewing distance distributions as functions N ! Œ0 : : 1�

and measure their distance using some `-norm, most notably `1 or `2. Such distances are of
course symmetric.

We tested, with various graphs and removal strategies, how the choice of distribution divergence
influences the interpretation of the results obtained. In Figure 1 we show this for a single web graph
and a single strategy, but the outcomes agree on all the graphs and strategies tested: the interpretation
is that all divergences agree, and for this reason we shall use the (simple) measure ı applied to the
average distance in the experimental section. The advantage of ı over the other measures is that it is
very easy to interpret; for example, if ı has value, say, 0:3 it means that node removal has increased
the average distance by 30%. We also discuss ı applied to the harmonic diameter.

5 Experiments
For our experiments, we considered a number of networks with various sizes and characteristics;
most of them are either web graphs or (directed or undirected) social graphs of some kind (note that
for web graphs we can rely on the URLs as external source of information). More precisely, we used
the following datasets:

� Hollywood: One of the most popular undirected social graphs, the graph of movie actors:
vertices are actors, and two actors are joined by an edge whenever they appeared in a movie
together.
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Figure 1: Testing various divergence measures on a web graph (a snapshot of the .it domain of 2004)
and the near-root removal strategy. You can see how the distance distribution changes for different
values of # and the behaviour of divergence measures. We omitted to show the harmonic-diameter
change to make the plot easier to read.

� LiveJournal: LiveJournal is a virtual community social site started in 1999: nodes are users
and there is an arc from x to y if x registered y among his friends (it is not necessary to ask
y permission, so the graph is directed). We considered the same 2008 snapshot of LiveJournal
used in [CKLC09] for their experiments

� Amazon: This dataset describes similarity among books as reported by the Amazon store; more
precisely the data was obtained in 2008 using the Amazon E-Commerce Service APIs using
SimilarityLookup queries.

� Enron: This dataset was made public by the Federal Energy Regulatory Commission during
its investigations: it is a partially anonymised corpus of e-mail messages exchanged by some
Enron employees (mostly part of the senior management). We turned this dataset into a directed
graph, whose nodes represent people and with an arc from x to y whenever y was the recipient
of (at least) a message sent by x.

� For comparison, we considered two web graphs of different size: a 2004 snapshot of the .it

domain (� 40 million nodes), and a snapshot taken in May 2007 of the .uk domain (� 100

million nodes).

We remark that all our graphs are available at the LAW web site.7 HyperANF is available as free
software at the WebGraph web site8, and the class RemoveHubs that has been used to perform the
experiments we describe is part of the LAW software.

We applied our removal strategies with different impact levels (e.g., percentage of removed arcs),
namely 0:01, 0:05, 0:1, 0:15, 0:2 and 0:3. For each level we ran HyperANF at least seven times using
128 registers per counter: the percentage of reachable pair displayed in our tables has been obtained
by averaging the neighbourhood functions obtained from the runs, with relative standard deviation
smaller than 3:5% (e.g., the measure is within relative error 10:5% with 95% confidence). The start-
ing number of reachable pairs is known with relative standard deviation smaller than 0:1%. The
remaining derived measurements (average distances and harmonic diameters) have been computed
separately on each run, and the resulting relative standard deviation is less than 4% for the average
distance, and less than 20% for the harmonic diameter, except for about a dozen measurements, where

7http://law.dsi.unimi.it/. In particular, the graphs we used are the datasets named hollywood-2009,
ljournal-2008, amazon-2008, enron, it-2004 and uk-2007-05.

8http://webgraph.dsi.unimi.it/
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it is less than 8:5% for the average distance, and less than 30% for the harmonic diameter.9 Our ta-
bles and graphs slightly differs from those previously published [BRV11b] because we had time to
generate more runs, and thus increase the precision of our results: some variation is also observed
because of the relatively small number of runs (unavoidable, due to the large number of graphs to be
analyzed).

6 Discussion
Table 1 and Figure 2 show that social networks suffer spectacularly less disconnection than web
graphs when their nodes are removed using our strategies. Our most efficient removal strategy, label
propagation, can disconnect almost all pairs of a web graph by removing 30% of the arcs, whereas it
disconnects only about half (or less) of the pairs on social networks. This entirely different behaviour
shows that web graphs have a path structure that passes through fundamental hubs.

Moreover, the average distance of the web graphs we consider increases by 50�80% upon re-
moval of 30% of the arcs, whereas in most social networks there is just an increase of a few percents
(in any case, always less than 20%).10

Note that random removal can separate a good number of reachable pairs, but the increase in av-
erage distance is very marginal. This shows that considering both measures is important in evaluating
removal strategies.

Of course, we cannot state that there is no strategy able to disrupt social networks as much as
a web graph (simply because this strategy may be different from the ones that we considered), but
the fact all strategies work very similarly in both cases (e.g., label propagation is by far the most
disruptive strategy) suggests that the phenomenon is intrinsic.

There is a candidate easy explanation: shortest paths in web graphs pass frequently through home
pages, which are linked more than other pages. But this explanation does not take into account the
fact that clustering by label propagation is significantly more effective than the near-root removal
strategy. Rather, it appears that there are fundamental hubs (not necessarily home pages) which act
as shortcuts and through which a large number of shortest paths pass. Label propagation is able to
identify such hubs, and their removal results in an almost disconnected graph and in a very significant
increase in average distance.

These hubs are not necessarily of high outdegree: quite the opposite, rather, is true. The behaviour
of web graphs under the largest-degree strategy is illuminating: we obtain the smallest reduction in
reachable pairs and an almost unnoticeable change of the average distance, which means that nodes
of high outdegree are not actually relevant for the global structure of the network.

Social networks are much more resistant to node removal. There is no strict clustering, nor
definite hubs, that can be used to eliminate or elongate shortest paths. This is not surprising, as
networks emerging from social interaction are much less engineered (there is no notion of “site” or
“page hierarchy”, for example) than web graphs.

The second important observation is that the removal strategies based on PageRank and label
propagation are always the best (with the exception of the near-root strategy for .uk, which is better
than PageRank). This suggests that label propagation is actually able to identify structurally important
nodes in the graph—in fact, significantly better than any other method we tested.

Is the ranking provided by label propagation correlated to other rankings? Certainly not to the
other rankings described in this paper, due to the different level of disruption it produces on the
network. The closest ranking with similar behaviour is PageRank, but, for instance, Kendall’s �
between PageRank and ranking by label propagation on the .uk dataset is � �0:002 (complete
uncorrelation).

9Unfortunately, estimating with precision the harmonic diameter is difficult due to the nonlinearity of its definition.
10We remark that in some cases the measure is negative or does not decrease monotonically. This is an artifact of the

7



 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0
 0

.0
5

 0
.1

 0
.1

5
 0

.2
 0

.2
5

 0
.3

δ-average distance

θ

ra
nd

om
de

gr
ee

PR
LP

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0  0

 0
.0

5
 0

.1
 0

.1
5

 0
.2

 0
.2

5
 0

.3

δ-harmonic diameter

θ

ra
nd

om
de

gr
ee

PR
LP

 0 2
0

 4
0

 6
0

 8
0

 1
00

 0
 0

.0
5

 0
.1

 0
.1

5
 0

.2
 0

.2
5

 0
.3

reachable nodes %

θ

ra
nd

om
de

gr
ee

PR
LP

A
m

az
on

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 0
 0

.0
5

 0
.1

 0
.1

5
 0

.2
 0

.2
5

 0
.3

δ-average distance

θ

ra
nd

om
de

gr
ee

PR LP
ne

ar
-r

oo
t

 0 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0  0

 0
.0

5
 0

.1
 0

.1
5

 0
.2

 0
.2

5
 0

.3

δ-harmonic diameter

θ

ra
nd

om
de

gr
ee

PR LP
ne

ar
-r

oo
t

 0 2
0

 4
0

 6
0

 8
0

 1
00

 0
 0

.0
5

 0
.1

 0
.1

5
 0

.2
 0

.2
5

 0
.3

reachable nodes %

θ

ra
nd

om
de

gr
ee

PR LP
ne

ar
-r

oo
t

.
i
t

Fi
gu

re
2:

Ty
pi

ca
l

be
ha

vi
ou

r
of

so
ci

al
ne

tw
or

ks
(A

m
az

on
,

up
pe

r)
an

d
w

eb
gr

ap
hs

(.
i
t

,
lo

w
er

)
w

he
n

a
#

fr
ac

tio
n

of
ar

cs
is

re
m

ov
ed

us
in

g
va

ri
ou

s
st

ra
te

gi
es

.
N

on
e

of
th

e
pr

op
os

ed
st

ra
te

gi
es

co
m

pl
et

el
y

di
sr

up
ts

th
e

st
ru

ct
ur

e
of

so
ci

al
ne

tw
or

ks
,b

ut
th

e
ef

fe
ct

of
th

e
la

be
l-

pr
op

ag
at

io
n

re
m

ov
al

st
ra

te
gy

on
w

eb
gr

ap
hs

is
ve

ry
vi

si
bl

e.

8



G
ra

ph
St

ra
te

gy
0
:0
1

0
:0
5

0
:1

0
:1
5

0
:2

0
:3

A
m

az
on

R
an

do
m

0
:0
0
2

.9
8

%
/

0
:0
0
0

.9
3

%
/

0
:0
2
3

.8
4

%
/

0
:0
4
5

.8
4

%
/

0
:0
5
6

.7
7

%
/

0
:0
8
1

.6
6

%
/

D
eg

re
e

0
:0
0
0

.1
0
5

%
/

0
:0
1
0

.9
8

%
/

0
:0
0
8

.9
0

%
/

0
:0
1
8

.8
7

%
/

0
:0
2
3

.8
6

%
/

0
:0
7
0

.7
3

%
/

PR
�
0
:0
0
4

.9
5

%
/

0
:0
0
8

.9
9

%
/

0
:0
2
9

.9
9

%
/

0
:0
3
4

.9
3

%
/

0
:0
4
4

.9
1

%
/

0
:0
9
2

.8
9

%
/

L
P

0
:0
0
7

.1
0
4

%
/

0
:0
2
5

.1
0
1

%
/

0
:0
4
3

.8
4

%
/

0
:0
8
1

.8
2

%
/

0
:1
0
8

.7
9

%
/

0
:1
4
9

.6
4

%
/

E
nr

on

R
an

do
m

0
:0
0
7

.9
1

%
/

0
:0
0
3

.8
4

%
/
�
0
:0
0
7

.7
5

%
/
�
0
:0
1
3

.6
5

%
/

0
:0
0
3

.6
5

%
/

0
:0
0
9

.5
7

%
/

D
eg

re
e

�
0
:0
1
0

.8
1

%
/

0
:0
0
9

.7
3

%
/

0
:0
3
5

.6
5

%
/

0
:0
4
7

.6
1

%
/

0
:0
6
2

.5
3

%
/

0
:1
1
9

.4
3

%
/

PR
0
:0
0
1

.9
2

%
/

0
:0
4
1

.7
2

%
/

0
:0
5
1

.5
5

%
/

0
:0
6
6

.3
8

%
/

0
:1
2
9

.3
4

%
/

0
:1
8
4

.2
5

%
/

L
P

�
0
:0
1
0

.9
0

%
/
�
0
:0
2
8

.7
6

%
/
�
0
:0
4
2

.7
0

%
/
�
0
:0
6
1

.5
2

%
/
�
0
:0
6
5

.5
2

%
/
�
0
:0
5
7

.4
0

%
/

H
ol

ly
w

oo
d

R
an

do
m

�
0
:0
0
5

.9
8

%
/

0
:0
1
1

.1
0
1

%
/

0
:0
0
5

.9
0

%
/

0
:0
1
2

.8
6

%
/
�
0
:0
0
3

.7
3

%
/

0
:0
1
4

.7
2

%
/

D
eg

re
e

0
:0
0
3

.1
0
1

%
/

0
:0
0
8

.1
0
6

%
/

0
:0
0
2

.1
0
3

%
/

0
:0
1
2

.9
4

%
/

0
:0
2
0

.1
0
5
%
/

0
:0
2
1

.9
2

%
/

PR
0
:0
0
7

.1
0
4

%
/

0
:0
0
6

.9
7

%
/

0
:0
1
9

.1
0
1

%
/

0
:0
2
6

.9
9

%
/

0
:0
2
7

.9
5

%
/

0
:0
4
6

.9
4

%
/

L
P

�
0
:0
1
6

.9
1

%
/
�
0
:0
3
6

.7
6

%
/
�
0
:0
5
1

.6
3

%
/
�
0
:0
6
2

.5
2

%
/
�
0
:0
6
2

.4
8

%
/
�
0
:0
5
8

.4
3

%
/

L
iv

eJ
ou

rn
al

R
an

do
m

�
0
:0
0
1

.9
7

%
/
�
0
:0
0
1

.9
5

%
/

0
:0
0
4

.8
6

%
/

0
:0
1
2

.8
7

%
/

0
:0
2
3

.7
7

%
/

0
:0
2
7

.6
6

%
/

D
eg

re
e

0
:0
0
9

.1
0
4

%
/

0
:0
1
8

.9
7

%
/

0
:0
2
6

.9
4

%
/

0
:0
3
7

.1
0
3

%
/

0
:0
5
1

.9
9

%
/

0
:0
7
4

.9
0

%
/

PR
0
:0
0
2

.9
8

%
/

0
:0
2
3

.1
0
1

%
/

0
:0
4
1

.9
6

%
/

0
:0
5
5

.9
3

%
/

0
:0
7
5

.9
7

%
/

0
:1
1
1

.9
0

%
/

L
P

�
0
:0
0
4

.1
0
1

%
/
�
0
:0
2
1

.8
3

%
/
�
0
:0
2
2

.7
8

%
/
�
0
:0
3
4

.6
9

%
/
�
0
:0
2
6

.6
9

%
/
�
0
:0
4
1

.5
6

%
/

.
i
t

R
an

do
m

�
0
:0
1
2

.9
5

%
/

0
:0
1
4

.8
7

%
/

0
:0
0
7

.7
8

%
/

0
:0
1
6

.6
9

%
/

0
:0
1
7

.5
7

%
/

0
:0
4
0

.4
5

%
/

D
eg

re
e

�
0
:0
1
1

.9
7

%
/

0
:0
3
1

.9
7

%
/

0
:0
6
2

.8
7

%
/

0
:0
6
8

.9
4

%
/

0
:0
8
0

.8
0

%
/

0
:1
2
7

.7
5

%
/

PR
0
:0
0
5

.1
0
1

%
/

0
:0
9
6

.8
9

%
/

0
:1
6
4

.6
9

%
/

0
:2
4
4

.6
1

%
/

0
:3
0
8

.5
2

%
/

0
:4
4
7

.3
4

%
/

L
P

0
:0
1
0

.8
5

%
/

0
:2
1
3

.4
2

%
/

0
:3
7
8

.2
2

%
/

0
:4
8
7

.1
6

%
/

0
:5
8
3

.1
1

%
/

0
:7
9
3

.5
%
/

N
ea

r-
R

oo
t

0
:0
2
5

.8
8

%
/

0
:3
0
1

.5
8

%
/

0
:3
3
0

.3
9

%
/

0
:3
2
0

.3
6

%
/

0
:3
4
4

.3
5

%
/

0
:3
6
5

.2
8

%
/

.
u
k

R
an

do
m

0
:0
0
1

.9
9

%
/

0
:0
0
3

.8
2

%
/

0
:0
3
3

.8
3

%
/

0
:0
3
7

.7
4

%
/

0
:0
5
6

.6
9

%
/

0
:0
6
2

.4
9

%
/

D
eg

re
e

0
:0
0
5

.1
0
1

%
/

0
:0
1
1

.1
0
4

%
/

0
:0
0
3

.9
7

%
/
�
0
:0
0
2

.9
4

%
/

0
:0
1
3

.9
3

%
/

0
:0
2
5

.9
8

%
/

PR
0
:0
2
3

.9
2

%
/

0
:0
6
7

.8
0

%
/

0
:1
0
0

.6
4

%
/

0
:1
2
6

.5
5

%
/

0
:1
7
5

.5
1

%
/

0
:2
6
5

.3
8

%
/

L
P

0
:0
5
1

.8
7

%
/

0
:2
3
6

.3
9

%
/

0
:2
7
2

.2
4

%
/

0
:3
7
3

.1
8

%
/

0
:4
3
9

.1
3

%
/

0
:4
5
8

.6
%
/

N
ea

r-
R

oo
t

0
:0
6
8

.8
0

%
/

0
:2
4
4

.5
2

%
/

0
:2
6
0

.4
8

%
/

0
:2
6
1

.4
5

%
/

0
:3
0
8

.4
5

%
/

0
:2
7
8

.3
4

%
/

Ta
bl

e
1:

Fo
re

ac
h

gr
ap

h
an

d
a

sa
m

pl
e

of
fr

ac
tio

ns
of

re
m

ov
ed

ar
cs

w
e

sh
ow

th
e

ch
an

ge
in

av
er

ag
e

di
st

an
ce

(b
y

th
e

m
ea

su
re
ı

de
fin

ed
in

Se
ct

io
n

4.
2)

an
d

th
e

pe
rc

en
ta

ge
of

re
ac

ha
bl

e
pa

ir
s.

PR
st

an
ds

fo
rP

ag
eR

an
k,

an
d

L
P

fo
rl

ab
el

pr
op

ag
at

io
n.

9



G
ra

ph
St

ra
te

gy
0
:0
1

0
:0
5

0
:1

0
:1
5

0
:2

0
:3

A
m

az
on

R
an

do
m

0
:0
3
6

.9
8

%
/

0
:1
0
0

.9
3

%
/

0
:2
1
5

.8
4

%
/

0
:2
4
5

.8
4

%
/

0
:3
9
7

.7
7

%
/

0
:6
2
4

.6
6

%
/

D
eg

re
e

�
0
:0
3
3

.1
0
5

%
/

0
:0
3
3

.9
8

%
/

0
:1
2
1

.9
0

%
/

0
:1
9
7

.8
7

%
/

0
:2
0
4

.8
6

%
/

0
:4
7
3

.7
3

%
/

PR
0
:0
5
7

.9
5

%
/

0
:0
3
5

.9
9

%
/

0
:0
7
7

.9
9

%
/

0
:1
2
5

.9
3

%
/

0
:1
7
2

.9
1

%
/

0
:2
3
4

.8
9

%
/

L
P

�
0
:0
1
3

.1
0
4

%
/

0
:0
2
8

.1
0
1

%
/

0
:2
5
9

.8
4

%
/

0
:3
2
1

.8
2

%
/

0
:4
0
9

.7
9

%
/

0
:7
9
5

.6
4

%
/

E
nr

on

R
an

do
m

0
:1
3
2

.9
1

%
/

0
:2
4
7

.8
4

%
/

0
:3
9
7

.7
5

%
/

0
:5
5
2

.6
5

%
/

0
:5
7
2

.6
5

%
/

0
:8
7
9

.5
7

%
/

D
eg

re
e

0
:2
4
9

.8
1

%
/

0
:4
3
5

.7
3

%
/

0
:6
2
3

.6
5

%
/

0
:8
0
0

.6
1

%
/

1
:0
4
1

.5
3

%
/

1
:7
0
3

.4
3

%
/

PR
0
:1
3
9

.9
2

%
/

0
:4
7
2

.7
2

%
/

0
:9
5
1

.5
5

%
/

1
:7
5
8

.3
8

%
/

2
:2
8
5

.3
4

%
/

3
:7
4
1

.2
5

%
/

L
P

0
:1
4
5

.9
0

%
/

0
:3
1
1

.7
6

%
/

0
:4
2
5

.7
0

%
/

0
:8
3
3

.5
2

%
/

0
:8
3
5

.5
2

%
/

1
:3
8
8

.4
0

%
/

H
ol

ly
w

oo
d

R
an

do
m

0
:0
3
2

.9
8

%
/

0
:0
2
9

.1
0
1

%
/

0
:1
2
5

.9
0

%
/

0
:1
7
8

.8
6

%
/

0
:3
7
3

.7
3

%
/

0
:4
3
2

.7
2

%
/

D
eg

re
e

0
:0
1
3

.1
0
1

%
/
�
0
:0
4
2

.1
0
6

%
/
�
0
:0
1
1

.1
0
3

%
/

0
:0
8
7

.9
4

%
/
�
0
:0
1
4

.1
0
5
%
/

0
:1
2
8

.9
2

%
/

PR
�
0
:0
2
4

.1
0
4

%
/

0
:0
5
5

.9
7

%
/

0
:0
2
8

.1
0
1

%
/

0
:0
4
9

.9
9

%
/

0
:1
0
0

.9
5

%
/

0
:1
3
8

.9
4

%
/

L
P

0
:1
0
4

.9
1

%
/

0
:2
8
1

.7
6

%
/

0
:5
3
7

.6
3

%
/

0
:8
1
4

.5
2

%
/

0
:9
7
8

.4
8

%
/

1
:2
5
6

.4
3

%
/

L
iv

eJ
ou

rn
al

R
an

do
m

0
:0
4
6

.9
7

%
/

0
:0
5
9

.9
5

%
/

0
:1
8
5

.8
6

%
/

0
:1
6
2

.8
7

%
/

0
:3
3
1

.7
7

%
/

0
:5
8
7

.6
6

%
/

D
eg

re
e

�
0
:0
2
6

.1
0
4

%
/

0
:0
5
7

.9
7

%
/

0
:1
1
4

.9
4

%
/

0
:0
1
8

.1
0
3

%
/

0
:0
7
5

.9
9

%
/

0
:2
0
3

.9
0

%
/

PR
0
:0
4
1

.9
8

%
/

0
:0
2
7

.1
0
1

%
/

0
:0
9
0

.9
6

%
/

0
:1
6
2

.9
3

%
/

0
:1
2
9

.9
7

%
/

0
:2
6
1

.9
0

%
/

L
P

0
:0
0
7

.1
0
1

%
/

0
:2
0
0

.8
3

%
/

0
:2
8
7

.7
8

%
/

0
:4
1
3

.6
9

%
/

0
:4
4
3

.6
9

%
/

0
:7
4
5

.5
6

%
/

.
i
t

R
an

do
m

0
:0
6
9

.9
5

%
/

0
:1
7
3

.8
7

%
/

0
:3
1
3

.7
8

%
/

0
:5
0
3

.6
9

%
/

0
:8
0
3

.5
7

%
/

1
:3
4
5

.4
5

%
/

D
eg

re
e

0
:0
3
3

.9
7

%
/

0
:0
7
7

.9
7

%
/

0
:2
2
0

.8
7

%
/

0
:1
9
2

.9
4

%
/

0
:3
8
9

.8
0

%
/

0
:5
8
4

.7
5

%
/

PR
�
0
:0
0
2

.1
0
1

%
/

0
:2
6
8

.8
9

%
/

0
:6
9
0

.6
9

%
/

1
:0
5
7

.6
1

%
/

1
:5
2
4

.5
2

%
/

3
:2
2
1

.3
4

%
/

L
P

0
:2
0
0

.8
5

%
/

1
:8
8
5

.4
2

%
/

5
:0
2
2

.2
2

%
/

8
:1
7
8

.1
6

%
/

1
3
:2
8
5

.1
1
%
/

3
4
:8
0
9

.5
%
/

N
ea

r-
R

oo
t

0
:1
8
6

.8
8

%
/

1
:2
3
3

.5
8

%
/

2
:4
1
5

.3
9

%
/

2
:6
9
8

.3
6

%
/

2
:8
6
7

.3
5

%
/

3
:7
6
3

.2
8

%
/

.
u
k

R
an

do
m

0
:0
2
4

.9
9

%
/

0
:2
3
2

.8
2

%
/

0
:2
4
5

.8
3

%
/

0
:4
1
6

.7
4

%
/

0
:5
3
8

.6
9

%
/

1
:1
5
8

.4
9

%
/

D
eg

re
e

�
0
:0
0
5

.1
0
1

%
/
�
0
:0
2
2

.1
0
4

%
/

0
:0
4
6

.9
7

%
/

0
:0
7
2

.9
4

%
/

0
:0
9
2

.9
3

%
/

0
:0
4
6

.9
8

%
/

PR
0
:1
2
2

.9
2

%
/

0
:3
4
0

.8
0

%
/

0
:7
1
6

.6
4

%
/

1
:0
5
3

.5
5

%
/

1
:3
2
0

.5
1

%
/

2
:2
3
8

.3
8

%
/

L
P

0
:2
1
6

.8
7

%
/

2
:1
1
7

.3
9

%
/

4
:1
5
2

.2
4

%
/

6
:2
3
1

.1
8

%
/

9
:2
2
9

.1
3

%
/

2
2
:0
5
0

.6
%
/

N
ea

r-
R

oo
t

0
:3
3
9

.8
0

%
/

1
:3
2
7

.5
2

%
/

1
:5
7
2

.4
8

%
/

1
:7
1
2

.4
5

%
/

1
:8
4
4

.4
5

%
/

2
:6
6
3

.3
4

%
/

Ta
bl

e
2:

Fo
re

ac
h

gr
ap

h
an

d
a

sa
m

pl
e

of
fr

ac
tio

ns
of

re
m

ov
ed

ar
cs

w
e

sh
ow

th
e

ch
an

ge
in

ha
rm

on
ic

di
am

et
er

(b
y

th
e

m
ea

su
re
ı

de
fin

ed
in

Se
ct

io
n

4.
2)

an
d

th
e

pe
rc

en
ta

ge
of

re
ac

ha
bl

e
pa

ir
s.

PR
st

an
ds

fo
rP

ag
eR

an
k,

an
d

L
P

fo
rl

ab
el

pr
op

ag
at

io
n.

10



It is interesting to compare our results against those in the previous literature. With respect
to [AJB00], we test much larger networks. We can confirm that random removal is less effective
that rank-based removal, but clearly the variation in diameter measured in [AJB00] has been made
on a symmetrised version of the web graph. Symmetrisation destroys much of the structure of the
network, and it is difficult to justify (you cannot navigate links backwards). We have evaluated our
experiment using the variation in diameter instead of the variation in average distance (not shown
here), but the results are definitely inconclusive. The behaviour is wildly different even between
graphs of the same type, and shows no clear trend. This was expected, as the diameter is defined by
a maximisation property, so it is very unstable.

We also evaluated the variation in harmonic diameter (see Table 2), to compare our results with
those of [Fog03]. The harmonic diameter is very interesting, as it combines reachability and distance.
The data confirm what we already stated: web graphs react to removal of 30% of their arcs by label
propagation by increasing their harmonic diameter by an order of magnitude—something that does
not happen with social networks. Table 2 is even more striking than Table 1 in showing that label
propagation selects highly disruptive nodes in web graphs.

Our criterion for node elimination is a threshold on the number of arcs removed, rather than nodes,
so it is not possible to compare our results with [Fog03] directly. However, for .uk PageRank at # D
0:01 removes 648 nodes, which produced in the .ie graph a relative increment of 100%, whereas we
find 14%. This is to be expected, due to the very small size of the dataset used in [Fog03]: experience
shows that connectedness phenomena in web graphs are very different in the “below ten million
nodes” region. Nonetheless, the growth trend is visibile in both cases. However, the experiments in
[Fog03] fail to detect both the disruptive behaviour at # D :3 and the striking difference in behaviour
between largest-degree and PageRank strategy.

7 Conclusions and future work
We have explored experimentally the alterations of the distance distribution of some social networks
and web graphs under different node-removal strategies. We have confirmed some of the experimental
results that appeared in the literature, but at the same time shown some basic limitations of previous
approaches. In particular, we have shown for the first time that there is a clear-cut structural difference
between social networks and web graphs11, and that it is important to test node-removal strategies
until a significant fraction of the arcs have been removed.

Probably the most important conclusion is that “scale-free” models, which are currently proposed
for both web graphs and social networks, do not to capture this important difference: for this reason,
they can only make sense as long as they are adopted as baselines.

It might be argued that reachable pairs and distance distributions are too coarse as a feature.
Nonetheless, we believe that they are the most immediate global feature that are approachable com-
putationally. For instance, checking whether node removal alters the clustering coefficient would not
be so interesting, because the clustering coefficient of each node depends only on the structure of
the neighbourhood of each node. Thus, by removing first the nodes with high coefficient it would
be trivial to make the clustering coefficient of the graph decrease quickly. Such trivial approaches
cannot possibly work with reachable pairs or with distance distributions because they are properties
that depend on the graph as a whole.

Finally, the efficacy of label propagation as a removal strategy suggests that it may be very inter-
esting to study it as a form of ranking: an open question is whether it could be useful, for instance, as
a query-independent ranking for information-retrieval applications.

probabilistic technique used to estimate the number of pairs—small relative errors are unavoidable.
11In this paper, like in all the other experimental research on the same topic, conclusions about social networks should be

taken with a grain of salt, due to the heterogeneity of such networks and the lack of a large repertoire of examples.
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ABSTRACT

Data collected nowadays by social-networking applications
create fascinating opportunities for building novel services,
as well as expanding our understanding about social struc-
tures and their dynamics. Unfortunately, publishing social-
network graphs is considered an ill-advised practice due to
privacy concerns. To alleviate this problem, several anony-
mization methods have been proposed, aiming at reducing
the risk of a privacy breach on the published data, while still
allowing to analyze them and draw relevant conclusions.

In this paper we introduce a new anonymization approach
that is based on injecting uncertainty in social graphs and
publishing the resulting uncertain graphs. While existing ap-
proaches obfuscate graph data by adding or removing edges
entirely, we propose using a finer-grained perturbation that
adds or removes edges partially : this way we can achieve the
same desired level of obfuscation with smaller changes in the
data, thus maintaining higher utility. Our experiments on
real-world networks confirm that at the same level of iden-
tity obfuscation our method provides higher usefulness than
existing randomized methods that publish standard graphs.

1. INTRODUCTION
Preserving the anonymity of individuals when publishing

social-network data is a challenging problem that has re-
cently attracted a lot of attention [2, 22]. The methods that
have been proposed so far for anonymizing social graphs can
be classified into three main categories: (1) methods that
group vertices into super-vertices of size at least k, where k
is the required level of anonymity; (2) methods that provide
anonymity in the graph via deterministic edge additions or
deletions; and (3) methods that add noise to the data in the
form of random additions, deletions or switching of edges.

In this paper we introduce a new graph-anonymization
method that does not fall in any of the above three cate-
gories. Our method injects uncertainty in the existence of
the edges of the graph and publishes the resulting uncertain
graph, that is, a graph where each edge e has an associated
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Figure 1: (a) A graph; (b) a possible obfuscation.

probability p(e) of being present. Injecting a limited amount
of uncertainty in the data, in order to reach a desired level
of identity obfuscation, is a natural approach [1]. For in-
stance, the k-anonymity framework for relational data [25,
28] is typically based on injecting uncertainty by means of
attribute generalization; for example, generalizing an exact
numerical value to a range of values.

In the context of graph anonymization, our approach can
be seen as a generalization of random-perturbation methods,
which randomly delete existing edges and add non-existing
edges [12]. From a probabilistic perspective, adding a non-
existing edge e corresponds to changing its probability p(e)
from 0 to 1, while removing an existing edge corresponds to
changing its probability from 1 to 0. In our method, instead
of considering only binary edge probabilities, we allow prob-
abilities to take any value in [0, 1], thus allowing for greater
flexibility. The underlying intuition is that by using finer-
grained perturbation operations, one can achieve the same
desired level of obfuscation with smaller changes in the data,
thus maintaining higher data utility.

An example of the proposed obfuscation method is shown
in Figure 1: The graph (a) is the original graph that needs
to be obfuscated; the published graph (b) is a possible ob-
fuscation. While vertices v1 and v2 are connected in (a), in
(b) they are connected with probability p(v1, v2) = 0.7, rep-
resenting a reduction of 0.3 in the certainty of existence of
the edge (v1, v2). Vertices v3 and v4, which are connected in
(a), are no longer connected in the published graph (b), i.e.,
p(v3, v4) = 0. Vertices v2 and v3, which were not connected
in (a), are connected with probability 0.8 in (b), correspond-
ing to a partial creation of an edge.

A natural question that arises is how to query and ana-
lyze data that is published in the form of an uncertain graph.
Hence, in order to prove the practical relevance of our pro-
posal, not only we need to show that the uncertain graph
maintains high utility, which we measure as similarity to
the original graph in terms of characteristic properties, but
also that the computation of these properties can be carried
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out efficiently. An essential part of our discussion will be
devoted to this. Fortunately, an increasing research effort
was dedicated in recent years to the topic of querying and
mining uncertain graphs [14, 15, 24, 36, 37, 38]: this body
of research comes to our aid, providing evidence that useful
analysis can be carried out on uncertain graphs.

In this work we achieve the following contributions:

• We introduce and formalize the idea of injecting uncer-
tainty in graphs for identity obfuscation. In particular,
we formally define the notion of (k, ε)-obfuscation for
uncertain graphs (Section 3).

• We provide methods for assessing the level of obfusca-
tion achieved by an uncertain graph with regards to the
degree property (Section 4).

• We introduce our method for injecting uncertainty in a
graph for (k, ε)-obfuscation (Section 5).

• In Section 6, we discuss several graph statistics and
methods to compute them efficiently in uncertain
graphs. These statistics are then used in Section 7 to
assess the utility of the published uncertain graph.

• Our experimental assessment on three large real-world
networks proves that at the same obfuscation levels,
our method maintains higher data utility than existing
random-perturbation methods.

In the next section we review the relevant literature, while
in Section 8 we conclude the paper and suggest future work.

2. RELATED WORK
As we already mentioned, methods for anonymizing so-

cial networks can be broadly classified into three categories:
generalization by means of clustering of vertices; determin-
istic alteration of the graph by edge additions or deletions;
randomized alteration of the graph by addition, deletion or
switching of edges.

In the first category, Hay et al. [10, 11] propose to gen-
eralize a network by clustering vertices and publishing the
number of vertices in each partition together with the den-
sities of edges within and across partitions. Campan and
Truta [5] study the case in which vertices contain additional
attributes, e.g., demographic information. They propose to
cluster the vertices and reveal only the number of intra- and
inter-cluster edges. The vertex properties are generalized in
such a way that all vertices in the same cluster have the
same generalized representation. Tassa and Cohen [29] con-
sider a similar setting and propose a sequential clustering
algorithm that issues anonymized graphs with higher utility
than those issued by the algorithm of Campan and Truta.

Cormode et al. [7, 8] consider a framework where two sets
of entities (e.g., patients and drugs) are connected by links
(e.g., which patient takes which drugs), and each entity is
also described by a set of attributes. The adversary relies
upon knowledge of attributes rather than graph structure
in devising a matching attack. To prevent matching at-
tacks, their technique masks the mapping between vertices
in the graph and real-world entities by clustering the ver-
tices and the corresponding entities into groups. Zheleva
and Getoor [33] consider the case where there are multiple
types of edges, one of which is sensitive and should be pro-
tected. It is assumed that the network is published without
the sensitive edges and the adversary predicts sensitive edges
based on the observed non-sensitive edges.

In the second category of methods, Liu and Terzi [19]
consider the case that a vertex can be identified by its degree.
Their algorithms use edge additions and deletions in order
to make the graph k-degree anonymous, meaning that for
every vertex there are at least k − 1 other vertices with the
same degree.

Zhou and Pei [34] consider the case that a vertex can be
identified by its radius-one induced subgraph. Adversar-
ial knowledge stronger than the degree is also considered
by Thompson and Yao [30], who assume that the adver-
sary knows the degrees of the neighbors, the degrees of the
neighbors of the neighbors, and so forth. Zou et al. [35] and
Wu et al. [31] assume that the adversary knows the com-
plete graph, and the location of the vertex in the graph;
hence, the adversary can always identify a vertex in any
copy of the graph, unless the graph has other vertices that
are automorphically-equivalent.

In the last category of methods, Hay et al. [12] study the
effectiveness of random perturbations for identity obfusca-
tion. They concentrate on degree-based re-identification of
vertices. Given a vertex v in the real network, they quan-
tify the level of anonymity that is provided for v by the
perturbed graph as (maxu{Pr(v | u)})−1, where the maxi-
mum is taken over all vertices u in the released graph and
Pr(v | u) stands for the belief probability that u is the im-
age of the target vertex v. By performing experimentation
on the Enron dataset, using various values for the number
h of added and removed edges, they conclude that in order
to achieve a meaningful level of anonymity for the vertices
in the graph, h has to be tuned so high that the resulting
features of the perturbed graph no longer reflect those of the
original graph.

Ying et al. [32] compare random-perturbation methods
to the method of k-degree anonymity [19]. They too use
the a-posteriori belief probabilities to quantify the level of
anonymity. Based on experimentation on two modestly-
sized datasets (Enron and Polblogs) they conclude that the
deterministic approach for k-degree anonymity preserves the
graph structure better than random-perturbation methods.

In a more recent study, Bonchi et al. [4] take a differ-
ent approach, by considering the entropy of the a-posteriori
belief probability distributions as a measure of identity ob-
fuscation. The rationale is that while using the a-posteriori
belief probabilities is a local measure, the entropy is a global
measure that examines the entire distribution of these belief
probabilities. Bonchi et al. show that the entropy measure
is more accurate than the a-posteriori belief probability, in
the sense that the former distinguishes between situations
that the latter perceives as equivalent. Moreover, the ob-
fuscation level quantified by means of the entropy is always
greater than the one based on a-posteriori belief probabil-
ities. Finally, by means of a thorough experimentation on
three large datasets, using several graph statistics and com-
paring also to Liu and Terzi [19], they demonstrate that
random perturbation could be used to achieve meaningful
levels of obfuscation while preserving most of the features of
the original graph.

3. OBFUSCATION BY UNCERTAINTY
Let G = (V,E) be an undirected graph, where V is the set

of vertices and E is the set of edges. We write V2 to denote
the set of all

(

n
2

)

unordered pairs of vertices from V , that is,
V2 = {(vi, vj) | 1 ≤ i < j ≤ n}. The goal is to anonymize
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the graph G so that the identity of its vertices is obfuscated.
We propose to publish G as an uncertain graph G̃ = (V,p),
formally defined as follows.

Definition 1. Given a graph G = (V,E), an uncertain

graph on the vertices of G is a pair G̃ = (V,p), where
p : V2 → [0, 1] is a function that assigns probabilities to
unordered pairs of vertices.

The original graph G and the uncertain graph G̃ have the
same set of vertices V . For the sake of clarity, we write
v ∈ G when we speak about a vertex in G, and v ∈ G̃ when
we speak about a vertex in G̃.

Since the mere description of an uncertain graph con-
sists of |V2| = n(n − 1)/2 probability values, we propose
to inject uncertainty only to a small subset of pairs of ver-
tices. Namely, given a graph G, we create a subset EC ⊆ V2

of candidate edges, and then we inject uncertainty only to
the pairs of vertices in EC , while we implicitly assume that
p(u, v) = 0 for all (u, v) 6∈ EC . The size of EC will be set
so that |EC | = c|E|, for a small constant c > 1. In Section
5 we describe a strategy for selecting EC , given G and a
user-defined parameter c.

The uncertain graph G̃ induces a collection of possible
worlds W(G̃). A possible world W ∈ W(G̃) is a graph
W = (V,EW ), where EW ⊆ EC . The edge probabilities in

the uncertain graph G̃ imply that the probability of W is

Pr(W ) =
∏

e∈EW

p(e) ·
∏

e∈EC\EW

(1− p(e)). (1)

Let us consider the knowledge that an adversary may ex-
tract from such an uncertain graph about a given target
vertex in G. Following the literature, we assume that the
adversary knows some vertex property P of his target ver-
tex [4, 12, 19, 30, 31, 32, 34, 35]. Examples of such prop-
erties, as discussed in Section 2, are the degree, the degrees
of the vertex and its neighbors, and the neighborhood sub-
graph induced by the target vertex and its neighbors.

Let ΩP be the domain in which P takes values, e.g., if P
is the degree property then ΩP = {0, . . . , n− 1}. Given an

uncertain graph G̃ and a property P , for each v ∈ G̃ and
ω ∈ ΩP we define the probability Xv(ω) that v originated
from a vertex in G with property value ω. Specifically,

Xv(ω) =
∑

W∈W(G̃)

Pr(W ) · χv,ω(W ), (2)

where Pr(W ) is given in Equation (1), and χv,ω(W ) is a 0–1
variable that indicates if the vertex v has the property value
ω in the possible world W . In other words, Xv(ω) is the sum
of probabilities of all possible worlds in which the vertex v
has the given property value ω.

The probabilities Xv(ω) may be arranged in a n×|ΩP |ma-

trix, where each row corresponds to one vertex v ∈ G̃ and it
gives the corresponding probability distribution Xv(ω) over
all possible values ω ∈ ΩP . The columns of that matrix
are proportional to the probability distributions that corre-
spond to property values. More precisely, the normalized
column corresponding to property ω ∈ ΩP , i.e.,

Yω(v) :=
Xv(ω)

∑

u∈G̃ Xu(ω)
(3)

is the probability that v is the image in G̃ of a vertex that
had the property ω in G.

Xv(ω) deg=0 deg=1 deg=2 deg=3
v1: 0.006 0.092 0.398 0.504
v2: 0.054 0.348 0.542 0.056
v3: 0.020 0.260 0.720 0.000
v4: 0.180 0.740 0.080 0.000

Yω(v) deg=0 deg=1 deg=2 deg=3
v1: 0.023 0.064 0.229 0.900
v2: 0.208 0.242 0.311 0.100
v3: 0.077 0.180 0.414 0.000
v4: 0.692 0.514 0.046 0.000

Table 1: The matrices Xv(ω) and Yω(v) for the uncer-
tain graph in Figure 1(b) and the degree property.

Example 1. Consider the uncertain graph in Figure 1(b)
and assume property P1. Table 1 gives the corresponding
matrix Xv(ω), in which each row gives the probability dis-
tribution regarding the degree of the corresponding vertex
in G. For instance, the probability that v1 has degree 2 is
0.7·0.9·(1−0.8)+0.7·(1−0.9)·0.8+(1−0.7)·0.8·0.7 = 0.398.

The columns of Xv(ω), after normalizing them, give the
corresponding Yω(v) distributions for each value of the degree
(shown also in Table 1). For instance, if we look for a vertex
that has degree 3 in G, it is either v1, with probability 0.9,
or v2, with probability 0.1.

To further stress the difference between the two probabil-
ity distributions, Xv(ω) and Yω(v), let us consider an uncer-

tain graph G̃ in which all edge probabilities are either 0 or 1
(i.e., a certain graph). Let ω be some property value in ΩP

and assume that P−1(ω) = {vi1 , . . . , vik} (namely, there are
exactly k vertices with the property ω in the graph). Then,
for all v ∈ P−1(ω), Xv(ω) = 1 (since each of them has the
property ω with certainty) and Xv(ω

′) = 0 for any other
property ω′ 6= ω (since any vertex can have in any certain
graph just one property). Furthermore, Xv(ω) = 0 for all
v /∈ P−1(ω). Let us now turn to consider the column in the
matrix that corresponds to ω. Then Yω(v) = 1/k for each
of the k vertices in P−1(ω) and Yω(v) = 0 for all other ver-
tices since if we look for a specific vertex in the graph with
property ω and that is the only information that we know
about that sought-after vertex, then it can be any one of the
vertices in P−1(ω) with probability 1/k.

We are ready to define our notion of privacy.

Definition 2 ((k, ε)-Obfuscation). Let P be a vertex
property, k ≥ 1 be a desired level of obfuscation, and ε ≥ 0
be a tolerance parameter. The uncertain graph G̃ is said to
k-obfuscate a given vertex v ∈ G with respect to P if the
entropy of the distribution YP (v) over the vertices of G̃ is
greater than or equal to log2 k:

H(YP (v)) ≥ log2 k.

The uncertain graph G̃ is a (k, ε)-obfuscation with respect to
property P if it k-obfuscates at least (1 − ε)n vertices in G
with respect to P .

Namely, given the considered attack scenario, in which the
adversary uses a background knowledge of property P of his
target vertex, we wish to lower bound the entropy of the
distribution it induces over the obfuscated graph vertices by
log2 k (in similarity to the privacy goal in k-anonymity). As
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for the tolerance parameter ε, it serves the following pur-
pose. Considering the fact that degree sequences in typical
social networks have very skewed distribution, trying to ob-
fuscate some very unique vertices (such as Barack Obama or
CNN in twitter or Facebook) is on the one hand hopeless,
and on the other hand not necessarily needed: these vertices
do not represent “normal” users, and identifying them does
not disclose anyone’s personal information. In fact, as we
will see later, our obfuscation algorithm guarantees that the
ε-fraction of vertices for which the privacy requirement is
not satisfied can be forced to be taken from some specific
sub-population; for example, in the case of degree obfusca-
tion they are vertices with high degree.

Example 2. Consider again the graph in Figure 1. Ver-
tex v1 has degree 3 in the original graph. Thus, in order to
check the level of obfuscation of this vertex in the obfuscated
graph we have to measure the entropy of the column deg = 3
of Table Yω(v). That entropy is approximately 0.469, which
is rather low, meaning that the identity of v1 is not obfus-
cated enough in the uncertain graph in Figure 1(b). Vertex
v2 has degree 1 in the original graph. The entropy of the
column deg = 1 is ≈ 1.688 > log2 3. Vertices v3 and v4
have degree 2, and the entropy of the corresponding column
is ≈ 1.742 ≥ log2 3. Therefore, as three out of four ver-
tices are 3-obfuscated, the graph in Figure 1(b) provides a
(3,0.25)-obfuscation for the graph in Figure 1(a).

4. QUANTIFYING THE OBFUSCATION
In this section we describe how to compute the level of

obfuscation with regard to the degree property. When P
is the degree, ΩP = {0, . . . , n − 1}, and, consequently, the
matrix has n rows and n columns. We need to describe how
to compute Xv(ω) for all v ∈ G̃ and ω ∈ {0, . . . , n − 1}.
Once the full matrix Xv is given, it is possible to derive the
distributions Yω over the vertices of G̃ for all ω ∈ P (G) and
then verify the k-obfuscation property.

Fix v ∈ G̃ and let e1, . . . , en−1 be the n−1 pairs of vertices
that include v. For each 1 ≤ i ≤ n−1, ei is a Bernoulli ran-
dom variable that equals 1 with some probability pi. Letting
dv be the random variable corresponding to the degree of v,
we have

dv =

n−1
∑

i=1

ei. (4)

Then for each possible degree ω ∈ ΩP of v, we have Xv(ω) =
Pr(dv = ω).

Lemma 1. The probability distribution of dv may be com-
puted exactly in time O(n2).

Proof. Let dℓv :=
∑ℓ

i=1 ei denote the partial sum of the
first ℓ Bernoulli random variables. We will show that once
we have the distribution of dℓ−1

v , we can compute that of dℓv
in time O(ℓ). Hence, the distribution of dv = dn−1

v can be
computed in time

∑n−1
ℓ=1 O(ℓ) = O(n2). Indeed,

Pr(dℓv = j) = Pr(dℓ−1
v = j − 1) · pℓ +Pr(dℓ−1

v = j) · (1− pℓ).

Therefore, computing a single probability in the distribution
of dℓv takes constant time (given the full distribution of dℓ−1

v ),
and, consequently, computing the entire distribution of dℓv
over all 0 ≤ j ≤ ℓ takes time O(ℓ).

It should be noted that since we choose to inject uncer-
tainty only to a subset EC of pairs of vertices, the sum in
Equation (4) is taken only over the pairs of vertices in EC

that include the vertex v. Hence, if d is the average de-
gree in G, the average number of addends in dv is dc, where
c = |EC |/|E|.

In cases where the sum in Equation (4) has a large number
of addends, we may adopt an alternative approach. Since
dv is the sum of independent random variables, it may be
approximated by the normal distribution N(µ, σ2), where
µ =

∑n−1
i=1 E(ei) =

∑n−1
i=1 pi and σ2 =

∑n−1
i=1 V ar(ei) =

∑n−1
i=1 pi(1 − pi) as implied by the Central Limit Theorem

[16]. (The Central Limit Theorem becomes effective already
for n ≈ 30; for typical sizes of n in social networks, the
normal approximation becomes very accurate.) Specifically,

Pr(dv = ω) ≈
∫ ω+1/2

ω−1/2
Φµ,σ(x)dx for ω ∈ ΩP = {0, . . . , n −

1}, where

Φµ,σ(x) =
1√
2πσ2

· e−
(x−µ)2

2σ2 . (5)

5. INJECTING UNCERTAINTY
In this section we describe our algorithm, which, given a

graph G, a desired level of obfuscation k, and a tolerance
parameter ε, injects a minimal level of uncertainty to the
graph so that it becomes (k, ε)-obfuscated with respect to a
vertex property P .

5.1 Overview
As discussed in Section 3, we inject uncertainty in the

graph by assigning probabilities to a subset EC ⊆ V2 of
pairs of vertices, such that |EC | = c|E|, for a small constant
parameter c. The selection of EC is described in a subse-
quent section. Once EC is selected, only the pairs e ∈ EC

will become uncertain edges in G̃. All other pairs e /∈ EC

will be certain non-edges, i.e., p(e) = 0. To establish the
uncertainty of each pair e ∈ EC , we select a random pertur-
bation re ∈ [0, 1]. If e ∈ E, it becomes an uncertain edge in

G̃ with probability p(e) = 1− re; if e ∈ EC \E, it becomes
an uncertain edge with probability p(e) = re.

In order for the uncertain graph G̃ to preserve the charac-
teristics of the original graph G, smaller values of the pertur-
bation parameter re should be favored. A natural candidate
for the generating distribution of re is the [0, 1]-truncated
normal distribution,

Rσ(r) :=

{

Φ0,σ(r)
∫
1
0 Φ0,σ(x)dx

0 ≤ r ≤ 1

0 otherwise,
(6)

where Φµ,σ is the density function of a Gaussian distribution
provided in Equation (5). As the standard deviation σ of
the normal distribution decreases, a greater mass of Rσ will
concentrate near r = 0 and then the amount of injected un-
certainty will be smaller. Thus, small values of σ contribute
towards better maintaining the characteristics of the origi-
nal graph, but at the same time they provide lower levels of
obfuscation. Larger values of σ have the opposite effect.

A key feature of our method is to select judiciously the
perturbation re for each pair e = (u, v) ∈ EC , depending
on properties of the vertices u and v. Hence, the random
variable re is drawn from Rσ(e), where the parameter σ(e)
depends on the vertices that e connects. The perturbation
will be larger for edges that connect more unique vertices,
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which, consequently, require higher levels of uncertainty to
“blend in the crowd,” and smaller for edges that connect
more “typical” vertices.

Additionally, in order to prevent identifying pairs e ∈ EC

that are true edges in G (by turning every pair e ∈ EC

to an edge if p(e) ≥ 0.5 and to a non-edge otherwise), the
perturbation re is drawn from the uniform distribution in
[0, 1], rather than from the distribution Rσ, for a q-fraction
of the pairs e ∈ EC , with 0 < q ≪ 1.

5.2 Uniqueness Scores of Vertices
For certain properties of interest, such as degree, the ma-

jority of vertices in real-world graphs are already anonymous
even without random perturbations. The reason is that for
most values of the property P there are many vertices that
have that value. Hence, we aim at controlling the amount of
applied perturbation, so that larger perturbation is added
at vertices that are less anonymized in the original graph. In
particular, we suggest to calibrate the perturbation applied
to a pair e = (u, v) ∈ EC according to the “uniqueness” of
the two vertices u and v with respect to the property P .
Namely, if both P (u) and P (v) are frequent values, then re
should be very small; on the other hand, if P (u) and P (v)
are outlier values, then re should be higher. We proceed to
explain our method in detail.

Let P : V → ΩP be a property defined on the set of
vertices V . Further, consider a distance function d between
values in the range ΩP of P . So, for each pair of values,
ω, ω′ ∈ ΩP , a distance d(ω,ω′) ≥ 0 is defined. For example,
for the degree property P1, the distance d is the modulus
of the difference of two degrees, while for the radius-one
subgraph property (P3), the distance d is the edit distance
between two subgraphs.

Definition 3. Let P : V → ΩP be a property on the
set of vertices V of the graph G, let d be a distance func-
tion on ΩP , and let θ > 0 be a parameter. Then the θ-
commonness of the property value ω ∈ ΩP is Cθ(ω) :=
∑

v∈V Φ0,θ(d(w,P (v))), while the θ-uniqueness of ω ∈ ΩP

is Uθ(ω) :=
1

Cθ(ω)
.

In the above definition the function Φ is the Gaussian
distribution given by Equation (5). The commonness of the
property value ω is a measure of how typical is the value ω
among the vertices of the graph. It is obtained as a weighted
average over all other property values ω′, where the weight
decays exponentially as a function of the distance between
ω and ω′. The uniqueness is the inverse of the commonness.
It should be noted that the commonness and uniqueness are
meaningful only as relative measures, as they allow to assess
how one property value is more common, or more unique,
in G than another property value.

Commonness and uniqueness scores depend on the pa-
rameter θ, which determines the decay rate of the average
weights as a function of the distance. We set θ = σ as larger
amounts of uncertainty imply that property values may be
spread on larger domains of ΩP due to injecting uncertainty.

5.3 The Obfuscation Algorithm
Our algorithm for computing a (k, ε)-obfuscation of a

graph with respect to a vertex property P is outlined as
Algorithm 1. Targeting for high utility, the algorithm aims
at injecting the minimal amount of uncertainty needed to
achieve the required obfuscation. Computing the minimal

Algorithm 1 (k, ε)-obfuscation

Input: G = (V,E), vertex property P , obfuscation level k,
tolerance ε, size multiplier c, and white noise level q.
Output: A (k, ε)-obfuscation G̃ of G with respect to P .

1: σℓ ← 0
2: σu ← 1
3: repeat
4: 〈ε̃, G̃〉 ← GenerateObfuscation(G, σu, P, k, ε, c, q)
5: if ε̃ =∞ then σu ← 2σu

6: until ε̃ 6=∞
7: G̃found ← G̃
8: while σℓ + δ < σu do
9: σ ← (σℓ + σu)/2

10: 〈ε̃, G̃〉 ← GenerateObfuscation(G, σu, P, k, ε, c, q)
11: if ε̃ =∞ then σℓ ← σ
12: else G̃found ← G̃; σu ← σ

13: return G̃found

amount of uncertainty is achieved via a binary search on the
value of the uncertainty parameter σ.

The binary-search flow of Algorithm 1 is determined by
the function GenerateObfuscation, which is shown as Algo-
rithm 2. The function GenerateObfuscation returns a pair
〈ε̃, G̃〉 where ε̃ =∞ or 0 ≤ ε̃ ≤ ε. In the first case, the func-
tion could not find a (k, ε)-obfuscation with the given uncer-

tainty parameter. In the latter case, G̃ is a (k, ε̃)-obfuscation
of G with respect to P , and thus, also a (k, ε)-obfuscation.

The obfuscation algorithm starts with an initial guess of
an upper bound σu, which is iteratively doubled until a
(k, ε)-obfuscated graph is found. Then, the binary-search
process is performed using σℓ = 0 as the lower bound, and
the upper bound σu that was found. The binary search ter-
minates when the search interval is sufficiently short, and the
algorithm outputs the best (k, ε)-obfuscation found (i.e., the
last one that was successfully generated, because it will be
the one obtained with the smallest σ).

The function GenerateObfuscation (Algorithm 2) aims at
finding a (k, ε)-obfuscation of G using a given standard de-
viation parameter σ. First, it computes the σ-uniqueness
level Uσ(P (v)) for each vertex v ∈ G. The more unique a
vertex is, the harder it is to obfuscate it. Hence, in order to
use the “uncertainty budget” σ in the most efficient way, the
algorithm performs the following two pre-processing steps.

(Line 2): Since it is allowed not to obfuscate ε|V | of the
vertices, the algorithm selects the set H of ⌈ ε

2
|V |⌉ vertices

with largest uniqueness scores, which are the vertices that
would require the largest amount of uncertainty, and ex-
cludes them from the subsequent obfuscation efforts. In later
steps, the algorithm will inject uncertainty only to edges
that are not adjacent to any of the vertices in H . (The
algorithm could also receive H , or part of H , as an input,
instead of fully selecting it on its own.)

(Line 3): The set of vertices not in H will need to be
obfuscated. To obfuscate more unique vertices, higher un-
certainty is necessary. Thus, edges need to be sampled with
higher probability if they are adjacent to unique vertices. In
order to handle this sampling process, our algorithm assigns
a probability Q(v) to every v ∈ V , which is proportional to
the uniqueness level Uσ(P (v)) of v.

After that, the search for a (k, ε)-obfuscation starts: since
the algorithm is randomized and there is a non-zero prob-
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Algorithm 2 GenerateObfuscation

Input: G = (V,E), P, k, ε, c, q, and standard deviation σ.

Output: A pair 〈ε̃, G̃〉, where G̃ is a (k, ε̃)-obfuscation (with
ε̃ < ε), or ε̃ =∞ if a (k, ε)-obfuscation was not found.

1: for all v ∈ V compute the σ-uniqueness Uσ(P (v))
2: H ← the set of ⌈ ε

2
|V |⌉ vertices with largest Uσ(P (v))

3: for all v ∈ V do Q(v)← Uσ(P (v))/
∑

u∈V Uσ(P (u))
4: ε̃←∞
5: for t times do
6: EC ← E
7: repeat
8: randomly pick a vertex u ∈ V \H according to Q
9: randomly pick a vertex v ∈ V \H according to Q
10: if (u, v) ∈ E then EC ← EC \ {(u, v)}
11: else EC ← EC ∪ {(u, v)}
12: until |EC | = c|E|
13: for all e ∈ EC do
14: compute σ(e)
15: draw w uniformly at random from [0, 1]
16: if w < q
17: then draw re uniformly at random from [0, 1]
18: else draw re from the random distribution Rσ(e)

19: if e ∈ E then p(e)← 1− re else p(e)← re
20: ε′ ← |{v ∈ V : not k-obfuscated by G′ = (V,p)}|/|V |
21: if ε′ ≤ ε and ε′ < ε̃ then ε̃← ε′; G̃← G′

22: return 〈ε̃, G̃〉

ability of failure, t attempts to find a (k, ε)-obfuscation are
performed (Lines 5-22; in our experiments we used t = 5).

Each attempt begins by randomly selecting a subset EC ⊆
V2, which will be subjected to uncertainty injection (Lines 6-
12). The set EC , whose target size is |EC | = c|E|, is initial-
ized to be E (Line 6). Then, the algorithm randomly selects
two distinct vertices u and v, according to the probability
distribution Q, such that none of them is in H (Lines 8-9).
The pair of vertices (u, v) is removed from EC if it is an
edge, or added to EC otherwise (Lines 10-11). The process
is repeated until EC reaches the required size c|E|. Since
in typical graphs, the number of non-edges is significantly
larger than the number of edges, i.e., |E| ≪ |V2|/2, the loop
in Lines 7-12 ends very quickly, for small values of c, and
the resulting set EC includes most of the edges in E.

Next, in Line 14, we redistribute the uncertainty levels
among all pairs e ∈ EC in proportion to their uniqueness
levels. Specifically, we define for each e = (u, v) ∈ EC its
σ-uniqueness level,

Uσ(e) :=
Uσ(P (u)) + Uσ(P (v))

2
,

and then set

σ(e) = σ|EC | · Uσ(e)
∑

e′∈EC
Uσ(e′)

, (7)

so that the average of σ(e) over all e ∈ EC equals σ.
Given the edge uncertainty levels, σ(e), we select for each

pair of vertices e ∈ EC a random perturbation re. For the
majority of the pairs (an (1 − q)-fraction, where the input
parameter q is small) we select re from the random distribu-
tion Rσ(e) (see Equation (6)). For the remaining q-fraction
of pairs we select re from the uniform distribution on [0, 1].
If e is an actual edge (e ∈ E), it turns into an uncertain

edge in G̃ with associated probability of p(e) = 1− re. If e
is a non-edge in G (e ∈ EC \ E), it turns into an uncertain

edge in G̃ with probability p(e) = re (Line 19).
If the algorithm finds a (k, ε)-obfuscated graph in one of

its t trials, it returns the obfuscated graph with minimal
ε. If, on the other hand, all t attempts fail, the algorithm
indicates the failure by returning ε̃ =∞.

6. UTILITY OF THE UNCERTAIN GRAPH
In order to prove the practical relevance of our proposal,

we need to show that: (1) the uncertain graph maintains
high utility, i.e., it is highly similar to the original graph in
terms of characteristic properties; and (2) the computation
of these properties can be carried out in reasonable time.

In the rest of this section, we discuss several graph statis-
tics and show how to compute them in uncertain graphs.
In our experimental assessment, we use those statistics to
evaluate the utility of the proposed graph obfuscation.

Further evidence to the usefulness of publishing an uncer-
tain graph is provided by the many recent papers on mining
and querying uncertain graphs [14, 15, 24, 36, 37, 38].

6.1 Sampling
Given a standard (certain) graph G, let S[G] be the value

of a statistical measure S for G. Examples of such a sta-
tistical measure S are the average degree, the diameter, the
clustering coefficient of G, and so on. In order to define the
value of S in an uncertain graph G̃ = (V,p), the most natu-

ral choice is to consider the expected value of S[G̃], namely,

E(S[G̃]) =
∑

W∈W(G̃)

Pr(W ) · S(W ) , (8)

where Pr(W ) is given in Equation (1). While for some statis-
tics it is possible to compute the expected value in Equa-
tion (8) without explicitly performing a summation over
the exponential number of possible worlds (as we will see
in Section 6.2), for other statistics such a computation re-
mains infeasible. Hence, we have to resort to approxima-
tion by sampling. Namely, we sample a subset of possible
worlds W ′ ⊆ W(G̃) according to the distribution induced
by the probabilities Pr(W ), and then take the average S of
the statistic S in the sampled worlds as an approximation
of E(S[G̃]):

S :=
1

|W ′|
∑

W∈W′

S(W ). (9)

Sampling a possible world according to the distribution
Pr(W ) is carried out by sampling independently each edge e
with probability p(e).

The following lemma provides a probabilistic error bound
for approximating the expected value by an average over a
number of sampled worlds.

Lemma 2. Let G̃ = (V,p) be an uncertain graph and as-
sume that S is a graph statistic that satisfies a ≤ S ≤ b. Let
r = |W ′| denote the number of sampled worlds and S be the
average of the statistic S over those worlds, Equation (9).
Then for every ε > 0,

Pr(|E(S[G̃])− S| ≥ ε) ≤ 2 exp

(

− 2ε2r

(b− a)2

)

. (10)
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Proof. Let W ′ = {Wi}1≤i≤r be the set of r graphs that

were sampled from G̃ = (V,p). Then Si = S[Wi], 1 ≤
i ≤ r, are independent and identically distributed random
variables. Since E(Si) = E(S[G̃]) for all 1 ≤ i ≤ r, it follows

that also E(S) = E(S[G̃]). Hence, inequality (10) follows
directly from Hoeffding’s inequality [13].

Corollary 1. For given error bound ε and probability of
failure δ, we have Pr(|E(S[G̃]) − S| ≥ ε) ≤ δ, provided that

r ≥ 1
2

(

b−a
ε

)2
ln

(

2
δ

)

.

In the next section, we define a number of scalar and
vector statistics of interest; when possible, we also provide
an explicit computation of E(S[G̃]).

6.2 Statistics Based on Degree
Let d1, . . . , dn denote the degree sequence in a graph

G. The statistic S is called a degree-based statistic if
S = F (d1, . . . , dn) for some function F . Examples of such
statistics are:

• Number of edges: SNE = 1
2

∑

v∈V dv.

• Average degree: SAD = 1
n

∑

v∈V dv.

• Maximal degree: SMD = maxv∈V dv.

• Degree variance:1 SDV = 1
n

∑

v∈V (dv − SAD)
2.

When G̃ is an uncertain graph, d1, . . . , dn are random vari-
ables. If F is a linear function, then we have

E(S[G̃]) = E(F (d1, . . . , dn)) = F (E(d1), . . . , E(dn)). (11)

Hence, since the expected degree of a vertex v ∈ V is equal
to the sum of probabilities of its adjacent edges, the com-
putation of the expected statistic is easy, in the case of a
linear function. As the first two examples above, SNE and
SAd, correspond to a linear function F , we have:

E(SNE[G̃]) = E





1

2

∑

v∈V

dv



 =
1

2

∑

v∈V

∑

u∈V \v

p(u, v) =
∑

e∈V2

p(e),

and

E(SAD[G̃]) = E





1

n

∑

v∈V

dv



 =
1

n

∑

v∈V

∑

u∈V \v

p(u, v) =
2

n

∑

e∈V2

p(e).

Things are less simple when F is non-linear, since then
Equation (11) does not hold. This is the case with the lat-
ter two examples — the maximal degree (F = max) and
the degree variance (F is quadratic). For these statistics we
adopt the sampling approach described in the previous sec-
tion. Since the maximal degree is at most n−1, the statistic
SMD satisfies Corollary 1 with a = 0 and b = n − 1. Simi-
larly, the statistic SDV satisfies Corollary 1 with a = 0 and
b = (n− 1)2. It should also be noted that we can compute

E(SDV[G̃]) precisely. However, the cost of evaluating the
corresponding formulas, which we omit herein, is quadratic
in the number of vertices.

We proceed to describe two additional statistics that are
based on the degree distribution. In the following we use
∆(d), with 0 ≤ d ≤ n− 1, to denote the fraction of vertices
in the graph G that have degree d.

1This is one of the measures of graph heterogeneity [27].

The first statistic, denoted by SPL, is the power-law ex-
ponent of the degree distribution. For this statistic, we
assume that the degree distribution follows a power law,
∆(d) ∼ d−γ , and SPL is an estimate of −γ. In our experi-
ments, we focused on higher degrees where the power law fits
better, and we fitted the exponent ignoring smaller degrees.

The second statistic is the degree distribution itself,
SDD := (∆(0),∆(1), . . . ,∆(n − 1)). As opposed to all pre-
vious statistics, which were scalar, this one is a vector. In
fact, each of the previous statistics may be derived from the
degree distribution. To approximate SDD[G] we adopt once
more the sampling approach: for every degree d, we approx-
imate ∆(d) by the average ∆(d) obtained over the sampled
possible worlds.

6.3 Statistics Based on Shortest-path Distance
Other interesting measures characterizing a graph are

those based on the shortest-path distance between pairs of
vertices. Computing distance distributions on large graphs
is far from trivial, as explained in the survey of Kang et
al. [17]. While exact solutions using breadth-first search or
Floyd’s algorithm are out of question, there is still no consen-
sus in the research community on which approximate tech-
nique is best [9]. Some methods are based on sampling, for
example, performing a breadth-first search from a selected
set of vertices [6, 18], and other are based on information
diffusion [3, 17, 23]. While the former are simpler to im-
plement, diffusion-based techniques have the advantage of
being more general (they are natively designed for directed
graphs, while most sampling methods only work for undi-
rected ones) and scale more gracefully.

Defining the distance between pairs of vertices in uncer-
tain graphs is not an easy task since, typically, the cor-
responding ensemble of possible worlds will include discon-
nected instances; in such disconnected possible worlds, some
of the pairwise distances are infinite [24]. We directly avoid
this problem by defining the distance-based measures S only
on pairs of vertices that are path-connected.

We consider five measures:

• Average distance: SAPD is the average distance among
all pairs of vertices that are path-connected.

• Effective diameter : SEDiam is the 90-th percentile dis-
tance among all path-connected pairs of vertices, i.e.,
the minimal value for which 90% of the finite pairwise
distances in the graph are no larger than. In our exper-
iments, we used the variant that linearly interpolates
between the 90-th percentile and the successive integer.

• Connectivity length: The statistic SCL is defined as the
harmonic mean of all pairwise distances in the graph,

SCL = n(n−1)
2

(

∑

(u,v)∈V2

1

dist(u,v)

)−1

[20]. Note that

by taking 1

dist(u,v)
= 0 for non path-connected pairs

(u, v), the connectivity length can be defined as the
average over all vertex pairs, independently on whether
they lie in the same connected component.

• Distribution of pairwise distances: SPDD is the distribu-
tion of pairwise distances in the graph, where SPDD[k]
is the number of pairs of vertices whose distance equals
k, for 1 ≤ k ≤ n − 1, and SPDD[∞] is the number of
pairs of vertices that are not path-connected.

• Diameter : SDiam is the maximum distance among all
path-connected pairs of vertices.
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For computing the above measures we rely on sampling.
It is easy to see that Lemma 2 and Corollary 1 hold for each
of those statistics with a = 1 and b = n− 1.

To estimate the distance distribution in a given (certain)
graph, we use HyperANF [3], a diffusion-based algorithm
that provides a good tradeoff between accuracy guarantees
and execution time. As the algorithm is probabilistic, the
results that it gives may drift from the real ones, depending
on the number of registers used for the evaluation. Such
drifts affect the variance over the value obtained for each
point of the distance distribution. To limit the effect of such
probabilistic drifts, we repeat the execution of HyperANF
and used jackknifing [26] to infer the standard error of the
statistics that we compute; in our experiments this error
ranges between 0.2% and 2%.

While the HyperANF approach is viable for the first four
statistics described above, it falls short in estimating the
diameter. Exact diameter estimation is difficult and even
heuristic methods such as [9] would be too inefficient to be
executed on many sampled worlds. As a result, we focus on
estimating a lower bound SDiamLB for SDiam: such a lower
bound is computed as the largest distance t for which the
approximate distance distribution computed by HyperANF
is nonzero; i.e., it is the largest distance t for which we esti-
mate that there is at least one pair of vertices of distance t
from each other.

6.4 Clustering Coefficient
The clustering coefficient SCC measures the extent to

which the edges of the graph “close triangles.” More for-
mally, given a graph G, let T3[G] be the number of cliques of
size 3 in the graph G, and T2[G] be the number of connected
triplets. The clustering coefficient SCC[G] of a graph G is
then defined as SCC[G] = T3[G]/T2[G]. Since T3[G] ≤ T2[G],
the clustering coefficient is a number between 0 and 1.

Example 3. Let K3 be the complete graph on three ver-
tices. Then T3[K3] = 1 and T2[K3] = 1. Hence, SCC[K3] =
1. Consider next the graph G on three vertices u, v, w with
two edges only — (u, v) and (u,w). Then T3[G] = 0 and
T2[G] = 1, whence SCC[G] = 0.

Given an uncertain graph G̃, we can estimate the ex-
pected clustering coefficient E(SCC[G̃]) by sampling (see
Section 6.1). Since the clustering coefficient takes values
between 0 and 1, we can apply Lemma 2 with a = 0 and
b = 1. Thus, we can estimate E(SCC[G̃]) within an error
of at most ε and probability of success at least 1 − δ by
sampling at least r = 1

2ε2
ln( 2

δ
) possible worlds.

7. EXPERIMENTAL ASSESSMENT
The objective of our experimental assessment is to show

that the proposed technique is able to provide the required
obfuscation levels while maintaining high data utility. In
particular, we set the following concrete subgoals. For given
values of k and ε, we want to assess:

1. the level of noise (specified by the value of σ) needed to
achieve (k, ε)-obfuscation;

2. the running time of the obfuscation algorithm;

3. the error in the statistics of the obfuscated graph with
respect to the original graph;

4. how the proposed method compares with random-per-
turbation methods for the same levels of obfuscation.

Table 2: Values of σ that yielded a (k, ε)-obfuscation
obtained by Alg. 1. In all cases q = 0.01 and c = 2,
except for the two cases marked (*) where c = 3.

Dataset k ε = 10−3 ε = 10−4

dblp

20 5.9605 · 10−8 1.6153 · 10−5

60 2.9802 · 10−7 3.2206 · 10−3

100 1.8775 · 10−5 1.0711 · 10−2

flickr

20 2.2948 · 10−5 2.6343 · 10−2

60 1.0397 · 10−3 7.3275 · 10−2 (*)
100 5.8624 · 10−3 2.9273 · 10−1 (*)

Y360

20 5.9605 · 10−8 5.9605 · 10−8

60 5.9605 · 10−8 1.0133 · 10−6

100 5.9605 · 10−8 1.1146 · 10−5

Table 3: Computation (real) time in edges/sec.

Dataset k ε = 10−3 ε = 10−4

dblp

20 1069.34 1550.78
60 1000.64 1279.39

100 888.908 1166.87

flickr

20 1004.93 926.45
60 1019.05 300.39 (*)

100 862.155 271.84 (*)

Y360

20 2113.51 1900.32
60 1762.21 1665.80

100 1643.84 1664.75

For our experiments, we use three large real-world datasets.
dblp is a co-authorship graph extracted from a recent snap-
shot of the DBLP database considering only journal publi-
cations.2 Vertices represent authors, and there is an undi-
rected edge between two authors if they have authored a
journal paper together.
flickr is a popular online community for sharing photos,

with millions of users.3 In addition to many photo-sharing
facilities, users are creating a social network by explicitly
marking other users as their contacts.
Y360: Yahoo! 360 was a social-networking and personal-

communication portal. In the Y360 dataset, edges represents
the friendship relationship among users.

The graphs sizes vary from 226 413 vertices of dblp,
588 166 of flickr, to 1 226 311 of Y360, with different den-
sities; Y360 is the largest but also the sparsest dataset. The
main statistics (as defined in Section 6) of the three datasets
are reported in Table 4.

7.1 Parameter Tuning and Running Time
In our first set of experiments, we considered three obfus-

cation levels, k ∈ {20, 60, 100}, and two possible tolerance
values, ε ∈ {10−3, 10−4}. We experimented with different
values for q and c (with q ∈ {0.01, 0.05, 0.1} and c ∈ {2, 3}),
but here we present only the case q = 0.01 and c = 2 (except
for two instances that will be discussed below). In Table 2,
we report the minimal values of σ, as found by Algorithm 1,
that yielded a (k, ε)-obfuscation for given values of k and ε.

As expected, larger k or smaller ε required larger values
of σ, because more noise was needed in order to reach the
desired level of obfuscation. In some cases, Algorithm 1
failed to find a proper upper bound for σ in the loop in

2http://www.informatik.uni-trier.de/~ley/db/
3http://www.flickr.com/
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Table 4: The sample mean on a sample of size 100, with ε = 10−4. The last column is the average (over all
statistics) of the relative absolute difference between the sample mean and the real value of the statistics.

graph SNE SAD SMD SDV SPL SAPD SDiamLB SEDiam SCL SCC rel.err.
dblp real 716 460 6.33 238 76.79 −0.046 7.34 25 8.78 6.96 0.38

k = 20 713 952 6.31 233 76.18 −0.046 7.01 22.59 7.16 6.68 0.35 0.049
k = 60 735 766 6.50 652 122.8 −0.014 6.05 20.52 6.29 5.76 0.23 0.429

k = 100 754 776 6.67 975 187.6 −0.008 5.67 19.12 6.00 5.41 0.16 0.705
flickr real 5 801 442 19.73 6 660 6 200 −0.002 5.03 21 5.43 4.80 0.12

k = 20 5 921 470 20.14 5 847 6 924 −0.002 4.84 20.51 4.80 4.64 0.05 0.112
k = 60 6 944 481 23.61 4 534 12 847 −0.002 4.59 17.66 4.47 4.42 0.04 0.322

k = 100 7 640 446 25.98 6 121 18 438 −0.001 4.50 16.81 4.33 4.37 0.06 0.415
Y360 real 2 618 645 4.27 258 112.6 −0.027 8.21 31 8.94 7.77 0.04

k = 20 2 605 027 4.25 257 109.5 −0.028 8.06 31.53 9.19 7.66 0.03 0.026
k = 60 2 605 952 4.25 256 110.0 −0.028 8.05 30.04 8.95 7.64 0.03 0.025

k = 100 2 609 937 4.26 259 111.9 −0.027 8.01 31.64 8.99 7.60 0.03 0.023

Table 5: The relative sample standard error of the mean (SEM) on a sample of size 100, with ε = 10−4 (the
other parameters are set as in Table 2). For every statistics, the value shown is the sample standard deviation,
divided by the square root of the sample size and normalized by the sample mean. The last column is the
average of the relative sample standard errors over all of the statistics.

k SNE SAD SMD SDV SPL SAPD SDiamLB SEDiam SCL SCC average
dblp 20 0.00010 0.00010 0.0120 0.00100 0.0110 0.0040 0.041 0.10 0.020 0.013 0.019

60 0.00024 0.00024 0.0260 0.00350 0.0170 0.0035 0.058 0.16 0.019 0.018 0.028
100 0.00029 0.00029 0.0170 0.00430 0.0170 0.0033 0.055 0.15 0.018 0.024 0.027

flickr 20 0.00016 0.00016 0.0067 0.00074 0.0037 0.0036 0.060 0.15 0.016 0.045 0.028
60 0.00018 0.00018 0.0100 0.00068 0.0030 0.0039 0.084 0.17 0.018 0.054 0.033

100 0.00017 0.00017 0.0064 0.00059 0.0032 0.0039 0.082 0.18 0.018 0.035 0.032
Y360 20 0.00004 0.00004 0.0024 0.00025 0.0035 0.0036 0.043 0.13 0.021 0.045 0.027

60 0.00004 0.00004 0.0049 0.00031 0.0032 0.0046 0.051 0.15 0.021 0.061 0.031
100 0.00005 0.00005 0.0120 0.00044 0.0044 0.0035 0.052 0.16 0.018 0.057 0.032

Lines 3-6. In those cases, increasing the parameter c to 3
resolved the problem.

The obfuscation algorithm was implemented in Java and
run on an Intel Xeon X5660 CPUs, 2.80GHz, 12MB cache
size. Table 3 reports the running times (expressed in edges
per second) of the same experiments for which we reported
in Table 2 the values of σ. As explained above, we used in
all cases q = 0.01 and c = 2, except for the two cases marked
by (∗) in which c = 3. We note that using smaller values of c
has the benefit of keeping the graph size under control; such
a benefit is of special importance for large networks. Smaller
values of c also reduce the runtime of Algorithm 2, where the
main loop (Lines 13-19) is over c|E| edges. This effect is ev-
ident in Table 3, where the performance drops substantially
in the two cases where c = 3. As expected, the performance
slightly decreases when k increases or ε decreases, due to the
increased efforts to achieve a higher obfuscation level. We
note that the smaller computation times required for Y360

are due to the fact that this dataset turns out to be easier
to obfuscate than the others (as witnessed also by the small
final values of σ as reported in Table 2).

The parameter q just introduces some amount of “white
noise” in the graph. Using higher values of q enhances ob-
fuscation but it also reduces the utility of the final released
graph. Due to space limitations, we present only results for
q = 0.01. A more elaborated set of plots, for different set-
tings of q and other obfuscation parameters, will be given in
an extended version of this paper4.

4A complete set of plots, along with the code of Algorithm 1,
is available at http://boldi.dsi.unimi.it/obfuscation/.

7.2 Data Utility
Next, we computed statistics of interest on the obfuscated

graphs, using the sampling method (Section 6.1).5 For ev-
ery obfuscated graph, we sampled 100 possible worlds and
for each of them we computed all the scalar statistics listed
above. The mean values obtained are shown in Table 4.
Those values are very concentrated, as witnessed by Ta-
ble 5, that reports the relative sample standard error of the
mean (also called SEM; it is obtained as the sample stan-
dard deviation divided by the square root of the sample size
and normalized by the sample mean); the last column re-
ports the average computed over all the statistics. As can
be seen, all statistics are very well concentrated; on aver-
age, the fluctuations for all statistics are of about 3% (last
column of Table 5), but most of them (see, for example,
SNE or SAD) exhibit a much higher level of concentration.
There is a weak dependence on k and also on ε (the latter
dependence is not shown here).

We proceed to comparing the sample mean of the statis-
tics obtained with their real values on the original graph (see
again Table 4). The quality of the estimation decreases when
obfuscation becomes larger: in the last column of the ta-
ble, we computed the average statistical error over all scalar
statistics, that is, the relative absolute difference between
the estimate and the real value. With small values of k,
e.g., k = 20, the error is always well below 15%; larger val-
ues of k introduce larger errors, up to 70.5% when k = 100

5For SNE and SAD we use the exact formulas (Sec. 6.2). The
results are almost identical to those obtained by sampling.
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Figure 2: The distribution of pairwise distances SPDD; the small (red) dots correspond to the distribution in
the real dblp graph; the boxplots give the distributions for the case k = 20, ε = 10−3 (left) and k = 100, ε = 10−4

(right). As usual, the two whiskers represent the smallest and largest values observed across the samples,
whereas the box represents the range between the lower and the upper quartiles.)
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Figure 3: The distribution of degrees SDD; the small (red) dots correspond to the distribution in the real dblp
graph; the boxplots give the distributions for the case k = 20, ε = 10−3 (left) and k = 100, ε = 10−4 (right).

in the dblp dataset. Observe that some statistics (e.g., de-
gree variance or clustering coefficient) are more affected by
error than others.

The behavior described for scalar statistics is also ob-
served with vector statistics. For example, Figure 2 shows
SPDD (the distribution of the pairwise distances) in the origi-
nal dblp and in two obfuscated versions. Here, two extreme
cases are presented: For k = 20 and ε = 10−3 the distri-
bution obtained is qualitatively very similar (as witnessed
also by the scalar distance-based statistics in Table 4); con-
versely, for k = 100 and ε = 10−4, the estimated distribution
is quite far from the original one. In Figure 3 we present a
similar plot for the degree distribution: for every degree, we
considered the distribution of the frequency of that degree
across all possible worlds. In this case, the approximation
is very concentrated and its mean almost coincides with the
real degree frequency, even for k = 100 and ε = 10−4.

7.3 Comparative Evaluation
We finally compare our proposed method with random-

perturbation methods that publish a standard graph (in ar-
ticular the methods described by Bonchi et al. [4]):

• random sparsification: given a parameter p, each edge
e ∈ E is removed from the graph with probability p;

• random perturbation: given a parameter p, first each
edge e ∈ E is removed from the graph with probability
p, then each non-existing edge in V2 \ E is added with

probability p|E|

(|V |
2 )−|E|

.

To make the comparison possible, we must first determine
which value of the parameter p used in these obfuscation
algorithms corresponds to which pair (k, ε) of obfuscation
parameters. The appropriate values can be deduced by the
anonymity level plots of the sparsified or perturbed graph
obtained with a certain value of p: of course, any such graph
will correspond to many pairs of parameters (k, ε); for exam-
ple, given any fixed ε, an appropriate k can be determined
by disregarding the εn vertices with smallest anonymity and
letting k be the least anonymity of the remaining vertices.

Figure 4 shows the obfuscation levels obtained for some
of the parameter combinations on dblp and flickr. The
plot shows, for every obfuscation level k, the number of ver-
tices that have obfuscation level less than or equal to k.
The two rectangles appearing in the plot highlight the ob-
fuscation requirements (k, ε). Figure 4 shows, for example,
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Figure 4: Comparison of the anonymity levels obtained for dblp (left) and flickr (right) using obfuscation,
random perturbation and sparsification, for the parameter choices described in Section 7.3. The plot shows,
for every obfuscation level k, the number of vertices that have obfuscation level less than or equal to k.

Table 6: Comparison between obfuscation by uncertainty and obfuscation by random sparsification and
perturbation.

graph SNE SAD SMD SDV SPL SAPD SDiamLB SEDiam SCL SCC rel.
original 716 460 6.33 238 76.79 −0.046 7.34 25 8.78 6.96 0.38 err.

d
b
l
p

rand.pert. (p = 0.04) 716 393 6.33 230 71.26 −0.048 7.09 18.55 7.25 6.85 0.36 0.071
obf. (k = 60, ε = 10−3) 713 819 6.31 236 75.86 −0.046 7.15 22.75 7.21 6.82 0.36 0.043
rand.spars. (p = 0.64) 257 890 2.28 93 11.40 −0.124 10.24 36.72 10.60 25.77 0.13 0.921

obf. (k = 20, ε = 10−4 ) 713 952 6.31 233 76.18 −0.046 7.01 22.59 7.16 6.68 0.35 0.050
original 5 801 442 19.73 6 660 6 200 −0.002 5.03 21 5.43 4.80 0.12

f
l
i
c
k
r

rand.pert. (p = 0.64) 5 801 229 19.73 2 407 820.3 −0.0059 4.55 7.02 4.15 4.49 0.030 0.497
rand.spars. (p = 0.32) 3 944 902 13.41 4 526 2 871 −0.003 5.24 19.56 4.91 6.69 0.079 0.286

obf. (k = 20, ε = 10−4) 5 921 470 20.14 5 847 6 924 −0.002 4.84 20.51 4.81 4.64 0.050 0.112

that a random perturbation of dblp with p = 0.04 matches
obfuscation (k = 60, ε = 10−3).

We here present the comparative results in the following
cases:6

• dblp with random perturbation using p = 0.04, match-
ing k = 60 and ε ≈ 10−3;

• dblp with sparsification using p = 0.64, matching k =
20 and ε ≈ 10−4;

• flickr with random perturbation using p = 0.32 and
with sparsification using p = 0.64, both corresponding
to k = 20 with ε ≈ 10−4.

For each of the two obfuscation techniques presented in [4],
we produced 50 samples; note that in those probabilistic
methods, the obfuscation is a certain graph. Then we com-
puted the statistics on each sample, and proceeded in the
same way as we did for the obfuscated graph.

Table 6 shows the results of the comparison. In all cases,
the quality of the statistics as computed with our obfusca-
tion method is much better; in one case, the relative error
is 5% instead of the 92% imposed by sparsification to ob-
tain the same level of obfuscation. Therefore, we can safely
conclude that our experimental assessment on real-world
graphs confirms the initial and driving intuition underlying

6The values of p used here (p ∈ {0.04, 0.32, 0.64}) are the
same as those used by Bonchi et al. [4].

this paper: by using finer-grained perturbation operations,
such as only perturbing partially the existence of an edge,
one can achieve the same desired level of obfuscation with
smaller changes in the data than when completely removing
or adding edges, thus maintaining higher data utility.

8. CONCLUSIONS AND FUTURE WORK
We introduce a new approach for identity obfuscation

in graph data. In the proposed approach, the desired ob-
fuscation is obtained by injecting uncertainty in the social
graph and publishing the resulting uncertain graph. Our
proposal can be seen as a generalization of random per-
turbation methods for identity obfuscation in graphs, as it
enables finer-grained perturbations than fully removing or
fully adding edges. Such increased flexibility in spreading
the noise over the edges of the graph enables achieving the
same level of obfuscation with smaller changes in the data,
as confirmed by our experiments on real-world graphs.

While the results that we achieve are most encouraging,
this work represents only a first step in a promising research
direction. As it is often the case, new privacy-enabling tech-
niques create novel attacks that, in turn, propel stronger
protection mechanisms. Therefore, in our future investiga-
tion we plan to extend and strengthen this line of research
by further assessing its limits and merits.
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One interesting research direction is to investigate how
to extend our uncertainty-based approach in order to re-
lease networks with additional information, besides the mere
graph data, such as vertex attributes [22], communication
logs among users, information-propagation traces, and other
types of social dynamics. Another case of particular interest
is that of a sequential release of a social network. In a recent
paper, Medforth and Wang [21] demonstrated the risks of
publishing a sequence of releases of the same network. In
particular, they described the degree-trail attack, by which
the vertex belonging to a target user can be re-identified
from a sequence of published graphs, by comparing the de-
grees of the vertices in the published graphs with the degree
evolution of the target. The applicability of the degree-trail
attack to our probabilistic graph release is an open research
question.
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Abstract

Given a social network, which of its nodes are more central? This question has been asked
many times in sociology, psychology and computer science, and a whole plethora of centrality
measures (a.k.a. centrality indices, or rankings) were proposed to account for the importance of
the nodes of a network. In this paper, we try to provide a mathematically sound survey of the most
important classic centrality measures known from the literature and propose an axiomatic approach
to establish whether they are actually doing what they have been designed for. Our axioms suggest
some simple, basic properties that a centrality measure should exhibit.

Surprisingly, only a new simple measure based on distances, harmonic centrality, turns out to
satisfy all axioms; essentially, harmonic centrality is a correction to Bavelas’s classic closeness
centrality [4] designed to take unreachable nodes into account in a natural way.

As a sanity check, we examine in turn each measure under the lens of information retrieval,
leveraging state-of-the-art knowledge in the discipline to measure the effectiveness of the various
indices in locating web pages that are relevant to a query. While there are some examples of this
comparisons in the literature, here for the first time we take into consideration centrality measures
based on distances, such as closeness, in an information-retrieval setting. The results match closely
the data we gathered using our axiomatic approach.

Our results suggest that centrality measures based on distances, which have been neglected in
information retrieval in favour of spectral centrality measures in the last years, are actually of very
high quality; moreover, harmonic centrality pops up as an excellent general-purpose centrality
index for arbitrary directed graphs.

1 Introduction
In the last years, there has been an ever-increasing research activity in the study of real-world complex
networks [51] (the world-wide web, the autonomous-systems graph within the Internet, coauthorship
graphs, phone call graphs, email graphs and biological networks, to cite but a few). These networks,
typically generated directly or indirectly by human activity and interaction (and therefore hereafter
dubbed “social”), appear in a large variety of contexts and often exhibit a surprisingly similar struc-
ture. One of the most important notions that researchers have been trying to capture in such networks
is “node centrality”: ideally, every node (often representing an individual) has some degree of influ-
ence or importance within the social domain under consideration, and one expects such importance
to be reflected in the structure of the social network; centrality is a quantitative measure that aims at
revealing the importance of a node.

Among the types of centrality that have been considered in the literature (see [12] for a good
survey), many have to do with distances between nodes.1 Take, for instance, a node in an undirected
�The authors have been supported by the EU-FET grant NADINE (GA 288956).
1Here and in the following, by “distance” we mean the length of a shortest path between two nodes.

1



connected network: if the sum of distances to all other nodes is large, the node under consideration is
peripheral; this is the starting point to define Bavelas’s closeness centrality [4] which is the reciprocal
of peripherality (i.e., the reciprocal of the sum of distances to all other nodes).

The role played by shortest paths is justified by one of the most well-known features of complex
networks, the so-called small-world phenomenon. A small-world network [17] is a graph where the
average distance between nodes is logarithmic in the size of the network, whereas the clustering coef-
ficient is larger (that is, neighbourhoods tend to be denser) than in a random Erdős-Rényi graph with
the same size and average distance.2 The fact that social networks (whether electronically mediated or
not) exhibit the small-world property is known at least since Milgram’s famous experiment [38] and
is arguably the most popular of all features of complex networks. For instance, the average distance
of the Facebook graph was recently established to be just 4:74 [3].

The purpose of this paper is to pave the way for a formal well-grounded assessment of centrality
measures, based on some simple guiding principles; we seek notions of centrality that are at the same
time robust (they should be applicable to arbitrary directed graphs, possibly non-connected, without
modifications) and understandable (they should have a clear combinatorial interpretation).

With these principles in mind, we shall present and compare the most popular and well-known
centrality measures proposed in the last decades. The comparison will be based on a set of axioms,
each trying to capture a specific trait.

In the last part of the paper, as a sanity check, we compare the measures we discuss in an
information-retrieval settings, using the classic GOV2 collection to extract documents satisfying a
query and ranking the resulting induced subgraph of relevant documents based solely on centrality.

The results are somehow surprising, and suggest that simple measures based on distances, and
in particular harmonic centrality (which we introduce formally in this paper) can give better results
than some of the most sophisticated indices used in the literature. These unexpected outcomes are
the main contribution of this paper, together with the set of axiom we propose, which provide a
conceptual framework for understanding centrality measures in a formal way. We also try to give an
orderly account of centrality in social and network sciences, gathering scattered results and folklore
knowledge in a systematic way.

2 A Historical Account
In this section we sketch the historical development of centrality, focusing on the ten classical cen-
trality measures that we decided to include in this paper: the overall growth of the field is of course
much more complex, and the literature contains a myriad of alternative proposals that will not be
discussed here.

Centrality is a fundamental tool in the study of social networks: the first efforts to define for-
mally centrality indices were attempted in the late 1940s by the Group Networks Laboratory at
M.I.T. directed by Alex Bavelas [4], in the framework of communication patterns and group col-
laboration [30, 5]; those pioneering experiments all concluded that centrality was related to group
efficiency in problem-solving, and agreed with the subjects’ perception of leadership. In the follow-
ing decades, various measures of centrality were employed in a multitude of contexts (to understand
political integration in Indian social life [18], to examine the consequences of centrality in commu-
nication paths for urban development [45], to analyse their implications to the efficient design of
organizations [7, 34], or even to explain the wealth of the Medici family based on their central posi-
tion with respect to marriages and financial transactions in the 15th century Florence [42]). We can
certainly say that the problem of singling out influential individuals in a social group is a holy grail
that sociologists have been trying to capture for at least fifty years.

2The reader might find this definition a bit vague, and some variants are often spotted in the literature: this is a general
well-known problem, also highlighted recently, for example in [32].
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Although all researchers agree that centrality is an important structural attribute of social net-
works, and that it is directly related to other important group properties and processes, there is no
consensus on exactly what centrality is or on its conceptual foundations, and there is very little agree-
ment on the proper procedures for its measurement [15, 21]: as Freeman observed, “several measures
are often only vaguely related to the intuitive ideas they purport to index, and many are so complex
that it is difficult or impossible to discover what, if anything, they are measuring” [21].

Freeman acutely remarks that the implicit starting point of all centrality measures is the same:
the central node of a star should be deemed more important than the other vertices; paradoxically,
it is precisely the unanimous agreement on this requirement that may have produced quite different
approaches to the problem. In fact, the center of a star is at the same time

1. the node with largest degree;

2. the node that is closest to the other nodes (e.g., that has the smallest average distance to other
nodes);

3. the node through which most shortest paths pass;

4. the node with the largest number of incoming paths of length k, for every k;

5. the node that maximizes the dominant eigenvector of the graph matrix;

6. the node with highest probability in the stationary distribution of the natural random walk on
the graph.

These observations lead to corresponding (competing) views of centrality. Degree is probably the
oldest kind of measure of importance ever used, being equivalent to majority voting in elections
(where x ! y is interpreted as “x voted for y”).

The most classical notion of closeness, instead, was introduced by Bavelas [4] for undirected,
connected networks as the reciprocal of the sum of distances from a given node. Closeness was
originally aimed at establishing how much a vertex can communicate without relying on third parties
for his messages to be delivered.3 In the seventies, Nan Lin proposed to adjust the definition of
closeness so to make it usable on directed networks that are not necessarily strongly connected [33].

Centrality indices based on the count of shortest paths were formally developed independently by
Anthonisse [2] and Freeman [22], who introduced betweenness as a measure of the probability that a
random shortest path passes through a given node or edge.

Katz’s index [27] is based instead on a weighted count of all paths coming into a node: more
precisely, the weight of a path of length t is ˇt , for some attenuation factor ˇ, and the score of x
is the sum of the weights of all paths coming into x. Of course, ˇ must be chosen so that all the
summations converge.

While the above notions of centrality are combinatorial in nature, and based on the discrete struc-
ture of the underlying graph, another line of research studies spectral techniques (in the sense of
linear algebra) to define a measure of centrality.

The earliest known proposal of this kind is due to Seeley [46], who normalized to sum one the
row of an adjacency matrix representing the “I like him” relations among a group of children, and
assigned a centrality score using the resulting dominant eigenvector. This is actually equivalent to
studying the stationary distribution of the Markov chain defined by the natural random walk on the
graph. Few years later, Wei [52] proposed the dominant eigenvector of suitable matrices to rank sport
teams.

Curiously enough, the most famous among spectral centrality scores is also one of the most recent,
PageRank [43]: PageRank was a centrality measure specifically geared toward web graphs, and it was

3The notion can also be generalized to a weighted summation of node contributions multiplied by some discount functions
applied to their distance to a given node [16].
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introduced precisely with the aim of implementing it in a search engine (specifically, Google, that the
authors of PageRank founded in 1997).

In the same span of years, Jon Kleinberg defined another centrality measure (actually, a ranking
algorithm) called HITS [28] (for “Hyperlink-Induced Topic Search”). The idea4 is that every node
of a graph is associated with two importance indices: one (called “authority score”) measures how
reliable (important, authoritative. . . ) a node is, and another (called “hub score”) measures how good
the node is in pointing to authoritative nodes, with the two scores mutually reinforcing each other.
The result is again the dominant eigenvector of a suitable matrix. SALSA [31] is a more recent and
strictly related score based on the same idea, with the difference that it applies some normalization to
the matrix.

3 Definitions and conventions
In this paper we consider directed graphs defined by a setN of n nodes and a set A � N �N of arcs;
we write x ! y when hx; yi 2 A and call x and y the source and target of the arc, respectively. An
arc with the same source and target is called a loop.

The transpose of a graph is obtained by reversing all arc directions (i.e., it has an arc y ! x for all
arcs x ! y of the original graph). A symmetric graph is a graph such that x ! y whenever y ! x;
such a graph is fixed by transposition, and can be identified with a undirected graph, that is, a graph
whose arcs are a subset of unordered pairs of nodes (usually called “edges”). A successor of x is a
node y such that x ! y, and a precedessor of x is a node y such that y ! x. The outdegree dC.x/
of a node x is the number of its successors, and the indegree d�.x/ is the number of its predecessors.

A path (of length k) is a sequence x0, x1, : : : , xk�1, where xj ! xjC1, 0 � j < k. A walk (of
length k) is a sequence x0, x1, : : : , xk�1, where xj ! xjC1 or xjC1 ! xj , 0 � j < k. A (strongly)
connected component of a graph is a maximal subset in which every pair of nodes is connected by a
walk (path). Components form a partition of the nodes of a graph. A graph is (strongly) connected if
there is a single (strongly) connected component, that is, for every choice of x and y there is a walk
(path) from x to y. A strongly connected component is terminal if its nodes have no arc towards
other components.

The distance d.x; y/ from x to y is the length of a shortest path from x to y, or1 if no such path
exists. The nodes reachable from x are the nodes y such that d.x; y/ <1. The nodes coreachable
from x are the nodes y such that d.y; x/ < 1. A node has trivial (co)reachable set if the latter
contains only the node itself.

The notation NA, where A is a nonnegative matrix, will be used throughout the paper to denote
the matrix obtained by `1-normalizing the rows of A, that is, dividing each element of a row by the
sum of the row (null rows are left unchanged). If there are no null rows, NA is stochastic, that is, it is
nonnegative and the row sums are all equal to one.

We use Iverson’s notation: if P is a predicate, ŒP � has value 0 if P is false and 1 if P is true [29];
finally, we denote with Hi the i -th harmonic number

P
1�k�i 1=k.

3.1 Geometric measures
We call geometric those measures assuming that importance is a function of the distances. These are
actually some of the oldest measures defined in the literature.

4To be true, Kleinberg’s algorithm works in two phases; in the first phase, one selects a subgraph of the starting webgraph
based on the pages that match the given query; in the second phase, the centrality score is computed on the subgraph. Since in
this paper we are looking at HITS simply as a centrality index, will simply apply it to the graph under examination.
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3.1.1 Indegree

Indegree, the number of incoming arcs d�.x/, can be considered a geometric measure: it is simply
the number of nodes at distance one5. It is probably the oldest kind of measure of importance ever
used, as it is equivalent to majority voting in elections (where x ! y if x voted for y). Indegree has
a number of obvious shortcomings (e.g., it is easy to spam), but it is actually a good baseline, and in
some cases turned out to provide better results than more sophisticated methods (see, e.g., [19]).

3.1.2 Closeness

Closeness was introduced by Bavelas in the late forties [6]; the closeness of x is defined by

1P
y d.y; x/

: (1)

The intuition behind closeness is that nodes that are more central have smaller distances, and thus a
smaller denominator, resulting in a larger centrality. We remark that for this definition to make sense,
the graph must be strongly connected. Lacking that condition, some of the denominators will be1,
resulting in a rank of zero for all nodes which cannot coreach the whole graph.

It was not probably in Bavelas’s intentions to apply the measure to directed graphs, and even
less to graph with infinite distances, but nonetheless closeness is sometimes “patched” by simply not
including unreachable nodes, that is,

1P
d.y;x/<1 d.y; x/

;

and assuming that nodes with an empty coreachable set have centrality 0 by definition: this is actually
the definition we shall use in the rest of the paper. These apparently innocuous adjustments, however,
introduce a strong bias toward nodes with a small coreachable set.

3.1.3 Lin’s index

Nan Lin [33] tried to repair the definition of closeness for graphs with infinite distances by weighting
closeness using the square of the number of coreachable nodes; his definition for the centrality of a
node x with a nonempty coreachable set isˇ̌

fy j d.y; x/ <1g
ˇ̌2P

d.y;x/<1 d.y; x/
:

The rationale behind this definitions is the following: first, we consider closeness not the inverse of
a sum of distances, but rather the inverse of the average distance, which entails a first multiplication
by the number of coreachable nodes. This change normalizes closeness across the graph. Now,
however, we want nodes with a larger coreachable set to be more important, given that the average
distance is the same, so we multiply again by the number of coreachable nodes. Nodes with an empty
coreachable set have centrality 1 by definition.

Lin’s index was (somewhat surprisingly) ignored in the following literature. Nonetheless, it seems
to provide a reasonable solution for the problems caused by the definition of closeness.

5Most centrality measures proposed in the literature were actually described only for undirected, connected graphs. Since
the study of web graphs and online social networks has posed the problem of extending centrality concepts to networks that
are directed, and possibly not strongly connected, in the rest of this paper we consider measures depending on the incoming
arcs of a node (e.g., incoming paths, left dominant eigenvectors, distances from all nodes to a fixed node). If necessary, these
measures can be called “negative”, as opposed to the “positive” versions obtained by taking the transpose of the graph.
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3.1.4 Harmonic centrality

As we noticed, the main problem of closeness lies in the presence of pairs of unreachable nodes.
We thus get inspiration from Marchiori and Latora [35], who, faced with the problem of providing
a sensible notion of “average shortest path” for a generic directed network, propose to replace the
average distance with the harmonic mean of all distances. Indeed, in case a large number of pairs
of nodes are not reachable, the average distance between reachable pairs can be misleading: a graph
might have a very low average distance, while it is almost completely disconnected (e.g., a perfect
matching has average distance exactly one). The harmonic mean has the useful property of handling
1 cleanly (assuming, of course, that 1�1 D 0). For example, a perfect matching has harmonic
mean of distances n � 1.

In general, for each graph-theoretical notion based on arithmetic averaging or maximization there
is an equivalent notion based on the harmonic mean. If we consider closeness the reciprocal of a
denormalized average of distances, it is natural to consider also the reciprocal of a denormalized
harmonic mean of distances. We thus define the harmonic centrality of x as6

X
y¤x

1

d.y; x/
D

X
d.y;x/<1;y¤x

1

d.y; x/
: (2)

The difference with (1) might seem minor, but actually it is a radical change. Harmonic centrality is
strongly correlated to closeness centrality in simple networks, but naturally also accounts for nodes
y that cannot reach x. Thus, it can be fruitfully applied to graphs that are not strongly connected.

3.2 Spectral measures
Spectral measures compute the left dominant eigenvector of some matrix derived from the graph,
and depending on how the matrix is modified before the computation we can obtain a number of
different measures. Existence and uniqueness of such measures is usually derivable by the theory
of nonnegative matrices started by Perron and Frobenius [8]; we will however avoid to discuss such
issues, as there is a large body of established literature about the topic. All observations in this section
are true for strongly connected graphs; the modifications for graphs that are not strongly connected
can be found in the cited references.

3.2.1 The left dominant eigenvector

The first and most obvious spectral measure is the left dominant eigenvector of the adjacency matrix.
Indeed, the dominant eigenvector can be thought as the fixed point of an iterated computation in which
every node starts with the same score, and then updates its score with the sum of its predecessors.
The vector is then normalized, and the process repeated until convergence.

The usage of dominant eigenvectors to find important nodes in matrices of entities can be traced
at least back to Wei’s Master thesis [52]. Wei’s thesis was then popularized by Kendall, and the
technique is actually known in the literature about ranking of sport teams as “Kendall–Wei ranking”.7

Dominant eigenvectors do not react very well to the lack of strong connectivity. Depending on
the dominant eigenvalue of the strongly connected components, the dominant eigenvector might or
might not be nonzero on non-terminal components (a detailed characterization can be found in [8]).

6We remark that Tore Opsahl already in a March 2010 blog posting observed that in an undirected graph with several
disconnected components the inverse of the harmonic mean of distances offers a better notion of centrality than closeness, as
it weights less elements that belong to smaller components.

7It was rediscovered as a generic way of ranking graphs by Bonacich [11].
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3.2.2 Seeley’s index

The dominant eigenvector rationale can be slighly amended with the observation that the update rule
we described can be thought of as if each node gives away its score to its successors: or even, that
each node has a reputation and is giving its reputation to its successors so that they can build their
own.

Once we take this viewpoint, it is clear that it is not very sensible to give away the same amount
of reputation to everybody: it is more reasonable to divide equally reputation among our successors.
From a linear-algebra viewpoint, this amounts to normalizing each row of the adjacency matrix using
the `1 norm.

This approach was advocated by Seeley [46] for computing the popolarity among groups of chil-
dren, given a graph representing whether each child liked or not another one. The matrix resulting
from the `1-normalization process is actually stochastic, so the score can be interpreted as the prob-
ability distribution of the stationary state of a Markov chain. In particular, if the underlying graph is
symmetric Seeley’s index collapses to the degree (modulo normalization) because of the very well-
known characterization of the stationary distribution of the natural random walk on a symmetric
graph.

Also Seeley’s index does not react very well to the lack of strong connectivity, but in a more
predictable way: the only nodes with a nonzero rank are those belonging to terminal components.

3.2.3 Katz’s index

Katz introduced his celebrated index [27] using a summation over all paths coming into a node, but
weighting each path so that the summation would actually be finite. Due to the interplay between the
powers of the adjacency matrix and the number of paths connecting two nodes, Katz’s index can be
expressed as

k D 1
1X
iD0

ˇiAi :

For the summation above to be finite, the attenuation factor ˇ must be smaller than 1=�, where � is
the dominant eigenvalue of A.

Katz immediately noted that the index was actually expressible using linear algebra operations:

k D 1.1 � ˇA/�1:

It took some more time to realize that, due to Brauer’s theorem on the displacement of eigenval-
ues [14], Katz’s index is actually the left dominant eigenvector of a perturbed matrix

ˇ�AC .1 � ˇ�/eT 1; (3)

where e is a right dominant eigenvector such that 1eT D � [50]. An easy generalization (actually
suggested by Hubbell [25]) replaces the vector 1 with some preference vector v, so that paths are also
weighted differently depending on their starting node.8

If the underlying graph is strongly connected, the limit of Katz’s index when ˇ ! 1=� is exactly
the dominant eigenvector [50]. This is also true under the much more general condition that the dom-
inant eigenvalue of A is semisimple [37], but in that case the limit is a specific dominant eigenvector
that depends on the preference vector v.

8We must note that the original definition of Katz’s index is 1A
P1

iD0 ˇ
iAi D 1=ˇ

P1
iD0 ˇ

iC1AiC1 D

.1=ˇ/
P1

iD0 ˇ
iAi � 1=ˇ . This additional multiplication by A is somewhat common in the literature, even for PageR-

ank; clearly, it alters the order induced by the ranking only when there is a nonuniform preference vector. Our discussion can
be easily adapted for this version.

7



3.2.4 PageRank

PageRank [43] is one of the most discussed and quoted spectral indices in use today, mainly because
of its alleged use in Google’s ranking algorithm.9

By definition, PageRank is the left dominant eigenvector (i.e., the stationary distribution) p of the
Markov chain

˛ NAC .1 � ˛/1T v;
where again NA is the `1-normalized adjacency matrix of the graph, and v is a preference vector (which
must be a distribution). The reader will immediately notice the similarity with (3): indeed, we can
work backwards and rewrite PageRank as

p D v
�
1 � ˛ NA

��1
;

leading to

p D v

1X
iD0

˛i NAi ;

which shows immediately that Katz’s index and PageRank differ only by the `1 normalization applied
to A, similarly to the difference between the dominant eigenvector and Seeley’s index.

Analogously to what happens with Katz’s index, the limit of PageRank when ˛ goes to 1 is
exactly the dominant eigenvector of NA, that is, Seeley’s index [10, 24]. The statement is always true,
because in stochastic matrices the dominant eigenvalue is always semisimple [8], but if the graph is
not strongly connected the limit is a specific dominant eigenvector that depends on the preference
vector v [10].

3.2.5 HITS

Kleinberg introduced his celebrated HITS algorithm [28] using the web metaphore of “mutual rein-
forcement”: a page is authoritative if it is pointed by many good hubs—pages which contain good
list of authoritative pages—, and a hub is good if it points to authoritative pages. This suggests an
iterative process that computes at the same time an authoritativeness score ai and a “hubbiness” score
hi starting with a0 D 1, and then applying the update rule

hiC1 D aiA
T aiC1 D hiC1A:

This process converges to the left dominant eigenvector of the matrix ATA, which gives the final
authoritativeness score, which is the score we label with “HITS” throughout the paper.10

Inverting the process, and considering the left dominant eigenvector of the matrix AAT , gives the
final hubbiness score. The two vectors are actually the left and right singular vectors associated with
the largest singular value in the singular-value decomposition of A. Note also that hubbiness is the
positive version of authoritativeness.

3.2.6 SALSA

Finally, we consider SALSA, a measure introduced by Lempel and Moran [31] always using the
metaphore of mutual reinforcement between authoritativeness and hubbiness, but `1-normalizing the
matrices A and AT . We start with a0 D 1 and proceed with

hiC1 D aiAT aiC1 D hiC1 NA:

9The reader should be aware, however, that the literature about the actual effectiveness of PageRank in information retrieval
is rather scarce, and comprises mainly negative results such as [40] and [19].

10As discussed in [20], the dominant eigenvector may not be unique; equivalently, the limit of the recursive definition given
above may depend on the way the authority and hub scores are initialized. Here we consider the result of the iterative process
starting with a0 D 1.
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We remark that this normalization process is analogous to the one that moves us from the dominant
eigenvector to Seeley’s index, or from Katz’s index to PageRank.

Similarly to what happens with Seeley’s index on symmetric graphs, SALSA does not need such
an iterative process to be computed.11 First, one computes the connected components of the sym-
metric graph induced by the matrix ATA; in this graph, x and y are adjacent if x and y have some
common predecessor in the original graph. Then, the score of a node is the ratio between its inde-
gree and the sum of the indegrees of nodes in the same component, multiplied by the ratio between
the component size and n. Thus, contrarily to HITS, a single linear scan of the graph is sufficient
to compute SALSA, albeit the computation of the intersection graph requires time proportional toP
x d
C.x/2.

3.3 Path-based measures
Path-based measures exploit not only the existence of a shortest paths, but actually take into exami-
nation all shortest paths (or all paths) coming into a node. We remark that indegree can be considered
a path-based measure, as it is the equivalent to the number of incoming paths of length one.

3.3.1 Betweeness

Betweenness centrality was introduced by Anthonisse [2] for edges, and then rephrased by Freeman
for nodes [22]. The idea is to measure the probability that a random shortest path passes through a
given node: if �yz is the number of shortest paths going from y to z, and �yz.x/ is the number of
such paths that pass through x, we define the betweeness of x asX

y;z¤x;�yz¤0

�yz.x/

�yz
:

The intuition behind betweeness is that if a large fraction of shortest paths passes through x, than x is
an important point of passage for the network. Indeed, removing nodes in betweeneess order causes
a very quick disruption of the network [9].

3.3.2 Spectral measures as path-based measures

It is a general observation that all spectral measures can actually be interpreted as path-based mea-
sures, as they depend on taking the limit of some summations of powers of A, or on the limit of
powers of A, and in both cases we can express these algebraic operations in terms of suitable paths.

For instance, the left dominant eigenvector of a nonnegative matrix can be computed with the
power method by taking the limit of 1Ak=k1Akk for k ! 1. Since, however, 1Ak is a vector
associating with each node the number of paths of length k coming into the node, we can see that
dominant eigenvector expresses the relative growth of the number of paths coming into each node as
their length increases.

Analogously, Seeley’s index can be computed (modulo a normalization factor) by taking the limit
of 1 NAk (in this case, the `1 norm cannot grow, so we do not need to renormalize at each iteration).
The vector 1 NAk has the following combinatorial interpretation: it assigns to each x the sums of the
weights of the paths coming into x, where the weight of a path x0, x1, : : : , xt is

t�1Y
iD0

1

dC.xi /
: (4)

11This property, which appears to be little known, is proved in Proposition 2 of the original paper [31].

9



When we switch to the attenuated versions of the previous indices (that is, Katz’s index and
PageRank), we switch from limits to infinite summations and at the same time modify the weight of a
path of length t with ˇt or ˛t . Actually, the Katz index of x was originally defined as the summation
over all t of the number of paths of length t coming into x multiplied by ˇt , and PageRank is the
summation over all paths coming into x of the weight (4) multiplied by ˛t .

The reader can easily work out similar definitions for HITS and SALSA, which depend on a
suitable definition of alternate “back-and-forth path” (see, e.g., [13])

4 Axioms for Centrality
The comparative evaluation of centrality measures is a challenging, difficult, arduous task, for many
different reasons. The datasets that are classically used in social sciences are very small (typically,
some tens of nodes) and it is hard to draw conclusions out of them. Nonetheless, some attempts were
put forward, like [48]; sometimes, the attitude was actually to provide evidence that different mea-
sures highlight different kinds of centralities and are therefore equally incomparably interesting [23].
Whether the latter attitude is the only sensible conclusion or not is debatable. While it is clear that
the notion of centrality, in its vagueness, can be interpreted differently giving rise to many good but
incompatible measures, we will provide evidence that some measures tend to reward nodes that are
in no way central.

If results obtained on small corpora may be misleading, a comparison on larger corpora is much
more difficult to deal with, due to the lack of ground truth and to the unavailability of implementations
of efficient algorithms to compute the measures under consideration (at least in the cases where
efficient, possibly approximate, algorithms do exist). Among the few attempts that try a comparison
on large networks we cite [49] and [41], that nevertheless focus only on web graphs and on a very
limited number of centrality indices.

In this paper, we propose to understand (part of) the behaviour of a centrality measure using a set
of axioms. While, of course, it is not sensible to prescribe a set of axioms that define what centrality
should be (in the vein of Shannon’s definiton of entropy [47] or Altman and Tennenholtz axiomatic
definition of Seeley’s index [1]12), as different indices serve different purposes, it is reasonable to set
up some necessary axioms that an index should satisfy to behave predictably and follow our intuition.

The other interesting aspect of defining axioms is that, even if one does not believe they are really
so discriminative or necessary, they provide a very specific, formal, provable piece of information
about a centrality measure that is much more precise than folklore intuitions like “this centrality is
really correlated to indegree” or “this centrality is really fooled by cliques”. We believe that a theory
of centrality should exactly provide this kind of compact, meaningful, reusable information (in the
sense that it can be used to prove other properties). This is indeed what happens, for example, in
topology, where the information that a space is T0, rather than T1, is a compact way to provide a lot
of information about the structure of the space.

Definining such axioms is a delicate matter. First of all, the semantics of the axioms must be
very clear. Second, the axioms must be evaluable in an exact way on the most common centrality
measures. Third, they should be formulated avoiding the trap of small, finite (counter)examples, on
which many centrality measures collapse (e.g., using an asymptotic definition). We assume from the
beginning that the centrality measures under examination are invariant by isomorphism, that is, that
they depend just on the structure of the graph, and not on particular labelling chosen for each node.

To meet these constraints, we propose to study the reaction of centrality measures to change of
size, to (local) change of density and their monotonicity with respect to arc additions. We expect that
nodes belonging to larger groups, when all other parameters are fixed, should be more important,

12The authors claim to formalize PageRank [44], but they do not consider the damping factor (equivalently, they are setting
˛ D 1), so they are actually formalizing Seeley’s venerable index [46].
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and that nodes with a denser neighbourhood (i.e., having more friends), when all other parameter
are fixed, should also be more important. We also expect that adding an arc should increase the
importance of the target.

How can we actually determine if this happens in an exact way, and possibly in an asymptotic
setting? To do so, we need to do something entirely new—evaluating exacly (i.e., in algebraic closed
form) all measures of interest on all nodes of some representative classes of networks.

4.1 The size axiom
An obvious approach to reduce to a minimum the amount of computation is using strongly connected
vertex-transitive13 graphs as basic building blocks: these graphs have as much symmetry as possible,
which entails a simplification of the computations. Finally, since we want to compare density, the
obvious choice is to pick the densest strongly connected vertex-transitive graph, the clique, and the
sparsest strongly connected, the directed cycle. Choosing two graphs at the extreme of the density
spectrum guarantees that best possible highlight of the reaction of centrality measures to densities.
Moreover, k-cliques and directed p-cycles obviously exist for every k and p (this might not happen
for more complicated structures, e.g., a cubic graph).

Let us consider a graph made by a k-clique and a p-cycle (see the figure in Table 1).14 Because
of invariance by isomorphism, all nodes of the clique has the same score, and all nodes of the cycle
have the same score. But which nodes are more important? Probably everybody would answer that
if p D k the elements on the clique are more important, and indeed this axiom is so trivial that is
satisfied by almost any measure we are aware of. But we are interested in assessing the sensitivity to
size, and thus we state our first axiom:

Definition 1 (Size axiom) Consider the graph Sk;p made by a k-clique and a directed p-cycle. A
centrality measure satisfies the size axiom if for every k there is a Pk such that for all p � Pk in Sk;p
the centrality of a node of the p-cycle is strictly larger than the centrality of a node of the k-clique,
and if for every p there is a Kp such that for all k � Kp in Sk;p the centrality of a node of the
k-clique is strictly larger than the centrality of a node of the p-cycle.

Intuitively, when p D k we do expect nodes of the cycle to be less important than nodes of the
clique. (Note that because of vertex transitivity and invariance by isomorphism we can speak of the
“centrality of a node of the p-cycle”, without specifying which node.) The rationale behind the case
k ! 1 is rather obvious: the denser community is also getting larger, and thus its members are
expected to become even more important.

On the other hand, if the cycle becomes very large (more precisely, when its size goes to infinity),
its nodes are still part of a very large (albeit badly connected) community, and we expect them to
achieve at some size greater importance than the node of a fixed-size community, no matter how
dense it can be.

Since one might devise some centrality measures that satisfy the size axiom for p and not for
k, which we would not certaintly want to pass our screening, stating both properties in Definition 1
gives us a finer granularity and avoids pathological cases.

4.2 The density axiom
Designing an axiom for density is a more delicate issue, since we must be able to define an increase
of density “with all other parameters fixed”, including size. Let us start ideally from a graph made

13A graph is vertex-transitive if for every nodes x and y there is an automorphism exchanging x and y.
14The graph is of course disconnected. It is a common theme of this work that centrality measures should work also on

graphs that are not strongly connected, for the very simple reason that we meet this kind of graphs in the real world, the web
being an obvious example.
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by a directed k-cycle and a directed p-cycle, and connect a vertex x of the k-cycle with a vertex y of
the p-cycle through a bidirectional arc, the bridge. If k D p, the vertices x and y are symmetric, and
thus must have necessarily the same ranking. Now, we increase the density of the k-cycle as much as
possible, turning it into a k-clique (see the figure in Table 2). Note that this change of density is local
to x, as the degree of y has not changed. We are thus strictly increasing the local density around x,
leaving all other parameters fixed, and in these circumstances we expect that the ranking x increases.

Definition 2 (Density axiom) Consider the graphDk;p made by a k-clique and a p-cycle (p; k � 3)
connected by a bidirectional bridge x $ y, where x is a node of the clique and y is a vertex of the
cycle. A centrality measure satisfies the density axiom if for k D p the centrality of x is strictly
larger than the centrality of y.

Note that our axiom does not specify any constraint when k ¤ p. While studying the behaviour
of the graph Dk;p of the previous definition when k ¤ p shades some lights of the inner behaviour
of centrality measures, it is essential, in an axiom asserting the sensitivity to density, that size is not
involved.

In our proofs for the density axiom, we actually let k and p be independent parameters (even if
the axiom requires k D p) because in this way we can compute the watershed, that is, the value of
k (expressed as a function of p) at which the axiom becomes true (if any). The watershed can give
some insight as to how badly a measure can miss to satisfy the density axiom.

4.3 The monotonicity axiom
Finally, we propose a seemingly trivial axiom that specifies strictly monotonic behaviour upon the
addition of an arc:

Definition 3 (Monotonicity axiom) Consider an arbitrary graph G and a pair of nodes x, y such
that x 6! y. A centrality measure satisfies the monotonicity axiom if when we add x ! y the
centrality of y increases.

Actually, in some sense this axiom is trivial: it is satisfied by essentially all centrality measures
we consider on strongly connected graphs. Thus, it is an excellent test to verify that a measure is able
to handle correctly partially disconnected graphs.

We remark that the reader might be tempted to define a weak monotonicity axiom which just
require the rank of y to be nondecreasing. However, the constant ranking associating one to every
node of every network would satisfy such an axiom, which makes it not very interesting for our goals.

5 Proofs and Counterexamples
We have finally reached the core of this paper: given that we are considering eleven centralities and
three axioms, we have to verify 33 statements. For the size and density axioms, we compute in
closed form the values of all measures, from which we can derived the desired results, whereas for
the monotonicity axiom we provide directly proofs or counterexamples.

We remark that in all our tables we use the proportionality symbol / to mark values that have
been rescaled by a common factor to make them more readable.

5.1 Size
Table 1 provides scores for the graph Sp;k , from which we can check whether the size axiom is
satisfied. The scores are all immediately computable from the basic definitions, because as we noticed
Sk;p is highly symmetrical and so there are actually only two scores—the score of a node of the clique
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and the score of a node of the cycle. Note that in the case of some spectral centrality measure there
are actually several possible solutions, in which case we use the one returned by the power method
starting from the uniform vector.

5.2 Density
Table 2 provides scores for the graph Dp;k . Being the graph strongly connected, there is no unique-
ness issue. While the computation of geometric and path-based centrality measures, being just a
matter of finite summations, is tedious but rather straightforward, spectral indices require some more
care. In the case ofDk;p , we have to write down parametric equations expressing the matrix computa-
tion that defines the centrality, and solve them. As noted before, we prefer to perform the computation
with two independent parameters k and p (even if the axiom requires k D p) because in this way we
can compute the watershed.

In all cases, we can always use the bounds imposed by symmetry to write down just a small
number of variables: c for the centrality of an element of the clique, ` for the clique bridge (“left”),
r for the cycle bridge (“right”), and some function t .d/ of the distance from the cycle bridge for the
nodes of the cycle (with 0 < d < p), with the condition t .0/ D r .

5.2.1 The left dominant eigenvector

In this case, the equations are given by the standard eigenvalue problem of the adjacency matrix:

�` D r C .k � 1/c

�c D `C .k � 2/c

�r D `C
r

�p�1
;

subject to the condition that we choose the � with maximum absolute value. Note that in the case
of the last equation we “unrolled” the equations about the elements of the cycle, �t.d C 1/ D t .d/.
Solving the system and choosing c D 1=.� � k C 1/ gives the solutions found in Table 2.

Since for nonnegative matrices the dominant eigenvalue is monotone in the matrix entries, � �
k � 1, because the k-clique has dominant eigenvalue equal to k � 1. On the other hand, � � k by
row-sum bounds, and the eigenvalue equations have no solution for � D k � 1, so we conclude that
k � 1 < � � k.

5.2.2 Katz’s index

In this case, the equations can be obtained by the standard technique of “taking one summand out”,
that is, writing

k D 1
1X
iD0

ˇiAi D 1C 1
1X
iD1

ˇiAi D 1C
�

1
1X
iD0

ˇiAi
�
ˇA D 1C kˇA:

The equations are then

` D 1C ˇr C ˇ.k � 1/c

c D 1C ˇ`C ˇ.k � 2/c

r D 1C ˇ`C ˇ

�
1 � ˇp�1

1 � ˇ
C ˇp�1r

�
;
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Centrality k-clique p-cycle

Degree k � 1 1

Harmonic k � 1 Hp�1

Closeness
1

k � 1

2

p.p � 1/

Lin
k2

k � 1

2p

p � 1

Betweenness 0
.p � 1/.p � 2/

2

Dominant / 1 0

Seeley / 1 1

Katz
1

1 � .k � 1/ˇ

1

1 � ˇ

PageRank / 1 1

HITS / 1 0

SALSA / 1 1

Table 1: Centrality scores for the graph Sk;p . Hi denotes the i -th harmonic number. The parameter
ˇ is Katz’s attenuation factor.
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where again we “unrolled” the equations about the elements of the cycle, as we would just have
t .d C 1/ D 1C ˇt.d/, so

t .d/ D
1 � ˇd

1 � ˇ
C ˇd r:

The explicit values of the solutions are quite ugly, so we present them in Table 2 as a function of the
centrality of the clique bridge `.

5.2.3 PageRank

To simplify the computation, we use 1, rather than 1=.kCp/, as preference vector (the result obtained
is obviously the same up to proportionality). We use the same technique employed in the computation
of Katz’s index, leading to

` D 1 � ˛ C
1

2
˛r C ˛c

c D 1 � ˛ C
˛

k
`C ˛

k � 2

k � 1
c

r D 1 � ˛ C
˛

k
`C ˛

�
1 � ˛p�1 C

1

2
˛p�1r

�
;

noting once again that unrolling the equation of the cycle t .1/ D 1 � ˛ C ˛r=2 and t .d C 1/ D
1 � ˛ C ˛t.d/ for d > 1 we get

t .d/ D 1 � ˛d C
1

2
˛d r:

The explicit values for PageRank are even uglier than those of Katz’s index, so again we present them
in Table 2 as a function of the centrality of the clique bridge `.

5.2.4 Seeley’s index

This is a freebie, as we can just compute PageRank’s limit when ˛ ! 1.

5.2.5 HITS

In this case we write down an eigenvalue problem for ATA. We have

�c D .k � 1/c C .k � 2/2c C .k � 2/`C r

�` D k`C .k � 1/.k � 2/c C t

�r D 2r C .k � 1/c

�t D t C `:

By normalizing the result so that c D �2��.kC1/Ck�1, and noting that the dominant eigenvalue
of ATA is the square of the dominant eigenvalue of A, we obtain the complex but somewhat readable
values shown in Table 2. Note that p has no role in the solution, because ATA can be decomposed
into two independent blocks, one of which is an identity matrix corresponding to all elements of the
cycle except for the first two.

5.2.6 SALSA

It is easy to check that the components of the intersection graph of precedessors are given by the
clique together with the cycle bridge and its successor, and then by one component for each node of
the cycle. The computation of the scores is then trivial using the non-iterative rules.
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Armed with our closed-form description of the scores, we have now to prove whether the density
axiom actually holds, that is, whether ` > r when k D p. In Table 2 we report the watershed, that is,
the point at which the axiom becomes true. When there is no watershed, the axiom is true for every
k; p � 3. Note that the determination of the watershed is trivial in almost all cases. We will now
discuss the remaining cases.

Theorem 1 HITS satisfies the density axiom.

Proof. As we have seen, we can normalize the solution to the HITS equation so that

` D .k � 1/.k � 2/.� � 1/

r D �3 � .k2 � 2k C 4/�2 C .3k2 � 7k C 6/� � .k � 1/2

Moreover, the characteristic polynomial can be computed explicitly from the set of equations and
some simple observations on the eigenvectors for the eigenvalue 1:

p.�/ D
�
�4�.k2�2kC6/�3C.5k2�12kC15/�2�.6k2�16kC14/�Ck2�2kC1

�
.1��/kCp�4:

The largest eigenvalue �0 satisfies the inequation .k � 1/2 � �0 � k2 � 2k C 5=4 for every k � 9,
as shown below (the statement of the theorem can be verified in the remaining cases by explicit
computation, as it does not depend on p). Using the stated upper and lower bounds on �0, we can
say that

` � r D .k � 1/.k � 2/.� � 1/ � .�3 � .k2 � 2k C 4/�2 C .3k2 � 7k C 6/� � .k � 1/2/

D ��3 C .k2 � 2k C 4/�2 � .2k2 � 4k C 4/�C k � 1

� �

�
k2 � 2k C

5

4

�3
C .k2 � 2k C 4/.k � 1/4 � .2k2 � 4k C 4/

�
k2 � 2k C

5

4

�
C k � 1

D
1

4
k4 � k3 �

19

16
k2 C

43

8
k �

253

64
;

which is positive for k > 4.
We are left to prove the bounds on �0. The lower bound can be easily obtained by monotonicity

of the dominant eigenvalue in the matrix entries, because the dominant eigenvalue of a k-clique
is k � 1. For the upper bound, first we observe that �0 can be computed explicitly (as it is the
solution of a quartic equation) and using its expression in closed form it is possible to show that
limk!1 �0 D .k � 1/2. This guarantees that the bound �0 � k2 � 2k C 5=4 is true ultimately. To
obtain an explicit value of k after which the bound holds true, observe that k2 � 2k C 5=4 D �0
implies q.k/ D p.�0/ D 0, where q.k/ D p.k2 � 2k C 5=4/. Computing the Sturm sequence
associated to q.k/ one can prove that q.k/ has no zeroes for k � 9, hence our lower bound on k.

Theorem 2 Katz’s index satisfies the density axiom.

Proof. Recall that the equations for Katz’s index are

` D 1C ˇr C ˇ.k � 1/c

c D 1C ˇ`C ˇ.k � 2/c

r D 1C ˇ`C ˇ

�
1 � ˇp�1

1 � ˇ
C ˇp�1r

�
:
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First, we remark that as ˇ ! 1=� Katz’s index tends to the dominant eigenvector, so ultimately
` > r . Thus, by continuity, we just need to show that ` D r never happens in the range of our
parameters. If we solve the equations above for c, ` and r and impose ` D r , we obtain

p D
ln
ˇ2 C k � 2

k � 1
lnˇ

:

Now observe that

ˇ �
ˇ2 C k � 2

k � 1

is always true for ˇ � 1 and k � 3. This implies that under the same conditions p � 1, which
concludes the proof.

Theorem 3 PageRank with constant preference vector satisfies the density axiom.

Proof. The proof is similar to that of Theorem 2. Recall that the equations for PageRank are

` D 1 � ˛ C
1

2
˛r C ˛c

c D 1 � ˛ C
˛

k
`C

˛.k � 2/

k � 1
c

r D 1 � ˛ C
˛

k
`C ˛

�
1 � ˛p�1 C

1

2
˛p�1r

�
:

First, we remark that as ˛ ! 1 PageRank tends to Seeley’s index, so ultimately ` > r . By continuity,
we thus just need to show that ` D r never happens in our range of parameters. If we solve the
equations above for c, ` and r and impose ` D r , we obtain

p D 1C

ln
�
�

2˛2 � .k2 � 4k C 6/˛ C k2 � 3k C 2

.k2 � 3k C 2/˛2 � .2k2 � 3k/˛ C k2 � k

�
ln˛

:

Now observe that 2˛2 � .k2 � 4kC 6/˛C k2 � 3kC 2 � 0 for k � 3. Thus, a solution for p exists
only when the denominator is negative. However, in that region

�
2˛2 � .k2 � 4k C 6/˛ C k2 � 3k C 2

.k2 � 3k C 2/˛2 � .2k2 � 3k/˛ C k2 � k
� 1:

This implies that under the same conditions p � 1, which concludes the proof.

5.3 Monotonicity
For the monotonicity axiom, we discuss briefly the nontrivial cases.

5.3.1 Harmonic

If you add an arc x ! y the harmonic centrality of y can only increase, because this addition can only
reduce the distances (possibly even turning some of them from infinite to finite), so it will increase
their reciprocals (strictly increasing the one from x).
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1

2

k

y x

Figure 1: A counterexample showing that Lin’s index fails to satisfy the monotonicity axiom.

5.3.2 Closeness

If you consider a one-arc graph z ! y and add an arc x ! y, the closeness of y decreases from 1 to
1=2.

5.3.3 Lin

Consider the graph in Figure 1: the Lin centrality of y is .k C 1/2=k. After adding an arc x ! y,
the centrality becomes .k C 5/2=.k C 9/, which is smaller than the previous value when k > 3.

5.3.4 Betweenness

If you consider a graph made of two isolated nodes x and y, the addition of the arc x ! y leaves the
betweenness of x and y unchanged.

5.3.5 Katz

The score of y after adding x ! y can only increase, because the set of paths coming into y now
contains new elements15.

5.3.6 Dominant eigenvector, Seeley’s index, HITS

If you consider a clique and two isolated nodes x, y, the rank given by the dominant eigenvector,
Seeley’s index and HITS to x and y is zero, and it remains unchanged when the arc x ! y is added.

5.3.7 SALSA

Consider the graph in Figure 2: the indegree of y is 1, and its component in the intersection graph of
predecessors is trivial, so its SALSA centrality is .1=1/ � .1=6/ D 1=6. After adding an arc x ! y,
the indegree of y becomes 2, but now its component is fy; z g; so the sum of indegrees within the
component is 2C 3 D 5, hence the centrality of y becomes .2=5/ � .2=6/ D 2=15 < 1=6.

5.3.8 PageRank

The case of PageRank turns out to be definitely nontrivial:

Theorem 4 PageRank satisfies the monotonicity axiom if ˛ 2 .0 : : 1/.

15It should be noted, however, that this is true only for the values of the parameter ˇ that still make sense after the addition.
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y

x z

Figure 2: A counterexample showing that SALSA fails to satisfy the monotonicity axiom.

Proof. For this proof, we define PageRank as v
�
1 � ˛ NA

��1 (i.e., without the normalizing factor
1 � ˛), so to simplify our calculations. By linearity, the result for the standard definition follows
immediately.

Consider two nodes x and y of a graph G such that there is no arc from x to y, and let d be the
outdegree of x. Given the normalized matrix NA of G, and the normalized matrix NA0 of the graph G0

obtained by adding to G the arc x ! y, we have

NA � NA0 D �xı;

where �x is the characteristic vector of x, and ı is the difference between the rows corresponding to
x in NA and NA0, which contains 1=d.d C1/ in the positions corresponding to the successors of x in G,
and �1=.d C 1/ in the position corresponding to y (note that if d D 0, we have just the latter entry).

We now use the Sherman–Morrison formula to write down the inverse of 1 � ˛ NA0 as a function
of 1 � ˛ NA. More precisely,

�
1 � ˛ NA0

��1
D

�
1 � ˛

�
NA � �Tx ı

���1
D
�
1 � ˛ NAC ˛�Tx ı

��1
D
�
1 � ˛ NA

��1
�

�
1 � ˛ NA

��1
˛�Tx ı

�
1 � ˛ NA

��1
1C ˛ı

�
1 � ˛ NA

��1
�Tx

:

We now multiply by the preference vector v, obtaining the explicit PageRank correction:

v
�
1 � ˛ NA0

��1
D v

�
1 � ˛ NA

��1
� v

�
1 � ˛ NA

��1
˛�Tx ı

�
1 � ˛ NA

��1
1C ˛ı

�
1 � ˛ NA

��1
�Tx

D r �
˛r�Tx ı

�
1 � ˛ NA

��1
1C ˛ı

�
1 � ˛ NA

��1
�Tx

r �
˛rxı

�
1 � ˛ NA

��1
1C ˛ı

�
1 � ˛ NA

��1
�Tx

:

We now note that
�
1�˛ NA

��1
�Tx is the vector of positive contributions to the PageRank of x, modulo

the normalization factor 1� ˛. As such, it is made of positive values adding up to at most 1=.1� ˛/.
When the vector is multiplied by ı, in the worst case (d D 0) we obtain 1=.1 � ˛/, so given the
conditions on ˛ it is easy to see that the denominator is positive. This implies that we can gather all
constants in a single positive constant c and just write

v
�
1 � ˛ NA0

��1
D
�
v � cı

��
1 � ˛ NA

��1
:

The above equation rewrites the rank-one correction due to the addition of the arc x ! y as a formal
correction of the preference vector. We are interested in the difference�

v � cı
��
1 � ˛ NA

��1
� v

�
1 � ˛ NA

��1
D �cı

�
1 � ˛ NA

��1
;

as we can conclude our proof by just showing that its y-th coordinate is strictly positive.
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We now note that being
�
1 � ˛ NA

�
strictly diagonally dominant, the (nonnegative) inverse B D�

1 � ˛ NA
��1 has the property that the entries bi i on the diagonal are strictly larger than off-diagonal

entries bki on the same column [36, Remark 3.3], and in particular they are nonzero. Thus, if d D 0�
�cı

�
1 � ˛ NA

��1�
y
D

c

d C 1
byy > 0;

and if d ¤ 0�
�cı

�
1 � ˛ NA

��1�
y
D

c

d C 1
byy �

X
x!z

c

d.d C 1/
bzy >

c

d C 1
byy �

X
x!z

c

d.d C 1/
byy D 0:

6 Roundup
All our proofs are summarized in Table 3, where we distilled our results into simple yes/no answers
to the question: does a given centrality measure satisfy the axioms?

It was surprising for us to discover that only harmonic centrality satisfies all axioms.16 All spectral
centrality measures are sensitive to density. Row-normalized spectral centrality measures (Seeley’s
index, PageRank and SALSA) are insensitive to size, whereas the remaining ones are only sensitive to
the increase of k (or p in the case of betweenness). All non-attenuated spectral measures are also non-
monotone. Both Lin’s and closeness centrality fail density tests17. Closeness has indeed the worst
possible behaviour, failing to satisfy all our axioms. While this result might seem counterintuitive, it
is actually a consequence of the known tendence of very far nodes to dominate the score, hiding the
contribution of closer nodes, whose presence is more correlated to local density.

All centralities satisfying the density axiom have no watershed: the axiom is satisfied for all
p; k � 3. The watershed for closeness (and Lin’s index) is k � p, meaning that they just miss
it, whereas the watershed for betweeness is a quite pathological condition (k � .p2 C p C 2/=4):
you need a clique whose size is quadratic in the size of the cycle before the node of the clique on
the bridge becomes more important than the one on the cycle (compare this with closeness, where
k D p C 1 is sufficient).

We remark that our results on geometric indices do not change if we replace the directed cycle
with a symmetric (i.e., undirected) cycle. It is possible that the same is true also of spectral rankings,
but the geometry of the paths of the undirected cycle makes it extremely difficult to carry on the
analogous computations in that case.

7 Sanity check via information retrieval
Information retrieval has developed in the last fifty years a large body of research about extracting
knowledge from data. In this section we want to leverage the work done in that field to check that
our axioms actually describe interesting features centrality measures. We are in this sense following
the same line of thought as in [40]: in that paper, the authors tried to establish in a methodologically
sound way which of degree, HITS and PageRank works better as a feature in web retrieval. Here we
ask the same question, but we include for the first time also geometric indices, which had never been
considered before in the literature about information retrieval, most likely because it was not possible
to compute them efficiently on large networks.

16It is interesting to note that it is actually the only centrality satisfying the size axiom—in fact, you need a cycle of� ek

nodes to beat a k-clique.
17We note that sinceDk;p is strongly connected, closeness and Lin’s centrality differ just by a multiplicative constant.
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Centrality Size Density Monotonicity
Degree only k yes yes
Harmonic yes yes yes
Closeness no no no
Lin only k no no
Betweenness only p no no
Dominant only k yes no
Seeley no yes no
Katz only k yes yes
PageRank no yes yes
HITS only k yes no
SALSA no yes no

Table 3: For each centrality and each axiom, we report whether it is satisfied.

The community working on information retrieval developed a number of standard datasets with
associated queries and ground truth about which documents are relevant for every query; those col-
lections are typically used to compare the (de)merits of new retrieval methods; since many of those
collections are made of hyperlinked documents, it is possible to use them to assess centrality mea-
sures, too.

In this paper we consider the somewhat classical TREC GOV2 collection (aboud 25 million web
documents) and the 149 associated queries. For each query (topic, in TREC parlance), we have
solved the corresponding Boolean conjunction of the terms, obtaining a subset of matching web
pages. Each subset induces a graph (whose nodes are the pages satisfying the conjunctive query),
which can then be ranked using any centrality measure. Finally, the pages in the graph are listed in
rank order as results of the query, and standard relevance measures can be applied to see how much
they correspond to the available ground truth about the assessed relevance of pages to queries.

There are a few methodological remarks that are necessary before discussing the results:

� The results we present are for GOV2; there are other publicly available collections with queries
and relevant documents that can be used to this purpose.

� As observed in earlier works [40], centrality scores in isolation have a very poor performance
when compared with text-based ranking functions, but can improve the results of the latter.
We purposely avoid measuring performance in conjunction with text-based ranking because
this would introduce further parameters. Moreover, our idea is using information-retrieval
techniques to judge centrality measures, not improving retrieval performance per se (albeit,
of course, a better centrality measure could be used to improve the quality of retrieved docu-
ments).

� Because of the poor performance, even for the best documents about half of the queries have
null score. Thus, the data we report must be taken with a grain of salt—confidence intervals
would be largely overlapping (i.e., our experiments have limited statistical significance).

� Some methods are claimed to work better if nepotistic links (that is, links between pages of
the same host) are excluded from the graph. We therefore report also results on the procedure
applied to GOV2 with all intra-host links removed.

� There are several ways to build a graph associated with a query. Here we choose the sim-
plest possible way—we solve the query in conjunctive form and build the induced subgraph.
Variants may include enlarging the resulting graph with successors/predecessors, possibly by
sampling [39].
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� There are many measures of effectiveness that are used in information retrieval; among those,
we focus here on the Precision at 10 (P@10, i.e., fraction of relevant documents retrieved
among the first ten) and on the NDCG@10 [26].

The results obtained are presented in Table 4: even if obtained in a completely different way, they
confirm the information we have been gathering with our axioms. Harmonic centrality has the best
overall scores. When we eliminate nepotistic links, the landscape changes drastically—SALSA and
PageRank lead now the results—but the best performances are worse than those obtained using the
whole structure of the web. Note that, again consistently with the information gathered up to now,
closeness performs very badly and betweenness performs essentially like using no ranking at all (i.e.,
showing the documents in some arbitrary order).

There are two new centrality measures appearing in Table 4 which deserve an explanation. When
we first computed these tables, we were very puzzled: HITS is supposed to work very badly on
disconnected graphs (it fails monotonicity), whereas it was the second best ranking after harmonic
centrality. Also, when you eliminate nepotistic links the graphs become highly disconnected and all
rankings tend to correlate with one another simply because most nodes obtain a null score. How is it
possible that PageRank and SALSA work so well (albeit less than harmonic centrality on the whole
graph) with so little information?

Our suspect was that these ranking were actually picking up some much more elementary signal
than their definition could make you think. In a highly disconnected graph, the values assigned
by such algorithms depends mainly on the indegree and on some additional ranking provided by
coreachable (or weakly reachable) nodes.

We thus devised two somewhat paradoxically simple centrality measures, Windegree and Salsina.
Windegree is simply the indegree weighted (i.e., multiplied) by the number of coreachable nodes.
Salsina is the indegree multiplied by the number of weakly reachable nodes (which is somewhat sim-
ilar to the way you compute SALSA). Both rankings have been designed to satisfy all our axioms. As
it is evident from Table 4, such simple rankings outperform in this test most of the very sophisticated
rankings proposed in the literature: this shows on one hand that it is possible to extract information
from the graph underlying a query in very simple ways that do not involve any spectral technique,
and on the other hand that designing centralities around our axioms actually pays off. We consider
this fact a further confirmation that the traits of centrality represented by our axioms are important.

8 Conclusions and future work
We have presented a set of axioms that try to capture part of the intended behaviour of centrality
measures. We have proved or disproved all our axioms for twelve classical centrality measures and
for harmonic centrality, a small variant to Bavelas’s closeness that we define formally in this paper for
the first time. The results are surprising and confirmed by some information-retrieval experiments:
harmonic centrality is a very simple measure providing a good notion of centrality. It is almost
identical to closeness centrality on undirected, connected networks, but provides a centrality notion
for arbitrary directed graphs.

There is of course a large measure of arbitrariness in what we have done: other researchers
could come up with other axioms. We believe that this is actually a feature—building an ecosystem
of interesting axioms is just a healthy way of understanding centrality better and less anecdotally.
Promoting the growth of such an ecosystem is one of the goals of this work.

As a final note, the experiments on information retrieval that we have reported are just a start.
Testing with different collections (and possibly with different ways of generating the graph associated
to a query) may lead to different results. Nonetheless, we believe we have made the important point
that geometric measures are relevant not also to social networks, but also to information retrieval.
In the literature comparing exogenous (i.e., link-based) rankings one can find different instances of
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All links
NDCG@10 P@10

BM25 0.5842 0.5644
Harmonic 0.1438 0.1416
Windegree 0.1373 0.1356
HITS 0.1364 0.1349
Salsina 0.1357 0.1349
Lin 0.1307 0.1289
Katz 3=4� 0.1228 0.1242
Katz 1=2� 0.1222 0.1228
Indegree 0.1222 0.1208
Katz 1=4� 0.1204 0.1181
SALSA 0.1194 0.1221
Closeness 0.1093 0.1114
PageRank 1=2 0.1091 0.1094
PageRank 1=4 0.1085 0.1107
Dominant 0.1061 0.1027
PageRank 3=4 0.1060 0.1094
Betweenness 0.0595 0.0584
— 0.0588 0.0577

Inter-host links only
NDCG@10 P@10

BM25 0.5842 0.5644
SALSA 0.1384 0.1282
PageRank 1=4 0.1347 0.1295
Salsina 0.1318 0.1255
PageRank 1=2 0.1315 0.1268
PageRank 3=4 0.1313 0.1255
Katz 1=2� 0.1297 0.1262
Windegree 0.1295 0.1262
Harmonic 0.1293 0.1262
Katz 1=4� 0.1289 0.1255
Lin 0.1286 0.1248
Indegree 0.1283 0.1248
Katz 3=4� 0.1278 0.1242
HITS 0.1179 0.1107
Closeness 0.1168 0.1121
Dominant 0.1131 0.1067
Betweenness 0.0588 0.0577
— 0.0588 0.0577

Table 4: Normalized discounted cumulative gain (NDCG) and precision at 10 retrieved documents
(P@10) for the GOV2 collection using all links and using only inter-host links. The tables include,
for reference, the results obtained using a state-of-the-art text ranking function, BM25, and a final line
obtained by applying no ranking function at all (documents are sorted by the document identifier).

spectral rankings and indegree, but up to know that venerable measures based on distances have been
neglected. We suggest that it is time to change this attitude.
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