

NADINE DELIVERABLE D3.2.

It is based on milestones M5* [WP3.1,WP3.2] (promised to be finished), M12 [WP3.3,

WP3.4] with deliverable publications:

[41] P1.21 Young-Ho Eom and D.L.Shepelyansky, "Opinion formation driven by

PageRank node influence on directed networks", submitted to Physica A Feb

(2015) (arXiv:1502.02567[physics.soc-ph]) [M12-WP3.3,WP3.4]

[53] P3.9 R.Palovics, F. Ayala-Gomez, B. Csikota, B.Daroczy, L. Kocsis, D. Spadacene,

A.A. Benczur, "RecSys Challenge 2014: an ensemble of binary classifiers and

matrix factorization", Proceedings of the 2014 Recommender Systems Challenge

(p. 13) ACM (2014) [M12-WP3.3,WP3.4]

[54] P3.10 Andrea N. Ban, Levente Kocsis, Robert Palovics, "Peer-to-peer Online

Collaborative Filtering", preprint (2015) [M12-WP3.3,WP3.4]

[60] P3.16 Robert Palovics, Balint Daroczym Andras A. Benczur, Julia Pap, Leonardo

Ermann, Samuel Phan, Alexei D. Chepelianskii, Dima L. Shepelyansky, , "Statistical

analysis of NOMAO customer votes for spots of France", preprint arXiv (2015)

[M12-WP3.3,WP3.4]

[61] P3.17 Robert Palovics, Ferenc Beres, Nelly Litvak, Frederick Ayala-

Gomez and Andras A. Benczur, "Centrality prediction in temporally

evolving networks", preprint arXiv (2015) [M12-WP3.3,WP3.4]

*[71] P4.18 Paolo Boldi, Corrado Monti, Massimo Santini, and Sebastiano Vigna,

"Liquid FM: Recommending Music through Viscous Democracy", submitted to

CoRR (2015) (arXiv:1503.08604[cs.SI], 2015) [M12-WP3.3,WP3.4] AND [M5-WP3.1-

WP3.2 promised to be finished in report; the software is open and

available herehttps://github.com/corradomonti/fbvoting]

[72] P4.19 Paolo Boldi and Corrado Monti, "LlamaFur: Learning Latent Category Matrix

 to Find Unexpected Relations in Wikipedia", submitted to CoRR (2015) [M12-

WP3.3,WP3.4]

PERIODIC REPORT TEMPLATE – NOVEMBER 2008

ar
X

iv
:1

50
2.

02
56

7v
1

 [p
hy

si
cs

.s
oc

-p
h]

 9
 F

eb
 2

01
5

Opinion formation driven by PageRank node influence on directed networks

Young-Ho Eoma,b, Dima L. Shepelyanskyb

aIMT Institute for Advanced Studies Lucca, Piazza San Francesco 19, Lucca 55100, Italy
bLaboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, UPS, F-31062 Toulouse, France

Abstract

We study a two states opinion formation model driven by PageRank node influence and report an extensive numerical
study on how PageRank affects collective opinion formations in large-scale empirical directed networks. In our model
the opinion of a node can be updated by the sum of its neighbor nodes’ opinions weighted by the node influence
of the neighbor nodes at each step. We consider PageRank probability and its sublinear power as node influence
measures and investigate evolution of opinion under various conditions. First, we observe that all networks reach
steady state opinion after a certain relaxation time. This time scale is decreasing with the heterogeneity of node
influence in the networks. Second, we find that our model showsconsensus and non-consensus behavior in steady
state depending on types of networks: Web graph, citation network of physics articles, and LiveJournal social network
show non-consensus behavior while Wikipedia article network shows consensus behavior. Third, we find that a more
heterogeneous influence distribution leads to a more uniform opinion state in the cases of Web graph, Wikipedia, and
Livejournal. However, the opposite behavior is observed inthe citation network. Finally we identify that a small
number of influential nodes can impose their own opinion on significant fraction of other nodes in all considered
networks. Our study shows that the effects of heterogeneity of node influence on opinion formationcan be significant
and suggests further investigations on the interplay between node influence and collective opinion in networks.

Keywords: Opinion formation, Directed networks, Centrality, PageRank, Node influence

1. Introduction

Each individual has her/his own opinion about politi-
cal, social, and economical issues based on her/his own
belief, information, and perspective. Individuals also
exchange, discuss, and reconcile their opinions with
others through social contacts or networks. Through
these interactions, collective opinions emerge from our
society. The recent advent of social media such as Twit-
ter or Facebook accelerates the emergence of collective
opinions on global scale. Understanding how collective
opinions are formed on various types of social networks
has critical importance in the era of information tech-
nology.

Statistical physics community has provided quantita-
tive tools to reveal the underlying mechanisms that gov-
ern the collective opinion formation through social in-
teractions [1]. Various opinion formation models (see
Refs. [1, 2] for details) on networks including voter
models [3, 4, 5, 6], majority rule model [7], bounded
confidence model [8], and Sznajd model [9] were sug-
gested and extensively studied. These models have
given us analysis tools of how network structure affects

opinion dynamics and have provided us mathematical
understanding of collective opinion formation.

In order to expand our understanding of collective
opinion formation on networks further we can consider
the following two directions. First we can consider
opinion formation on real social networks rather than
on artifact network models such as regular lattices or
small-world networks which are mainly considered in
previous studies [1, 2] and far from real networks. Sec-
ond, in most of real situations, there are opinion leaders
or elites who have strong influence and lead collective
opinions in social systems. The roles of these leaders or
elites on opinion formation is still elusive. In short, it is
necessary to understand how heterogeneous individual
influence affects on collective opinion formation on real
networks.

In a recent study [10], PageRank is proposed as a
node influence measure in an opinion formation model
on large-scale real networks such as Web graphs and
social media including LiveJournal and Twitter. The
PageRank opinion formation (PROF) model, introduced
in [10], takes into account a node influence in the pro-

Preprint submitted to Elsevier February 10, 2015

http://arxiv.org/abs/1502.02567v1

cess of opinion formation. In the PROF model, the
opinion of a node is updated by the weighted sum of
neighbor nodes’ opinions and the weight of the neighbor
nodes are given by their PageRank (see the next section
for details). It is found that a group of top influential
elites in the networks (i.e., nodes with high PageRank)
can impose their own opinion on a significant fraction of
the considered networks [10]. The PROF model is also
considered on Ulam networks [11], generated by the in-
termittency map and the Chirikov typical map, showing
a similar behavior with the case of World Wide Web
(WWW).

In the present work we consider how heterogeneous
node influence affects the collective opinion forma-
tion using the modified PageRank opinion formation
(PROF) model to go beyond previous works [10, 11].
Our goal is to examine how the PROF model behaves
on real directed networks if we adjust the heterogeneity
of node influence (i.e., the PageRank of nodes). The
original PROF model considered only linear case of
PageRank as a node influence, it is necessary to con-
sider opinion formation driven by node influence under
more general conditions. To do this we modified the
PROF model considering sublinear PageRank of nodes
such that the influence of nodei is given byPi

g where
Pi is the PageRank of nodei and 0≤ g ≤ 1. Extensive
numerical study of the model shows various features of
considered opinion formation. First we observed that all
networks reach a steady state opinion and the relaxation
time to this state is decreasing with the heterogeneity
of node influence in the networks. Second we found
our model shows consensus and non-consensus behav-
ior in steady state depending on types of networks: Web
graph, citation network of physics articles, and Live-
Journal social network show non-consensus behavior
while Wikipedia article network shows consensus be-
havior. Third we found that the more heterogeneous dis-
tribution of node influence the network has (i.e., higher
g), the more uniform opinion state we can observe in
Web graph, Wikipedia, and Livejournal. However, in
the citation network, the more heterogeneous distribu-
tion of node influence leads to the less uniform opinion.
Finally we observed that a small number of influential
nodes can impose their own opinion on significant frac-
tion of other nodes in all considered networks.

The paper is organized as follows. The modified
PROF model is described in Section 2. The descrip-
tion of considered empirical directed networks is given
in Section 3. The extensive numerical studies on empir-
ical networks are presented in Section 4. A discussion
of the result is given in Section 5.

2. Opinion formation by the modified PROF model

We consider a directed networkG(N, L) with N nodes
and nodes in the network are connected byL directed
links. Based on the network structure, the PageRank
probabilityPi(t) of nodei at iteration timet is given by

Pi(t) = (1− α)/N + α
∑

j

Ai j P j(t − 1)/kout(j), (1)

whereAi j is the adjacency matrix of the networkG and
Ai j = 1 if there is a directed link from nodei to j and
kout(j) is the out-degree of nodej (i.e., number of out-
links from nodej). We take the stationary stateP(i) of
P(i, t) as the PageRank of nodei.

PageRank is a widely used node centrality to quan-
tify influence of nodes in a given directed network.
Originally PageRank was introduced for Google web
search engine to rank web pages in World Wide Web
based on the idea of academic citations [13]. Currently
PageRank is used to rank nodes in various types of
directed networks including citation networks of sci-
entific papers [14, 15], social network services [16],
world trade network [17], biological systems [18], and
Wikipedia [19, 20, 21].

In this work each nodei has a binary opinionσi ∈

{−1,+1} and has PageRankPi as a node influence based
on network structure and Eq. (1). At each opinion up-
date, a nodei is randomly chosen and its opinion is up-
dated considering its neighbor nodes’ opinions. Each
time step consists ofN updates. Thus one time step cor-
responds to one update for each node on average. The
opinion updating rule considers node influence of each
neighbor node. Adopted from the original PageRank
opinion formation (PROF) model [10, 11], the update
rule reads: if the following functionH(i) for the chosen
nodei is positive, thenσi = +1 otherwiseσi = −1. The
functionH(i) is given by:

H(i) = a
∑

j∈Λi,in

σ jP j
g + b

∑

j∈Λi,out

σ jP j
g
, a+ b = 1 (2)

whereΛi,in is the group of in-neighbor nodes of node
i (i.e., nodes have out-links to nodei) andΛi,out is the
group of out-neighbor nodes of nodei (i.e., nodes have
out-links from nodei), respectively. The parameterg
quantifies the heterogeneity of node influence. Ifg = 0.
then every node in the network has same node influ-
ence. Ifg = 1.0 then every node in the network can
influence other nodes’ opinion as much as its PageRank
and and thus this case is reduced to the original PROF
model [10]. Thus,H(i) is the weighted summation of
opinions of nodei’s neighbor nodes. In this study we
usea = b = 0.5 for simplicity of analysis.

2

3. Empirical networks

We consider the following four empirical directed
networks. (1)Web graph: we consider Web graph of
University of Cambridge [22, 23]; here each node cor-
responds to a Web page and a link is hyper-link be-
tween the Web pages in the domain of University of
Cambridge. (2)Citation network: we consider Physical
Review citation network [15]; here a node corresponds
to an article published in Physical Review journal of
American Physical Society from 1897 to 2009 and the
links correspond to the citation relations between the ar-
ticles. (3)Wikipedia: we consider the network of arti-
cles in French Wikipedia [21]; the nodes correspond to
articles in French Wikipedia (fr.wikipedia.org) and the
links are the inter-articles hyper-links between the arti-
cles. (4)LiveJournal: we consider the social network of
LiveJounral (livejournal.com) users; here the nodes are
users of LiveJournal and the links are social relationship
between the users; a more detail information on the net-
work data are given in [24].

Statistical properties of the considered empirical net-
works are represented in Table 1. It is notable that un-
like typical networks such as regular lattices or small-
world networks considered in opinion formation mod-
els, all considered networks in this work have com-
plex structural properties including broad degree distri-
butions and broad distribution of PageRank [22, 15, 21,
10].

Table 1: Basic statistics of empirical directed networks,N gives the
total number of nodes andL gives the total number of links.

Network N L
Web graph 212710 1831542
Citation 463349 4690897

Wikipedia 1352825 34431943
LiveJournal 3577166 44913072

4. Results

With the modified PROF model on described em-
pirical networks, we investigate dynamics of collective
opinion formation. First we consider evolution of the
fractions of (+1) opinion, f (t,+1), by timet to investi-
gate whether considered networks can reach the steady
state or not and whether they reach consensus opin-
ion or not if the networks can reach the steady state.
For simplicity, we representf (t) = f (t,+1). By def-
inition, we can consider the fraction of (−1) opinion

f (t,−1) = 1− f (t) easily. Starting with same initial frac-
tion of two opinions (i.e.,f (0,+1) = f (0,−1) = 0.5),
we numerically investigate how fractions of each opin-
ion state evolve by time t. As shown in Fig. 1, all con-
sidered networks have reached the steady states. Sub-
figures located in the bottom row of Fig. 1 represent
the evolution of the fraction of (+1) opinion nodesf (t)
along with timet andg = 1 (10 realizations for each
network). For Wikipedia case (the third column of
Fig. 1), we can observe “consensus” behavior (i.e., most
of nodes have single major opinion whether (+1) or
(−1)). However, we observed that Web graph (the first
column of Fig. 1), Citation network (the second column
of Fig. 1), and LiveJournal social network (the fourth
column of Fig. 1) show non-consensus behavior (i.e.,
two finite values of opinion co-exist in the steady states).
Here we define that if a given network have reached ei-
ther fs > 0.95 or fs < 0.05, the network shows con-
sensus behavior wherefs is the fraction of (+1) opin-
ion in the steady state. We find that Web graph and
Wikipedia relax to the steady state (either consensus or
non-consensus) in short time (t < 30) as shown in Fig. 1
while more longer times (t > 40) are necessary to reach
the steady states in cases of Citation and LiveJournal
networks. Sub-linearg values cases (figures from the
first to fourth row) show similar behaviors of reaching
steady state with the linear cases. But it is notable that
for Web graph and Wikipedia, the differences between
each steady state fractions of (+1) opinions are bigger
with growing g. We can consider this observation as
a sign of growing polarization of steady state opinion.
However, other networks give no clear signs. A further
more quantitative analysis for these gaps between the
fraction of steady state opinions are required.

To quantify the effects ofg value on the relaxation
time to the steady state of the collective opinion, first we
define〈 f (t)〉10 as an average fraction of (+) state for 10
consecutive time steps from timet to t + 9 as following.

〈 f (t)〉10 =
1
10

t+9∑

t

f (t) (3)

We define timeTc of reaching the steady state for
each network such that the standard deviationσ(10)
of above ten consecutive fractionf (t) of (+1) opinion
nodes from timet = Tc to t = Tc+9 is less than 0.0002.
(i.e.,σ(10)< 0.0002). Fig. 2 represents the relation be-
tween steady state relaxation timeTc and the influence
exponentg. We can observe a clear tendency that big-
ger g (more heterogeneous influence the network has)
leads to shorter time to reach the steady states for all
networks. As Fig.1. implies, Web graph and Wikipedia

3

have shorter relaxation timesTc < 30 for variousg
while Citation and LiveJournal networks have signifi-
cantly longer 40< Tc < 110 and effects ofg variation
are more pronounced.

In order to analyze opinion formation in the steady
states and study polarization of steady state opinions,
we investigate distributions of fraction of (+1) opinion
fs in steady state for each network. Fig. 3 represents the
distributions of fraction of (+1) opinion in the steady
states for each case of empirical network starting with
f (0,+1) = f (0,−1) = 0.5. For the cases of Web graph,
Wikipedia, and LiveJournal, increasingg resulted in
more uniform opinion states (i.e., the fractions of major-
ity opinion state whether (−1) or (+1) are getting higher
with g). This indicates that a more heterogeneous node
influence distribution in networks may lead to a more
”totalitarian” society. However, the Citation network
shows the opposite pattern. It is notable that the Citation
network has different structural property from other di-
rected networks. Unlike the other considered networks,
reciprocal links (i.e., bi-directed links connecting from
nodei to node j and from nodej to i.) are very rare
in the citation networks due to time-ordering of citation
relationships between scientific articles (i.e., it is prac-
tically not possible to cite publications in future). Thus
this distinctive structure might affect behaviors of col-
lective opinion on the network.

So far we considered only evolution of opinion states
starting from the same fractions of initial opinion states
(i.e., f (0,+1) = f (0,−1) = 0.5). If initial fraction of
two opinions are different, then how collective opinions
on networks are formed? In order to find out how the
steady state fractionfs of nodes with (+1) opinion de-
pends on its initial fractionfi = f (0,+1), we investigate
opinion formation with varying initial fraction of (+1)
opinion and varyingg. Fig. 4 represents a fraction of
(+1) opinion in the steady statefs versus an initial frac-
tion of (+1) opinion fi for each empirical network. Each
row in Fig. 4 represents each network and each column
represents each value ofg.

In the case of Web graph, we can observe the emer-
gence of bistability asg is increasing. Here bistabil-
ity means there exist two steady state fractions of (+1)
opinion. The bistability of Web graphs is also ob-
served in [10] in the case of University of Cambridge
and Oxford Web graph with original PROF model (i.e.,
g = 1.0). Wheng is small (g ≤ 0.25), the fraction
of (+1) opinion fs in the steady state reached single
value of fraction with some fluctuations. Meanwhile,
wheng ≥ 0.5, there are two values offs in the steady
state. For LiveJournal network, there are signs of mul-
tiple steady state fractions of (+1) opinion as shown in

Fig. 3(D). This phenomenon is also observed in Fig 4
but only for fi = 0.5. If fi , 0.5, we cannot observe
such multistability in the steady state. On the other
hand, there is no such bistability for the case of Citation
network and Wikipedia. In particular the Wikipedia net-
work shows if the initial fraction of (+) opinion is less
(more) than 0.45 (0.55), the final fraction is always less
(more) than 0.05 (0.95). Based on the observation, the
initial fraction of the opinion states can be critical for
opinion formation in these networks but the detail be-
haviors can be different depending on the types of net-
works.

To characterize the effects of influential nodes on
opinion formation, we investigate how a group of se-
lected nodes with a fixed opinion can impose their own
opinion on the entire network. We compare two opin-
ion implanting strategies ofn seed nodes with a fixed
opinion.

In the random implanting strategy, we choosen
nodes as seed nodes from a given network randomly
and assign (+1) opinion to them. The opinions of seed
nodes are fixed. We assign (−1) opinion to the rest of
nodes (i.e., non-seed nodes) in the networks. The opin-
ions of the non-seed nodes are flexible thus their opin-
ions can be changed by the modified PROF rule at each
update. Meanwhile in thetargeted implating strategy,
we choosen nodes as seed nodes in order of PageR-
ank of the nodes and assign (+1) opinion to them. The
opinions of seed nodes are also fixed. We assign (−1)
opinion to the rest of nodes in the network and update
the opinions of non-seed nodes by modified PROF rule
as in the random implanting strategy at each update.

Fig 5 compares the fraction of (+1) opinion nodes in
the steady state by two implanting strategies. Regard-
less of networks and value ofg, targeted implanting
cases are much more effective to lead collective opin-
ion states of the networks to (+1) opinion. Even when
g = 0.0 (i.e., every node has the same node influence),
targeted implanting is more effective than random im-
planting strategy to change the nodes in the networks to
(+1) opinion. The tendency is getting stronger withg.
For the Citation, Wikipedia, and LiveJournal networks,
even a very small fraction of top influential nodes with
fixed (+1) opinion (i.e., f (0) ≤ 0.01) can lead to the
significant fraction of (+1) opinion in the steady state
on the networks. For the Web graph, the tendency is
weaker partially due to the ”bistability” we observed
above. In [10], it was observed that imposing (+1)
opinion on small initial fraction (∼ 1 percent of nodes)
of top PageRank nodes can lead 40 percent of (+) opin-
ion states. Our analysis indicates this ”elite” effect can
exist even when every node has the same influence but

4

the elite effect can be much stronger when node influ-
ence are heterogeneously distributed with a larger value
of g.

5. Discussion

Opinion formation in social systems is mediated by
social interactions between the individuals in the sys-
tems and at the same time it is affected by influence of
interacting nodes. Thus understanding this interplay be-
tween individuals’ influence and network structure of
social interactions is a salient issue. In this study we
used the modified PageRank opinion formation (PROF)
model to consider how heterogeneous node influence af-
fects collective opinion formation on real networks and
analyzed effects of heterogeneity of node influence on
opinion formation. We found that the relaxation time to
reach the steady state is decreasing with the heterogene-
ity of node influence in the networks. We also identi-
fied that a small number of influential nodes can impose
their opinion on significant fraction of nodes, and the
impacts of these social elites on collective opinion is
growing with the heterogeneity of node influence.

All of considered networks reach a steady opinion
state. However, it is not clear why only Wikipedia
shows consensus and the other networks do not. Since
we considered directed networks, asymmetric nature of
links could be the obstacle to reach consensus. To check
the effect of the asymmetric nature of links, we consid-
ered undirected version of empirical networks but ob-
served the same non-consensus behaviors. Thus we can
rule out this explanation. On the other hand, a strong
local structure such as communities or modules [25, 26]
can prohibit to reach the consensus opinion state. Since
communities in networks are typical composed of a
group of tightly connected nodes, such a densely con-
nected group of nodes may persist the influence from
other parts of the networks. It would be interesting to
study an interplay between influential nodes and com-
munity structure. The Citation network also displays the
opposite behaviors from the other networks such that
the other networks show more uniform opinions states
with growingg while Citation network shows less uni-
form steady state opinion. It is interesting to check if
other citation networks show similar behaviors with our
Citation network.

In this study we used PageRank and its sub-linear
power as node influence. However, other node centrali-
ties on directed network can be considered as node influ-
ence including in-degree, betweenness centrality [27],
CheiRank [28], 2DRank [29], or non-structural node
attributes. Since PageRank is positively correlated

with in-degree, the study of considering node influ-
ence which is positively correlated with in-degree can
be interesting. As described above, community or
core-periphery structures may also significantly affect
the collective opinion formation with a local structure-
based influence measure.

Due to the advent of information technology and
growing usage of social media, the problem of collec-
tive opinion formation is getting more and more com-
plicated going to a global scale. A quantitative under-
standing of opinion formation on large-scale networks
becomes of crucial importance. Our study sheds a new
light on how the node influence and network structure
together affect the collective opinion in directed net-
works.

5

Acknowledgments

We thank V.Kandiah for useful discussions and
American Physical Society for letting us use their cita-
tion database for Physical Review journals. This work is
supported in part EC FET Open project “New tools and
algorithms for directed network analysis (NADINE)” -
No. 288956. Y.-H. Eom also thanks for supporting of
the EC FET project “Financial Systems SIMulation and
POLicy Modelling (SIMPOL)” - No. 610704.

References

[1] C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81
(2009) 591

[2] H. Xia, H. Wang, Z. Xuan, Int. J. Knowl. Syst. Sci. 2 (2011)72.
[3] S. Galam, J. Math. Psych. 30 (1986) 426.
[4] S. Galam, Int. J. Mod. Phys. C 19 (2008) 409.
[5] V. Sood, S. Redner, Phys. Rev. Lett. 94 (2005) 178701.
[6] K. Suchecki, V.M. Eguı́luz, M. San Miguel, Phys. Rev. E 72

(2005) 036132.
[7] S. Galam, Eur. Phys. J. B 25 (2002) 403.
[8] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, Adv.

Compl. Syst. 03 (2000) 87.
[9] K. Sznajd-Weron, J. Sznajd, Int. J. Mod. Phys. C 11 (2000)

1157.
[10] V. Kandiah, D.L. Shepelyansky, Physica A 391 (2012) 5779.
[11] L. Chakhmakhchyana, D.L. Shepelyansky, Phys. Lett. A 377

(2013) 3119.
[12] A.M. Langville, C.D. Meyer, Googles PageRank and Beyond:

The Science of Search Engine Rankings, Princeton University
Press, Princeton, 2006.

[13] S. Brin, L. Page, Comput. Netw. ISDN Syst. 30 (1998) 107.
[14] P. Chen, H. Xie, S. Maslov, S. Redner, Jour. Informetrics 1

(2007) 8.
[15] K.M. Frahm, Y.-H. Eom, D.L. Shepelyansky, Phys. Rev. E 89

(2014) 052814.
[16] H. Kwak, C. Lee, H. Park, S. Moon, What is Twitter, a social

network or a news media? in: Proc. 19th Int. Conf. WWW2010,
ACM, New York, NY, 2010, p. 591.

[17] L. Ermann, D.L. Shepelyansky, Acta Physica Polonica A 120
(2011) 6A.

[18] V. Kandiah, D.L. Shepelyansky, PLoS ONE 8 (2013) e61519.
[19] Y.-H. Eom, D.L. Shepelyansky, Euro. Phys. Jour. B 86 (2013)

492.
[20] Y.-H. Eom, D.L. Shepelyansky, PLoS ONE 8 (2013) 74554.
[21] Y.-H. Eom, P. Aragón, D. Laniado, A. Kaltenbrunner, S.Vigna,

D.L. Shepelyansky, (2014) arXiv:1405.7183.
[22] K.M. Frahm, B. Georgeot, D.L. Shepelyansky, J. Phys, A:Math.

Theor. 44 (2011) 465101.
[23] Academic Web Link Database Project.

http://cybermetrics.wlv.ac.uk/database/ .
[24] M. Kurucz, A. Benczur, A. Pereszlenyi, Large-scale prin-

cipal component analysis on livejournal friends network,
in: Proc. Workshop on Social Network Mining and Anal-
ysis Held in Conjunction with 13th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, KDD 2008, Las Vegas NV, August 24.27, 2008.
http://dms.sztaki.hu/en/letoltes/livejournal-data.

[25] M. Girvan, M. E. J. Newman, Proc. Natl. Acad. Sci. USA 99
(2002) 7821.

[26] S. Fortunato, Phys. Rep. 486 (2010) 75.

[27] S. Wasserman, K. Faust, Social Networks Analysis, Cambridge
University Press, Cambridge, 1994.

[28] A. D. Chepelianskii, (2010) arXiv:1003.5455.
[29] A.O. Zhirov, O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. B 77

(2010) 523.

6

http://arxiv.org/abs/1405.7183
http://cybermetrics.wlv.ac.uk/database/
http://dms.sztaki.hu/en/letoltes/livejournal-data
http://arxiv.org/abs/1003.5455

 0
 0.2
 0.4
 0.6
 0.8

 1

0 10 20 30

f(
t)

Web graph

 0
 0.2
 0.4
 0.6
 0.8

 1

0 10 20 30

f(
t)

 0
 0.2
 0.4
 0.6
 0.8

 1

0 10 20 30

f(
t)

 0
 0.2
 0.4
 0.6
 0.8

 1

0 10 20 30

f(
t)

 0
 0.2
 0.4
 0.6
 0.8

 1

0 10 20 30

f(
t)

Time t

 0
 0.2
 0.4
 0.6
 0.8

 1

0 40 80 120 160 200

Citation

 0
 0.2
 0.4
 0.6
 0.8

 1

0 40 80 120 160 200

 0
 0.2
 0.4
 0.6
 0.8

 1

0 40 80 120 160 200

 0
 0.2
 0.4
 0.6
 0.8

 1

0 40 80 120 160 200

 0
 0.2
 0.4
 0.6
 0.8

 1

0 40 80 120 160 200
Time t

 0
 0.2
 0.4
 0.6
 0.8

 1

0 10 20 30

Wikipedia

 0
 0.2
 0.4
 0.6
 0.8

 1

0 10 20 30

Wikipedia

 0
 0.2
 0.4
 0.6
 0.8

 1

0 10 20 30

Wikipedia

 0
 0.2
 0.4
 0.6
 0.8

 1

0 10 20 30

Wikipedia

 0
 0.2
 0.4
 0.6
 0.8

 1

0 10 20 30
Time t

Wikipedia

 0
 0.2
 0.4
 0.6
 0.8

 1

0 40 80 120 160 200

g=
0.

0

LiveJournal

 0
 0.2
 0.4
 0.6
 0.8

 1

0 40 80 120 160 200

g=
0.

25

 0
 0.2
 0.4
 0.6
 0.8

 1

0 40 80 120 160 200

g=
0.

50

 0
 0.2
 0.4
 0.6
 0.8

 1

0 40 80 120 160 200

g=
0.

75

 0
 0.2
 0.4
 0.6
 0.8

 1

0 40 80 120 160 200

g=
1.

0

Time t

Figure 1: Evolution of the fractions of (+1) opinion f (t) in time t; here 10 realizations per each network and each value ofg are represented. Each
column corresponds to the network and each row corresponds to g.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

T
c

g

Web graph
Citation

Wikipedia
LiveJournal

Figure 2: Dependence of the relaxation timeTc to a steady state on the influence exponentg for considered networks.

7

0.0

0.1

0.2

0.3

0.4

 0 0.2 0.4 0.6 0.8 1

P
(f

s)

Fraction of (+1) state fs

(A) Web graph

0.0

0.02

0.04

0.06

0.08

0.1

 0 0.2 0.4 0.6 0.8 1

P
(f

s)

Fraction of (+1) state fs

(B) Citation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 0 0.2 0.4 0.6 0.8 1

P
(f

s)

Fraction of (+1) state fs

(C) Wikipedia

0.0

0.1

0.2

0.3

 0 0.2 0.4 0.6 0.8 1

P
(f

s)

Fraction of (+1) state fs

(D) LiveJournal

g=0.00 g=0.25 g=0.50 g=0.75 g=1.00

Figure 3: Distributions of (+1) opinion fraction in the steady state for each empirical network. Herefs is the fraction of (+1) opinion in steady state
andP(fs) is the probability distribution function offs. All the cases start with initial fraction off (+1, 0) = f (−1, 0) = 0.5 with 1000 realizations
for Web graph and Citation networks and 500 realizations forWikipedia and LiveJournal.

8

UCAM, g=0.00

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
UCAM, g=0.25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
UCAM, g=0.50

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
UCAM, g=0.75

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
UCAM, g=1.00

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

Wikipedia, g=0.00

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
Wikipedia, g=0.25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
Wikipedia, g=0.50

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
Wikipedia, g=0.75

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
Wikipedia, g=1.00

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

Citation, g=0.00

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
Citation, g=0.25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
Citation, g=0.50

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
Citation, g=0.75

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100
Citation, g=1.00

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

LiveJournal, g=0.00

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50
LiveJournal, g=0.25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50
LiveJournal, g=0.50

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50
LiveJournal, g=0.75

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50
LiveJournal, g=1.00

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

Figure 4: Fraction of (+1) opinion statesfs (y−axis) in the steady state as function of initial fractionfi (x−axis) of (+1) opinion state for given
network andg. Each row corresponds to each network and each column corresponds to the value ofg. Here there are 100 realizations for Web
graph, Citation networks, and Wikipedia and 50 realizations for LiveJournal. Here the color marks the relative number of cases obtained for give
values (fi , fs), the color changes from black (zero) to red (maximal numberof cases).

9

10-6

10-5

10-4

10-3

10-2

10-1

100

10-6 10-5 10-4 10-3 10-2 10-1 100

F
in

al
 fr

ac
tio

n
of

 (
+

1)
 n

od
es

Initial fraction of (+1) nodes

(A) Web graph

10-6

10-5

10-4

10-3

10-2

10-1

100

10-6 10-5 10-4 10-3 10-2 10-1 100

F
in

al
 fr

ac
tio

n
of

 (
+

1)
 n

od
es

Initial fraction of (+1) nodes

(B) Citation

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

F
in

al
 fr

ac
tio

n
of

 (
+

1)
 n

od
es

Initial fraction of (+1) nodes

(C) Wikipedia

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

F
in

al
 fr

ac
tio

n
of

 (
+

1)
 n

od
es

Initial fraction of (+1) nodes

(D) LiveJournal

Tar,g=0.00
Tar,g=0.25
Tar,g=0.50

Tar,g=0.75
Tar,g=1.00

Ran,g=0.00

Ran,g=0.25
Ran,g=0.50
Ran,g=0.75

Ran,g=1.00

Figure 5: Comparisons between the target implanting strategy and random implanting strategies. Herefs and fi represent the fraction of (+1)
opinion nodes for steady state and initial state on the network respectively. ”Tar” represents the targeted implantingstrategy and ”Ran” represents
the random implanting strategy. For targeted implanting strategy (filled triangles), pink, salmon, dark-pink, red, and dark-red colors represent
g = 0.0, g = 0.25,g = 0.5,g = 0.75, andg = 1.00, respectively. For random implanting strategy (filled circles), skyblue, dark-turquoise, web-blue,
blue, and navy representg = 0.0, g = 0.25,g = 0.5,g = 0.75, andg = 1.00, respectively. Here there are 100 realizations for Web graph and Citation
networks and 50 realizations for Wikipedia and 25 realizations for LiveJournal.

10

RecSys Challenge 2014: an ensemble of binary classifiers
and matrix factorization

Róbert Pálovics1,2 Frederick Ayala-Gómez1,3 Balázs Csikota1 Bálint Daróczy1,3

Levente Kocsis1,4 Dominic Spadacene1 András A. Benczúr1,3
1Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)

2Technical University Budapest 3Eötvös University Budapest 4University of Szeged
{rpalovics, fayala, bcsikota, daroczyb, kocsis, domspad, benczur}@ilab.sztaki.hu

ABSTRACT
In this paper we give our solution to the RecSys Challenge
2014. In our ensemble we use (1) a mix of binary classifi-
cation methods for predicting nonzero engagement, includ-
ing logistic regression and SVM; (2) regression methods for
directly predicting the engagement, including linear regres-
sion and gradient boosted trees; (3) matrix factorization and
factorization machines over the user-movie matrix, by using
user and movie features as side information. For most of
the methods, we use the GraphLab Create implementation.
Our current nDCG achieves 0.877.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
filtering; I.2.6 [Artificial Intelligence]: Learning

Keywords
Recommender systems, RecSys Challenge; GraphLab Cre-
ate; Twitter

1. INTRODUCTION
The RecSys Challenge 2014 data set consists of movie rat-

ings automatically tweeted by the IMDb application. In
this unusual prediction task, for each user, the top-K tweets
based on predicted engagement is requested, where engage-
ment consists of favorites and retweets. Evaluation is based
on the quality of the top list produced by the recommender.
This so-called top-K recommender task is known to be hard
[10]. A recent result on evaluating top-K recommenders is
found in [9].

Predicting the number of retweets is a known task: [13]
investigates the problem of predicting the popularity of mes-
sages as measured by the number of future retweets and [18]
finds that performance is dominated by social features, but
that tweet features add a substantial boost. In our work
we use ideas from these papers for defining user and tweet
features.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys’14, October 6–10, 2014, Foster City, Silicon Valley, CA, USA.
Copyright 2014 ACM .

Since movie rating tweets are defined over a pair of a user
and a movie, we face a dyadic prediction task where recom-
mender and learning-to-rank approaches may also be appli-
cable. In our method we blend recommender methods with
side information and direct predictors for the engagement,
which are based on a pool of user, movie and tweet features.

Our first class of methods consists of recommenders over
the data set considered as a user-movie matrix. The Netflix
Prize competition [5] put recommender algorithms through
a systematic evaluation on standard data [3]. The final best
results blended a very large number of methods whose re-
production is out of the scope of this experiment. Among
the basic recommender methods, we use matrix factorization
[22, 15].

A twist in the data set over the user-movie matrix is rich
side information, both for users and for movies. In addition,
some users and movies appear only in the test set and hence
there we face the cold start problem [20]. Some methods
that use the side information include stochastic gradient de-
scent [17] and the product of user and item kernels [4]. In
our experiments we use the factorization machine [19] as a
very general toolkit for expressing relations within side in-
formation.

We noticed that the most important part is to distinguish
between zero and nonzero engagement. We find that the so-
lution of this simplified version of the problem still results in
a very high nDCG score of 0.986. In this sense, the task is a
mix of a recommender and a binary classification tasks. We
use linear models including regression and Support Vector
Machines (SVM) [21].

Our final prediction relies on the ensemble of a large num-
ber of methods. Classifier ensembles are known to offer a
significant improvement in prediction accuracy [23, 8, 7].
Ensembles include changing the instances used for training
through techniques such as Bagging [2] and Boosting [12].
In our results, we use gradient boosted trees [26] and we
combine classifiers, regressors and recommenders both by
averaging and by learning their weigth by linear regression.

In most of our models, we use the GraphLab Create im-
plementation1 [16].

1http://graphlab.com/products/create/

http://graphlab.com/products/create/

Table 2: Users and movies in the training and testing sets.
Users Movies

Training set 22,079 13,618
Test set 5,717 4,226
Unique to training set 17,838 10,090
Unique to test set 1,476 698
Apperaing in both 4,241 3,528

nu
m

be
r

of
 s

cr
ap

ed
 t

w
ee

ts

10

100

1,000

10,000

scraping time (days)28.01.2014.

training set
test set

11.02.2014.

Figure 1: Top: Daily crawling frequencies. Bottom: The
scraping period with respect to the training, testing and
evaluation sets.

2. THE RECSYS CHALLENGE 2014 DATA
SET

In this section we overview the key properties of the data
set that we use for feature generation and modeling. For
general information on the number and date of users, movies
and tweets we refer to Table 2.

2.1 Training and test set statistics
The training and test sets greatly differ. Table 1 sum-

marizes their properties. While in both data sets, the per-
centage of tweets with zero engagement is high, the ratio
is significantly higher in the training set. Users may be-
long only to training, only to testing or to both sets (Ta-
ble 2). We observe large difference between the training,
testing and evaluation sets in the time elapsed between the
tweet appeared and crawled due to the different timing of the
training, testing and evaluation sets, as described in Fig. 1.

2.2 IMDb movie metadata
We collected IMDb related movie features from two differ-

ent sources. The original MovieTweetings dataset [11] con-
tains release year, movie genre(s) and title for each movie
in the dataset. We transformed genres into a binary fea-
ture vector. Besides these features, we used the IMDBbPY
Python package2 to crawl two elementary features of the
movies in the dataset: their average rating in the system,
and the number of ratings they have.

2http://imdbpy.sourceforge.net/

ra
tio

 o
f t

w
ee

ts
 w

ith
 p

os
iti

ve
 e

ng
ag

em
en

t

0

0.02

0.04

0.06

0.08

0.1

time difference (sec)
10,000 100,000 1e+06

Figure 2: Ratio of tweets with nonzero engagement as the
function of the time difference between the creation and
scraping timestamps.

fre
qu

en
cy

1

10

100

1,000

10,000

100,000

1e+06

engagement score
1 10 100 1,000

training set

spammers

Figure 3: Engagement score frequency distribution of the
training set.

2.3 Spam bots
While the frequency of engagement scores appears to fol-

low a power-law relationship, we found within the training
set a large number of tweets (130) which had an engagement
score of 185, see Fig. 3. They were found to all have been a
retweet of a tweet from one of Justin Bieber’s friends, Ryan
Butler, who also appears to have a large following. Many
of the screen names of these users included variations of the
name ’Justin Bieber’ (e.g. ’thatkidbiebuh’, ’BiebsDevotion’,
’BelievingJ’,...), leading us investigate celebrity posts. In
fact the retweet times of such posts can occur within sec-
onds of the post so that we term them ’spam bots’.

One strong indicator of celebrity appears to be the ’ver-
ified user’ boolean, which is included in every status. In
the training data, there are 16 tweets from verified users,
all but 3 of which received some form of engagement. In
the test data, only one such tweet exists, which too received
engagement.

In light of these, we decided to use to remove the Ryan
Butler-related tweets from the training data before we trained
our models. Compared to the original engagement scores in
Fig. 3, after cleansing, the training and testing distribution
appears similar in Fig. 4.

http://imdbpy.sourceforge.net/

Table 1: Training and test set properties.
Training set Test set

Number of users 22,079 5,717
Number of movies 13,618 4,226
Number of tweets 170,285 21,285
Number of zero engagement scores 162,108 (95.19%) 19,727 (92.68%)
Earliest creation time 28/02/2013 14:43 8/01/2014 22:06
Latest creation time 8/01/2014 22:06 11/02/2014 15:49
Minimum number of days between
creation and scraping

23 0

nu
m

be
r

of
 t

w
ee

ts
 w

ith
 g

iv
en

 e
ng

ag
em

en
t

1

10

100

1,000

10,000

100,000

1e+06

engagement score
1 10 100 1,000

cleaned training set
test set

Figure 4: Engagement score frequency distributions in the
cleansed training set and the test set.

Table 3: Properties of the cleansed training set.
Number of users 21,950
Number of movies 13,618
Number of tweets 170,155
Number of tweets with zero
engagement score

162,107
(95.27%)

2.4 Extreme ratings
In Fig. 5 a U-shaped relationship can be made out within

both datasets. In other words, tweets with extremist ratings
generate higher engagement scores in average. In fact in
terms of linear regressions based on only one feature, we
found that rating performed the best, achieving as high as
0.818 nDCG on the test set. However, we found tweets
containing ratings that fell outside of the “standard” range
determined by the IMDb tweet template (1-10, inclusive). In
the training set, 73 ratings were given outside of this range.
The higher “extreme rating” tweets also more often receive
engagement than regular tweets.

2.5 Cleansed training set
Table 3 summarizes the properties of our cleansed train-

ing dataset. We removed tweets with rating larger than 10
or less than 1. We also excluded the spammers from the
dataset.

2.6 Features
Here we list the features we extracted from the original

datasets.

en
ga

ge
m

en
t

sc
or

e
1

10

100

1,000

10,000

rating
1 2 3 4 5 6 7 8 9 10

test set

en
ga

ge
m

en
t

sc
or

e

1

10

100

1,000

10,000

rating
1 2 3 4 5 6 7 8 9 10

training set

Figure 5: Engagement score as the function of rating for the
training set (top), and for the test set (bottom).

fre
qu

en
cy

1

10

100

1,000

followers count
1 10 100 1,000 10,000 100,000 1e+06

training set
test set

Figure 6: Follower distributions on the training set and the
test set.

User features extracted from the Twitter json data:
creation time, followers and friends count (see Fig. 6,
favourites count, statuses count

Tweet features extracted from the Twitter json data:
creation time, scraping time, time difference between
creation and scraping, number of hashtags / URLs
/ mention in the tweet, tweet is retweet, tweet has
retweet in the dataset

Table 4: Best nDCG@10 results of the invidual algorithms, separate for resubstitution over the training set and for the test
set. In both cases we give the best result not using and using retweet information (“no RT” and “with RT”, respectively).

Method Training set Test set
no RT with RT no RT with RT

Random prediction (RN) ≈ 0.61 - ≈ 0.75 -
Retweet based prediction (RT) - 0.73038 - 0.80098
Rating based prediction (RA) 0.69386 0.75670 0.82125 0.84980
Graphlab Create Item Means Model (IM) 0.74821 0.80729 0.79957 0.84340
Graphlab Create Popularity Model (POP) 0.75935 0.81684 0.79467 0.83862
SVM (SVM) 0.63976 0.73112 0.81850 0.86777
Graphlab Create Gradient Boosted Tree (GCGT) 0.71009 0.79220 0.83336 0.87127
Graphlab Create Linear Regression (GCLR) 0.67782 0.75374 0.82726 0.86089
Graphlab Create Logistic Regression (GCGR) 0.67724 0.75270 0.82807 0.86078
Graphlab Create Matrix Factorization (GCMF) 0.70343 0.77598 0.82444 0.86291
Graphlab Create LibFM based recommender (GCFM) 0.68005 0.75878 0.82019 0.84139
NDCGboost (NB) 0.68663 0.77032 0.80532 0.86282

Movie features extracted from the MovieTweetings dataset
and our IMDb crawl:
movie average rating, number of ratings on IMDb, bi-
nary vector of movie genres from the movieTweetings
dataset.

Rating based features: Besides the original user rating,
we take the difference of the user’s rating and the
movie’s average rating on IMDb. We also give a score
for each tweet based on its extremeness (see 2.4). More-
over, we have created feature vectors from the ratings.
We use the average engagement value as the function
of the rating (1–10) as shown in Fig. 5.

2.7 Zero and nonzero engagement
In order to simplify the task, we considered separating

those tweets that received engagement from those that did
not. Assuming that this binary classification task could be
perfectly solved, we measured an nDCG@10 of 0.988 over
the test set. The fact that the actual engagement count is
less important compared to separating zero from nonzero
is in part due the shear number of tweets with no engage-
ment (see Table 1), as well as the fact that most of the users
have no more than 5 tweets: in the training data, 7,012 of
the 22,079 users have 5 or more tweets. Note that of the
7012 users in the training set with more than 5 tweets, only
2285 of them have at least one tweet with nonzero engage-
ment. The advantage of the zero-nonzero task is that binary
classifiers are applicable, some of which giving the strongest
performance with respect to nDCG, see Table 4.

2.8 Information leakage through retweets
Retweets of movie rating tweets were also fetched by the

Twitter API. A retweeted message has by definition nonzero
engagement. In addition, the retweet of a message received
the engagement score of the original message, possibly as
a side effect of how the Twitter API gives information on
retweets. Moreover, if we see a retweet in the dataset, if
its root tweet is in our dataset, we immediately know that
the root tweet’s engagement score is higher than 0. We use
retweet information in two ways. First, we may include the
fact that a retweet exists as a binary feature. Second, since
retweets and retweeted messages have nonzero engagement,
we increased the predicted score by a large constant for these

tweets. For reference, we included the performance of all
methods without using the retweet information in any way.

3. THE EVALUATION METRIC
Recommender systems in practice need to rank the best

K items for the user. In this top-K recommendation task
[10, 9] the goal is not to rate some of the individual items
but to provide the best candidates. Despite the fact that
only prediction for the top list matters in top-K evaluation,
several authors propose models trained for RMSE or AUC
with good top-K performance [14, 25] and hence we follow
their approach.

The RecSys Challenge 2014 task is evaluated by nDCG,
one of the most common measures for top-K recommender
evaluation [1]. Note that we train our binary classifiers op-
timized for RMSE or AUC, both evaluated as a macro mea-
sure by globally ranking all tweets. The challenge evalua-
tion, in contrast, defines a user micro average.

4. ELEMENTS OF OUR ENSEMBLE AND
EXPERIMENTAL RESULTS

We describe two groups of methods. The first one is based
on binary classification and regression in Section 4.2. The
details of the features and parameters used in each model
are described in Table 5. The second one in Section 4.3 is
an online matrix factorization. The performance overview
is found in Table 4 both for resubstitution on the training
set and for the testing set. We show results not using any
retweet based information separate. The columns that use
retweet information include the best performing combina-
tion of using retweet as a binary feature for training and
moving retweets and their root tweets ahead in the ranking.
The final blending results are in Table 6.

4.1 Baseline measurements
We defined five nDCG baselines for both the training and

testing set to benchmark the result of our models. The first
is the random prediction (RN) for the models that does not
use the retweet features. This method randomly sorts the
tweets for each user and then calculates the nDCG. The
second is the retweet based prediction (RT) for the models
that uses retweet features. This model gives score 1 to tweets
that are retweets or root tweets, and score 0 to all other

Table 5: Main parameters of our algorithms.
Method Parameters

GCGT num trees: 18, step size: 0.3, max depth: 4, num iterations: 18,
min child weight: 0.1, min loss reduction: 0

GCLR L2 penalty: .10, solver: newton, max iter: 10
GCGR L2 penalty: .10, solver: newton, max iter: 10
GCMF n factors: 8 linear regularization: 0, regularization: 0.0001
GCFM n factors: 8 linear regularization: 0, regularization: 0.0001
SVM with RT Features C : 0.5, kernel: linear
SVM no RT Features C : 0.25, kernel: polynomial, degree: 2
NB num trees : 20, num leaves: 8

Table 6: Best blended nDCG@10 results.
Blending Method Test set

no RT features with RT features

Best combination achieved by grid search 0.83922 0.87713
Average of RA, GCGT, GCGR 0.38973 0.87340
Scikit-learn Linear Regression 0.84027 0.87435

tweets. Our rating based prediction (RA) uses the U-shape
based extremeness to predict the ranking of the tweets. We
also used the popularity model and the item means model
in Graphlab Create as baseline measures. The values of the
baselines are shown in Table 4. It turns out that the nDCG
changes because of the different properties of each dataset
(e.g. engagement frequency, users engaged.).

4.2 Binary classification
In order to apply the binary classification methods, we

created a binary feature that expresses if a tweet had en-
gagement or not. We applied linear regression, logistic linear
regression, Gradient Boosting Trees [26] and SVM [21].

For both linear regression (GCLR) and logistic linear re-
gression (GCGR), the Newton method and stochastic sradi-
ent descent (SGD) solvers were used. However, the Newton
method solver led to a better nDCG@10 than SGD. The fea-
tures were rescaled using the L2-norm to ensure that the fea-
tures have the same norm. The strongest three features were
the rating, the difference of the rating and the movie’s aver-
age rating in IMDb, and the number of personal mentions in
the tweet. Note that one can edit the tweet generated by the
IMDb application. If someone includes a personal mention
in a tweet, it has higher probability to receive engagement
in the future.

In case of the gradient boosted tree algoritm (GCGT) we
set the maximum depth of the trees 4, and enabled maxi-
mum 18 iterations. Note that this algorithm performed the
best on the test set even with and without using the retweet
features.

By using support vector machine (SVM) we were able to
achieve our second highest nDCG@10. We could observe
that normalization, parameters and kernel selection are a
very important step. Because of the different scale of the
features, we scaled them linearly between zero and one ex-
cept for the rating and retweet features. Our main reason
was to gain advantage of the known relevance of these fea-
tures.

4.3 Matrix factorization

We used two different matrix factorization techniques that
are both implemented in GraphLab Create. The first one
is a traditional matrix factorization method [15], while the
second one is Steffen Rendle’s LibFM algorithm [19]. Both
techniques use stochastic gradient descent to optimize for
mean-square error on the training set. The difference be-
tween the methods is that LibFM uses the side information
of the users and items more sophisticatedly. Therefore we
used the original matrix factorization technique without any
side information, and used LibFM for user and item feature
included collaborative filtering prediction. Note that in both
cases we used movies instead of tweets as items, as each
tweet (excluding the few retweets) is unique in the data.

4.4 Ranking based approach
NDCGboost [24] (NB) is a decision tree boosting algo-

rithm that optimizes the expectation of NDCG over all pos-
sible permutations of items. We usend NDCFboost as one
algorithm in our ensemble. The models included twenty
trees with 8 leaves each.

4.5 Blending
We combined our methods linearly to yield the final pre-

diction. Our methods reach close to the best possible com-
bination weights that we obtained by grid search over the
testing set as seen in Table 6. In the simplest method, we
average the well performing methods. We also learn the
weights by linear regression. Here we used the implementa-
tion of scikit-learn3

Conclusions
The RecSys Challenge 2014 task for predicting engagement
of movie rating tweets has turned out to be a mix of Twitter
activity prediction and user-movie top-K recommendation.
For the activity prediction component of the task, classi-
fication and regression methods have worked well. And for
top-k recommendation, we have used dyadic classifiers, vari-
ants of recommender methods that may use side informa-
tion. As different classes of methods model different views

3http://scikit-learn.org/

of the data, they have combined well in our final ensem-
ble. Due to the variety of user, movie and tweet side infor-
mation, data collection and cleansing issues have played an
important role. We have collected IMDb movie metadata,
removed Twitter spam, and noticed an information leak for
retweet information that was probably unintentionally col-
lected for the challenge data set.

Acknowledgments
The publication was supported by the KTIA AIK 12-1-2013-0037
and the PIAC 13-1-2013-0205 projects. The projects are sup-
ported by Hungarian Government, managed by the National De-
velopment Agency, and financed by the Research and Technology
Innovation Fund. Work conducted at the Institute for Computer
Science and Control, Hungarian Academy of Sciences (MTA SZ-
TAKI) was supported in part by the EC FET Open project “New
tools and algorithms for directed network analysis” (NADINE No
288956), by the Momentum Grant of the Hungarian Academy of
Sciences, and by OTKA NK 105645. Work conducted at the Tech-
nical University Budapest has been developed in the framework
of the project “Talent care and cultivation in the scientific work-
shops of BME” project. This project is supported by the grant

TÁMOP - 4.2.2.B-10/1–2010-0009. Work conducted at Univer-
sity of Szeged was partially supported by the European Union and
the European Social Fund through project FuturICT.hu (grant
no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).

5. REFERENCES
[1] A. Al-Maskari, M. Sanderson, and P. Clough. The

relationship between ir effectiveness measures and user
satisfaction. In Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in
information retrieval, pages 773–774. ACM, 2007.

[2] E. Bauer and R. Kohavi. An empirical comparison of
voting classification algorithms: Bagging, boosting, and
variants. Machine learning, 36(1-2):105–139, 1999.

[3] R. M. Bell and Y. Koren. Lessons from the netflix prize
challenge. ACM SIGKDD Explorations Newsletter,
9(2):75–79, 2007.

[4] A. Ben-Hur and W. S. Noble. Kernel methods for
predicting protein–protein interactions. Bioinformatics,
21(suppl 1):i38–i46, 2005.

[5] J. Bennett and S. Lanning. The netflix prize. In KDD Cup
and Workshop in conjunction with KDD 2007, 2007.

[6] C. Burges, R. Ragno, and Q. Le. Learning to rank with
nonsmooth cost functions. Advances in neural information
processing systems, 19:193, 2007.

[7] R. Caruana, A. Munson, and A. Niculescu-Mizil. Getting
the most out of ensemble selection. In ICDM ’06:
Proceedings of the Sixth International Conference on Data
Mining, pages 828–833, Washington, DC, USA, 2006. IEEE
Computer Society.

[8] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes.
Ensemble selection from libraries of models. In ICML ’04:
Proceedings of the twenty-first international conference on
Machine learning, page 18, New York, NY, USA, 2004.
ACM.

[9] P. Cremonesi, Y. Koren, and R. Turrin. Performance of
recommender algorithms on top-n recommendation tasks.
In Proceedings of the fourth ACM conference on
Recommender systems, pages 39–46. ACM, 2010.

[10] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Transactions on
Information Systems (TOIS), 22(1):143–177, 2004.

[11] S. Dooms, T. De Pessemier, and L. Martens.
Movietweetings: a movie rating dataset collected from
twitter. In Workshop on Crowdsourcing and Human
Computation for Recommender Systems, CrowdRec at
RecSys 2013, 2013.

[12] Y. Freund, R. E. Schapire, et al. Experiments with a new
boosting algorithm. In ICML, volume 96, pages 148–156,
1996.

[13] L. Hong, O. Dan, and B. D. Davison. Predicting popular
messages in twitter. In Proceedings of the 20th
International Conference Companion on World Wide Web,
WWW ’11, pages 57–58, New York, NY, USA, 2011. ACM.

[14] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 426–434.
ACM, 2008.

[15] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer,
42(8):30–37, 2009.

[16] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein. Distributed graphlab: a framework
for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

[17] A. K. Menon and C. Elkan. A log-linear model with latent
features for dyadic prediction. In Data Mining (ICDM),
2010 IEEE 10th International Conference on, pages
364–373. IEEE, 2010.

[18] S. Petrovic, M. Osborne, and V. Lavrenko. Rt to win!
predicting message propagation in twitter. In ICWSM,
2011.

[19] S. Rendle, Z. Gantner, C. Freudenthaler, and
L. Schmidt-Thieme. Fast context-aware recommendations
with factorization machines. In Proceedings of the 34th
international ACM SIGIR conference on Research and
development in Information Retrieval, pages 635–644.
ACM, 2011.

[20] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock.
Methods and metrics for cold-start recommendations. In
Proceedings of the 25th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 253–260. ACM, 2002.

[21] J. Shawe-Taylor and N. Cristianini. Kernel methods for
pattern analysis. Journal of the American Statistical
Association, 101:1730–1730, December 2006.

[22] G. Takács, I. Pilászy, B. Németh, and D. Tikk.
Investigation of various matrix factorization methods for
large recommender systems. In Proceedings of the 2nd
KDD Workshop on Large-Scale Recommender Systems and
the Netflix Prize Competition, pages 1–8. ACM, 2008.

[23] K. Tumer and J. Ghosh. Error correlation and error
reduction in ensemble classifiers. Connection science,
8(3-4):385–404, 1996.

[24] H. Valizadegan, R. Jin, R. Zhang, and J. Mao. Learning to
rank by optimizing ndcg measure. In Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information
Processing Systems (NIPS) 22, pages 1883–1891, 2009.

[25] M. Weimer, A. Karatzoglou, and A. Smola. Adaptive
collaborative filtering. In Proceedings of the 2008 ACM
conference on Recommender systems, pages 275–282. ACM
New York, NY, USA, 2008.

[26] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and
G. Sun. A general boosting method and its application to
learning ranking functions for web search. In Advances in
neural information processing systems, pages 1697–1704,
2008.

Peer-to-peer Online Collaborative Filtering

Andrea N. Bán
Institute for Computer Science

and Control,
Hungarian Academy of
Sciences (MTA SZTAKI)

ban.andrea@sztaki.mta.hu

Levente Kocsis
Institute for Computer Science

and Control,
Hungarian Academy of
Sciences (MTA SZTAKI)

kocsis@sztaki.mta.hu

Róbert Pálovics
Institute for Computer Science

and Control,
Hungarian Academy of
Sciences (MTA SZTAKI)

palovics.robert@sztaki.mta.hu

ABSTRACT
Recommender systems often deal with a large amount of se-
quential data. For these scenarios, online matrix factoriza-
tion techniques based on online prediction and incremental
updates are often the most promising approaches. Decen-
tralizing the system and keeping the user data on their de-
vices is an important step in the direction of preserving user
privacy. In this paper we propose a peer-to-peer online ma-
trix factorization algorithm that stores the ratings of a user
and her private data local. Additionally, the users have a
local copy of the common part of the factor model and com-
municate with other users to advance towards a consensus
on it. The algorithm is proven to converge to a set of lo-
cal optima in the stationary case, while we show empirically
that the algorithm performs well in the non-stationary case,
both in terms of ranking performance and privacy preserva-
tion.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
filtering; I.2.6 [Artificial Intelligence]: Learning

Keywords
Recommender systems, Collaborative Filtering, Online learn-
ing, Peer-to-peer networks

1. INTRODUCTION
Recommender systems are now ubiquitous in most online

applications. Approaches based on collaborative filtering
have enjoyed significant success in several competitions, and
became an area of extensive research. In the competitions it
is natural to separate the collected data into a training set
and a test set. However, in most real applications the data
arrives continuously, and the systems need to recommend
some items on the spot. While several authors argued for an
online testing scenario [21, 11], it has received less attention.
Incremental processing also becomes a necessity due to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

size of the data. In this article we consider the scenario
where users connect to the system sequentially, they request
a recommendation, and the system is updated depending on
the preference of the user.

Most recommender systems have a centralized structure,
negating privacy requirements of the users. It is argued in
[24] that it is paramount for privacy that users keep their
data (e.g. ratings and user specific models) locally. Instead
of storing such data on cloud servers, it is a natural idea
to keep it only on personal devices. Consequently, the pro-
cessing is fully distributed. This would increase the level of
privacy and remove the dependence on a central infrastruc-
ture. An early approach in this direction is [20] that adapts
a neighborhood algorithm to a fully distributed architecture.
More recently, [28] used contextual bandit framework for so-
cial recommender systems. While these are fairly interesting
approaches, we prefer matrix factorization models that have
been proven perhaps the most successful approaches to col-
laborative filtering [18].

In this paper we consider an approach to online matrix
factorization, where the user preferences and user latent vec-
tors are kept locally, along with an instance of the item ma-
trix. Consensus on the item matrix is reached by exchang-
ing parts of the item matrix with other users. This way the
most sensitive data stays local. We assume that revealing
parts of the local copies of the item matrix will not reveal
too much about the users preference. While we believe that
our approach is a right step in improving the privacy of the
users, and we provide an empirical evaluation against a de-
anonymization algorithm, the main focus of the paper is on
the prediction quality of the peer-to-peer algorithm.

For non-stationary stochastic optimization, regret bounds
on the online performance are provided mostly when the ob-
jective function is convex (see e.g., [6]). For batch settings,
[8, 7] show that peer-to-peer stochastic approximation al-
gorithms converge to some local optima when the complete
model is sent. In a stationary online collaborative filtering
framework, we extend their work on two aspects: (1) we
assume that the model has a private component, and this
component is not sent between peers; and (2) only parts of
the common component of the model is sent at a certain
moment. The first aspect is natural from privacy point of
view, while the second may be beneficial for reducing the
necessary communication.

The rest of the paper is organized as follows. In Section 3
we provide a skeleton for peer-to-peer online prediction al-
gorithms. Further, we prove that the algorithm converges
to a set of local optima. In this section we consider a more

general framework than matrix factorization: a model that
has a private and a common component. Centralized online
matrix factorization algorithms are described in Section 4
for rating prediction and for top-K recommendation. The
peer-to-peer version of these matrix factorization algorithms
are described in Section 5. Section 6 discusses the privacy
preserving properties of these algorithms, and describes a
standard de-anonymization algorithm adapted against the
online peer-to-peer algorithms. The empirical performance
of these algorithms in non-stationary setting is evaluated
in Section 7. Conclusions and future work are provided in
Section 8.

2. RELATED RESEARCH
There have been several techniques to parallelize matrix

factorization algorithms, including [3, 13]. However, the
cited techniques require a central component that has ac-
cess to the complete model, and all the user preferences
(ratings). This drawback is circumvented to some respect
in [16] by assigning computational nodes to both users and
items, with the items having access to the private data of
users that interact with. In their setting the space of items
overlaps with that of users, and if items are trusted users,
this approach is sufficient. However, in most cases items are
handled by one or a few service providers, and the privacy
would be compromised using this technique. An approach
very similar to ours was proposed in [15] for singular value
decomposition (SVD). Each row of the matrix is assigned to
a user, along with the corresponding user vectors, and the
item matrices are communicated between the items in order
to achieve consensus. Our approach is different in that we
focus on online ranking prediction (as opposed to SVD on
a fixed data set), which enables a more selective broadcast-
ing of item vectors. A theoretical analysis of such selective
communication strategies is also provided.

As mentioned before, we are interested in (non-stationary)
online prediction with matrix factorization, which has non-
convex objective functions. There have been very few pa-
pers with theoretical guarantees for non-stationary online
optimization for non-convex functions. The few exceptions,
such as [22], use some form of a global search, which do not
scale very well with the dimensionality of the problem (factor
models have relatively high dimensions). For non-stationary
stochastic optimization, there exists regret bounds on the
online performance when the objective function is convex
(see e.g., [6]). Regret bounds were proven for distributed
optimization of stationary convex functions as well [9, 12,
29]. Most of these approaches have a periodical consen-
sus step to ensure that the local models are identical. Of
these, [9] is perhaps the most interesting on using variance
based dynamic communication. Unfortunately, the objec-
tive functions are not convex in the parameters of a matrix
factorization model, and therefore, these results can not be
applied. There have been several papers on optimization
of non-convex functions in batch settings, including peer-to-
peer stochastic approximation algorithms. The papers that
have the mildest assumptions on the communication proto-
col include [7, 8], which are also the closest to our analysis.
They show that the approximation algorithms converge to
some local optima when the complete model is sent. We
extend their work by facilitating a private part of the model
(the user vectors for matrix factorization), and allowing the
algorithms to send only a part of the common model (e.g.,

only the vector corresponding to the rated item).
One of the aims for peer-to-peer online collaborative fil-

tering is improving the privacy of the users. The vulner-
ability of centrally collected data was also shown by [23].
There have been several attempts to improve privacy of
nearest neighborhood (e.g., [20, 10]) or contextual bandit
approaches [28], but we choose to focus on matrix factor-
ization. [24] suggests extending the server with a crypto-
service provider, which imposes restrictions on the collab-
orative filtering algorithm, and still requires some trust in
the server. An algorithm designed to improve privacy of
collaborative filtering data against attacks described in [23]
is the k-CoRating algorithm [31]. It extends the rating
matrix such that each user has at least k − 1 peers that
rated exactly the same items. The cost of the improved
privacy can be a deterioration of the collaborative filtering
algorithm that uses that extended data (as shown in our
experiments). The peer-to-peer computational architecture
adopted by our approach improves privacy without harm-
ing prediction performance as shown [30] for convex opti-
mization, and as illustrated by our experiments described in
Section 7.3. However, further techniques can be applied to
harden the privacy requirements.

3. CONVERGENCE
In this section we show that peer-to-peer online prediction

algorithms converge to the same set of local optima as their
corresponding centralized algorithms. We consider a more
general framework than matrix factorization: a model that
has a private and a common component.

Assume that we have N users. At every time step n, user u
connects to its local recommender system (RS), and requests
some prediction that can be either a rating of an item or a
list of top items. The local RS observes some context that
includes the item itself in case of rating prediction, as well as
any other relevant information. After receiving the predic-
tion the user reveals its preference (i.e. an item and/or the
rating of an item). The triplet of user activity, context and
user preference will be identified by the random variables
Xn, which are supposed to be independent and identically
distributed (i.i.d.). Xn may represent the activity of more
than one user, if several users are active at the same time.

We consider RS’s represented by a model consisting of a
user specific vector ϕu ∈ R

d2 , and a common part θ ∈ R
d1 .

For instance, in the case of matrix factorization, the former
is represented by the user vectors, and the latter by the item
vectors. In a peer-to-peer variant of the RS, the local RS will
store the vector specific to its user ϕu and a local instance,
θu, of the common vector.

The performance of the RS is evaluated by a loss function
that can be decomposed into some local functions fu(θu, ϕu, X).
The loss functions of inactive users are assumed 0. The func-
tion depends only on the local component of X (the local
context, activity and user preference). The aim is to mini-
mize the global loss function

f∗(θ, ϕ) = Ef (θ, ϕ, X),

where θ = (θ1T , . . . , θNT)T , ϕ = (ϕ1T , . . . , ϕNT)T and

f (θ, ϕ, X) =
PN

u=1 fu(θu, ϕu, X).
In order to minimize the loss function, after observing

the user preference, for each user the local RS will update
its parameters in the direction of the negative gradient, as

follows:

θ̃u
n = θu

n−1 − γn∇θf
u(θu

n−1, ϕ
u
n−1, Xn) (1)

ϕu
n = ϕu

n−1 − γn∇ϕfu(θu
n−1, ϕ

u
n−1, Xn).

Note that for inactive users the local gradients are zero.
To obtain generalization, the local gradient steps are fol-

lowed by a communication step aimed at improving the con-
sensus on the common part of the model. The communica-
tion among users can be represented by a sequence of i.i.d.
random matrices Wn ∈ R

Nd1Nd1 , and using the notation
θ̃n = (θ̃1T

n , . . . , θ̃NT
n)T we update θn as follows:

θn = Wnθ̃n. (2)

In the following, first we prove that every θu converges to
the same limit θ∗. Then we prove that the pair consisting
of θ∗ and the limit of ϕn is a local minimum of f∗(θ, ϕ).
Let us introduce some further notations: 1 = (1, 1, . . . , 1)T ∈
R

N . For x ∈ R
Nd we write 〈x〉 = 1/N(x1 + · · · + xN) so

that

〈x〉 =
1

N
(1⊗ Id)x, (3)

where ⊗ denotes the Kronecker product. Further, J stands
for the projection onto the ’consensus space’:

J := (11
T /N)⊗ Id,

whence Jx = 1 ⊗ 〈x〉. Let us denote by J⊥ := IdN − J
the matrix of the orthogonal projection to the consensus
space (here Id′ denotes the identity matrix of dimension d′).
Finally θ⊥,n := J⊥θn.

Here, we make three assumptions: (1) the communication
matrix is such that ensures an averaging process for θn,
(2) standard conditions on γn that enable the stochastic
approximation to converge, and (3) the objective function
is ‘sufficiently nice’ for the stochastic approximation.

Assumption 1. Let Wn be a sequence of i.i.d. random
matrices of size Nd1×Nd1 with non-negative elements. The
following conditions hold true:

• Wn is row-stochastic for every n: Wn1 = 1,

• E(Wn) is column-stochastic for every n: 1T
E(Wn) =

1T ,

• the spectral norm ρ of E((Wn)T (I−J)Wn) is less than
one.

Assumption 2. Let γn be a monotone non-increasing se-
quence of positive numbers that satisfies the following con-
ditions:

• P

n γ2
n <∞,

• P

n γn =∞, and

• γn/γn+1 → 1.

Assumption 3. For any u = 1, . . . , N , fu(θ, ϕ, X) satis-
fies the next assumptions:

• fu(θ, ϕ, X) is continuously differentiable with respect
to θ and ϕ,

• fu(θ, ϕ, X) is bounded from below and

• for all realizations of θ, ϕ and X the gradient ∇θfu(θ, ϕ, X)
satisfies

sup
θ

E[|∇θfu(θ, ϕ, X)|2] <∞.

Theorem 1. If the matrices Wn satisfy Assumption 1,
the sequence γn satisfies Assumption 2 and the function
fu(θ, ϕ, X) satisfies Assumption 3, then the variables θn

in (2) achieve consensus, that is
P

n E[|θ⊥,n|2] < ∞ and
θ⊥,n → 0 almost surely as n→∞.

Proof. The proof is based on the proof of Lemma 1 in [8].
To shorten the notation we use Yn = −∇θf (θn, ϕn, Xn), so
we have θn = Wn (θn−1 + γnYn). Using the row-stochas-
ticity of Wn it is easy to check that J⊥WnJ⊥ = J⊥Wn.
Thus (2) can be written as θ⊥,n = J⊥Wn(θ⊥,n−1 + γnYn).
Whence we conclude the estimation

|θ⊥,n|2 = (θ⊥,n−1 + γnYn)T W T
n J⊥Wn(θ⊥,n−1 + γnYn)

≤ λ1(W
T
n J⊥Wn)|θ⊥,n−1 + γnYn|2, (4)

where λ1(M) is the largest eigenvalue of the matrix M . Tak-
ing the expectation of (4) and using the Cauchy-Schwarz
inequality we obtain

E[|θ⊥,n|2] ≤ ρ(W T
n J⊥Wn)E[|θ⊥,n−1|2]

+ 2γnE[|Yn|]
p

E[|θ⊥,n−1|2] + γ2
nE[Y2

n].

In order to conclude
P

n E[|θ⊥,n|2] < ∞, we need an addi-
tional lemma.

Lemma 1. Assume that for the sequence γn > 0,
γn/γn+1 → 1,

P

n γn = ∞,
P

n γ2
n < ∞ and 0 < ρ < 1.

Let vn > 0 be such that vn ≤ ρvn−1 +
√

vn−1γn + γ2
n. Then

P∞
n=0 vn <∞.

A statement similar to Lemma 1 (with slightly different as-
sumptions) is proved in [8], and we omit the proof for space
limitations. The assertion of Theorem 1 then follows from
the Borel-Cantelli lemma.

In Theorem 2 we prove that the algorithm converges to a
local minimum. The proof of the convergence is based on
the proof of Theorem 1 in [7]. We will need some additional
assumptions and a lemma.

Assumption 4. There are two finite constants C1 and C2

such that for all realizations of θ1, θ2, ϕ and X the next
assumptions are satisfied:

• |〈∇θf (θ1, ϕ, X)〉 − 〈∇θf (θ2, ϕ, X)〉| < C1|θ1 − θ2|,
• |∇ϕf (θ1, ϕ, X)−∇ϕf (θ2, ϕ, X)| < C2|θ1 − θ2|.

Lemma 2. If the Assumptions 1, 2, 3 and 4 are satisfied
then there exist some random vectors ζn,θ ∈ R

d1 and ζn,ϕ ∈
R

Nd2 which satisfy

lim sup
k→∞

sup
l≥k

|
l

X

i=k

γiζi,θ| = 0 and (5)

lim sup
k→∞

sup
l≥k

|
l

X

i=k

γiζi,ϕ| = 0, (6)

almost surely, such that

〈θn〉 = 〈θn−1〉 − γn

˙

∇θf (1⊗ 〈θn−1〉, ϕn−1, Xn)
¸

+ γnζn,θ, (7)

ϕn = ϕn−1 − γn∇ϕf (1⊗ 〈θn〉, ϕn−1, Xn) + γnζn,ϕ. (8)

Proof. Rearranging terms, we obtain ζn,ϕ = ∇ϕf (1 ⊗
〈θn〉, ϕn−1, Xn)−∇ϕf (θn, ϕn−1, Xn). Using Assumption 4

and the inequality 2ab ≤ a2 + b2, we get

|
l

X

i=k

γiζi,ϕ| ≤ 1

2

l
X

i=k

|γi|2 +
1

2

l
X

i=k

|ζi,ϕ|2

≤ 1

2

l
X

i=k

|γi|2 +
C2

2

2

l
X

i=k

|θ⊥,i|2.

Now (6) follows from Assumption 2 and Theorem 1.
The argument proving (5) is similar to the one in Theorem 1
of [7]. The row-stochastic property of Wn implies WnJ = J .
Using (1), (2) and (3) we obtain

〈θn〉 = 〈θn−1〉 − γn 〈Zn〉
where Zn = Wn

`

∇θf (θn−1, ϕn−1, Xn) + γ−1
n θ⊥,n−1

´

.
Rearranging terms, we get

〈θn〉 = 〈θn−1〉 − γn

˙

∇θf (1⊗ 〈θn−1〉, ϕn−1, Xn)
¸

+ γnen,θ + γnξn,θ

where en,θ and ξn,θ are defined as

en,θ = 〈∇θf (θn−1, ϕn−1, Xn)〉
−〈Wn(−∇θf (θn−1, ϕn−1, Xn) + γ−1

n θ⊥,n−1)〉
ξn,θ = 〈∇θf (1⊗ 〈θn−1〉, ϕn−1, Xn)〉

−〈∇θf (θn−1, ϕn−1, Xn)〉.

We can prove lim supk→∞ supl≥k |
Pl

i=k γiξi,θ| = 0 in the
same way as we proved the corresponding statement for ζi,ϕ.
On the other hand, a direct computation shows that γiei,θ

is a martingale difference sequence. Furthermore, the cor-
responding martingale is bounded in L2, hence converges
with probability probability 1 (see e.g. Corollary 2.2 in [14]).
That is,

P∞
k=1 γkek,θ exists and is finite almost surely. The

lemma follows.

Let us define

L = {(θ, ϕ) : ∇f∗(θ, ϕ) = 0}.
In order to guarantee the convergence (i.e. Theorem 2), we
need some further criteria:

Assumption 5. • There exists M0 > 0 such that L ⊂
{(θ, ϕ) : f∗(θ, ϕ) < M0}.
• There exists M1 ∈ (M0,∞) such that {(θ, ϕ) : f∗(θ, ϕ) <

M1} is a compact set.

• The interior of the set f∗(L) is empty.

Theorem 2. If the Assumptions 1, 2, 3, 4, 5 are satisfied
and θ0 and ϕ0 are such that f∗(θ0, ϕ0) < M0 then θn and
ϕn converge with probability 1, moreover

lim
n→∞

inf{|(〈θn〉, ϕn)− (θ, ϕ)|, (θ, ϕ) ∈ L} = 0.

Proof. Note that θn = 1 ⊗ 〈θn〉 + θ⊥,n. Since in The-
orem 1 we proved that θ⊥,n → 0 almost surely as n → ∞,
we only need to examine the convergence of 〈θn〉. Lemma 2
says

〈θn〉 = 〈θn−1〉 − γn

˙

∇θf (1⊗ 〈θn−1〉, ϕn−1, Xn)
¸

+ γnζn,θ

ϕn = ϕn−1 − γn∇ϕf (1⊗ 〈θn〉, ϕn−1, Xn) + γnζn,ϕ.

So we can use Theorem 2.2 and 2.3 from [4] for both 〈θn〉
and ϕn (note that we need Lemma 2 to verify certain as-
sumptions of the cited theorems). The statement of the
Theorem 2 follows.

In Section 5, we will instantiate the peer-to-peer algorithm
discussed above to matrix factorization. In the following, we
will consider whether the assumption hold for this instance.
An example of a communication protocol when the complete
model (θ) is sent and satisfies Assumption 1 is provided in
[5]. For a matrix factorization model it may be preferable
not to send the latent vectors corresponding to all items
but just a small subset of the items. The strategies to se-
lect the items is discussed in Section 5. The conditions on
the learning rate (Assumption 2) are fairly standard for a
stochastic optimization algorithm in stationary setting. If
the environment is non-stationary (as it is in the experi-
ments), it is standard to switch to a constant learning rate.
It is clear that if the loss function is the mean square error,
then the function is continuously differentiable with respect
to the parameters of the matrix factorization model and is
bounded from below. The boundedness of the gradient in
Assumption 3 and Assumption 4 hold if the parameters of
the model stay bounded in the trajectories starting from an
appropriately chosen starting point. This is not necessarily
the case for any dataset, but in our experience it seems that
the parameters stay bounded unless the initial learning rate
is too high. It is clear that if the parameters diverge, they
are likely to do so for the centralized algorithm as well, and
the parameters needs to be projected into a compact set af-
ter the gradient step. In this case, proving Theorem 2 takes
a different course, one that mirrors the proof of Theorem 1
of [8]. Assumption 5 also holds, for instance, the condition
on the empty interior is satisfied by Sard’s theorem if the
loss function is Nd1d2-times differentiable, which is the case
for a matrix factorization model.

4. ONLINE MATRIX FACTORIZATION
In this section we consider the online algorithms for rating

prediction and top-K recommendation that form the base of
the peer-to-peer algorithms presented in Section 5.

Matrix factorization algorithms constitute the most suc-
cessful approaches to collaborative filtering [18, 19]. In these
algorithms, users and items are mapped into a joint latent
factor space of dimensionality d. Accordingly, each user u is
associated with a d-dimensional vector Uu, and each item i
with a d-dimensional vector Vi. The preference of the user
for the specific item is given by the inner product of the two
vectors. Additionally, it is usual to have biases specific to
users bu and items bi. The predicted preference of a user u
for item i, r̂ui is given by the following formula,

r̂ui = bu + bi + UT
u Vi. (9)

There are several ways to tune factor models. In an online
scenario, the most natural is the stochastic gradient descent
(SGD) [1]. SGD have been a popular choice for matrix fac-
torization algorithms and in online prediction. The online
rating prediction algorithm for matrix factorization is pre-
sented in Algorithm 1.

At each time step a user connects to the recommender
system and selects an item (line 2). The system predicts
the rating of the item (line 3), after which the user reveals
the ‘true’ rating and the recommender system suffers a loss

Algorithm 1 Online rating prediction

1: for n = 1 to T do
2: user u connects to RS and selects item i
3: RS predicts rating r̂ui

4: user reveals rui and RS suffers loss f(rui, r̂ui)
5: Uu ← Uu + γ(rui − r̂ui)Vi

6: bu ← bu + γ(rui − r̂ui)
7: Vi ← Vi + γ(rui − r̂ui)Uu

8: bi ← bi + γ(rui − r̂ui)

Algorithm 2 Online ranking prediction

1: for n = 1 to T do
2: user u connects to RS
3: RS recommends top items R
4: user selects item i (and additionally rating rui)
5: RS suffers loss f ′(i,R)
6: select negative sample set N
7: Uu ← Uu + γ(rui − r̂ui)Vi − γ

P

j∈N r̂ujVj

8: bu ← bu + γt(rui − r̂ui)− γ
P

j∈N r̂uj

9: Vi ← Vi + γ(rui − r̂ui)Uu

10: bi ← bi + γ(rui − r̂ui)
11: for j in N do
12: Vj ← Vj − γr̂ujUu

13: bj ← bj − γr̂uj

(line 4). The loss function, in our case, is the mean square
error between the predicted and true rating. The model
parameters are then updated in the direction of the nega-
tive gradient with a constant learning rate (line 5–8). In
Section 3 we assumed that the learning rate follows a de-
caying schedule, however, for non-stationary environments,
a constant rate is more appropriate.

While rating prediction has a larger literature due to some
of the competitions, recommending a list of top items is a
more natural task in real applications. Continuing with the
SGD set-up, we use the algorithm suggested in [25] that uses
the visited item as positive training instance and some ran-
domly sampled unvisited items as negative instances. As
shown in Algorithm 2, at each time step, when a user con-
nects to the recommender system, the system ranks the
items, and presents the user the top of this list. The items
are ranked according to the predicted rating, using equa-
tion (9). The system then suffers a loss. There are several
choices of ranking measures, a popular one that is used in
the experiments is NDCG@K [17]. In our case, there is only
one item with non-zero label, and the NDCG@K of a per-
mutation π of the items reduces to

NDCG@K(π) =



1/ log2(rankπ(i) + 1) if rankπ(i) ≤ K
0 otherwise

,

where i denotes the visited item, and rankπ(i) is the posi-
tion of the item in the permutation π. In the experiments,
for the selection of the negative training instances (line 6
of Algorithm 2), we also consider a mechanism suggested in
[32], namely sample randomly a number of unvisited items,
and then select only a few items from the top of the sam-
pled list (ranked by the model). The update of the model
parameters in Algorithm 2 is shown in lines 7–13.

5. ONLINE PEER-TO-PEER PREDICTION
In Section 3, we presented the framework for a peer-to-

peer online prediction algorithm. For the special case of a
recommender system using matrix factorization, each user
has at hand a local copy of the system, the local model
including the latent vector of the user, Uu, the user bias,
bu, a local instance of the item matrix, V u, and a local in-
stance of the item biases, bu

. . Thus, the user latent vectors
and the user biases from Section 4 correspond to ϕ from
Section 3, and the item vectors and biases correspond to
θ. The peer-to-peer online recommender is shown in Algo-
rithm 3. At each time step, when a user connects to its
local system (line 7), the system makes a prediction. The
prediction in the case of rating prediction is estimating the
rating of an item, while in the case of recommendation, a
list of items. After the prediction, the user reveals its pref-
erence, and the system suffers a loss. The preference of the
user is the true rating in the case of rating prediction, and
a selected item for top-K recommendation. For the latter,
the item may or may not be in the recommended list. These
steps, shown succinctly in line 8, are identical to the corre-
sponding steps of Algorithm 1 or Algorithm 2. The gradient
descent update of the local model (line 9) is also identical to
the corresponding centralized variants (including the sam-
pling of negative instances for top-K recommendation). In
line 10 the algorithm selects a set of target users and a set of
items. Subsequently, the local instance of the latent vectors
and biases corresponding to the selected items are sent to
the selected set of target users.1 In a simple variant, a fixed
number of users are selected randomly, but more intricate
strategies are also possible. A more elaborated method for
setting the number of target users is described in Section 7,
while users with similar taste could also be given preference.
When a social network of users is available, selecting friends
as target users seems reasonable for privacy reasons. It is
also an easy way to identify users with similar taste. In the
case of rating prediction, the natural choice for the item set
to be sent is the rated item. While for the top-K recom-
mendation task, the item set should include the item visited
by the user and some subsample of the negative set of in-
stances. When the target users receive some vectors, they
combine the vectors with their local copies, using a mixing
coefficient β (line 11–13).

The conditions for the peer-to-peer algorithm to mirror
the centralized algorithm are as follows: (1) the set of tar-
get users should include all users, (2) the set of items sent
consists of the rated one and, in the case of top-K recom-
mendation, all negative samples, (3) β = 0, and (4) appro-
priately chosen initialization for the latent vectors. The last
condition requires that the same latent user or item vec-
tors are generated when first encountered in the centralized
or peer-to-peer algorithms. If the first three conditions are
met, then the item vectors are the same at each user, disre-
garding items that have not been updated by any user.

So far, we assumed that all users are present in the system
from the start of the protocol until the end of it. A more
realistic setting is when new users are coming continually in
the system. For this setting, Algorithm 3 includes a set-up
phase (line 2–6): the new user requests a copy of item vectors

1When it is clear from the context, for brevity, we will say
sending items instead of sending the corresponding item vec-
tors and biases.

Algorithm 3 Online peer-to-peer prediction

1: for n = 1 to T do
2: for each new user u′ do
3: select sources U ′

4: for v in U ′ do
5: V (v) ← 1

|U′|

P

v∈U′ V (v)

6: b(v) ← 1
|U′|

P

v∈U′ b(v)

7: user u connects to local RS
8: local RS predicts rating and suffers loss

9: update U , bu, V (u), b
(u)
i

10: select target user set U and item set I
11: for v in U and j in I do

12: V
(v)

j ← βV
(v)

j + (1− β)V
(u)

j

13: b
(v)
j ← βb

(v)
j + (1− β)b

(u)
j

and biases from a random set of users already present in the
system, and then, averages these copies. When the local
copies of item vectors and biases are identical, it is enough
to request from only one user. When, due to a limit on
the amount of communication, this is not the case, it may
be beneficial to request from more users and average their
instances. This issue will be revisited in the experimental
section.

6. PRIVACY
One of the advantages of the peer-to-peer architecture for

recommender systems is that user data is kept locally, pre-
venting an unsolicited party to access it. While the user
data cannot be accessed externally, the communication may
still reveal some private information.

A similar peer-to-peer algorithm was considered by [30]
for online convex optimization, and the authors have shown
that such an algorithm has intrinsic privacy-preserving prop-
erties, i.e. the gradients of the local function cannot be
reconstructed for various topologies of user communication
graphs. While in their case, the full model was transmitted,
for matrix factorization the user vector are kept locally, and
only part of the item vectors are sent at any time. It is easy
to see that the inaccessibility of the user vectors and the
non-convexity of the function to be optimized makes it even
more difficult to reconstruct the gradients.

While the user data is kept locally, and it is sufficiently
difficult to reconstruct the gradients, the communication
may still reveal information about which items are rated
by the user. This vulnerability comes in because the users
are sending the vectors corresponding to a restricted sub-
set of the items that contains the rated items. A natural
choice for ‘attacking’ the data made available to a malicious
party is the ScoreBoard algorithm of [23]. The algorithm
can handle well noise both in the prior information, and the
information received from the communication. It assumes
that the malicious party gained some auxiliary information
about the preferences of a particular person (such as ratings
available on IMDB, or preferences stated in a discussion),
and attempts to identify the person in the network from the
received communications. Subsequently, the algorithm de-
ciphers additional information in the form of preferences for
various items.

The ScoreBoard algorithm maintains a score su for each
user, reflecting how likely is that the information about the

particular user matches the auxiliary information. The aux-
iliary information is represented by the set of items Aux.
The algorithm relies on a similarity measure at attribute
(item) level. The similarities of the items in the auxiliary
set, weighted with a function that depends on their respec-
tive frequencies, are combined in the scoring function:

su =
X

i∈Aux

1

log |ni + 1| I(rui>δ),

where nu if number of ratings for item i, rui is the ratio of
item i received in the messages received from user u, and δ
is appropriate threshold.

7. EXPERIMENTS
In this section we will test empirically the performance of

the peer-to-peer online prediction algorithms using two stan-
dard benchmarks: the 1M and the 10M MovieLens datasets.2

The datasets include movie ratings with a timestamp recorded
in seconds. We use the timestamps to establish a sequen-
tial order of the ratings. Ratings with identical timestamps
are considered in random order. The datasets stretch over
several years thus there is a fair amount of non-stationarity.
The learning rate for all experiments is kept constant 0.05,
which was found to perform well for the centralized predic-
tion variants, and kept the same for the distributed ones.
The dimensionality of the latent vectors is set to 10.

Since we consider the top-K recommendation task the
more interesting one, we focus most of our attention on this
task. There is, however, a feature that favours rating predic-
tion: in this task the loss function and the gradient step are
closely tied. In contrast, in top-K recommendation the gra-
dient is computed for a loss function that is only related to
the true objective measure. Since the convergence results of
Section 3 refer to the loss function of which gradient is taken,
the first set of experiments (described in Section 7.1) can
be thought as a bridge between the theoretical results and
the experiments on the top-K recommendation task (Sec-
tion 7.2). Finally, we describe experiments on privacy in
Section 7.3.

7.1 Rating prediction
We consider a ’fixed’ communication protocol where the

number of target users is kept the same at each time step.
Recall from Section 5 that in the case of rating prediction,
only the vector and bias corresponding to the rated item
are sent in each iteration. The average mean square er-
ror (MSE) for the two datasets are shown in Figure 1 and
Figure 2. Each data point corresponds to a run where the
number of selected targets is kept at a certain value. In both
figures the data points with most messages correspond to the
situation when the vectors are sent to all users and the loss
obtained is the same as the one resulting from a centralized
algorithm. We observe that the loss increases logarithmi-
cally with decreasing the number of messages sent (target
users selected). In the figures two simple dynamic sched-
ules that depend on the suffered loss (MSE) are included
as well: namely the number of target users selected equals
(N−1)/(1+c/fn), where fn is the loss at time step n, and c
is constant that is varied in the figure. One can notice that
for both datasets a slight improvement can be obtained with
the dynamic communication schedule.

2http://grouplens.org/datasets/movielens/

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1 10 100 1000 10000

M
S

E

messages

fixed
rmse

Figure 1: Peer-to-peer rating prediction on the 1M
MovieLens dataset. The x-axis shows the average
number of item vectors sent per time step.

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1 10 100 1000 10000 100000

M
S

E

messages

fixed
rmse

Figure 2: Peer-to-peer rating prediction on the 10M
MovieLens dataset.

7.2 Top-K recommendation
For the top-K recommendation, first, we choose the strat-

egy of selecting negative samples (line 6 in Algorithm 2).
In Figure 3 we plot the performance of four strategies on
the 1M dataset: (1) select randomly 10 unvisited items, (2)
select randomly 60 items, (3) select randomly 60 items and
use only the top ten of these, and (4) select to top ten of
1000 random ones. The performance is measured as average
cumulative NDCG@10. More precisely, at each time step
n, we sum the instantaneous NDCG@10 up to that point,
and divide it with n. While in Algorithm 2 we refer to the
measure as loss function, for NDCG the higher is the better.
The performance seems very sensitive to the chosen nega-
tive sampling. The best performing strategy is to select ran-
domly 60 item, and use the top 10 for the update step. We
will use this strategy for the remaining set of experiments.

Turning to the peer-to-peer recommendation, the first ques-
tion is how to mix the received vectors with the local ones
(β in Algorithm 3). In this experiment the vectors of the
positive instance and all negative instances are sent to the
target users. The number of target users is fixed (in a simi-
lar way as in the fixed protocol above) to a particular value

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 200000 400000 600000 800000 1e+06

N
D

C
G

@
10

timesteps (n)

10
60

10/60
10/1000

Figure 3: Centralized top-K recommendation on the
1M MovieLens dataset with different strategies to
select negative training instances.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 10 100 1000 10000 100000

N
D

C
G

@
10

messages

beta=0
beta=0.1
beta=0.3
beta=0.5
beta=0.7

Figure 4: Peer-to-peer top-K recommendation on
the 1M MovieLens dataset with varying mixing rate.

that is varied. Figure 4 shows the performance on the 1M
dataset with different values for β. The average cumulative
NDCG@10 is shown in this figure and the subsequent ones
for the whole dataset. Thus, the data point on these figures
correspond to the last measurement in Figure 5 (i.e. for the
data point with largest number of time steps). The perfor-
mance of the centralized algorithm is indeed identical to the
performance of the peer-to-peer algorithm for the data point
that satisfies the conditions enumerated in Section 5. Recall
that the conditions include sending all negative items to all
users and having β = 0. It is clear from Figure 4 that the
best result is obtained for β = 0, in which case the received
latent vector and bias replaces the local instance. In the
following we will use this setting.

The next experiment investigates if all (10) negative in-
stances should be sent, or just a random subset of these,
along with the positive one. Therefore, in Figure 5 we plot
the performance if 3, 5, 7, or 10 (all) negative instances
are sent. Note that if we select the same number of target
users and send only vectors corresponding to five negative
instances the amount of communication is reduced (almost
halved). The results for the four values are rather interest-

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 10 100 1000 10000 100000

N
D

C
G

@
10

messages

neg=3
neg=5
neg=7

neg=10

Figure 5: Peer-to-peer top-K recommendation on
the 1M MovieLens dataset with varying item selec-
tion.

ing. First, it is clear that if the number of messages are kept
small, then it is better to select less items and use the reduc-
tion in the message to send to more users. Surprisingly, when
all (or almost all) users are targets, performance gain can be
obtained by not sending all negative items. In fact, this re-
sults in a performance gain over the centralized algorithm.
We do not have a clear explanation for the improvement, it
could be due to some additional diversity among the copies
of the models, but this is purely a conjecture.

Up to this point, we assumed that users were in the system
during the whole episode. In the final experiment we con-
sider the situation when this is not the case. It is difficult to
know from the data when a particular user was active, and
we set this time frame as ranging from the first rating of the
user until the last one (naturally the user could have regis-
tered much earlier, and could have been using the system for
much later without performing any rating). In this scenario
lines 2–6 of Algorithm 3 become relevant, and we have to
decide from how many users to ’pull’ the model. The results
are shown in Figure 6 with different number of source users.
The performances are shown for the case when five negative
instances are sent after a gradient update (a combination of
all negatives sent and one source user polled is also shown).
It seems obvious from the figure that the communication ef-
ficient strategy is to request the model from only one user.
If we send to the same number of target users (after gradient
update) pulling models from more users increases the per-
formance, but it comes at a cost of increased communication
that can be better used after the gradient update.

For top-K recommendation, the results were presented
for the 1M dataset. We observed a similar pattern of re-
sults for the 10M dataset (not shown). Finally, we would
like to draw some comparison between how the performance
degrades with decreasing communication for the two types
of tasks, i.e. rating prediction and top-K recommendation.
If we compare Figures 1 and 2 with Figures 4 and 5, the
curves seems fairly similar taken into account that for the
first task we minimize the measure, while for the second, we
maximize. Figure 6 shows a different pattern. We observe a
plateau at the end of each curve, clearest being for the curve
corresponding to sending all negative samples and request-
ing from only one user (neg=10, pull=1). This suggests that

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 10 100 1000 10000 100000

N
D

C
G

@
10

messages

neg=5, pull=1
neg=5, pull=10

neg=5, pull=100
neg=5, pull=all
neg=10, pull=1

Figure 6: Peer-to-peer top-K recommendation on
the 1M MovieLens dataset in the case of dynamic
user availability.

if at each time step we are only concerned to send items that
are active, then we do not lose in performance even if we the
amount of communication drops by an order of magnitude.

7.3 Privacy
The privacy preserving properties of the peer-to-peer rec-

ommendation system is tested with the ScoreBoard algo-
rithm described in Section 6. We consider the top-K recom-
mendation task on the 1M MovieLens dataset with varying
item selection and with continuous presence of all users (thus
the same set-up as for Figure 5). We consider two scenarios:
when the adversary knows 10 percent of the items rated by a
particular user and when all ratings of the user are known.
The probability of correctly identifying the user from the
messages received is averaged over all users. If the adver-
sary has access to the whole data set the detection proba-
bility is 0.48 and 0.96, respectively. The detection probabil-
ity against the peer-to-peer algorithm is plotted in Figure 7
and Figure 8. In both figures the threshold δ was set to 0.5
which was found to result the highest probability of identi-
fying correctly the users. The value plotted was chosen as
the highest value at any time for a given set-up. In both sce-
narios (10 percent and all ratings) the detection probability
is hugely decreased compared to the above mentioned base-
lines. Sending more negative items increases privacy (i.e.
decreases detection probability) as well as sending to items
to less peers.

Next, we compare the ranking performance/privacy trade-
off for the peer-to-peer algorithm and the centralized one
using the k-CoRating algorithm to improve privacy. k-

CoRating extends the rating matrix in a heuristic way such
that for any user there are at least k − 1 other users that
rated exactly the same items. In an online scenario this is
fairly difficult to achieve, but we assume that there is an
oracle that knows in advance all the ratings and extends the
rating matrix with ratings such that the above property will
hold at the end. The artificial ratings are spread uniformly
over the episode, and set to an average value.3 The training
for the centralized algorithm is performed on the extended

3The rating value is not critical since the ranking perfor-
mance is not sensitive to the actual rating (cf. the equation
of NDCG@K in Section 4).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1 10 100 1000 10000

de
te

ct
io

n
pr

ob
ab

ili
ty

messages

 neg=3
 neg=5
 neg=7

 neg=10

Figure 7: Detection probability on the 1M Movie-
Lens dataset when 10% of the ratings are known for
a particular user.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 1 10 100 1000 10000

de
te

ct
io

n
pr

ob
ab

ili
ty

messages

 neg=3
 neg=5
 neg=7

 neg=10

Figure 8: Detection probability on the 1M Movie-
Lens dataset when all ratings are known.

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

de
te

ct
io

n
pr

ob
ab

ili
ty

NDCG@10

 k-corating 10%
 k-corating all

 p2p neg=10 10%
 p2p neg=10 all

Figure 9: Detection probability vs. ranking perfor-
mance.

rating sequence, the ranking performance is measured on
the original sequence, and the detection probability (with
the ScoreBoard algorithm) on the extended sequence.

The detection probability corresponding to various levels
of ranking performance is plotted in Figure 9. For the peer-
to-peer algorithm, we included the results with all negative
items sent, with the number of target users varied (as in
Figure 7 and 8, while for the centralized algorithm with k-

CoRating the value k is varied. Again the adversary knows
all ratings of a user or ten percent of it. We observe that
to obtain a reasonable ranking performance k-CoRating

is unable to ensure high level of privacy (values of k close
to 1), while the peer-to-peer algorithm can achieve a good
ranking performance and in the same time offer consider-
able privacy. It is interesting that k-CoRating can achieve
perfect privacy and still provide a meaningful ranking, while
the peer-to-peer algorithm is unable to achieve this in the
considered version. It is expected that if more items are sent
(other than the positive and negative samples) the privacy
can be further improved without deteriorating the ranking
performance. This comes however with the expense of in-
creased communication costs.

8. CONCLUSIONS
In this paper we proposed an online peer-to-peer collab-

orative filtering algorithm that stores the ratings of a user
and the private data local. Additionally, the users have a
local copy of the common part of the factor model and com-
municate with other users to advance towards a consensus
on it. A general form of the algorithm is proven to converge
to a set of local optima in the stationary case. In a more
specific form, we provided peer-to-peer matrix factorization
algorithms for rating prediction and top-K recommendation.

We note that the general form is straightforward to instan-
tiate to more intricate models such as factorization machines
[26], or extend with context-aware features [2]. In the same
way, it is easy to replace the negative sampling and gradient
update step in the top-K recommendation algorithm with
other choices employed in a centralized algorithm, e.g., [27]
or [32]. Essentially, most algorithms where the private data
can be separated, and use some form of stochastic gradient
descent can be distributed in the same way as we did with
our matrix factorization model in Section 5.

The online peer-to-peer matrix factorization algorithms
were evaluated on the two larger MovieLens datasets that
seem to us fairly non-stationary. We observed that the mean
square error increases logarithmically with decreasing com-
munication, and we suggested a simple way to control the
amount of communication more efficiently. We expect that
targeting users with similar tastes could make the commu-
nication more efficient, but we leave this issue for future
research. For top-K recommendation we compared a few
negative sampling strategies, and we showed how to handle
new users. Crucially, we observed that sending only a subset
of the negative samples could not only make the communi-
cation more efficient, but it could improve on the perfor-
mance of the centralized algorithm. Understanding why the
improvement is possible could help to improve centralized
recommendation algorithms as well.

The peer-to-peer recommendation algorithm was shown to
offer improved privacy without deteriorating the recommen-
dation performance, which was not the case for the baseline
algorithm tested.

9. REFERENCES
[1] J. Abernethy, K. Canini, J. Langford, and A. Simma.

Online collaborative filtering. Technical report, UC
Berkeley, Tech. Rep, 2011.

[2] G. Adomavicius and A. Tuzhilin. Context-aware
recommender systems. In Recommender systems
handbook, pages 217–253. Springer, 2011.

[3] M. Ali, C. C. Johnson, and A. K. Tang. Parallel
collaborative filtering for streaming data. University of
Texas Austin, Tech. Rep, 2011.

[4] C. Andrieu, É. Moulines, and P. Priouret. Stability of
stochastic approximation under verifiable conditions.
SIAM Journal on control and optimization,
44(1):283–312, 2005.

[5] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and
A. Scaglione. Broadcast gossip algorithms for
consensus. IEEE Transactions on Signal Processing,
57(7):2748–2761, 2009.

[6] O. Besbes, Y. Gur, and A. Zeevi. Non-stationary
stochastic optimization. arXiv preprint
arXiv:1307.5449, 2013.

[7] P. Bianchi, G. Fort, and W. Hachem. Performance of a
distributed stochastic approximation algorithm. IEEE
Trans. on Information Theory, 59:7405–7418, 2013.

[8] P. Bianchi and J. Jakubowicz. Convergence of a
multi-agent projected stochastic gradient algorithm
for non-convex optimization. IEEE Transactions on
Automatic Control, 58(2):391–405, 2013.

[9] M. Boley, M. Kamp, D. Keren, A. Schuster, and
I. Sharfman. Communication-efficient distributed
online prediction using dynamic model
synchronizations. In First International Workshop on
Big Dynamic Distributed Data (BD3@VLDB), pages
13–18, 2013.

[10] A. Boutet, D. Frey, R. Guerraoui, A. Jégou, and
A.-M. Kermarrec. Privacy-preserving distributed
collaborative filtering. In Networked Systems, pages
169–184. Springer, 2014.

[11] P. G. Campos, F. Dı́ez, and I. Cantador. Time-aware
recommender systems: a comprehensive survey and
analysis of existing evaluation protocols. User
Modeling and User-Adapted Interaction, pages 1–53,
2013.

[12] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao.
Optimal distributed online prediction using
mini-batches. The Journal of Machine Learning
Research, 13:165–202, 2012.

[13] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis.
Large-scale matrix factorization with distributed
stochastic gradient descent. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 69–77. ACM, 2011.

[14] P. Hall and C. C. Heyde. Martingale Limit Theory and
Its Application. Academic Press, 1980.

[15] I. Hegedus, M. Jelasity, L. Kocsis, and A. A. Benczúr.
Fully distributed robust singular value decomposition.
In 14-th IEEE International Conference on
Peer-to-Peer Computing, pages 1–9. IEEE, 2014.

[16] S. Isaacman, S. Ioannidis, A. Chaintreau, and
M. Martonosi. Distributed rating prediction in user
generated content streams. In Proc. Fifth ACM Conf.
on Rec. Sys., pages 69–76. ACM, 2011.

[17] K. Järvelin and J. Kekäläinen. Ir evaluation methods
for retrieving highly relevant documents. In SIGIR,
pages 41–48, 2000.

[18] Y. Koren and R. Bell. Advances in collaborative
filtering. In Recommender Systems Handbook, pages
145–186. Springer, 2011.

[19] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[20] N. Lathia, S. Hailes, and L. Capra. Private distributed
collaborative filtering using estimated concordance
measures. In Proceedings of the 2007 ACM conference
on Recommender systems, pages 1–8. ACM, 2007.

[21] N. Lathia, S. Hailes, and L. Capra. Temporal
collaborative filtering with adaptive neighbourhoods.
In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in
information retrieval, pages 796–797. ACM, 2009.

[22] O.-A. Maillard and R. Munos. Online learning in
adversarial lipschitz environments. In Machine
Learning and Knowledge Discovery in Databases,
pages 305–320. Springer, 2010.

[23] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In IEEE
Symposium on Security and Privacy, 2008., pages
111–125. IEEE, 2008.

[24] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye,
N. Taft, and D. Boneh. Privacy-preserving matrix
factorization. In ACM SIGSAC Conf. on Comp. and
Comm. Security, pages 801–812. ACM, 2013.

[25] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose,
M. Scholz, and Q. Yang. One-class collaborative
filtering. In Eighth IEEE International Conference on
Data Mining (ICDM’08), pages 502–511. IEEE, 2008.

[26] S. Rendle. Factorization machines. In Data Mining
(ICDM), 2010 IEEE 10th International Conference
on, pages 995–1000. IEEE, 2010.

[27] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme. Bpr: Bayesian personalized
ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pages 452–461. AUAI Press, 2009.

[28] C. Tekin, S. Zhang, and M. van der Schaar.
Distributed online learning in social recommender
systems. arXiv preprint arXiv:1309.6707, 2013.

[29] K. I. Tsianos and M. G. Rabbat. Consensus-based
distributed online prediction and optimization. In
IEEE GlobalSIP Network Theory Symposium, 2013.

[30] F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi.
Distributed autonomous online learning: Regrets and
intrinsic privacy-preserving properties. IEEE
Transactions on Knowledge and Data Engineering,
25(11):2483–2493, 2013.

[31] F. Zhang, V. E. Lee, and R. Jin. k-corating: Filling up
data to obtain privacy and utility. In Twenty-Eighth
AAAI Conference on Artificial Intelligence, 2014.

[32] W. Zhang, T. Chen, J. Wang, and Y. Yu. Optimizing
top-n collaborative filtering via dynamic negative item
sampling. In Proceedings of the 36th International
ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’13,
pages 785–788, 2013.

EPJ manuscript No.
(will be inserted by the editor)

Statistical analysis of NOMAO customer votes for spots of
France
Róbert Pálovics1,2, Bálint Daróczy1,2, András Benczúr1,3, Julia Pap1, Leonardo Ermann4, Samuel Phan5, Alexei D.
Chepelianskii6, and Dima L. Shepelyansky7

1 Informatics Laboratory, Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI), Pf. 63, H-1518 Budapest, Hungary

2 Technical University Budapest, Hungary
3 Eötvös University Budapest, Hungary
4 Departamento de Física Teórica, GIyA, CNEA, Av. Libertador 8250, (C1429BNP) Buenos Aires, Argentina.
5 NOMAO.COM, 1 av Jean Rieux, 31500 Toulouse, France
6 LPS, Université Paris-Sud, CNRS, UMR 8502, F-91405, Orsay, France
7 Laboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, UPS, F-31062 Toulouse, France

Dated: April 30, 2015

Abstract. We investigate the statistical properties of votes of customers for spots of France collected by
the startup company NOMAO. The frequencies of votes per spot and per customer are characterized by
a power law distributions which remain stable on a time scale of a decade when the number of votes is
varied by almost two orders of magnitude. Using the computer science methods we explore the spectrum
and the eigenvalues of a matrix containing user ratings to geolocalized items. Eigenvalues nicely map
to large towns and regions but show certain level of instability as we modify the interpretation of the
underlying matrix. We evaluate imputation strategies that provide improved prediction performance by
reaching geographically smooth eigenvectors. We point on possible links between distribution of votes and
the phenomenon of self-organized criticality.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 89.20.Hh World Wide Web, Internet

1 Introduction

The young startup company NOMAO [20] collected a large
database about customer (or users) votes for spots (or
Points of Interest POIs or items) in France. The spots
represent mainly restaurants and hotels with known ge-
olocation coordinates. In this paper we investigate the sta-
tistical properties of these NOMAO votes and ratings of
geolocalized items in a mix of geographic information and
recommendations systems. The geographical distributions
of votes are shown in Fig. 1 for the whole France and more
specifically for Paris. The frequency distributions of votes
per spot and votes per user are shown in Fig. 2 for France
at different time intervals. It shows that these frequency
distributions are stabilized in time and thus we are deal-
ing with an unusual statistical system been at a certain
steady-state. We note that at present a variety of real
systems and networks are found to possess power law dis-
tribution (see e.g. [10]) and thus here we investigate a new
type of such a case with algebraic statistical properties.

To analyze the statistical properties of this real sys-
tem we use the methods of recommender systems [29]
which gained a broad recognition in computer science af-

ter the Netflix Prize competition [28]. In our research,
distance, region and location become a side information
over a multi-objective classification or regression problem.
We concentrate on predicting user preferences by a spec-
tral analysis based collaborative filtering that uses geo-
location in addition to the ratings matrix.

We investigate how user taste, as described by latent
factors, is reflected in the geographic information system.
We compare the latent factors obtained by a full spectral
analysis and by the stochastic gradient method, the stan-
dard recommendation technique applicable for matrices
with a very large fraction of values missing.

The key difficulty in the spectral analysis lies in the
abundance of missing values in the rating matrix: our ma-
trix consists of 99.5% missing values while the Netflix ma-
trix for example is 99% unknown. Several early results
describe expectation maximization based singular value
decomposition (SVD) algorithms dating back to the sev-
enties [13] and [6,23,34] describe the method for a recom-
mender application.

A successful implementation of spectral analysis in rec-
ommender matrices with only a few known elements is de-
scribed by Simon Funk in [12]. His method is a variant of

2 Róbert Pálovics et al.: The spectrum of a geo-located rating matrix

Fig. 1: Geographical distribution of votes for spots (POIs)
in the original datasets. Top panel: case of France; (each
square pixel represents 7.8km2); bottom panel: case of
Paris (each square pixel represents 1370m2); color bars
give a number of votes per pixel (cell), a limitation in
number of votes is introduced for a better color represen-
tation.

Stochastic Gradient Descent (SGD) reminiscent of gradi-
ent boosting [11]. SGD computes no eigenvalues and does
not guarantee the orthogonality of the matrix factors. On
the other hand, regularization is easily incorporated in
SGD, which enables a better handling of the very large
amount of missing values in the matrix and in particular,
prevents overfit to training elements and provide better
quality predictions of the unknown ratings.

In this paper, after describing methods and related re-
sults (Section 2) and the NOMAO data sets (Section 3),
we compare and visualize the geo-localization of the ma-
trix factors defined by SVD and SGD under various pa-
rameter settings in Section 4. We show that by imputing

1 10 100 1000
ν

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(ν

)

until 2012
until 2010
until 2008
until 2006
until 2004

ν
-1.5

1 10 100
µ

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(µ

)

until 2012
until 2010
until 2008
until 2006
until 2004

µ
-2.75

Fig. 2: Differential frequency distributions of votes for the
case of France for different time intervals until year 2004,
2006, 2008, 2010, 2012. Top panel: differential probability
P (ν) to have ν votes for spots; bottom panel: differential
probability P (µ) to have µ votes per user (customer). Here
the dashed lines show an average algebraic decay with
exponents −1.5 (top), −2.75 (bottom).

ratings to nearby locations we may form factors that yield
a better description of the ratings matrix in Section 5.

2 Methods and related results

Recommenders based on the rank k approximation of the
rating matrix based on the first k singular vectors are
probably first described in [5,21,15,22] and many others
near year 2000.

The Singular Value Decomposition (SVD) of a rank ρ
matrix R is given by R = UTΣV with U an m× ρ, Σ
a ρ× ρ and V an n× ρ matrix such that U and V are
orthogonal. By the Eckart-Young theorem [14] the best
rank-k approximation of R with respect to the Frobenius
norm is

||R− UT
k ΣkVk||2F =

∑
ij

(rij −
∑
k

σkukivkj)
2, (1)

Róbert Pálovics et al.: The spectrum of a geo-located rating matrix 3

where Uk is an m× k and Vk is an n× k matrix contain-
ing the first k columns of U and V and the diagonal Σk

containing first k entries of Σ.
The rmse differs from the above equation only in that

summation is over known ratings

rmse2 =
∑

ij∈known

err2ij where errij = rij −
∑
k

σkukivkj .

(2)
Early works [22] used SVD for recommenders by defin-

ing various strategies for handling the missing values in the
rating matrix R [18]. The most natural idea is to impute
the missing elements by zeroes, averages, or even repeat-
edly re-fill by predictions. It has turned out that all above
missing value imputation methods overfit to the imputed
values [18]. More recent results emphasize the importance
of regularization to avoid overfitting [3,25]. For this rea-
son, the recommender systems community turned away
from SVD and use other optimization methods for rat-
ing matrices with missing values, most notably stochastic
gradient descent [26] and alternating least squares [16].

In our problem, locality is an additional information
that can be exploited for analyzing the recommender ma-
trix. Surveys on recommendations in location-based so-
cial networks [2,24] combine spatial ratings for non-spatial
items, nonspatial ratings for spatial items, and spatial rat-
ings for spatial items [19]. Flickr geotags are used for travel
route recommendation, concentrating on routes and not
individual places in [17]. User similarity based methods
may combine friendship information with the distance of
the user home locations [31,32].

Most similar to our method is the Probabilistic Matrix
Factorization approach that fuses geographic information
[7] and observes that “users tend to check in around sev-
eral centers, where the check-in locations follow a Gaus-
sian distribution at each center [. . . and] the probability of
visiting a place is inversely proportional to the distance
from its nearest center; if a place is too far away from the
location a user lives, although he/she may like that place,
he/she would probably not go there.”

3 The Nomao Datasets

Nomao is a startup company located in France [20]. It
performs the analysis of point of interest (POI) rating and
reservation services and collects POI information includ-
ing user ratings from France with a special accent on Paris
and Toulouse regions where the company headquarters are
located. The Nomao dataset used in our experiments con-
tain user-POI ratings, and GPS information of the rated
POIs. We investigate two separated datasets. The first one
contains information on POIs in France, while the second
has ratings only on POIs located in Paris. We analyze the
datasets collected during the time period up to year 2012.

Table 1 (top) shows the basic attributes of the orig-
inal datasets. The average number of ratings per item is
relatively large, the average number of ratings per user is
very low. Moreover, only a very few percent of all user-
item scores is known.

Table 1: Attributes of the original (top), and cleaned
(bottom) datasets.

original Paris France
Number of ratings 1,539,964 1,432,601
Number of users 998,127 1,077,568
Number of items 20,576 99,976

Average ratings per user 1.543 1.329
Average ratings per item 74.84 14.32
Ratio of known ratings 0.0075% 0.0013%

cleaned Paris France
Number of ratings 114,352 97,452
Number of users 5,756 9,471
Number of items 2,952 7,605

Average ratings per user 19.87 10.29
Average ratings per item 38.74 12.81
Ratio of known ratings 0.672% 0.135%

Average rating 3.714 3.747

The distribution P (ν) of frequency of votes per spot
ν (or item i) is shown in top panel of Fig. 2. This dis-
tribution is stable in time and is well described by the
power law P (ν) ∝ 1/νa with a ≈ 1.5. Also, the distribu-
tion P (µ) of frequency of votes per customer µ (or user
u) remains stable in time with the power law dependence
P (µ) ∝ 1/µb with b ≈ 2.75. It is important to note that
this distributions remain stable from year 2004 up to year
2012 even if the number of votes increases almost by two
orders of magnitude during this period. At the moment we
cannot prodive theoretical reasons for the values of these
exponents.

We call user activity how many times a user scored
different items. We define item activity similarly. Fig. 3
shows the probability density function (PDF), an the cu-
mulative density function (CDF) of user activities. Fig. 4
shows the same distributions for items. Both user and item
activities follow power-law distributions with the exponent
values being very similar for Farnce and Paris datasets. As
in Fig. 2 we find that the exponent for probability of votes
for POIs is a ≈ 1.5 while the exponent for the exponent
for probability of votes of users is b ≈ 2.75.

To handle the extreme sparsity of the user-item ma-
trices, we selected a smaller subset of the user-item rating
datasets by the following selection criteria:
– We only used ratings between 0-5. Part of the ratings,

probably originating from a different system, were out
of this range.

– We filtered out users and items that have less than A
ratings. In other words, we selected the subgraph of the
user-item rating bipartite graph with users and items
that have degree at least A. For Paris we set A = 10,
for France we set A = 5.

Table 1 (bottom) shows the attributes of the selected
subsets. In what follows we use these datasets in our ex-
periments.

In Fig. 5 we show the score distributions: the top (bot-
tom) panel shows the distributions for the original (cleaned)
datasets. We see that the original and cleaned datasets
have similar distributions of scores.

4 Róbert Pálovics et al.: The spectrum of a geo-located rating matrix

P(
fre

q(
i)=

x)

1e−06
1e−05
0.0001
0.001
0.01
0.1

1

frequency x
1 10 100 1,000 10,000

2
2

Paris
France

P(
fre

q(
i)≤

x)

0.9

0.92

0.94

0.96

0.98

1

frequency x
1 10 100 1,000

3
3
3
3

Paris
France

Paris
France

Fig. 3: Probability density function (top), and cumulative
density function (bottom) of user activities in the original
datasets.

P(
fre

q(
i)=

x)

1e−05

0.0001

0.001

0.01

0.1

1

frequency x
1 10 100 1,000 10,000

2
2

Paris
France

P(
fre

q(
i)≤

x)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

frequency x
1 10 100 1,000

3
3
3
3

Paris
France

Fig. 4: Probability density function (top), and cumula-
tive density function (bottom) of item activities in the
original datasets.

Fig. 6 shows the geographical density of POIs in the
Paris (top) and in the France (bottom) for the original
datasets. The geolocation data of POIs are used in the
following Sections for spectral analysis.

In the following we perform all computations with the
cleaned datasets since the analysis of multiple votes of the
same user provides more reliable statistical data.

P(
ra

tin
g(

u,
i)

=
 r)

0

0.1

0.2

0.3

0.4

0.5

rating r
0 1 2 3 4 5

2
2

Paris
France

P(
ra

tin
g(

u,
i)

=
 r)

0
0.1
0.2
0.3
0.4
0.5

rating r
0 1 2 3 4 5

2
2

Paris
France

Fig. 5: Score distributions with integer binning. Top:
original dataset, Bottom: cleansed dataset.

4 Spectra of recommender matrices

4.1 Singular value decomposition

The recommender matrix R consists of the preference val-
ues r(u, i) of users u for items i. The values may denote ex-
plicit rating values, e.g. 1-5 stars for Netflix movies [3]. We
may also consider the so-called implicit ratings problem,
where the value is 1 if the user visited POI i and 0 other-
wise. The value of the explicit matrix is missing whenever
the user gave no rating yet. In most of the cases, this ma-
trix is very sparse with only 1% or less known values. The
implicit matrix is always a full 0–1 matrix, however the
0 values are uncertain: the user may not know about the
item or had no time yet to visit it.

The so-called Latent Factor Model is an approximation
R̂ of the original rating matrix R,

r̂(u, a) =

k∑
f=1

pufqaf , (3)

where P = [puf] and Q = [puf] are the user and item
factor models, respectively.

For a fixed number of factors k, r̂ approximates r with
the smallest root mean squared error if it is defined by the
singular vectors corresponding to the k largest singular
values,

r̂(u, a) =

k∑
f=1

pufqaf , (4)

where the singular value decomposition (SVD) of R is
UΣV T .

Since

RRT = UΣ2UT and RTR = V Σ2V T , (5)

Róbert Pálovics et al.: The spectrum of a geo-located rating matrix 5

Fig. 6: Geographical distribution of POIs in the original
datasets. Top panel: case of France (each square pixel rep-
resents 7.8km2); bottom panel: case of Paris (each square
pixel represents 1370m2); color bars give number of POIs
per pixel (cell); a limitation in number of POIs is intro-
duced for a better color representation.

the spectrum of the recommender matrix R is defined
identically by the square root of the eigenvalues of RRT or
RTR. These latter matrices are symmetric positive semidef-
inite, the spectrum is non-negative real.

If R contains missing values such as in the case of an
explicit rating matrix, SVD is undefined. We may still de-
fine the best root mean square approximation by summing
the error for the known ratings only as in equation (1).

4.2 Stochastic gradient descent: Latent factor
modeling with missing values

We use the regularized matrix factorization method of
[25]. and optimize the minimum squared error of the k-

factor model

r̂(u, i) =

k∑
l=1

pulqil, (6)

where p and q contain the user and item models, respec-
tively. By adding regularization with weight λ, we opti-
mize the quantity

∑
u,i

(
r(u, i)−

∑k
l=1 pulqil

)2
+ λ

∑
u

∑k
l=1 p

2
ul + λ

∑
i

∑k
l=1 q

2
il. (7)

For a single event (u, i) we optimize the coefficients pul
and qil for l = 1, . . ., k by gradient descent with learning
rate lrate as

pul ← pul + lrate ·
(
r(u, i)−

∑k
l=1 pulqil

)
qil − lrate · λpul; (8)

qil ← qil + lrate ·
(
r(u, i)−

∑k
l=1 pulqil

)
pul − lrate · λqil. (9)

Unlike SVD where eigenvalues are sorted, the SGD
factors are not ordered by the above equations. In order
to produce the eigenvector maps, we built ranked factors
by an iterative SGD that optimize only on a single factor
at a time [12].

4.3 Mapping SVD and SGD latent factors

First we set each unknown value of R to zero and com-
puted the SVD decomposition. The first, second, and fourth
singular vectors are plotted over the map of France (Fig. 7,
left) by assigning the value in the vector to the location
of the POI. More specifically, we averaged these values on
a grid to create the final heatmaps. The smoothing algo-
rithm weighted the value of each POI to the closest grid
point inversely proportional to their euclidean distance.

The heatmaps in Fig. 7, left, indicate that the singu-
lar vectors are strongly geolocation related. The first few
dimensions correspond to the largest cities in France.

Similarly, we investigated the latent vectors of R com-
puted with the SGD algorithm. The first, second and fourth
latent vectors are plotted over the map of France in Fig. 7,
right, similar to the SVD eigenvectors. While the SVD sin-
gular vectors were centralized one-by-one on a large city,
the SGD latent factors are the linear combination of them.
The latent factors are also geolocation related, but not
separated among the main cities like the SVD singular
vectors.

In 8 we mapped the first three singular vectors of the
Paris dataset. The different vectors may focus on different
districts. However, they are not as clearly separated as the
singular vectors of the France dataset.

In Section 5 we use these key observations to improve
the recommendation quality of the SGD.

6 Róbert Pálovics et al.: The spectrum of a geo-located rating matrix

Fig. 7: The first, second and fourth singular vectors of the Nomao France rating matrix by SVD (left) and SGD
(right). Here, the SVD eigenvectors correspond to Paris and Toulouse; Bordeaux, Toulouse and Marseille; Bordeaux
and Marseille respectively, while the SGD plots for respective vectors are scattered around several cities.

Róbert Pálovics et al.: The spectrum of a geo-located rating matrix 7

5 Prediction for ratings and visits to
locations

5.1 Recommender evaluation

Recommender systems serve to find new products for the
users that are relevant for them. More specifically, for a
given user u an item i a recommender system may retrieve
the predicted relevancy r̂ui. This is called the rating pre-
diction task. The Netflix Prize competition [4] was a chal-
lenge in rating prediction. While in the Netflix Prize com-
petition, contestants were optimizing to predict all ratings
to the users, a recommender system in practice selects the
top rated items for a given user. In this top-K prediction
task [9,8,33], a recommender system should retrieve for a
given user a top list of items with length K. The top list
should contain the most relevant items for the given user.
This problem is more application related than the rat-
ing prediction task. In our experiments we examine both
problems on the NOMAO datasets.

In addition to RMSE defined by equations (1) for full
and (2) for partial matrices, we use two measures that
evaluate the accuracy of the top-K recommendation task.

Recall at k is defined as the number of relevant POIs
among the highest k values of row u in the matrix approx-
imation,

Recallu(k) =
1

|Ru|

k∑
i=1

relu,i, (10)

where relu,i is the actual relevance of POI i for user u
in the evaluation data, and Ru is the number of relevant
items for user u in the dataset. We may average for all
users to obtain

Recall(k) =
1

|U |
∑
u

Recallu(k). (11)

Normalized Discounted Cumulative Gain at k weights the
relevance by the order of the predicted values as

NDCGu(k) =
DCGu(k)

iDCGu(k)
, (12)

where

DCGu(k) =

k∑
i=2

relu,i
log2(i+ 1)

(13)

and

NDCG(k) =
1

|U |
∑
u

NDCGu(k). (14)

In our experiments, we randomly cut the data to train-
ing and test sets. We only use records in the training set
to set the parameters of our model. The lower MSE, and
the higher NDCG and recall we measure on the test set,
the better is our model.

Fig. 8: The first, third and fourth singular vectors of the
Nomao Paris rating matrix obtained by SVD.

5.2 The rating prediction task

As indicated in Table 1, bottom, and in Fig. 5, the scores
have a peaked distribution. This indicates first that the
rating prediction task makes less sense with these datasets.
We trained up an SGD recommender by using 50% of the
datasets and computed NDCG(k) for K = 1 . . . 20. To un-
derstand the performance of the model, we also measured
the performance of a random recommender that predicts
ratings uniform randomly. We repeated our experiments
10 times with 10 different random training and test sets.
Fig. 9 shows the computed ten performance curves for
the SGD and the baseline random recommendation. Both
for SGD and the random prediction the ten curves are
similar. This indicates the stability of our algorithms and
evaluation metrics. We achieved significantly better result
with the SGD recommender. However for the random al-
gorithm, the baseline NDCG is around 0.85. This is due
to the fact that most of the ratings are around the mean
as the score distribution is peaked.

8 Róbert Pálovics et al.: The spectrum of a geo-located rating matrix

N
D

C
G

0.85

0.9

0.95

1

K
2 4 6 8 10 12 14 16 18 20

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

SGD
random

N
D

C
G

0.8

0.85

0.9

0.95

1

K
2 4 6 8 10 12 14 16 18 20

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

SGD random

Fig. 9: Performance of score prediction on the France
(top) and Paris (bottom) datasets.

5.3 Improving top recommendation with rating
imputation

Instead of simply recommending locations near to already
visited places, we expand the training set by relying on
the locality of the ratings. We compare our results by
using SVD or SGD both for the rating matrix and for
simply predicting the visits, i.e. the existence of a rat-
ing regardless of its value. When considering locality, we
may identify the nearest neighbors by taking the absolute
distance and possibly correcting by density: in an area
densely served by POIs, customers may reach more loca-
tions, on the other hand, the speed of travel is likely lower
than in rural areas.

For our imputation methods, let E be the set of known
ratings and Nj the neighbors of location j. We modify the
training set as follows. For all (u, i),

r̂u,i =


ru,i if (u, i) ∈ E
f(Ru, Nu,i) if (u, i) /∈ E and for some j, (u, j) ∈ E and i ∈ Nj

missing otherwise,
(15)

where f is function of Ru, the set of known ratings by
user u, and Nu,i, the set locations visited by u in the
neighborhood of i.

In our model, we expand the list of locations per user
with the neighbors of visited places by the two strategies:

Constant:
f(Ru, Nu,i) = c (16)

Ratings Average:

f(Ru, Nu,i) =
1

|Nu,i|
∑

j∈Nu,i

ru,j (17)

The performance for expansion with the original rat-
ings (see (17)) on the France dataset is seen in Fig. 10

re
ca

ll

0.01
0.02
0.03
0.04
0.05
0.06
0.07

number of neighbors
0 10 20 30 40 50

France

N
D

C
G

0
0.005
0.01

0.015
0.02

0.025
0.03

number of neighbors
0 10 20 30 40 50

France

Fig. 10: Recall@100 and NDCG@100 for expansion with
the original ratings.

where we observe that expansion by the 30-40 nearest
POIs improves significantly the matrix approximation by
the first few eigenvectors.

We may also consider the task of predicting which
POIs the user will visit, regardless of the actual rating
given by the user. In this so-called implicit recommenda-
tion task, we consider a 0–1 matrix. Although the matrix
is fully known, the meaning of a “1” is certain while a
“0” may simply mean that the user has not yet had a
chance to visit the POI or does not even know about it.
Based on (16), the performance of the implicit task with
expansion for the France dataset is seen in Fig. 11 show-
ing an improvement compared to Fig. 10. However, for
the Paris dataset, both in case of the ratings and implicit
expansion experiments, we could not improve further the
original SVD. This can be due to the fact that the Paris
dataset is more dense geographically.

5.4 Improving recommendation with fixed factors

Results of Fig. 7 indicate that while SGD finds the most
important cities in France, it can not separate them pre-
cisely. Furthermore, not recommending to a user POIs,
that he/she have not visited, can be easily implemented
without using SGD. Indeed, SGD should learn the taste
of the different users like in case of the movie prediction
task of Netflix. To fix this issue in the France dataset, we
selected the top t cities in France. For a given item, we
fixed the first ith factor to 1, if the item is located in the
ith city, and 0 otherwise. We set the user factors similarly
according to the places visited by the user in the test set.
We then trained a k dimensional latent factor model where
we updated only the remaining k− t dimensions. We com-
pared this recommender with a traditional k dimensional
SGD recommender.

Róbert Pálovics et al.: The spectrum of a geo-located rating matrix 9

re
ca

ll

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

number of neighbors
0 10 20 30 40 50

France

N
D

C
G

0
0.005
0.01

0.015
0.02

0.025
0.03

number of neighbors
0 10 20 30 40 50

France

Fig. 11: Recall@100 and NDCG@100 for expansion nearby
visited locations.

M
SE

0.35
0.36
0.37
0.38
0.39
0.4

number of iterations
1 10 100

3
3

SGD
SGD with fixed factors

Fig. 12: Improved MSE results with fixed factors on the
France dataset.

In our experiments we included the top t = 10 cities,
in order Paris, Marseille, Lyon, Toulouse, Nice, Nantes,
Strasbourg, Montpellier, Bordeaux, and Lille. Fig. 12 shows
the MSE on the test set as the function of the number of
iterations on the training set. With the fixed factor model
we can achieve significantly better MSE. Furthermore, our
best result is achieved with half less iterations compared
to the number needed to train the original latent factor
model.

6 Discussion

Our statistical analysis of NOMAO votes of customers for
spots of France shows that it is described by a power law
frequency distributions with exponents a ≈ 1.5 (for spots)
and b ≈ 2.75 (for customers) which remain stable in time
even is the number of votes is increased almost by two or-
ders of magnitude during this time period. Further stud-
ies are required to establish the physical origins of such
laws and to clarify for universal they are. It is possible
that the physical reasons for emergence of such type dis-
tributions have certain similarities with the phenomenon

of self-orgnanized criticality broadly discussed in physical
systems (see e.g. [1,27,30]). It is interesting to note that
the exponent of cluster distribution in self-critical models
in 3D has an exponent close to 1.4 [1] being not so far
from the exponet a = 1.5 we find for spots.

We explored the spectrum and the singular vectors of a
POI ratings matrix of customer votes for spots of France.
The fact that the matrix consists of 99.5% missing values
makes the spectrum highly dependent on how we handle
the missing values. We computed the SVD of the full 0–
1 “implicit” matrix of the visits without considering the
rating. For the ratings matrix, we used SGD, a popular
approach that uses only the known values to compute the
factors. We observed that SGD and SVD factors are sim-
ilar but SVD has stronger geo-localization. SVD singu-
lar vectors with highest eigenvalues are mostly correlated
with a particular place. As key practical observations, we
found that imputing the missing ratings for the neighbors
of visited places could increase the performance, and that
defining fixed Geographic factors could improve SGD rec-
ommendation quality.

We expect that a broader analysis of a larger number
of similar type datasets of votes will allow to gain better
understanding of underlying physical process and provide
better recommendations for specific customers and spots.

7 Acknowledgments

We thank the representatives of NOMAO [20] and espe-
cially Estelle Delpech (NOMAO) for providing us with the
friendly access to the NOMAO datasets. This research is
supported in part by the EC FET Open project “New tools
and algorithms for directed network analysis” (NADINE
No 288956).

References

1. P. Bak, C. Tang and K. Wiesenfeld, Self-organized critical-
ity: an explanation of 1/f noise, Phys. Rev. Lett. 59(4),
381 (1987)

2. J. Bao, Y. Zheng, D. Wilkie, and M. F. Mokbel, A sur-
vey on recommendations in location-based social networks.
ACM Transaction on Intelligent Systems and Technology
(to be published) (2013)

3. R. M. Bell and Y. Koren, Lessons from the Netflix prize
challenge. ACM SIGKDD Explorations Newsletter 9(2),
75 (2007)

4. J. Bennett and S. Lanning, The Netflix prize, KDD Cup
and Workshop in conjunction with KDD 2007, (2007).

5. D. Billsus and M. J. Pazzani, Learning collaborative in-
formation filters. ICML ’98: Proceedings of the Fifteenth
International Conference on Machine Learning, pages 46–
54, San Francisco, CA, USA, Morgan Kaufmann Publish-
ers Inc. (1998)

6. J. Canny, Collaborative filtering with privacy via factor
analysis, SIGIR ’02: Proceedings of the 25th annual in-
ternational ACM SIGIR conference on Research and de-
velopment in information retrieval, p.238, New York, NY,
USA, ACM Press (2002)

10 Róbert Pálovics et al.: The spectrum of a geo-located rating matrix

7. C. Cheng, H. Yang, I. King, and M. R. Lyu, Fused ma-
trix factorization with geographical and social influence in
location-based social networks, AAAI 12, 1 (2012).

8. P. Cremonesi, Y. Koren, and R. Turrin, Performance of
recommender algorithms on top-n recommendation tasks,
Proceedings of the fourth ACM conference on Recom-
mender systems, ACM p.39 (2010).

9. M. Deshpande and G. Karypis, Item-based top-n recom-
mendation algorithms, ACM Transactions on Information
Systems (TOIS) 22(1), 143 (2004).

10. S. Dorogovtsev, Lectures on complex networks, Oxford
University Press, Oxford (2010)

11. J. H. Friedman, Greedy function approximation: A gra-
dient boosting machine, The Annals of Statistics 29(5),
1189 (2001)

12. S. Funk, Netflix update: Try this at home,
http://sifter.org/˜ simon/journal/20061211.html, 2006.

13. K. R. Gabriel and S. Zamir, Lower rank approximation
of matrices by least squares with any choice of weights,
Technometrics 21, 489 (1979)

14. G. H. Golub and C. F. V. Loan, Matrix Computations.
Johns Hopkins University Press, Baltimore (1983)

15. D. Gupta, M. Digiovanni, H. Narita, and K. Goldberg,
Jester 2.0 (poster abstract): evaluation of an new linear
time collaborative filtering algorithm, SIGIR ’99: Pro-
ceedings of the 22nd annual international ACM SIGIR
conference on Research and development in information
retrieval, p.291, ACM Press, New York, NY, USA (1999)

16. Y. Koren, R. Bell, and C. Volinsky, Matrix factorization
techniques for recommender systems, Computer 42(8),
30 (2009)

17. T. Kurashima, T. Iwata, G. Irie, and K. Fujimura, Travel
route recommendation using geotags in photo sharing sites,
Proceedings of the 19th ACM international conference
on Information and knowledge management, ACM p.579
(2010)

18. M. Kurucz, A. A. Benczúr, K. Csalogány, and L. Lukács,
Spectral clustering in telephone call graphs We-
bKDD/SNAKDD Workshop 2007 in conjunction with
KDD 2007, (2007)

19. J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel,
Lars: A location-aware recommender system, Data Engi-
neering (ICDE), 2012 IEEE 28th International Conference
on, IEEE p.450 (2012)

20. NOMAO company, official web site http://fr.nomao.com/
. Web. 26 Apr. 2015

21. M. H. Pryor, The effects of singular value decomposition on
collaborative filtering, Technical report, Dartmouth Col-
lege, Hanover, NH, USA (1998)

22. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Applica-
tion of dimensionality reduction in recommender systems–
a case study, ACM WebKDD Workshop (2000)

23. N. Srebro and T. Jaakkola, Weighted low-rank approxima-
tions, T. Fawcett and N. Mishra, editors, ICML, AAAI
Press p.720 (2003)

24. P. Symeonidis, D. Ntempos, and Y. Manolopoulos,
Location-based social networks, Recommender Systems
for Location-based Social Networks, Springer, Berlin, p.35
(2014)

25. G. Takács, I. Pilászy, B. Németh, and D. Tikk, Inves-
tigation of various matrix factorization methods for large
recommender systems. Proceedings of the 2nd KDD Work-
shop on Large-Scale Recommender Systems and the Net-
flix Prize Competition, ACM p.1 (2008)

26. G. Takács, I. Pilászy, B. Németh, and D. Tikk, A unified
approach of factor models and neighbor based methods for
large recommender systems, Applications of Digital In-
formation and Web Technologies, 2008, ICADIWT 2008,
First International Conference IEEE p.186 (2008)

27. Wikipedia contributors, Abelian sandpile model,
Wikipedia, The Free Encyclopedia. Wikipedia, The Free
Encyclopedia, 8 Apr. 2015, Web. 26 Apr. (2015)

28. Wikipedia contributors, Netflix Prize, Wikipedia, The
Free Encyclopedia. Wikipedia, The Free Encyclopedia, 11
Feb. 2015, Web. 26 Apr. (2015)

29. Wikipedia contributors, Recommender system,
Wikipedia, The Free Encyclopedia. Wikipedia, The
Free Encyclopedia, 1 Apr. 2015, Web. 26 Apr. (2015)

30. Wikipedia contributors, Self-organized criticality ,
Wikipedia, The Free Encyclopedia. Wikipedia, The Free
Encyclopedia, 13 Apr. 2015, Web. 28 Apr. (2015)

31. M. Ye, P. Yin, and W.-C. Lee, Location recommenda-
tion for location-based social networks, Proceedings of the
18th SIGSPATIAL International Conference on Advances
in Geographic Information Systems, ACM p.458 (2010)

32. M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee, Exploiting ge-
ographical influence for collaborative point-of-interest rec-
ommendation, Proceedings of the 34th international ACM
SIGIR conference on Research and development in Infor-
mation Retrieval, ACM p.325 (2011)

33. Q. Yuan, L. Chen, and S. Zhao, Factorization vs. regular-
ization: fusing heterogeneous social relationships in top-n
recommendation, Proceedings of the fifth ACM conference
on Recommender systems, ACM p.245 (2011)

34. S. Zhang, W.Wang, J. Ford, F. Makedon, and J. Pearlman,
Using singular value decomposition approximation for col-
laborative filtering, CEC ’05: Proceedings of the Seventh
IEEE International Conference on E-Commerce Technol-
ogy (CEC’05), Washington, DC, USA, IEEE Computer
Society p.257 (2005)

Centrality Prediction in Temporally Evolving Networks∗

Róbert Pálovics Ferenc Béres Nelly Litvak Frederick Ayala-Gómez András A. Benczúr

1 Abstract

In networks with very fast dynamics, such as Twitter mentions and retweets, predicting links and the
emerging centrality of nodes is a challenging task. In contrast to existing methods that either consider
static networks or a sequence of static snapshots, in this paper we give predictive models and centrality
measures, both of which group can be dynamically updated after the addition of each new edge.

We propose a variant of matrix factorization for link prediction and compare the results with the
online version of matrix factorization. To analyze the centrality measures, we propose online evaluation of
Harmonic Centrality, PageRank, and Katz. To demonstrate our results, we use collections of topic specific
Tweets.

2 Introduction

The research of complex networks and large graphs generated a wide variety of stochastic graph models
that try to capture the properties of these complex systems [7, 11, 16, 25, 24]. Most of the well-known
models can describe a static graph extracted from a real-world dataset. They are capable of generating an
ensemble of graphs, in which all graph instances are similar in terms of specific statistics to the original
one. For example, models that capture the power-law degree distribution of real-world networks such as
the Albert-Barabasi one are dynamic but do not attempt to model the actual temporal evolution of large
graphs. Our goal is to give temporal stochastic graph model for the temporal dynamics of these complex
systems.

Our models address the link prediction problem introduced by Liben-Nowell and Kleinberg [29], in
a temporal setting. More specifically, we try to predict accurately each new link in the graph at the time
when it is created in the network. This experimental setting is similar to our method introduced for
recommender systems [32]. In Section 6.1 we explain this setup in case of dynamic graphs. For baseline
algorithm, we apply online matrix factorization [23, 34, 35] on temporal network data (see Section 4).

Various node centrality measures capture the “importance” of a node by using the structural properties
of the graph [10]. While these metrics are widely investigated, few is known about the evolution of graph
centrality in temporal graphs. In our work, we investigate the applicability of node centrality metrics in
temporal graphs by examining their temporal behavior and computational complexity. We also use these
metrics as side features in our matrix factorization models.

In our experiments we use the data set of [2] that consists of the messages and the corresponding user
network of the Occupy movement.

As our main result, we demonstrate that methods of matrix factorization by online learning are capable
of improving predictions for the future centrality of nodes. Surprisingly, we find no direct relation between
the quality of predicting the links and the derived quality of predicting centrality. As a byproduct, we
define time aware variants of certain centrality measures, however our main goal is the prediction and not
the definition of centrality metrics as those in e.g. [28, 17]. For centrality metrics, we use those in [29, 10]
with appropriate time aware modifications.

∗The publication was supported in part by the EC FET Open project “New tools and algorithms for directed network analysis”
(NADINE No 288956).

1

2.1 Related results

Social influence in Web based networks is investigated in several results: Bakshy et al. [5] model social
contagion in the Second Life virtual world. Ghosh and Lerman [18] compares network measures for
predicting the number of votes for Digg posts, who even give an empirical comparison of information
contagion on Digg vs. Twitter [27]. In [19, 20], long discussion based cascades built from comments are in-
vestigated in four social networks, Slashdot (technology news), Barrapunto (Spanish Slashdot), Meneame
(Spanish Digg) and Wikipedia. They propose models for cascade growth and estimate model parameters
but give no size predictions.

A number of related studies have largely descriptive focus, unlike our quantitative prediction goals. In
[12] high correlation is observed between indegree, retweet and mention influence, while outdegree (the
number of tweets sent by the user) is found to be heavily spammed. [26] reports similar findings on the
relation among follower, mention and retweet influence. Several more results describe the specific means
of information spread on Facebook [6, 3, 8]. In the first paper on the data set that we also use for our
experiments [2], the authors investigate how emotions appear in Twitter.

Myers and Leskovec [30] showed that the Twitter network is highly dynamic with about 9% of all
connections changing in a month. Thus, in order to infer central nodes, the factors driving the dynamics
of this social network must be considered. They focused on local bursts in the user-follower network to
identify key events or bursts in the information flow. They consider both follow and unfollow bursts.

Chierichetti et al. [14] propose a robust model for the real-time identification of key events. They
examined tweet and retweet production/consumption patterns around these incidents. The experiments
showed that there is a heartbeat phenomenon in the balance of primary and secondary information spread-
ing. When and important event unfolds, the users are busy with tweeting about it, as they try to report
everything. Thus, nobody has time to retweet these messages. Whereas after the event, there is a huge
amount of tweets to be retweeted. So in this case, the secondary information spreading dominates the
network. The authors used this phenomenon to obtain a simple classifier which, by only evaluating the
tweet/retweet volume could detect these events.

The results of Bakshy et al. [4] attempt to predict the influential users of a Twitter user-follower graph
by generating diffusion cascades. At first, they extract influential vertices with regression merely based
on network features. Their main problem is the minority of cascades with significant size. Although they
improved their results with content information about the cascades, the problem remained open.

Cheng et al. [13, 21] predict retweet count based on network features. Petrovic et al. [33] introduce time
sensitive modeling by using the PA algorithm of [15], which is an online solution to the linear regression
problem. They only predict if a tweet will be retweeted at all.

Rodriguez et al. [36] gave an algorithm for inferring the structure of temporal diffusion networks. They
examined an interesting aspect of centrality for many real-time events.

The direct starting point of our work is the first comprehensive overview of methods for time agnostic
link prediction is given in [29]. Most of the methods used in [29] are listed in Section 5.

As one of the first time aware link prediction methods, Tylenda et al. [38] propose a maximum entropy
model with weights inversely proportional to the age of the edges, however their method is trained on a
single, though timestamped, snapshot and evaluated on the future in a batch. Similar to our evaluation
methodology described in Section 6.1, they use DCG, however they do not consider a time aware DCG
evaluation as first proposed in our work [32].

Closest to our work, [28, 17] defines a new time aware centrality measure, which they evaluate only
on yearly snapshots of scientific citation networks. Our main contribution is the use of online learning
methods for fine granularity evaluation of centrality measures similar to those in time aware centrality
research results.

2

Figure 1: Temporal density of tweeting activity.

Table 1: Size of the tweet time series.
Number of users 371,401

Number of tweets 1,947,234
Number of retweets 1,272,443

3 Datasets

The dataset was collected by Aragón et al. [2] using the Twitter API that we extended by a crawl of the
user network. Our data set hence consists of two parts:

• Tweet dataset: tweet text and user metadata on the Occupy Wall Street movement1.

• Follower network: The list of followers of users who posted at least one message in the tweet dataset.

Table 1 shows the number of users and tweets in the dataset. One can see that a large part of the collected
tweets are retweets. Table 2 contains the size of the crawled social networks. Note that the average in- and
outdegree is relatively high. Fig. 1 shows the temporal density of tweeting activity.

For each tweet, our data contains

• tweet and user ID,

• timestamp of creation,

• hashtags used in the tweet, and

• the tweet text content.

In case of a retweet, we have all these information not only on the actual tweet, but also on the original
root tweet that had been retweeted. We define the root tweet as the first occurrence of a given tweet.

1http://en.wikipedia.org/wiki/Occupy_Wall_Street

Table 2: Size of the follower network.
Number of users 330,677
Number of edges 16,585,837

Average in/out degree 37

3

4 Dynamic adjacency matrix factorization

Batch modeling algorithms may iterate several times over the graph until convergence. In our temporal
setting, the model needs to be retrained after each new event and hence reiterations over the earlier parts
of the data is ruled out.

In this section, we give an online factorization method for the graph adjacency matrix. Matrix factor-
ization yields a low-rank approximation of the adjacency matrix with entries for non-edges filled with
values that we consider an indication for the edge to appear. Links for a given node are predicted by tak-
ing the largest values in the corresponding row or column. In our algorithm, we allow a single iteration
over the training data only, and this single iteration processes the events in the order of time. We use each
record in the dataset as a positive training instance and generate negative training instances by selecting
random items for each positive record. We use the regularized matrix factorization method of [37], and
use the k-factor model for prediction.

Temporal modeling methods seem more restricted than those that may iterate over the data set several
times and one would expect inferior quality by the online methods. Online methods however have the
advantage of giving much more emphasis on recent events that we empirically verify in our research.

5 Centrality measures

5.1 Negative β-measure

Let d+(v) denote the outdegree of vertex v. Negative β-measure is defined by

∑
y→x

1
d+(y)

.

and it can be considered as Markovian indegree.

5.2 Closeness

The closeness of node x is defined by
1

∑y d(y, x)
,

where d(y, x) denotes the distance of x from y in the directed network. While indegree and negative
β-measure were relying on the local graph structure, closeness is defined by the global graph structure.
Thus, it is more costly to compute.

It is important to remark that the graph must be strongly connected. Without this condition the result
will be a null score for all x node, that cannot coreach the whole graph. Nevertheless there have been
many propositions on how to mend this troublesome quality of closeness. But the most straightforward
idea is to exclude infinite distances

1
∑d(y,x)<∞ d(y, x)

.

5.3 Lin’s index

One of the ideas that tried to repair the definition of closeness for graphs with infinite distances was Nan
Lin’s. Lin’s index defines the score of node x with a nonempty coreachable set as

|{y|d(y, x) < ∞}|2

∑d(y,x)<∞ d(y, x)
.

4

Nodes with an empty coreachable set have centrality 1 by definition.
This change in the definition means that closeness is not the inverse of a sum of distances, but rather

the inverse of the average distance. One of the results of this modification is that closeness is normalized
across the graph.

5.4 Harmonic centrality

Paolo Boldi and Sebastiano Vigna in [10] gave another solution on how to eliminate the problem of non-
finite distances between nodes. The main idea is to use harmonic mean instead of arithmetic averaging.
The reason why harmonic mean is involved is that it conveniently deal with ∞ distances, as 1

∞ = 0. The
definition for the harmonic centrality of node x is

∑
x 6=y

1
d(y, x)

= ∑
d(y,x)<∞,x 6=y

1
d(y, x)

, (1)

which is the reciprocal of the denormalized harmonic mean of distances. In [10] the authors found that
harmonic centrality is strongly correlated to closeness in simple networks. Moreover, this definition also
accounts for nodes y that cannot reach x. Thus, this measure can also be used in cases when the given
graph is not strongly connected.

5.5 Katz index

Katz defined his index through summation of all paths coming into a node x. In order to get a finite score,
he introduced an attenuation factor β with which a weight could be calculated for the paths. The Katz index
can be expressed as

k = 1 ·
∞

∑
i=0

βi Ai, (2)

which is equivalent to
k = 1 · (1− βA)−1, (3)

where 1 is the vector with uniformly 1 coordinates. Furthermore, by Brauer’s theorem on the displacement
of eigenvalues, the Katz index is the left dominant eigenvector of a perturbed matrix

βλ · A + (1− βλ) · eT · 1,

where e is a right dominant eigenvector of A such that 1eT = λ. Hubbell [22] proposed a generalization
for the Katz index, in which some preference vector v is used instead of 1. In other words, the paths can
be weighted individually depending on their starting node. The normalized limit of the Katz index when
β→ 1

λ is the dominant eigenvector.

5.6 PageRank

Recently, PageRank is one of the most frequently discussed and cited spectral measure in use, mainly
because of its alleged use in the Google ranking algorithm. PageRank [31] is defined by the unique vector
p satisfying equation

p = α · pĀ + (1− α)v, (4)

where Ā is derived from the adjacency matrix A with the same l1-normalization, that was used in the
formulation of Seeley’s index and the negative β-measure. PageRank has two additional parameter. A
damping factor α ∈ [0, 1), and a preference vector v. The only constraint for v is that it must be a distribution.

However, it is important to note that p is not necessarily a probability distribution if A has null rows.
There has been several propositions on how to make Ā stochastic. A common solution is to replace every

5

null row with the preference vector v. Another popular idea is to add loop arcs to all nodes with zero
outdegree (dangling nodes).

Equation 4 is solvable even without any patching, as after reorganizing the formula we get

p = (1− α)v(1− αĀ)−1. (5)

Moreover, another equation can be formulated for PageRank

p = (1− α)v
∞

∑
i=0

αi Āi, (6)

which shows that the Katz index and PageRank differ only by a constant factor and by the l1 normalization
applied to the adjacency matrix. If A has no null rows, or Ā has been patched to be stochastic, PageRank
can be equivalently defined as the stationary distribution of the Markov chain whose transition matrix is

αĀ + (1− α)1Tv.

5.7 Betweeness

Let σyz denote the number of shortest paths going from y to z. A subset of these paths also passes through
node x, and suppose their number is σyz(x). The betweenness measure of node x is defined by

∑
y,z 6=x,σyz 6=0

σyz(x)
σyz

The definition tries to capture the intuition that if a significantly large fraction of shortest paths passes
through x, then x is an important junction point of the graph. Moreover, Boldi et al. in [9] showed that
removing nodes with high betweenness score results in an instant network disruption.

6 Experiments

6.1 Experimental setting and evaluation metrics

In the dynamic link prediction task, we have to rank the best K links for the given node at the given time
instance. Our dataset contains records < u, v, t > of links between users u and v that appear at time t. Our
goal is to recommend new links for user u at time t with the constraint that there is only a single link that
appears at the given time t. This means that we have to maximize the rank of the given link in the actual
predicted list of links. A time sensitive or online link prediction system should retrain its model after each
and every training record < u, v, t >. We have to generate new top-K recommendation list for every single
record. The online top-K task is hence different from the standard recommender evaluation settings, since
there is always a single neighbor only in the ground truth and the goal is to aggregate the rank of these
single neighbors over the entire testing period. For our task, we need carefully selected quality metrics
that we describe next. We use our full dataset both for training and testing. We iterate on the records one
by one in temporal order. For a given record < u, v, t >, we allow the recommender algorithm to use full
of the data before t in question for training and require a ranked top list of possible neighbors as output.
We evaluate the given single actual neighbor v in question against the recommended top list of length K.

For measuring the accuracy of predicting a new link, we face the difficulty that only a single correct
answer exists at the given time and the next edge arrives to be tested against an updated model. We
propose DCG [38, 32], a modified version of NDCG, the preferred model for batch top-K recommendation
[1]. DCG is a slowly decreasing function of the rank and hence measures how close the actual new link
appears in the top list.

6

To sum up, in our experiments we use this experimental setting and evaluation. We iterate over the
edge list of a given graph in temporal order. One record in our dataset is a timestamped edge between
two users in the graph, < u, v, t >. Instead of items, we recommend for users new neighbors. For each
< u, v, t >, we evaluate our top-K recommendation by using DCG as evaluation metric. Finally, we
compute temporal averages of the DCG scores.

6.2 Accuracy of link prediction

In Fig. 2, we show daily average link prediction quality by using online matrix factorization defined in
Section 4. We give results for different learning rates and conclude that there is a large variance but in
general, very low learning rates around 0.05 perform the best.

6.3 Accuracy of centrality prediction

In Fig. 3, we show daily average centrality prediction quality by computing various centrality measures
over the graph augmented by the edges predicted by online matrix factorization as in Section 4. We
give results for different learning rates. Unlike for link prediction, we observe stable performance across
different metrics improving up to a learning rate of 0.08 and declining beyond.

Also note that for in-degree, Beta and PageRank we are able to improve over the prediction given
by the previous state of the graph as baseline. We plan to evaluate different weighted combinations of
centrality values on past and predicted future graphs.

7 Conclusion and Further Work

In this paper, we analyze the dynamic network data as a stream of nodes and edges. To predict link
formation, the regularized matrix factorization model is proposed. Different centrality measures are used
with online computation over the graph stream to identify the evolution of centrality. As the main lesson
learned, we show how recent results in recommender systems can be deployed for the analysis of complex
networks.

Matrix factorization algorithm may use so-called side information associated with the rows and columns
of the matrix. We plan to use centrality measures as side information associated with the nodes. We may
use directed centrality with different values for rows and columns of the same node. We plan to compare
the following metrics in the temporal setting of dynamic networks based on [10]: Harmonic Centrality,
PageRank, HITS and SALSA.

In addition, we would like to test our methods on a variety of other data sets from Twitter, Last.fm,
scientific citation networks and more.

References

[1] A. Al-Maskari, M. Sanderson, and P. Clough. The relationship between ir effectiveness measures and
user satisfaction. In Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 773–774. ACM, 2007.

[2] P. Aragón, K. E. Kappler, A. Kaltenbrunner, D. Laniado, and Y. Volkovich. Communication dynamics
in twitter during political campaigns: The case of the 2011 spanish national election. Policy & Internet,
5(2):183–206, 2013.

[3] E. Bakshy, D. Eckles, R. Yan, and I. Rosenn. Social influence in social advertising: evidence from field
experiments. In Proceedings of the 13th ACM Conference on Electronic Commerce, pages 146–161. ACM,
2012.

7

Figure 2: Quality of link prediction, NDCG (top) and precision (bottom).

8

Figure 3: Quality of centrality prediction, NDCG (top) and precision (bottom).

9

[4] E. Bakshy, J. M. H., W. A. Mason, and D. J. Watts. Everyone’s an influencer: quantifying influence on
twitter. In Proceedings of the fourth ACM international conference on Web search and data mining, pages
65–74. ACM, 2011.

[5] E. Bakshy, B. Karrer, and L. A. Adamic. Social influence and the diffusion of user-created content. In
Proceedings of the 10th ACM conference on Electronic commerce, pages 325–334. ACM, 2009.

[6] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role of social networks in information diffusion.
In Proceedings of the 21st international conference on World Wide Web, pages 519–528. ACM, 2012.

[7] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. science, 286(5439):509–512,
1999.

[8] M. S. Bernstein, E. Bakshy, M. Burke, and B. Karrer. Quantifying the invisible audience in social
networks. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 21–
30. ACM, 2013.

[9] P. Boldi, M. Rosa, and S. Vigna. Robustness of social networks: comparative results based on dis-
tance distributions. In Proceedings of the Third international conference on Social informatics, pages 8–21.
Springer-Verlag, 2011.

[10] P. Boldi and S. Vigna. Axioms for centrality. Internet Mathematics, 10(3-4):222–262, 2014.

[11] B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády. The degree sequence of a scale-free random
graph process. Random Struct. Algorithms, 18(3):279–290, 2001.

[12] M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi. Measuring user influence in twitter: The
million follower fallacy. In 4th International AAAI Conference on Weblogs and Social Media (ICWSM),
2010.

[13] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? In
Proceedings of the 23rd international conference on World wide web, pages 925–936. International World
Wide Web Conferences Steering Committee, 2014.

[14] F. Chierichetti, J. Kleinberg, R. Kumar, M. Mahdian, and S. Pandey. Event detection via communica-
tion pattern analysis. In Eighth International AAAI Conference on Weblogs and Social Media, 2014.

[15] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive algo-
rithms. The Journal of Machine Learning Research, 7:551–585, 2006.

[16] V. Csiszár, P. Hussami, J. Komlós, T. F. Móri, L. Rejtő, and G. Tusnády. When the degree sequence is
a sufficient statistic. Acta Mathematica Hungarica, 134(1-2):45–53, 2012.

[17] R. Ghosh, T.-T. Kuo, C.-N. Hsu, S.-D. Lin, and K. Lerman. Time-aware ranking in dynamic citation
networks. In Data Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on, pages 373–
380. IEEE, 2011.

[18] R. Ghosh and K. Lerman. Predicting influential users in online social networks. arXiv preprint
arXiv:1005.4882, 2010.

[19] V. Gómez, H. J. Kappen, and A. Kaltenbrunner. Modeling the structure and evolution of discussion
cascades. In Proceedings of the 22nd ACM conference on Hypertext and hypermedia, pages 181–190. ACM,
2011.

[20] V. Gómez, H. J. Kappen, N. Litvak, and A. Kaltenbrunner. A likelihood-based framework for the
analysis of discussion threads. World Wide Web, pages 1–31, 2012.

10

[21] L. Hong, O. Dan, and B. D. Davison. Predicting popular messages in twitter. In Proceedings of the 20th
International Conference Companion on World Wide Web, WWW ’11, pages 57–58, New York, NY, USA,
2011. ACM.

[22] C. H. Hubbell. An input-output approach to clique identification. Sociometry, pages 377–399, 1965.

[23] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Com-
puter, 42(8):30–37, 2009.

[24] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic models
for the web graph. In Proceedings of the 41st IEEE Symposium on Foundations of Computer Science (FOCS),
pages 1–10, 2000.

[25] M. Kurucz and A. Benczúr. Geographically organized small communities and the hardness of clus-
tering social networks. Data Mining for Social Network Data, pages 177–199, 2010.

[26] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news media? In
Proceedings of the 19th international conference on World wide web, pages 591–600. ACM, 2010.

[27] K. Lerman and R. Ghosh. Information contagion: An empirical study of the spread of news on digg
and twitter social networks. In Proceedings of 4th International Conference on Weblogs and Social Media
(ICWSM), 2010.

[28] K. Lerman, R. Ghosh, and J. H. Kang. Centrality metric for dynamic networks. In Proceedings of the
Eighth Workshop on Mining and Learning with Graphs, pages 70–77. ACM, 2010.

[29] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In Proceedings of
the 12th Conference on Information and Knowledge Management (CIKM), pages 556–559, 2003.

[30] S. A. Myers and J. Leskovec. The bursty dynamics of the twitter information network. In Proceedings
of the 23rd international conference on World wide web, pages 913–924. International World Wide Web
Conferences Steering Committee, 2014.

[31] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the
web. Technical Report 1999-66, Stanford University, 1998.

[32] R. Pálovics, A. A. Benczúr, L. Kocsis, T. Kiss, and E. Frigó. Exploiting temporal influence in online
recommendation. In Proceedings of the 8th ACM Conference on Recommender systems, pages 273–280.
ACM, 2014.

[33] S. Petrovic, M. Osborne, and V. Lavrenko. Rt to win! predicting message propagation in twitter. In
ICWSM, 2011.

[34] S. Rendle. Factorization machines with libfm. ACM Transactions on Intelligent Systems and Technology
(TIST), 3(3):57, 2012.

[35] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized rank-
ing from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pages 452–461. AUAI Press, 2009.

[36] M. G. RODRIGUEZ, J. LESKOVEC, D. BALDUZZI, and B. SCHÖLKOPF. Uncovering the structure
and temporal dynamics of information propagation. Network Science, 2(01):26–65, 2014.

[37] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Investigation of various matrix factorization methods
for large recommender systems. In Proceedings of the 2nd KDD Workshop on Large-Scale Recommender
Systems and the Netflix Prize Competition, pages 1–8. ACM, 2008.

[38] T. Tylenda, R. Angelova, and S. Bedathur. Towards time-aware link prediction in evolving social
networks. In Proceedings of the 3rd Workshop on Social Network Mining and Analysis, page 9. ACM, 2009.

11

Liquid FM: Recommending Music through
Viscous Democracy?

Paolo Boldi, Corrado Monti, Massimo Santini, and Sebastiano Vigna

Dipartimento di Informatica, Università degli Studi di Milano, Italy
corrado.monti@unimi.it

Abstract. Most modern recommendation systems use the approach of
collaborative filtering : users that are believed to behave alike are used to
produce recommendations. In this work we describe an application (Liq-
uid FM) taking a completely different approach. Liquid FM is a music
recommendation system that makes the user responsible for the recom-
mended items. Suggestions are the result of a voting scheme, employing
the idea of viscous democracy [3]. Liquid FM can also be thought of as
the first testbed for this voting system. In this paper we outline the de-
sign and architecture of the application, both from the theoretical and
from the implementation viewpoints.

1 Introduction

Most modern recommendation systems use the approach of collaborative filter-
ing [8,2]: users that are believed to behave alike are used to produce recommen-
dations. The idea behind Liquid FM is to tip over this approach by making the
user responsible for these matches: deciding who they want to resemble becomes
a choice of the user, instead of being inferred algorithmically. This scenario can
be cast as a voting scheme: each user has to select another one that is believed
to be a good recommender. This idea allows us to use this task as a testbed for
viscous democracy [3].

Viscous democracy is a kind of liquid democracy [6]. In liquid (or delega-
tive) democracy, each member can take an active role—by participating directly
and exercising their decision power—or a passive role—by delegating to other
members their share of responsibility. It can be seen as a compromise between
representative democracy, where voters are usually neglected any decision mak-
ing and can only delegate others to do so, and direct democracy, where every
voter is called to an active role, regardless of what their inclinations are.

In this sense, liquid voting systems try to take the best from both worlds.
Every member’s opinion, in a direct democracy, is directly relevant to a final
decision, but the vote of each one can be (knowingly!) uninformed; instead, in
a classical representative system, elected representatives are encouraged to be
informed on the specific decision they are making, but on the other hand the
majority of people feel that their opinion on that matter is basically irrelevant.

? The authors were supported by the EU-FET grant NADINE (GA 288956)

ar
X

iv
:1

50
3.

08
60

4v
1

 [
cs

.S
I]

 3
0

M
ar

 2
01

5

Liquid democracy permits members to choose among expressing their opinion
directly if they feel entitled to do so, or delegating their voting power if they
believe others are more capable. Note that these two options are not necessarily
exclusive—in our case, in fact, users will be able to do both, if they want to.

Viscous democracy was proposed by Boldi et al. in [3] as a particular way to
compute the outcome of a liquid democracy voting scheme. It takes advantage of
known techniques for measuring centrality in social networks, and in particular
it resembles Katz’s index [5]. It stems from the assumption that the delegating
mechanism should transfer a fraction of the user voting power. I.e., if A delegates
B and B delegates C, the trust that A puts in C should be less than if A voted
C directly. This principle will be further detailed in the next section.

This framework can be used in a variety of settings. In our application, we
show how it can be easily adapted to music recommendation. For a certain music
genre, we ask users to express a short list of their favorite songs, or to delegate
one of their Facebook friends they consider to be an expert on that genre. This
builds a graph of delegations for each music genre. We wish to employ this data
to create recommendations for each user.

We will detail how we extract information from this graph in Section 2;
then, in Section 3, we will describe how we have developed the system: how
its algorithms were implemented, the architecture of its components, and the
external resources we used; finally, in Section 4 we will sum up our work and
present possible directions for future research.

2 Viscous democracy and recommender systems

From now on, we will denote with dG(x, y) the distance from node x to node
y in the graph G, and with oG(x) the outdegree of node x in G; we may omit
reference to G if it is obvious from the context.

Let us define U as the set of users and S as the set of songs1. D = (U,AD),
with AD ⊆ U × U , is the directed graph of delegations; an arc from user u to u′

means the former delegates the latter as an expert on the topic. V = (U, S,AV),
with AV ⊆ U × S, is the bipartite graph of votes, where an arc from u ∈ U to
s ∈ S means that the user u recommends song s.

We are going to put some restrictions on these graphs: first of all, we are going
to assume that there is an underlying, undirected friendship graph F = (U,EF),
with EF ⊆ U × U , where an edge (u, u′) ∈ EF expresses a personal acquaintance
of u and u′. We impose that AD ⊆ EF : this permits us to ensure that the trust
expressed through a delegation is a result of personal knowledge, as suggested
in [3].

Further, we are going to impose that ∀u ∈ U , we have 0 ≤ oD(u) ≤ 1,
meaning that a user can delegate only one person, and 0 ≤ oV (u) ≤ 3, meaning
that every user can vote up to 3 songs. We are going to consider only nodes

1 As we will explain in Section 3, we are going to consider different sets of songs and
votes, one for each music genre treated. For the rest of this section, we are going to
consider the music genre as fixed.

Francis

David

Sun Ra,
 "Enlightenment"Hugo

Ornette Coleman,
 "Eventually"

Miles Davis,
 "Pharaoh's Dance"

Joe

Bob

Albert Ayler,
 "Ghosts"

John Zorn,
 "Batman"

Alice

Klaudia

John Coltrane,
 "My Favorite Things"

Elizabeth

Mulatu Astatke,
 "Yegelle Tezeta"

Charlie

Gustav

Isaac

Lou

Fig. 1. An example of delegation and voting graphs. Users u ∈ U are represented with
a circle; songs s ∈ S with a box; the delegation graph D is drawn with black solid
arrows, while the bipartite voting graph V with blue dotted arrows.

u ∈ U having oD(u) > 0 ∨ oV (u) > 0. An example of such a setting is pictured
in Figure 1.

2.1 Liquid voting

A voting system is a function vD : U → R assigning a score to each user, depend-
ing on the delegation graph. Such a function will be the basic building block of
our recommendations.

Usually, in liquid vote this function is just the size of the tree with root in
u ∈ U :

lD(u) =
∣∣ {u′ ∈ U |dD(u′, u) <∞}

∣∣
This function is used, e.g., by the well-known LiquidFeedback2 platform. Nonethe-
less, it assumes that “trust” transferred from a to b is the same whether a dele-
gated b directly, or whether they are connected by a long chain of delegations—
and they may not even know each other.

Let us assume that we wish, instead, that the amount of trust passed on from
a to b is greater if (a, b) ∈ AD, and lesser if there are many steps connecting
them. To do so, we introduce a damping factor α ∈ (0, 1], defining how much
of the voting power of a is transferred to b when a delegates b. Therefore, the

2 http://liquidfeedback.org/

http://liquidfeedback.org/

Alice

CharlieJohn Coltrane,
 "My Favorite Things"

Bob

Albert Ayler,
 "Ghosts"

Ornette Coleman,
 "Eventually"

David

HugoMiles Davis,
 "Pharaoh's Dance"

Sun Ra,
 "Enlightenment"

Elizabeth

Mulatu Astatke,
 "Yegelle Tezeta" Francis

Gustav IsaacJoe

John Zorn,
 "Batman"

Klaudia

Lou

Alice

CharlieJohn Coltrane,
 "My Favorite Things"

Bob

Albert Ayler,
 "Ghosts"

Ornette Coleman,
 "Eventually"

David

HugoMiles Davis,
 "Pharaoh's Dance"

Sun Ra,
 "Enlightenment"

Elizabeth

Mulatu Astatke,
 "Yegelle Tezeta" Francis

Gustav IsaacJoe

John Zorn,
 "Batman"

Klaudia

Lou

α = 0.25 α = 0.75

Fig. 2. The same graphs pictured in Figure 1 are here displayed with node size pro-
portional to their viscous score, with two different values for α. Note how a higher α
gives higher importance to users delegated by important users. Lowering its value get
us closer to a simple vote count. For example, Ornette Coleman’s song is ranked higher
than Coltrane’s only for higher α: this is because it is voted by fewer users, but those
are recognized by the community as experts.

scoring function characterizing viscous democracy will be:

vD(u) =
∑
u′∈U

αd(u′,u) (1)

Authors [3] have noted how, depending on the value of α, the behavior of the
voting function greatly differs. For higher values of α, the fraction of trust “lost”
in each delegation step becomes smaller and smaller; in fact, for α→ 1, we have
that vD → lD: all the nodes in the tree of u contribute with all their voting
power to u, exactly as in pure liquid democracy. Note that if we allow α = 1, we
must explicitly avoid cycles in D—exactly as with pure liquid democracy; this
constraint is not needed with viscous democracy with α ∈ (0, 1).

With α approaching 0, instead, the voting power becomes nontransferable: all
users become equal, regardless of the delegations they received; in other words,
the model becomes a direct democracy, without any proxy vote. These differences
are presented graphically in Figure 2, making use of the song-scoring function
we will show in the next section.

2.2 Global recommendations

Having a score for each user, we can easily score each song s ∈ S. Indeed, we
can define a function r : S → R as

r(s) =
∑

u∈U |(u,s)∈AV

vD(u) (2)

This function will get us a score for a song proportional to the importance
of who voted it, according to vD. The score is completely defined by the graphs
V and D. We can then proceed to rank each song with r, and present them to
the users accordingly. As in many standard information retrieval tasks, a user
looking for results (about a certain music genre, as we will explain in Section 3)
will be presented with all possible items—all songs in S—ranked from higher to
lower r. Users will be therefore more likely to listen to songs ranked higher in
this list.

Let us call the influence of u ∈ U the difference the votes of user u make
in the final rankings—that is,

∑
s∈S r(s)− rV \{u}(s). Please note that, since we

have not normalized r, users giving more votes have a larger influence in the
final rankings, serving the purpose of encouraging them to give more recommen-
dations. However, it also explains why we had to put a limit on oV (u): if we had
not, a single user u could have an arbitrary influence on the score r, resulting in
the possibility of spam.

In the end, the influence of a user on song scores is determined by the number
of recommendations they give—limited, but under their control—and by the
delegations they received—unlimited, but not under their direct control.

As mentioned before, an example of how r behaves is pictured in Figure 2.

2.3 Personalized recommendations

The song-scoring function we presented gives the same ranks to whoever is their
observer. This behavior is unusual in recommender systems, where the goal is to
give the right recommendation to the right person. In our case, a user may be
more interested in listening to what their delegate suggested, rather than other—
possibly more popular—items. Looking at our example in Figure 2, Francis may
be more interested in listening to “Pharoah’s Dance”, even if it is not globally
highly-ranked, because it is the recommendation of his delegate David. Similarly,
Hugo may be interested in it, because he has, in turn, delegated Francis.

This goal can be easily expressed as a personalized song-scoring function. Let
us define a function p : S,U → R as

p(s, u) =
∑

u′∈U |(u′,s)∈AV

αd(u,u′) (3)

Such a function permits the user u to get a positive score only for the songs
recommended by users belonging to the chain of delegations starting in u. For
the purpose of maintaining this intention, but at the same time avoiding to
completely discard all the songs highly ranked by the original r, we can define a
linear combination of the two functions, normalized to 1:

c(s, u) = δ
p(s, u)

max
s′∈S

p(s′, u)
+ (1− δ) r(s)

max
s′∈S

r(s′)
(4)

where δ ∈ [0, 1] regulates the amount of personalization of c.
An example is pictured in Figure 3.

Alice

CharlieJohn Coltrane,
 "My Favorite Things"

Bob

Albert Ayler,
 "Ghosts"

Ornette Coleman,
 "Eventually"

David

HugoMiles Davis,
 "Pharaoh's Dance"

Sun Ra,
 "Enlightenment"

Elizabeth

Mulatu Astatke,
 "Yegelle Tezeta" Francis

Gustav IsaacJoe

John Zorn,
 "Batman"

Klaudia

Lou

Alice

Charlie
John Coltrane,

 "My Favorite Things"

Bob

Albert Ayler,
 "Ghosts"

Ornette Coleman,
 "Eventually"

David

HugoMiles Davis,
 "Pharaoh's Dance"

Sun Ra,
 "Enlightenment"

Elizabeth

Mulatu Astatke,
 "Yegelle Tezeta" Francis

Gustav IsaacJoe

John Zorn,
 "Batman"

Klaudia

Lou

r(·) c(·, Joe)

Fig. 3. The same graphs pictured in Figure 2 are here displayed with global song-
scoring function r on the left and, on the right, with the personalized function c from
the view point of user Joe (in yellow) and δ = 0.9. In the latter, recommendations
suggested by the delegate of Joe acquire more importance; those suggested by indirect
delegates (namely, Alice and Charlie) increase as well, but by a minor amount.

2.4 Insights for users

In addition to the presented ways to compute recommendations, the setting here
described also permits to compute other information that may be of interest to
the users. Particularly, it allows them to know how authoritative (i.e., trustable)
their taste is in a particular music genre. The function vD, in fact, can be nor-
malized into a percentile-based scoring, obtaining an easy-to-read assessment
in the form “u is better than v̂D(u) people out of 100” (for a specific genre),

with v̂D(u) = 100 |{u′∈U |vD(u′)<vD(u)}|
|U | . It can then be used to provide useful

information from two different perspectives:

1. Showing to the user a fair evaluation about which music genres they are
believed to be more expert about.

2. Presenting to a user interested in learning more about a specific genre which
of their friends is considered an expert—making use of the direct knowledge
graph defined on page 2.

3 Development

We will now discuss how the presented techniques have been implemented in
practice. The final result is Liquid FM: a Facebook application that enable its
users to vote one of their friends as an expert on a music genre, and (by means
of the described formulas) recommends them some piece of music to listen to,
by identifying the best experts.

HTTP Server

User votes Computing
global
rankings

Construction of web
pages: voting forms,
user feedback, and

on-the-fly personalized
recommendations

Song ranks
and scores

Fig. 4. A schematic representation of the architecture of Liquid FM. An arrow going
from A to B indicates data flowing from A to B.

Firstly, we will present a general overview of the architecture of Liquid FM,
explaining the role of its main components; then, we will give a more detailed
look at the implementations of the formulas presented in Section 2; finally, we
will discuss the external components we employed.

Categories As anticipated in the previous section, we applied our scoring algo-
rithms to 9 music genres, called categories from now on, and their set will be
denoted as C. In this way, we will have different votes and different recommenda-
tions for each category. Such a behavior is closer to reality: an expert in HipHop
is not assumed to be qualified to give, say, classical music suggestions. However,
it also permits to have different graphs for the same users—an interesting fact
for future analysis.

The selected categories were Classical, Electronic, Folk, HipHop, Indie, Jazz,
Metal, Pop, Rock. They were chosen by inspecting LastFM top 20 tags3 and
discarding those not expressing a musical genre (such as “seen live”) and sub-
genres (having included Indie and Rock, we discarded “Indie Rock”). We decided
to add Classical (only ranked 36th on Last Fm), since it is a different and
interesting community, under-represented in services such as the one we referred
to.

3.1 Overview

As pictured in Figure 4, Liquid FM features two main components:

– a Java part, with the role of analyzing the whole graphs and computing
global scores through vD and r (equations 1 and 2): it is meant to be fast,
and executed periodically;

3 http://www.last.fm/charts/toptags

http://www.last.fm/charts/toptags

– a Python part, with the role of glueing the different parts together and
providing all the other functions: from the construction of web pages to the
implementation of personal scores (functions p and c, equations 3 and 4).

These two parts interact with each other through a shared database, that per-
sistently stores every information. We chose MongoDB, an open-source document-
oriented NoSQL database, for various reasons:

– We want fast access in reading and writing data (especially very small
chunks, as in delegations and votes) in order to be able to support a large
amount of users, like in modern recommendation systems. Moreover, we
would like our system to be scalable.

– We want flexibility: since this application is also a proof-of-concept, we need
to be able to modify data schemas, totally or partially, without much con-
cern.

– Finally, we do not often need complex operations, involving more than one
collection. When it occurs, we would like to control what is happening at
application-level, permitting fine-grained handling.

On this database, we have two main collections gathering user-submitted
data: following the notation introduced in Section 2, the first stores the graph D
and the second the graph V . These collections are both represented in Figure 4
as “User votes”. A document in the collection for D looks like this4:

{ category : c , from : u , to : u′ }

While a document in the collection for V has this structure:

{ category : c , u se r : u , adv ice : s }

The advice s is a dictionary containing author and title of the song, as well
as a YouTube video id. In fact, we associate with each song selected by a user a
YouTube video, in order to be able to play it as a recommendation. YouTube is
in fact one of the largest and most used music streaming platforms, and it can
be included in third-party services (with small limitations). A screenshot of the
voting phase in displayed in Figure 5.

Please note that the structure of an advice, as well as the category c, is well-
incapsulated: therefore, the schemas of these collections can be easily extended
in the future in order to support different (i.e., not music-related) scopes.

3.2 Recommendations

The division of global and personalized recommendations into two separate com-
ponents originates from efficiency reasons. Having to compute and store all
the personalized scores for each user would be impracticable, as they would

4 Whenever the id of a document is not explicitly expressed, it is automatically gen-
erated by MongoDB. This is done efficiently; furthermore, such an id stores the
timestamp of creation of the document.

Fig. 5. A screenshot of the voting phase of a user.

be |C| · |S| · |U | scores. Therefore, they are computed with a lazy approach: when
a user u asks for her personal recommendations, we compute all of them on-
the-fly and cache them. Global recommendations, instead, are the main result
of the system, and every user depends on them—even to see the personalized
scores, since we use the function c (equation 4). For this reason, we compute
them periodically with a fast Java component, and save them to a dedicated
MongoDB collection.

Global recommendations in Java The global recommendation component was
carried out in Java, since for this task it is faster than Python and since efficient
open-source libraries to deal with graphs are available; in particular, we employed
extensively the WebGraph framework [4] and the fastutil library.

This component is run periodically. It takes as input the graphs D and V ,
memorized in their MongoDB collections, and it results in a new collection for
each category, composed of documents of this form:

{ adv ice : s , rank : r(s) }

and in another collection ranking users, where each document has this form:

{ i d : u ,
category1 : { s co r e : vD(u) , perc : v̂D(u) } , . . .

}

We can schematize the process, for each category c, in these steps:

1. Read the graph D from MongoDB and convert it to WebGraph format.
2. Use a parallel implementation of the Gauss-Seidel method (from WebGraph)

to compute vD for each user u. We decided to choose 0.75 as the value of α.
3. Compute the percentile-based normalization v̂D, and save the user-ranking

collection to MongoDB.
4. Read the graph V from MongoDB, identifying the set S of songs. In this

step, we also find which YouTube video is the most frequently associated
with a certain song, using author and title as identifiers. While doing this,
we compute r(s) for each song s.

5. Save r(s) in their collection, indexing documents by decreasing scores. Also
save max

s∈S
r(s), for normalization purposes.

Personalized on-the-fly recommendations As discussed above, personalized rec-
ommendations are computed on-the-fly by a Python component. Python was in
fact chosen as the main language of the application, due to its versatility and
its fast production times; also, we decided to use Flask5, an open-source web
development micro-framework particularly suited for our task.

Personalized recommendations are computed only when users ask for them,
since they require to see only a very small part of the graphs, and because storing
all of them would be unfeasible. The score we will use to rank personalized
recommendations is the function c(s, u) (eq. 4); in order to compute it we must,
in the first place, compute p (eq. 3).

To compute p(s, u) for all songs s ∈ S and a fixed user u we walk through the
chain of delegations on graph D, starting from u. Since ∀u oD(u) ≤ 1, this path
on D is unique (although it may end in a cycle). Therefore, we simply proceed
as follows (for a suitable stopping threshold ε):

1. Let p be a map with 0 as default value for missing keys.
2. while t > ε and ∃u′ s.t. (u, u′) ∈ AD

(a) u← u′ s.t. (u, u′) ∈ AD

(b) For each s s.t. (u, s) ∈ AV :
p[s]← p[s] + t

(c) t← t · α

Now we have all the ingredients for function c, and we can proceed to compute
the ranking order according to it.

First of all, consider that the ranking order induced by c(s) is equivalent to

c̄(s) = k · p(s, u) + r(s) where k =
δ ·max

s′∈S
r(s′)

(1− δ) ·max
s′∈S

p(s′, u)

5 http://flask.pocoo.org/

http://flask.pocoo.org/

Therefore, for each element s of the map p, we multiply its value by k and add
the value of r(s). Then, we retrieve all the other items s s.t. r(s) ≥ min

s′
p[s′],

and insert them in the map p. Finally, we can build the iterator of personal
recommendations by chaining two iterators:

1. the iterator of all elements in p, sorted by their values;
2. the iterator of all other elements s ∈ S having r(s) < min

s′
p[s′], sorted by

their values; remember that they are already indexed in this order in the
database.

The final iterator can be implemented in a lazy fashion, allowing us to re-
trieve the elements of the second iterator only when necessary. The first iterator,
instead, will be computed eagerly upon its request, and then cached. To cache
these (and other) values, we employed redis6, an open-source in-memory key-
value cache.

3.3 External services

To conclude this section, we would like to briefly describe the main external
software components we used in developing Liquid FM.

Facebook As mentioned earlier, Liquid FM is a Facebook application. The reason
for it is that we used the Facebook friendship graph as the graph F defined on
page 2. In fact, Facebook is at the moment the largest existing social network
(with 1.4 billion users), and it has been previously used as a good approxima-
tion of an acquaintance graph [1]. Therefore, we require users to have a Facebook
account, in order to limit their choice of delegate to their acquaintances. Accord-
ingly, in the collections described earlier, we used a Facebook-provided id7 to
identify a user u.

Musicbrainz To ensure the validity of the set S of songs chosen by users, we
check them against the Musicbrainz database. Musicbrainz is an open music
database that anyone can edit. At the time of writing, it contained information
about more than 900 000 artists and 14 000 000 recorded songs. Since it follows
the open-content paradigm, a user who does not find its favorite song in the
database is in principle free to add it; however, the community-review process
acts as a filter. Furthermore, Musicbrainz provides a disk image to set up a virtual
machine with a fully-functioning Musicbrainz server; we used this approach to
be able to access the database fast, without network delays and minimizing the
impact on their hosts. Moreover, the database of this virtual machine has been
set up to self-update itself periodically, in order to adopt every new edit accepted
by Musicbrainz.

6 http://redis.io/
7 To protect users’ privacy, this id is valid only within our app, and cannot be used

outside of it.

http://redis.io/

4 Discussion, conclusions and future work

In this work, we presented a Facebook application aimed at putting the viscous
democracy framework [3] to the test. This is at the same time a proof-of-concept
of how that voting system can be practically implemented in a real-world social
network, and a way to collect data corroborating (or disproving) the supposed
advantages of viscous democracy when compared to other, more standard, ways
of performing elections in a social setting. An interesting point, here, is that
the usage of viscous democracy for recommendation seems to avoid the filter
bubble [7], at least in its more algorithmic sense, because this kind of recom-
mendation does not rely on collaborative filtering but is based on a conscious
choice. Whether this choice (delegation) can itself induce a similar kind of bubble
will be subject of future analysis.

The discussed application is currently active on http://bit.ly/liquidfm,
and we have so far collected some small datasets; currently, the delegation graphs
consist of few tens of delegations, so it is impossible to draw any conclusion from
them. In order to be able to collect larger amount of information it is crucial that
we find a way to make the application viral : this is a matter of social engineering
that needs to be taken into careful consideration.

References

1. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separa-
tion. In: Proceedings of the 4th Annual ACM Web Science Conference. pp. 33–42.
ACM (2012)

2. Bernhardsson, E.: Collaborative filtering at spotify. New York Machine
Learning meet-up (jan 2013), http://www.slideshare.net/erikbern/

collaborative-filtering-at-spotify-16182818

3. Boldi, P., Bonchi, F., Castillo, C., Vigna, S.: Viscous democracy for social networks.
Communications of the ACM 54(6), 129–137 (2011)

4. Boldi, P., Vigna, S.: The webgraph framework i: compression techniques. In: Pro-
ceedings of the 13th international conference on World Wide Web. pp. 595–602.
ACM (2004)

5. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
18(1), 39–43 (1953)

6. O’Donell, G.A.: Delegative democracy. Journal of democracy 5(1), 55–69 (1994)
7. Pariser, E.: The filter bubble: What the Internet is hiding from you. Penguin UK

(2011)
8. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook.

In: Recommender systems handbook, pp. 1–35. Springer (2011)

http://bit.ly/liquidfm
http://www.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818
http://www.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818

LlamaFur: Learning Latent Category Matrix
to Find Unexpected Relations in Wikipedia

Paolo Boldi∗
Dipartimento di Informatica

Università degli Studi di Milano
Italy

paolo.boldi@unimi.it

Corrado Monti
Dipartimento di Informatica

Università degli Studi di Milano
Italy

corrado.monti@unimi.it

ABSTRACT
Besides finding trends and unveiling typical patterns, mod-
ern information retrieval is increasingly more interested in
the discovery of surprising information in textual datasets.
In this work we focus on finding unexpected links in hyper-
linked document corpora when documents are assigned to
categories; our approach is based on the determination of
a latent category matrix that explains common links; the
matrix is built using a perceptron-like technique. We show
that our method provides better accuracy than most exist-
ing text-based techniques, with higher efficiency and relying
on a much smaller amount of information. It also provides
higher precision than standard link prediction, especially at
low recall levels; the two methods are in fact shown to be
orthogonal and can therefore be fruifully combined.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining; H.3.3 [In-
formation Storage and Retrieval]: Information Retrieval;
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Networks; Categorization; Outliers

1. INTRODUCTION
In general, data mining (text mining, if the data involved
take the form of textual documents) aims at extracting po-
tentially useful information from some (typically, unstruc-
tured, or poorly structured) dataset. The basic and foremost
aim of data mining is discovering frequent patterns, and this
problem attracted and still attracts a large part of the re-
search efforts in this field. Nonetheless a quite important
and somehow dual problem is that of finding unexpected
(unusual, new, unforeseen. . .) information; it is surprising

∗Partially supported by the EU-FET grant NADINE (GA
288956).

to note that this line of investigation did not receive the
same amount of attention.

Albeit there is some research on the determination of sur-
prising information in textual corpora (most often based on
the determination of outliers in the distribution of terms or
n-grams) there is essentially no work dealing with unexpected
links. Even if some of the previous proposals exploiting text
features can be adapted to this case, a simpler (and, as we
here show, more effective) way to approach this problem is
by using link prediction algorithms [15], stipulating that a
link that is difficult to predict is unexpected.

In this paper, we prove that the availability of some form
of categorization of documents can significantly improve the
techniques described, leading to algorithms that are extremely
efficient, use much less information than text-based meth-
ods, and offer better precision/recall trade-offs. Compared
to link prediction, our technique also provides higher preci-
sion at low recall levels; moreover, the two methods have or-
thogonal outputs, and therefore their combination improves
over both.

Our idea is that if the documents within a linked corpora
are tagged with categorical information, one can learn which
category/category pairs are more likely to appear, and as a
consequence determine which links are unusual (in the sense
that they are not “typical”). For example, documents of the
category “Actor” often contain links to the category “Movie”
(simply because almost all actor pages contain links to the
movies they acted in). The fact that George Clooney used
to own Max, a 300-pound pig, for 18 years presents itself
as a link from an “Actor” page to a page belonging to the
category “Pigs”/“Coprophagous animals”, which is atypical
in the sense above.

Our basic algorithm – henceforth called LlamaFur, “Learn-
ing LAtent MAtrix to Find Unexpected Relations” – tries to
learn a category/category matrix describing the latent rela-
tions between categories: to this aim we apply a Passive-
Aggressive learning method. Then we reconstruct which
part of the graph is more explainable according to the ma-
trix, and which links cannot be justified by the categories
alone. Not only LlamaFur is also more efficient than both
link prediction and the previous techniques based on the
analysis of the textual content of the page, but it also im-
proves the accuracy of link prediction algorithms in identi-
fying unexpected links, if the two are combined.

It is worth noting that the discovery of unexpected links of-
fers a chance to find unknown information: given a certain
document, we can highlight text snippets containing unex-
pected links. Meaningful text is often characterized, in web
documents, by the presence of links that enrich its semantic;
this is especially true in the case of Wikipedia, often used
as a knowledge base for ontologies. Its link structure has
proven to be a powerful resource for many tasks [20, 19].
For this reason, finding unexpected links seems a valuable
way to detect meaningful text with information unknown to
the reader.

Nevertheless, our results could be in principle applied to a
plethora of different kinds of objects. The only assumption
on the input is a (directed) graph, and a meaningful catego-
rization of its nodes; categories can be overlapping as well,
so in fact they may just be some observed features of each
object. These assumptions are quite general, and could be
applied to many use cases, from the detection of unexpected
collaborations between grouped individuals to finding sur-
prising travel habits from geotagged data.

The paper is organized as follows. In Section 2 we will review
other works dealing with mining of unexpected information.
Our technique will be presented through Section 3, where we
explain how to estimate a latent category matrix with online
learning; Section 4, where we describe a simpler, naive way
to compute it; and Section 5, where we show how to use
such a matrix to measure the unexpectedness of a link. In
Section 6 we exhibit experimental evidence for the efficacy of
our methods, by comparing them with different approaches
derived from literature. Finally, in Section 7 we will sum up
our work and suggest possible directions for future research.

2. RELATED WORK
One of the first papers trying to consider the problem in the
context of text mining was [14]. In that work, two suppos-
edly similar web sites are compared (ideally, two web sites
of two competitors). The authors first try to find a match
between the pages of the two web sites, and then propose a
measure of unexpectedness of a term when comparing two
otherwise similar pages. All measures are based on term (or
document) frequencies; unexpected links are also dealt with
but in a quite simplistic manner (a link in one of the two
web sites is considered “unexpected” if it is not contained in
the other).

This unexpectedness measure is taken up in [11], where the
aim is that of finding documents that are similar to a given
set of samples and ordering the results based on their un-
expectedness, using also the document structure to enhance
the measures defined in [14]. Finding outliers in web col-
lections is also considered in [3], where again dissimilarity
scores are computed based on word and n-gram frequency.

Some authors approach the strictly related problem of de-
termining lacking content (called content hole in [18]) rather
than unexpected information, using Wikipedia as knowledge
base. A similar task is undertaken by [9], this time assum-
ing the dual approach of finding content holes in Wikipedia
using the web as a source of information.

More recently, [21] considers the problem of finding unex-

pected related terms using Wikipedia as source, and taking
into account at the same time the relation between terms
and their centrality.

An alternative way to approach the problem of finding unex-
pected links is by using link prediction [15]: the expectedness
of a link e in a network G is the likelihood of the creation of
e in G−{e}. In fact, we will later show that state-of-the-art
link prediction algorithms like [1] are very good at evaluating
the (un)expectedness of links. Nonetheless, it turns out that
the signal obtained from the latent categoy matrix is even
better and partly orthogonal to the one that comes from
the graph alone, and combining the two techniques greatly
improve the accuracy of both.

3. LEARNING THE CATEGORY MATRIX
Consider a directed graphG = (D,L) (the“document graph”),
whose nodes d ∈ D represent documents and whose arcs
(d, d′) ∈ L represent (hypertextual) links between documents.
Further assume that we have a set C of categories and that
each document d ∈ D is assigned a set of categories Cd ⊆ C.

Our first goal is to reconstruct the most plausible latent“cat-
egory matrix” that explains the observed document graph;
more precisely, we wish to find a C × C real-valued matrix
W such that ∑

c∈Cd

∑
c′∈Cd′

wc,c′ (1)

is positive iff (d, d′) ∈ L.

We are going to assume that in most cases a relation is
unexpected – that is, surprising to the reader – if it is poorly
explained by a plausible category matrix. We will put this
assumption under test in the experimental section.

To find such a matrix W , we recast our goal in the frame-
work of online binary classification. Binary classification is
a well-known problem in supervised machine learning. Sup-
pose to have a traning set of examples, each one associated
with a binary label ŷi ∈ {−1, 1}; based on these data, the
problem is to build a classifier able to label correctly un-
known data. Online classification simplifies this problem by
assuming each example is presented in a sequential fashion;
the classifier (1) observes an example; (2) tries to predict
its label; (3) receives the true label, and consequentially up-
dates its internal state; (4) moves on to the next example.
An online learning algorithm, generally, needs a constant
amount of memory with respect to the number of examples,
which allows to employ these algorithms in a situation where
a very large set of voluminous input data is avaiable – like
in our case.

A well-known type of online learning algorithms are the
so-called perceptron-like algorithms. They all share these
traits: each example must be a vector xi ∈ Rn; the internal
state of the classifier is also represented by a vector w ∈ Rn;
the predicted label is yi = sign(w · xi), and the algorithms
differ on how w is built. Perceptron-like algorithms (for ex-
ample, ALMA and Passive-Aggressive) are usually simple
to implement, provide tight theoretical bounds, and have
been proved to be fast and accurate in practice [10, 8]. For
these reasons, we will reduce our problem to online binary

classification.

To this aim, let us represent each document d with the indi-
cator vector of Cd, i.e., with the binary vector d such that
dc = 1 iff c ∈ Cd. Now, an example will be a pair of
documents (d, d′), represented as the outer product kernel
d ⊗ d′: this is a matrix where the element [d ⊗ d′]c,c′ is
1 iff the first document belongs to c and the second to c′.
This (|C| × |C|)-matrix1 can be alternatively thought of as
a vector of size |C|2, allowing us to use them as training
examples for a perceptron-like classifier, where the label is
y = 1 iff (d, d′) ∈ L (if there is a link), and y = −1 other-
wise. The learned vector w will be, if seen as a |C| × |C|
matrix, the desired W appearing in (1). In other words, we
are using |C|2 features, in fact a kernel projection of a space
of dimension 2|C| onto the larger space of size |C|2. Simi-
larly the weight vector to be learned has size |C|2. Positive
examples are those that correspond to existing links.

A Passive-Aggressive algorithm. Among the existing per-
ceptron-like online classification frameworks, we chose the
well-known Passive-Aggressive classifier, characterized by be-
ing extremely fast, simple to implement, and shown by many
experiments [6, 17] to perform well on similar datasets. To
cast this algorithm for our case, let us consider a sequence
of pairs of documents

(d1, d
′
1), . . . , (dT , d

′
T) ∈ D2

(to be defined later). Define a sequence of matricesW0, . . . ,WT

and of slack variables ξ1, . . . , ξT ≥ 0 as follows:

• W0 = 0

• Wt+1 is a matrix minimizing ‖Wt+1 − Wt‖ + Kξt+1

subject to the constraint that

σ(dt, d
′
t) ·

∑
c∈Cdt

∑
c′∈Cd′t

wt+1(c, c′) ≥ 1− ξt+1, (2)

where

σ(x, y) =

{
−1 if (x, y) 6∈ L
1 if (x, y) ∈ L

,

‖ − ‖ denotes the Frobenius norm and K is an opti-
mization parameter determining the amount of aggres-
siveness.

The intuition behind the above-described optimization prob-
lem [8] is the following:

• the left-hand-side of the inequality (2) is positive iff
Wt+1 correctly predicts the presence/absence of the
link (dt, d

′
t); its absolute value can be thought of as

the confidence of the prediction;

1In practice, we normalize this matrix so that it has unit
L1-norm, both because this is a common practice in the
perceptron-like algorithms and because documents belong-
ing to few categories provide stronger signals than those that
belong to many categories.

• we would like the confidence to be at least 1, but allow
for some error (embodied in the slack variable ξt+1);

• the cost function of the optimization problem tries to
keep as much memory of the previous optimization
steps as possible (minimizing the difference with the
previous iterate), and at the same time to minimize
the error contained in the slack variable.

By merging the Passive-Aggressive solution to this prob-
lem with our aforementioned framework, we obtain the al-
gorithm described in Alg. 1.

Algorithm 1 Passive-Aggressive algorithm to build the la-
tent category matrix.

Input:
Categories Cd ⊆ C for each document d ∈ D
A sequence (d1, d

′
1), . . . , (dT , d

′
T) of elements of D ×D

A parameter K > 0
Output:

The latent category matrix W

1. W ← 0

2. For i = 1, . . . , T

(a) ρ← 1
|Cdi

|·|Cd′
i
|

(b) µ←
∑

c∈Cdi

∑
c′∈Cd′

i

Wc,c′

(c) If (di, d
′
i) ∈ L

δ ← ρ ·min(K, 1− µρ)
else

δ ← −ρ ·min(K, 1 + µρ)

(d) For each c ∈ Cdi , c
′ ∈ Cd′i

:
Wc,c′ ←Wc,c′ + δ

Please note that our aim is not to build a perfect classi-
fier: instead, we will use this algorithm to find a plausible
category-category matrix. This can be seen as a rivisitation
of the use of classifiers to detect outliers, as described for
example in [2].

Sequence of pairs. In our case, W is built through a single-
pass online learning process, where we have all positive ex-
amples at our disposal (and they are in fact all included in
the training sequence), but where negative examples cannot
be all included, because they are too many and they would
produce overfitting.

The Passive-Aggressive construction described above depends
crucially on the sequence of positive and negative examples
(d1, d

′
1), . . . , (dT , d

′
T) that is taken as input. In particular,

as discussed in [12], it is critical that the number of negative

and positive examples in the sequence is balanced. Taking
this suggestion into account, we build the sequence as fol-
lows: nodes are enumerated (in arbitrary order), and for
each node d ∈ D, all arcs of the form (d,−) ∈ E are put in
the sequence, followed by an equal number of pairs of the
form (d,−) 6∈ E (for those pairs, the destination nodes are
chosen uniformly at random). Of course, if m = |E| is the
number of links, then T = 2m and the sequence contains all
the m links along with m non-links.

Obviously, there are other possible ways to define the se-
quence of examples and to select the subset of negative ex-
amples. We suggest some of them in Section 7. However,
we chose to adopt this technique – single pass on a balanced
random sub-sample of pairs – in order to test our method-
ology with a single, natural and computationally efficient
approach.2

4. A NAIVE WAY TO BUILD THE CATE-
GORY MATRIX

Let us describe an alternative, easier, naive variant of how
the latent category matrix W could be obtained. Recall that
the purpose is to use equation (1) to compute the expected-
ness of a link (d, d′).

For a given category c, let Dc be the set of documents that
have the category c; let also Ec,d represent the event that d
belongs to the category c (i.e., c ∈ Cd or, equivalently, d ∈
Dc). Now for any two categories c and c′ one can compute
the probability that there is a link between two documents
that belong to those categories as

pc,c′ = P [(d, d′) ∈ L | Ec,d and Ec′,d′].

This quantity can be naively estimated as the fraction of
pairs (d, d′) such that Ec,d ∧ Ec′,d′ that happen to be links.
In other words,

pc,c′ =
|{(Dc ×Dc′) ∩ L}|
|Dc| · |Dc′ |

.

For a specific pair of documents (d, d′), the probability of
the presence of a link is given by

P

(d, d′) ∈ L
∣∣∣∣ ⋂
c∈Cd

Ec,d and
⋂

c′∈Cd′

Ec′,d′

 .
Now, under some independence assumptions3, the latter can
be expressed as∏

c∈Cd

∏
c′∈Cd′

P

[
(d, d′) ∈ L

∣∣∣∣Ec,d and Ec′,d′
]

=

=
∏

c∈Cd

∏
c′∈Cd′

pc,c′ .

2We carried out experiments performing more passes on the
same subsample; it slightly increased (less than 2%) the ac-
curacy of W – i.e., the number of pairs that are correctly
classified. However, it is dubious whether the increased time
cost is worth the limited improvement in terms of unexpect-
edness mining.
3More precisely, we are assuming that Ec,d and Ec′,d′ are
independent, whenever c 6= c′ or d 6= d′, and also that they
are independent even under the knowledge that (d, d′) ∈ L.

Applying a logarithm, this is rank-equivalent to∑
c∈Cd

∑
c′∈Cd′

wc,c′

where

wc,c′ = log pc,c′ = log
|{(Dc ×Dc′) ∩ L}|
|Dc| · |Dc′ |

This is yet another way to define the matrix W used in
the LlamaFur algorithm; the resulting expectedness score
for link (d, d′) is given by (1), and will be referred to as
Naive-LlamaFur.

5. USING THE CATEGORY MATRIX
Let us now call W the category matrix obtained at the
end of the learning process (that is, W = WT , according
to the notation of Section 3), or equivalently the matrix
built using the naive approach of Section 4. This matrix
allows one to sort the links (d, d′) ∈ L in increasing order
of
∑

c∈Cdt

∑
c′∈Cd′t

wc,c′ (i.e., by increasing explainability):

the first links are the most unexpected.

In particular, in the case of the learning approach of Sec-
tion 3, one can build a graph G∗ = (D,L∗) whose links are
the set L∗ of pairs (d, d′) such that∑

c∈Cdt

∑
c′∈Cd′t

wc,c′ ≥ 0.

In a standard binary-classification scenario, G∗ would be
the graph G that our classifier learned. In particular, the
elements of the set L\L∗ (L∗\L, resp.) are the false negative
(false positive, resp.) instances.

But ours is not a link-prediction task, and we do not expect
in any sense that L and L∗ are similar. In particular, we
shall certainly observe a phenomenon that we can call gen-
eralization effect : suppose that it frequently happens that a
document assigned to a category c (e.g., an actor) contains
links to documents assigned to another category c′ (e.g., a
movie). This will probably make wc,c′ very large, and so
we may falsely deduce that every document assigned to c
(every actor) contains a link to every document assigned to
c′ (every movie).

The generalization effect will, by itself, make L∗ much larger
than L (i.e., it will produce many false positive instances),
but we do not care much about this aspect. Our focus is
not on trying to reconstruct L, but rather in understanding
which elements of L are difficult to explain based on the
categories of the involved documents. We say that a link
(d, d′) ∈ L is explainable iff (d, d′) ∈ L∗; the set of explain-
able links is therefore L∩L∗. On the contrary, the elements
of L \ L∗ are called unexplainable, and these are the links
we want to focus on.

In Figure 1 we show two small examples of how the matrix
W learned as in Section 3 looks like, when considering the
Wikipedia dataset (for a full explanation of how the dataset
was built, see Section 6): in the picture, we display the 18
neighbours closer to two starting categories (“Science Fiction
Films” and “Keyboardists”); the width of the arc from c to

Science fiction by nationalityScience fiction by nationality

Science fiction book seriesScience fiction book series

Science fiction by franchiseScience fiction by franchise

RobotsRobots

Science fiction novelsScience fiction novels

SpaceflightSpaceflight

Speculative fiction novelsSpeculative fiction novels

Planets of the Solar SystemPlanets of the Solar System

MaterialsMaterials

Evolutionary biologyEvolutionary biology

PredationPredation

Technology systemsTechnology systems

German cultureGerman culture

Science fiction filmsScience fiction films

Theory of relativityTheory of relativity

Celestial mechanicsCelestial mechanics

Production and manufacturingProduction and manufacturing

SaurischiansSaurischians

Prehistoric reptilesPrehistoric reptiles

Music-related listsMusic-related lists

Catholic pilgrimage sitesCatholic pilgrimage sites

Place namesPlace names

London boroughsLondon boroughs

ArtistsArtists

Multinational companies in the U.S.Multinational companies in the U.S.

KeyboardistsKeyboardists

Buildings and structures by American architectsBuildings and structures by American architects

Power metal albumsPower metal albums

Human–machine interactionHuman–machine interaction

AnimationAnimation

British songsBritish songs

Universities by countryUniversities by country

Progressive rock albums by British artistsProgressive rock albums by British artists

British awardsBritish awards

English writersEnglish writers

Music by nationalityMusic by nationality

Short filmsShort films

Electronic albums by American artistsElectronic albums by American artists

Figure 1: Two fragments of the latent category graph induced by LlamaFur matrix W , representing the 18
closer neighbors of categories “Science Fiction Films” and “Keyboardists”, respectively. The width of the arc
from c to c′ is proportional to wc,c′ , and arcs with wc,c′ ≤ 1 are not shown.

c′ is proportional to wc,c′ , and arcs with wc,c′ ≤ 1 are not
shown.

For example, from the picture it is clear that a link from a
page of a science-fiction film to a page of a science-fiction
novel is highly expected, as it is one from a page of a key-
boardist to one of a british progressive rock album.

The rougher version induced by Naive-LlamaFur is shown
in Figure 2.

6. EXPERIMENTS
Given its increasing importance in knowledge representa-
tion [20], we used the English edition of Wikipedia as our
testbed. In praticular, we employed the enwiki snapshot4

of February 3, 2014 to obtain:

• the document graph, composed by 4 514 662 Wikipedia
pages, with 110 699 703 arcs; every redirect was merged
to its target page;

• the full categorization of pages: a map associating ev-
ery page to one of the 1 134 715 categories;

• the category pseudo-tree: a graph built by Wikipedia
editors, with the aim of assigning each category to a
“parent” category.

Wikipedia categories. The first problem is that the cate-
gorization on Wikipedia is quite noisy and, in fact, a con-
tinuous work-in-progress: therefore, categories may contain
only one (or even no) page, they might be duplicates of
each other, and so on. The obvious solution would be to
use the pseudo-tree to find the top categories; but the cate-
gory tree is a work-in-progress itself. Not only – as stated5

4This dataset is commonly referred to as enwiki-20140203-
pages-articles according to Wikipedia naming scheme.
5See “Known issues” on en.wikipedia.org/wiki/
Wikipedia:FAQ/Categorization.

by Wikipedia – “categories can be sub-categories of them-
selves”, but cycles are also present: for example, the largest
strongly connected component has 6 833 categories, all di-
rect or indirect subcategories of one another.

We therefore cleansed the page categorization as follows: we
computed the harmonic centrality measure [4] on the cate-
gory pseudo-tree, and considered only the set C of the 20 000
most central categories. To give an idea about the effective-
ness of this simple method in capturing the generality of
categories, we report in Table 1 the first and the last cate-
gories on our list6.

We then computed, for every category c, the category ι(c) ∈
C closest to c in the pseudo-tree, and re-categorized all the
pages applying ι(−) to its original categories. If there is
no c′ ∈ C connected to c, ι(c) is undefined and we simply
discarded c. In Table 2 we show some examples of this re-
categorization of pages.

In the end, we obtained a set C of 20 000 categories, and a
map associating each Wikipedia page d to Cd ⊂ C; on aver-
age, each page belongs to 4 categories. We procedeed then
to apply LlamaFur to extract the latent category matrix W ;
the ratio |L∩L∗|/|L| – that is, how many existing links are
explained by W – is equal to 86%. We illustrated previously
in Fig. 1 some fragments of W . Finally, we proceeded to
assign our unexpectedness score to each link.

Evaluation methodology. We want to evaluate the effec-
tiveness of LlamaFur using the standard framework com-
monly adopted in Information Retrieval. In our context, a
query is a document, the possible results are the hyperlinks
that the document contains, and a result is relevant for our
problem if it represents an unexpected link. The scenario
we have in mind is that of a user wishing to find surprising
links in a certain Wikipedia page.

6We also excluded utility categories, like “Categories by
country” and “Main topic classifications” – originally highly
ranked.

Rank Category Rank Category
1 Countries 19981 Maldives
2 Society 19982 Government buildings on the National Register of Historic Places
3 Nationality 19983 Illinois waterways
4 Political geography 19984 Bodies of water of Illinois
5 Culture 19985 2002 in association football
6 Humans 19986 Electronica albums by British artists
7 Social sciences 19987 Visitor attractions in Arkansas by county
8 Structure 19988 Years of the 20th century in Europe
9 Human–geographic territorial entities 19989 Commonwealth Games events
10 Contents 19990 Albums by English artists by genre
11 Geographic taxonomies 19991 American football in Pennsylvania
12 Fields of history 19992 Ethnic groups in Poland
13 Places 19993 Card games
14 Humanities 19994 Central African people
15 Continents 19995 Deaths by period
16 Political concepts 19996 Visitor attractions in Vermont
17 Human geography 19997 Ancient roads and tracks
18 Subfields of political science 19998 People in finance by nationality
19 Articles 19999 Populated places in Greater St. Louis
20 Subfields by academic discipline 20000 Religion in Poland

Table 1: Topmost and bottommost wikipedia categories according to their harmonic centrality in the
Wikipedia category graph.

Original category c Substitution ι(c) ∈ C
Southern Tang poets Poets by nationality
Antsiranana Province Country subdivisions of Africa
Fellows of Magdalen College, Oxford University of Oxford
Actresses from Greater Manchester Greater Manchester
Guyanese slaves History of South America
Swiss manuscripts Swiss culture
Wilson Pickett songs Songs by artist
Baroque architecture in Austria Baroque architecture by country
Eastern Collegiate Roller Hockey Association @
Art schools in Washington (state) Washington (state) culture
Rivers of Kostroma Oblast Rivers by country
Flamenco compositions Spanish music
Oil fields of Gabon Geology of Africa
Basketball teams in Georgia (U.S. state) Basketball teams in the United States by state
2004 in Australian motorsport 2004 in sports
Populated places established in 1821 @
Elections in Southwark Local government in London
Permanent Representatives of Norway to NATO Ambassadors of Norway
Basketball in Turkey Basketball by country
Balli Kombëtar @

Table 2: An excerpt of the re-categorization process. We write @ if there is no category in C connected to c.

ScreenplaysScreenplays

FilmmakingFilmmakingUnited StatesUnited States

Media formatsMedia formats

Media occupationsMedia occupations

Entertainment companiesEntertainment companies

G8 nationsG8 nations

Music and videoMusic and video

Film theoryFilm theory

Languages of Hong KongLanguages of Hong Kong
Languages of MalaysiaLanguages of Malaysia

Languages of SingaporeLanguages of Singapore

Languages of the CaribbeanLanguages of the Caribbean

Film location shootingFilm location shooting

Storage mediaStorage media

Languages of South AmericaLanguages of South America

Federal constitutional republicsFederal constitutional republics
Science fiction filmsScience fiction films

Economy of EcuadorEconomy of Ecuador

Rhythm and blues music genresRhythm and blues music genres

North American musicNorth American music

Keyboard instrumentsKeyboard instruments

Instrumental and vocal genresInstrumental and vocal genres

United StatesUnited States

ChordophonesChordophones

CathedralsCathedrals G8 nationsG8 nations

Broadcasting occupationsBroadcasting occupations

Occupations in musicOccupations in music

Irish musical instrumentsIrish musical instrumentsNecked lutesNecked lutes

Federal constitutional repu...Federal constitutional repu...

CanadaCanada

Finnish-speaking countries ...Finnish-speaking countries ...

Swedish-speaking countries ...Swedish-speaking countries ...

KeyboardistsKeyboardists

States and territories esta...States and territories esta...

Music productionMusic production

Figure 2: Two fragments of the latent category graph induced by Naive-LlamaFur matrix, representing the
18 closer neighbors of categories “Science Fiction Films” and “Keyboardists”, respectively. The width of the
arc from c to c′ is proportional to wc,c′ , and the lighter arcs are not shown. For comparison with LlamaFur,
see Figure 1.

Label Fraction
Totally Unexpected 2.3%
Unexpected 8.9%
Expected 30.8%
Totally Expected 58.0%

Table 3: Distribution of labels obtained from human
evaluation.

In order to compare the results obtained by LlamaFur with
the existing state-of-the-art for similar problems, we per-
formed a user study based on the same pooling method
adopted for many standard collections such as TREC (trec.
nist.gov): we considered a random sample of 237 queries
(i.e., Wikipedia documents); for each query we took, among
its t possible results (i.e., links), the top-bα · tc most un-
expected ones according to each system under comparison
(see below); all the resulting links were evaluated by human
beings. We set α = 0.1, and obtained about 3 620 links.

The human evaluators were asked to categorize each link into
one of four classes (“totally expected”, “slightly expected”,
“slightly unexpected” and “totally unexpected”). After the
human evaluation, we only considered the queries that have
at least one irrelevant (“totally/slightly expected”) and one
relevant (“totally/slightly unexpected”) result according to
the evaluation, obtaining a dataset with 117 queries. In this
dataset, on average each query has 3.45 relevant results over
20.56 evaluated links. The distribution of labels is reported
in Table 3.

Baselines and competitors. In our comparison, LlamaFur
is tested in combination and against a number of baselines
and competitors. In particular, we considereded LlamaFur
and its naive variant, Naive-LlamaFur, along with some of
the other (un)expectedness measures proposed in the liter-
ature.

Albeit there are, at the best of our knowledge, no algorithms
specifically devoted to determining unexpected links, we can
adapt some techniques used for unexpected documents to
our case. All of those methods try to measure the unexpect-
edness of a document d among a set of retrieved documents
R. In our application, we are considering a link (d′, d) and
taking R to be the set of all documents towards which d′

has a hyperlink.

• Text-based methods. In the literature, all of the mea-
sures of unexpectedness are based on the textual con-
tent of the document under consideration.

– The first index, called M2 in [11] (a better variant
of M1, the measure proposed in [14]), is defined
as:

M2(d) =

∑
t U(d, t, R)

m

where m is the number of terms in the dictionary,
and U(d, t, R) is the maximum between 0 and the
difference between the normalized term frequency
of term t in document d and the normalized term
frequency of t in R (the set of all retrieved doc-
uments). The normalized term frequency is the
frequency of a term divided by the frequency of
the most frequent term.

– The second index, called M4 in [11] (where they
prove that it works better than M2 in their con-
text), is the

M4(d) = max
t

tf(t) · log
|R|

df(t)

where tf(t) is the normalized term frequency of
term t in d, and df(t) the number of documents
in R where t appears.

• Link-prediction methods. A completely different, alter-
native approach to the problem is based on link pre-
diction: how likely is it that the link (d′, d) is created,
if we assume that it is not there? Among the many

techniques for link prediction [15], we tested the well-
known Adamic-Adar index [1] (AA, in the following),
defined7 by

AA(d, d′) =
∑

d′′∈Γ(d)∩Γ(d′)

1

log |Γ(d′′)| ,

where Γ(d) is the set of documents which d links to.

• Combinations. Besides testing all the described tech-
niques in isolation, we tried to combine them linearly.
Since each unexpectedness measure exhibits a differ-
ent scale, we first need to normalize each measure by
taking its studentized residual8 [7].

Results. In the following, we are only going to discuss the
best algorithms and combinations, besides some of the most
interesting alternatives. The raw average bpref [5] values are
displayed in Table 4. Figure 4 shows, for each algorithm,
how many queries have obtained a certain bpref value; for
the sake of readability, we have grouped bpref values into
four groups. Ideally, an algorithm should produce as many
large bpref values as possible. LlamaFur is the one single al-
gorithm that goes closer to the target, whereas M4 and AA
are the second best with a small margin. Naive-LlamaFur
is worse, wheras M2 is the overall worst. Interestingly, com-
bining pure link prediction methods (AA) with LlamaFur
significantly improves AA of about 28%.

0-0.25 0.25-0.5 0.5-0.75 0.75-1
BPref per query

0%

14%

28%

42%

57%

71%

85%

F
ra

ct
io

n
 o

f
q

u
e
ri

e
s

M2
M4
AA
Naive-LlamaFur
LlamaFur
LlamaFur+AA

Figure 4: Distribution of the bpref measure over
each evaluated query. Average values are shown in
Table 4.

Some complementary information about the behaviour is
provided by the precision-recall graph of Figure 3: first of

7The formula is applied to the symmetric version of the
graph, in our case; note that this (like LlamaFur) is a mea-
sure of expectedness, whereas M2 and M4 are measures of
unexpectedness.
8The (internally) studentized residual is obtained by divid-
ing the residual (i.e., the difference from the sample mean)
by the sample standard deviation.

Algorithm Average bpref Input data
AA 0.288 graph
M2 0.179 bag of words
M4 0.290 bag of words
Naive-LlamaFur 0.216 graph, categories
LlamaFur 0.364 graph, categories
LlamaFur + AA 0.372 graph, categories

Table 4: Average values for bpref.

unexpected slightly unexpected slightly expected expected
Human rating

15

10

5

0

5

10

L
la

m
a
F

u
r

U
n

e
xp

e
ct

e
d

n
e
ss

Figure 5: Comparison of the unexpectedness evalu-
ated by LlamaFur with equation (1) over the differ-
ent labels obtained from human evaluation.

all, LlamaFur, AA, M4 and their combinations have larger
precision than the remaining ones for almost all the recall
levels; on the other hand LlamaFur +AA is the best method
for recall values up to 50%, and LlamaFur has definitely
better precision than AA until 30% of recall.

In fact, M4, AA and LlamaFur seem to be complementary to
one another; in some sense, this is not surprising given that
they stem from completely different sources of information:
one is based on the textual content, another on the pure link
graph and the latter on the category data.

Some further clue on the behaviour of LlamaFur is provided
by Figures 5 and 6, where the distribution of LlamaFur and
LlamaFur + AA expectedness values is shown for each of
the four labels provided by the human evaluation. The red
line is the median.

7. CONCLUSIONS AND FUTURE WORK
In this work we presented a technique to find unexpected
links in hyperlinked document corpora based on the deter-
mination of a latent category matrix that explains common
links; the latter is built using a perceptron-like technique.
We show that our method provides better accuracy than
most existing text-based techniques, with higher efficiency
and relying on a much smaller amount of information. An
interesting question is whether the latent category matrix
can be used to improve link prediction per se, i.e. if it is use-
ful to find links and not only unexpected ones: this problem

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
re

ci
si

o
n

M2
M4
AA
Naive-LlamaFur
LlamaFur
LlamaFur+AA

Figure 3: Average precision-recall values evaluated after the 1st, 2nd, 5th, 8th, 10th, 15th, 25th, 50th, and
100th percentiles for each query.

unexpected slightly unexpected slightly expected expected
Human rating

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

L
la

m
a
F

u
r+

A
A

 U
n

e
xp

e
ct

e
d

n
e
ss

Figure 6: Comparison of the unexpectedness score
evaluated by LlamaFur + AA over the different la-
bels obtained from human evaluation.

requires that one finds a way to bypass the generalization
effect that the matrix produces.

Another possible direction would be to try different ap-
proach to the classification problem described in Section 3,
in order to improve its effectiveness. To this aim, one could
recast the problem as a cost-sensitive classification where
false negatives are more costly than false positives. Other
useful techniques include active learning [16]: since we need
a subset of the non-linked pairs as counter-examples, active
learning would select the more effective ones. An alterna-
tive approach to the same task would be to employ one-class

learning [13]. This is left as future work.

8. REFERENCES
[1] Lada A. Adamic and Eytan Adar. Friends and

neighbors on the web. Social Networks, 25:211–230,
2001.

[2] Charu C Aggarwal. Outlier analysis. Springer Science
& Business Media, 2013.

[3] Malik Agyemang, Ken Barker, and Reda Alhajj.
Hybrid approach to web content outlier mining
without query vector. In A. Min Tjoa and Juan
Trujillo, editors, DaWaK, volume 3589 of Lecture
Notes in Computer Science, pages 285–294. Springer,
2005.

[4] Paolo Boldi and Sebastiano Vigna. Axioms for
centrality. Internet Mathematics, 10(3-4):222–262,
2014.

[5] Chris Buckley and Ellen M Voorhees. Retrieval
evaluation with incomplete information. In
Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 25–32. ACM, 2004.

[6] Vitor R Carvalho and William W Cohen. Single-pass
online learning: Performance, voting schemes and
online feature selection. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 548–553. ACM,
2006.

[7] R. Dennis Cook and Sanford Weisberg. Residuals and

Influence in Regression. Monographs on Statistics and
Applied Probability, 18. Chapman and Hall/CRC,
1983.

[8] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. Online
passive-aggressive algorithms. J. Mach. Learn. Res.,
7:551–585, 2006.

[9] Damien Eklou, Yasuhito Asano, and Masatoshi
Yoshikawa. How the web can help wikipedia: A study
on information complementation of wikipedia by the
web. In Proceedings of the 6th International
Conference on Ubiquitous Information Management
and Communication, ICUIMC ’12, pages 9:1–9:10.
ACM, 2012.

[10] Claudio Gentile. A new approximate maximal margin
classification algorithm. J. Mach. Learn. Res.,
2:213–242, 2002.

[11] François Jacquenet and Christine Largeron.
Discovering unexpected documents in corpora.
Knowledge-Based Systems, 22(6):421 – 429, 2009.

[12] Nathalie Japkowicz and Shaju Stephen. The class
imbalance problem: A systematic study. Intelligent
data analysis, 6(5):429–449, 2002.

[13] Shehroz S Khan and Michael G Madden. A survey of
recent trends in one class classification. In Artificial
Intelligence and Cognitive Science, pages 188–197.
Springer, 2010.

[14] Bing Liu, Yiming Ma, and Philip S. Yu. Discovering
unexpected information from your competitors’ web
sites. In Doheon Lee, Mario Schkolnick, Foster J.
Provost, and Ramakrishnan Srikant, editors, KDD,
pages 144–153. ACM, 2001.

[15] Linyuan Lü and Tao Zhou. Link prediction in complex
networks: A survey. Physica A: Statistical Mechanics
and its Applications, 390(6):1150 – 1170, 2011.

[16] Edwin Lughofer. Single-pass active learning with
conflict and ignorance. Evolving Systems,
3(4):251–271, 2012.

[17] Corrado Monti, Alessandro Rozza, Giovanni Zappella,
Matteo Zignani, Adam Arvidsson, and Elanor
Colleoni. Modelling political disaffection from twitter
data. In Proceedings of the Second International
Workshop on Issues of Sentiment Discovery and
Opinion Mining, page 3. ACM, 2013.

[18] Akiyo Nadamoto, Eiji Aramaki, Takeshi Abekawa,
and Yohei Murakami. Content hole search in
community-type content. In Proceedings of the 18th
international conference on World wide web, pages
1223–1224. Association for Computing Machinery,
2009.

[19] S.P. Ponzetto and M. Strube. Deriving a large scale
taxonomy from wikipedia. Proceedings of the National
Conference on Artificial Intelligence, 2:1440–1445,
2007.

[20] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. Yago: A large ontology from wikipedia and
wordnet. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(3):203 – 217, 2008.
World Wide Web Conference 2007Semantic Web
Track.

[21] Kosetsu Tsukuda, Hiroaki Ohshima, Mitsuo
Yamamoto, Hirotoshi Iwasaki, and Katsumi Tanaka.

Discovering unexpected information on the basis of
popularity/unpopularity analysis of coordinate objects
and their relationships. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC
’13, pages 878–885. ACM, 2013.

