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Abstract. We study the time evolution of ranking and spectral properties of the Google matrix of English
Wikipedia hyperlink network during years 2003 - 2011. The statistical properties of ranking of Wikipedia
articles via PageRank and CheiRank probabilities, as well as the matrix spectrum, are shown to be stabi-
lized for 2007 - 2011. A special emphasis is done on ranking of Wikipedia personalities and universities. We
show that PageRank selection is dominated by politicians while 2DRank, which combines PageRank and
CheiRank, gives more accent on personalities of arts. The Wikipedia PageRank of universities recovers 80
percents of top universities of Shanghai ranking during the considered time period.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 89.20.Hh World Wide Web, Internet

1 Introduction

At present Wikipedia [1] became the world largest En-
cyclopedia with open public access to its contain. A re-
cent review [2] represents a detailed description of pub-
lications and scientific research of this modern Library
of Babel, which stores an enormous amount of informa-
tion, approaching the one described by Jorge Luis Borges
[3]. The hyperlinks of citations between Wikipedia articles
represent a directed network which reminds the structure
of the World Wide Web (WWW). Hence, the mathemat-
ical tools developed for WWW search engines, based on
the Markov chains [4], Perron-Frobenius operators [5] and
the PageRank algorithm of the corresponding Google ma-
trix [6,7], give solid mathematical grounds for analysis of
information flow on the Wikipedia network. In this work
we perform the Google matrix analysis of Wikipedia net-
work of English articles extending the results presented
in [8,9],[10,11]. The main new element of this work is
the study of time evolution of Wikipedia network during
the years 2003 to 2011. We analyze how the ranking of
Wikipedia articles and the spectrum of the Google matrix
G of Wikipedia are changed during this period.

The directed network of Wikipedia articles is const-
ructed in a usual way: a directed link is formed from an
article j to an article i when j quotes i and an element Aij

of the adjacency matrix is taken to be unity when there is
such a link and zero in absence of link. Then the matrix
Sij of Markov transitions is constructed by normalizing
elements of each column to unity (

∑

j Sij = 1) and re-

placing columns with only zero elements (dangling nodes)

by 1/N , with N being the matrix size. Then the Google
matrix of the network takes the form [6,7]:

Gij = αSij + (1− α)/N . (1)

The damping parameter α in the WWW context describes
the probability (1−α) to jump to any node for a random
surfer. For WWW the Google search engine uses α ≈ 0.85
[7]. The matrix G belongs to the class of Perron-Frobenius
operators [5,7], its largest eigenvalue is λ = 1 and other
eigenvalues have |λ| ≤ α. The right eigenvector at λ = 1,
which is called the PageRank, has real nonnegative ele-
ments P (i) and gives a probability P (i) to find a random
surfer at site i. It is possible to rank all nodes in a de-
creasing order of PageRank probability P (K(i)) so that
the PageRank index K(i) counts all N nodes i according
their ranking, placing the most popular articles or nodes
at the top values K = 1, 2, 3....

Due to the gap 1−α ≈ 0.15 between the largest eigen-
value λ = 1 and other eigenvalues the PageRank algo-
rithm permits an efficient and simple determination of the
PageRank by the power iteration method [7]. It is also
possible to use the powerful Arnoldi method [12,13],[14]
to compute efficiently the eigenspectrum λi of the Google
matrix:

N
∑

k=1

Gjkψi(k) = λiψi(j) . (2)

The Arnoldi method allows to find a several thousands
of eigenvalues λi with maximal |λ| for a matrix size N
as large as a few tens of millions [10,11], [14,15]. Usually,
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at α = 1 the largest eigenvalue λ = 1 is highly degen-
erate [15] due to many invariant subspaces which define
many independent Perron-Frobenius operators providing
(at least) one eigenvalue λ = 1.

In addition to a given directed network Aij it is use-
ful to analyze an inverse network with inverted direction
of links with elements of adjacency matrix Aij → Aji.
The Google matrix G∗ of the inverse network is then con-
structed via corresponding matrix S∗ according to the re-
lations (1) using the same value of α as for the G matrix.
This time inversion approach was used in [16,17] but the
statistical properties and correlations between direct and
inversed ranking were not analyzed there. In [18], on an
example of the Linux Kernel network, it was shown thus
this approach allows to obtain an additional interesting
characterization of information flow on directed networks.
Indeed, the right eigenvector of G∗ at eigenvalue λ = 1
gives a probability P ∗(i), called CheiRank vector [8]. It
determines a complementary rank index K∗(i) of network
nodes in a decreasing order of probability P ∗(K∗(i)) [8,
9],[10,18]. It is known that the PageRank probability is
proportional to the number of ingoing links characteriz-
ing how popular or known is a given node. In a similar
way the CheiRank probability is proportional to the num-
ber of outgoing links highlighting the node communicativ-
ity (see e.g. [7,19], [20,21],[8,9]). The statistical properties
of distribution of indexes K(i),K∗(i) on the PageRank-
CheiRank plane are described in [9].

In this work we apply the above mathematical meth-
ods to the analysis of time evolution of Wikipedia network
ranking using English Wikipedia snapshots dated by De-
cember 31 of years 2003, 2005, 2007, 2009, 2011. In ad-
dition we use the snapshot of August 2009 (200908) ana-
lyzed in [8]. The parameters of networks with the number
of articles (nodes) N , number of links Nℓ and other in-
formation are given in Tables 1,2 with the description of
notations given in Appendix.

The paper is composed as following: the statistical
properties of PageRank and CheiRank are analyzed in
Section 2, ranking of Wikipedia personalities and univer-
sities are considered in Sections 3, 4 respectively, the prop-
erties of spectrum of Google matrix are considered in Sec-
tion 5, the discussion of the results is presented in Section
6, Appendix Section 7 gives network parameters.

2 CheiRank versus PageRank

The dependencies of PageRank and CheiRank probabili-
ties P (K) and P ∗(K∗) on their indexes K, K∗ at different
years are shown in Fig. 1. The top positions of K are oc-
cupied by countries starting from United States while at
the top positions of K∗ we find various listings (e.g. ge-
ographical names, prime ministers etc.; in 2011 we have
appearance of listings of listings). Indeed, the countries
accumulate links from all types of human activities and
nature, that make them most popular Wikipedia articles,
while listings have the largest number of outgoing links
making them the most communicative articles.
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Fig. 1. PageRank probability P (K) (left panel) and CheiRank
probability P

∗(K∗) (right panel) are shown as a function of the
corresponding rank indexes K and K

∗ for English Wikipedia
articles at years 2003, 2005, 2007, 200908, 2009, 2011; here the
damping factor is α = 0.85.

The data of Fig. 1 show that the global behavior of
P (K) remains stable from 2007 to 2011. The probability
P ∗(K∗) is stable in the time interval 2007 - 2009 while at
2011 we see the appearance of peak at 1 ≤ K∗ < 10 that
is related to introduction of listings of listings which were
absent at earlier years. At the same time the behavior of
P ∗(K∗) in the range 10 ≤ K∗ ≤ 106 remains stable for
2007 - 2011.

Each article i has its PageRank and CheiRank indexes
K(i), K∗(i) so that all articles are distributed on two-
dimensional plane of PageRank-CheiRank indexes. Fol-
lowing [8,9] we present the density of articles in the 2D
plane (K,K∗) in Fig. 2. The density is computed for 100×
100 logarithmically equidistant cells which cover the whole
plane (K,K∗) for each year. The density distribution is
globally stable for years 2007-2011 even if there are arti-
cles which change their location in 2D plane. We see an
appearance of a mountain like ridge of probability along a
line lnK∗ ≈ lnK + 4.6 that indicate the presence of cor-
relation between P (K(i)) and P ∗(K∗(i)). Following [8,9,
18] we characterize the interdependence of PageRank and
CheiRank vectors by the correlator

κ = N

N
∑

i=1

P (K(i))P ∗(K∗(i))− 1 . (3)

We find the following values of the correlator at vari-
ous time slots: κ = 2.837(2003), 3.894(2005), 4.121(2007),
4.084(200908), 6.629(2009), 5.391(2011). During that pe-
riod the size of the network increased almost by 10 times
while κ increased less than 2 times. This confirms the sta-
bility of the correlator κ during the time evolution of the
Wikipedia network.

In the next two Sections we analyze the time variation
of ranking of personalities and universities.

3 Ranking of personalities

To analyze the time evolution of ranking of Wikipedia
personalities (persons or humans) we chose the top 100
persons appearing in the ranking list of Wikipedia 200908
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Fig. 2. Density of Wikipedia articles in the CheiRank ver-
sus PageRank plane at different years. Color is proportional to
logarithm of density changing from minimal nonzero density
(dark) to maximal one (white), zero density is shown by black
(distribution is computed for 100×100 cells equidistant in log-
arithmic scale; bar shows color variation of natural logarithm
of density); left column panels are for years 2003, 2007, 200908
and right column panels are for 2005, 2009, 2011 (from top to
bottom).

given in [8] in order of PageRank, CheiRank and 2DRank.
We remind that 2DRankK2 is obtained by counting nodes
in order of their appearance on ribs of squares in (K,K∗)
plane with their size growing from K = 1 to K = N [8].

The distributions of personalities in PageRank-CheiRank
plane is shown at various time slots in Fig. 3. There are
visible fluctuations of distribution of nodes for years 2003,
2005 when the Wikipedia size has rapid growth. For other
years the distribution of top 100 nodes of PageRank and
2DRank is stable even if individual nodes change their
ranking. For top 100 of CheiRank the fluctuations remain
strong during all years. Indeed, the number of outgoing
links is more easy to be modified by authors writing a
given article, while a modification of ingoing links depends
on authors of other articles.

In Fig. 3 we also show the distribution of top 100 per-
sonalities from Hart’s book [22] (the list of names is also
available at the web page [8]). This distribution also re-
mains stable in years 2007-2011. It is interesting to note
that while top PageRank and 2DRank nodes form a kind
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Fig. 3. Change of locations of top-rank persons of Wikipedia
in K-K* plane. Each list of top ranks is determined by data
of top 100 personalities of time slot 200908 in corresponding
rank. Data sets are shown for (a) PageRank, (b) CheiRank, (c)
2DRank, (d) rank from Hart [22].

of droplet in (K,K∗) plane, the distribution of Hart’s per-
sonalities approximately follows the ridge along the line
lnK∗ ≈ lnK + 4.6.

The time evolution of top 10 personalities of slot 200908
is shown in Fig. 4 for PageRank and 2DRank. For PageR-
ank the main part of personalities keeps their rank posi-
tion in time, e.g. G.W.Bush remains at first-second po-
sition. B.Obama significantly improves his ranking as a
result of president elections. There are strong variations
for Elizabeth II which we relate to modification of arti-
cle name during the considered time interval. We also see
a steady improvement of ranking of C.Linnaeus that we
attribute to a growth of various botanic descriptions and
listings at Wikipedia articles which quote his name. For
2DRank we observe stronger variations of K2 index with
time. Such a politician as R.Nixon has increasing K2 in-
dex with time since the period of his presidency goes in
the past. At the same time singers and artists remain at
approximately constant level of K2.

In [8] it was pointed out that the top personalities of
PageRank are dominated by politicians while for 2DRank
the dominant component of human activity is represented
by artists. We analyze the time evolution of the distri-
bution of top 30 personalities over 6 categories of human
activity (politics, arts, science, religion, sport and etc (or
others)). The category etc contains only C.Columbus. The
results are presented in Fig. 5. They clearly show that
the PageRank personalities are dominated by politicians
whose percentage increases with time, while the percent
of arts decreases. For 2DRank we see that the arts are
dominant even if their percentage decreases with time.
We also see the appearance of sport which is absent in
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Fig. 4. Time evolution of top 10 personalities of year 200908
in indexes of PageRank K (a) and 2DRank K2 (b); B.Obama
is added in panel (a).

PageRank. The mechanism of the qualitative ranking dif-
ferences between two ranks is related to the fact that
2DRank takes into account via CheiRank a contribution
of outgoing links. Due to that singers, actors, sportsmen
increase their ranking since they are listed in various mu-
sic albums, movies sport competition results. Due to that
the component of arts gets higher positions in 2DRank in
contrast to politics dominance in PageRank. Thus the two-
dimensional ranking on PageRank-CheiRank plane allows
to select qualities of nodes according to their popularity
and communicativity.

4 Ranking of universities

The local ranking of top 100 universities is shown in Fig. 6
for years 2003, 2005, 2007 and in Fig. 7 for 2009, 200908,
2011. The local ranking is obtained by selecting top 100
universities appearing in PageRank listing so that they get
their university ranking K from 1 to 100. The same proce-
dure is done for CheiRank listing of universities obtaining
their local CheiRank index K∗ from 1 to 100. Those uni-
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Fig. 5. Left panel: distribution of top 30 PageRank personal-
ities over 6 activity categories at various years of Wikipedia.
Right panel: distribution of top 30 2DRank personalities over
the same activity categories at same years. Categories are pol-
itics, art, science, religion, sport, etc (other). Color shows the
number of personalities for each activity expressed in percents.

versities which enter inside 100× 100 square on the local
index plane (K,K∗) are shown in Figs. 6, 7.

The data show that the top PageRank universities are
rather stable in time, e.g. U Harvard is always on the first
top position. At the same time the positions in K∗ are
strongly changing in time. To understand the origin of this
variations in CheiRank we consider the case of U Cam-
bridge. Its Wikipedia article in 2003 is rather short but it
contains the list of all 31 Colleges with direct links to their
corresponding articles. This leads to a high position of U
Cambridge with university K∗ = 4 in 2003 (Fig. 8). How-
ever, with time the direct links remain only to about 10
Colleges while the whole number of Colleges are presented
by a list of names without links. This leads to a significant
increase of index up to K∗ ≈ 40 at Dec 2009. However,
at Dec 2011 U Cambridge again improves significantly its
CheiRank obtaining K∗ = 2. The main reason of that
is the appearance of section of “Notable alumni and aca-
demics” which provides direct links to articles about out-
standing scientists studied and/or worked at U Cambridge
that leads to second position at K∗ = 2 among all uni-
versities. We note that in 2011 the top CheiRank Univer-
sity is George Mason University with university K∗ = 1.
The main reason of this high ranking is the presence of
detailed listings of alumni in politics, media, sport with
direct links to articles about corresponding personalities
(including former director of CIA). These two examples
show that the links, kept with a large number of univer-
sity alumni, significantly increase CheiRank position of
university. We note that artistic and politically oriented
universities usually preserve more links with their alumni.

The time evolution of global ranking of top 10 univer-
sities of year 200908 for PageRank and 2DRank is shown
in Fig. 8. The results show the stability of PageRank or-
der with a clear tendency of top universities (e.g. Harvard)
to go with time to higher and higher top positions of K.
Thus for U Harvard the global value of K changes from
K ≈ 300 in 2003 to K ≈ 100 in 2011, while the whole size
N of the Wikipedia network increases almost by a fac-
tor 10 during this time interval. Since Wikipedia ranks all
human knowledge, the stable improvement of PageRank
indexes of universities reflects the global growing impor-
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versus PageRank plane at different years; panels are for years
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tance of universities in the world of human activity and
knowledge.

The time evolution of the same universities in 2DRank
remains stable in time showing certain interchange of their
ranking order. We think that an example of U Cambridge
considered above explains the main reasons of these fluc-
tuations. In view of 10 times increase of the whole network
size during the period 2003 - 2011 the average stability of
2DRank of universities also confirms the significant im-
portance of their place in human activity.

Finally we compare the Wikipedia ranking of universi-
ties in their local PageRank index K with those of Shang-
hai university ranking [23]. In the top 10 of Shanghai uni-
versity rank the Wikipedia PageRank recovers 9 (2003), 9
(2005), 8 (2007), 7 (2009), 7 (2011). This shows that the
Wikipedia ranking of universities gives the results being
very close to the real situation. A small decrease of overlap
with time can be attributed to earlier launched activity of
leading universities on Wikipedia.

5 Google matrix spectrum

Finally we discuss the time evolution of the spectrum of
Wikipedia Google matrix taken at α = 1. We perform the
numerical diagonalization based on the Arnoldi method
[12,13] using the additional improvements described in
[14,15] with the Arnold dimension nA = 6000. The Google
matrix is reduced to the form

S =

(

Sss Ssc

0 Scc

)

(4)

where Sss describes disjoint subspaces Vj of dimension dj
invariant by applications of S; Scc depicts the remaining
part of nodes forming the wholly connected core space.
We note that Sss is by itself composed of many small di-
agonal blocks for each invariant subspace and hence those
eigenvalues can be efficiently obtained by direct (“exact”)
numerical diagonalization. The total subspace size Ns, the
number of independent subspaces Nd, the maximal sub-
space dimension dmax and the number N1 of S eigenvalues
with λ = 1 are given in Table 2 (See also Appendix). The
spectrum and eigenstates of the core space Scc are de-
termined by the Arnoldi method with Arnoldi dimension
nA giving the eigenvalues λi of Scc with largest modulus.
Here we restrict ourselves to the statistical analysis of the
spectrum λi. The analysis of eigenstates ψi (Gψi = λiψi),
which has been done in [11] for the slot 200908, is left for
future studies.

The spectrum for all Wikipedia time slots is shown
in Fig. 9 for G and in Fig. 10 for G∗. We see that the
spectrum remains stable for the period 2007 - 2001 even if
there is a small difference of slot 200908 due to a slightly
different cleaning link procedure (see Appendix). For the
spectrum of G∗ in 2007 - 2001 we observe a well pro-
nounced 3-6 arrow star structure. This structure is very
similar to those found in random unistochastic matrices of
side 3-4 [24] (see Fig.4 therein). This fact has been pointed
in [11] for the slot 200908. Now we see that this is a generic
phenomenon which remains stable in time. This indicates
that there are dominant groups of 3-4 nodes which have
structure similar to random unistochastic matrices with
strong ties between 3-4 nodes and various random permu-
tations with random hidden complex phases. The spectral
arrow star structure is significantly more pronounce for
the case of G∗ matrix. We attribute this to more signif-
icant fluctuations of outgoing links that probably makes
sectors of G∗ to be more similar to elements of unistochas-
tic matrices. A further detailed analysis will be useful to
understand these arrow star structure and its links with
various communities inside Wikipedia.

As it is shown in [11] the eigenstates of G and G∗

select certain well defined communities of the Wikipedia
network. Such an eigenvector detection of the communi-
ties provides a new method of communities detection in
addition to more standard methods developed in network
science and described in [25]. However, the analysis of
eigenvectors represents a separate detailed research and in
this work we restrict ourselves to PageRank and CheiRank
vectors.
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Fig. 9. Spectrum of eigenvalues λ of the Google matrix G of
Wikipedia at different years. Red dots are core space eigen-
values, blue dots are subspace eigenvalues and the full green
curve shows the unit circle. The core space eigenvalues were
calculated by the projected Arnoldi method with Arnoldi di-
mensions nA = 6000.

Finally we note that the fraction of isolated subspaces
is very small for G matrix. It is increased approximately
by a factor of order 10 forG∗ but still it remains very small
compared to the networks of UK universities analyzed in
[15]. This fact reflects a strong connectivity of network of
Wikipedia articles.

6 Discussion

In this work we analyzed the time evolution of ranking of
network of English Wikipedia articles. Our study demon-
strates the stability of such statistical properties as PageR-
ank and CheiRank probabilities, the article density distri-
bution in PageRank-CheiRank plane during the period
2007 - 2011. The analysis of human activities in different
categories shows that PageRank gives main accent to pol-
itics while the combined 2DRank gives more importance
to arts. We find that with time the number of politicians
in the top positions increases. Our analysis of ranking of
universities shows that on average the global ranking of
top universities goes to higher and higher positions. This
clearly marks the growing importance of universities for
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Fig. 10. Same as in Fig. 9 but for the spectrum of matrix G
∗.

the whole range of human activities and knowledge. We
find that Wikipedia PageRank recovers 70 - 80 % of top
10 universities from Shanghai ranking [23]. This confirms
the reliability of Wikipedia ranking.

We also find that the spectral structure of the Wikipedia
Google matrix remains stable during the time period 2007
-2011 and show that its arrow star structure reflects cer-
tain features of small size unistochastic matrices.

Acknowledgments: Our research presented here is
supported in part by the EC FET Open project “New
tools and algorithms for directed network analysis” (NA-
DINE No 288956). This work was granted access to the
HPC resources of CALMIP (Toulouse) under the alloca-
tions 2012-P0110, 2013-P0110. We also acknowledge the
France-Armenia collaboration grant CNRS/SCSNo 24943
(IE-017) on “Classical and quantum chaos”.

7 Appendix

The tables with all network parameters used in this work
are given in the text of the paper. The notations used in
the tables are: N is network size, Nℓ is the number of
links, nA is the Arnoldi dimension used for the Arnoldi
method for the core space eigenvalues, Nd is the number
of invariant subspaces, dmax gives a maximal subspace di-
mension, Ncirc. notes number of eigenvalues on the unit
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N Nℓ nA

2003 455436 2033173 6000
2005 1635882 11569195 6000
2007 2902764 34776800 6000
2009 3484341 52846242 6000
200908 3282257 71012307 6000
2011 3721339 66454329 6000

Table 1. Parameters of all Wikipedia networks at different
years considered in the paper.

Ns Nd dmax Ncirc. N1

2003 15 7 3 11 7
2003∗ 940 162 60 265 163
2005 152 97 4 121 97
2005∗ 5966 1455 1997 2205 1458
2007 261 150 6 209 150
2007∗ 10234 3557 605 5858 3569
2009 285 121 8 205 121
2009∗ 11423 4205 134 7646 4221
200908 515 255 11 381 255
200908∗ 21198 5355 717 8968 5365
2011 323 131 8 222 131
2011∗ 14500 4637 1323 8591 4673

Table 2. G and G
∗ eigespectrum parameters for all Wikipedia

networks, year marks spectrum of G, year with star marks
spectrum of G∗.

circle with |λi| = 1, N1 notes number of unit eigenvalues
with λi = 1. We remark that Ns ≥ Ncirc. ≥ N1 ≥ Nd and
Ns ≥ dmax. The data for G are marked by the correspond-
ing year of the time slot, the data forG∗ are marked by the
year with a star. Links cleaning procedure eliminates all
redirects (nodes with one outgoing link), this procedure is
slightly different from the one used for the slot 200908 in
[8]. All data sets and high resolution figures are available
at the web page [26].
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Abstract

In this paper we give a comprehensive overview of features devised for
Web spam detection and investigate how much various classes, some re-
quiring very high computational effort, add to the classification accuracy.

• We collect and handle a large number of features based on recent ad-
vances in Web spam filtering, including temporal ones, in particular
we analyze the strength and sensitivity of linkage change.

• We propose new temporal link similarity based features and show
how to compute them efficiently on large graphs.

• We show that machine learning techniques including ensemble selec-
tion, LogitBoost and Random Forest significantly improve accuracy.

• We conclude that, with appropriate learning techniques, a simple
and computationally inexpensive feature subset outperforms all pre-
vious results published so far on our data set and can only slightly
be further improved by computationally expensive features.

• We test our method on three major publicly available data sets,
the Web Spam Challenge 2008 data set WEBSPAM-UK2007, the
ECML/PKDD Discovery Challenge data set DC2010 and the Wa-
terloo Spam Rankings for ClueWeb09.

∗This work was supported in part by the EC FET Open project “New tools
and algorithms for directed network analysis” (NADINE No 288956), by the EU
FP7 Project LAWA—Longitudinal Analytics of Web Archive Data, OTKA NK 105645
and by the European Union and the European Social Fund through project Fu-
turICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013). The research was car-
ried out as part of the EITKIC 12-1-2012-0001 project, which is supported by the
Hungarian Government, managed by the National Development Agency, financed by
the Research and Technology Innovation Fund and was performed in cooperation
with the EIT ICT Labs Budapest Associate Partner Group. (www.ictlabs.elte.hu)
This paper is a comprehensive comparison of the best performing classification techniques
based on [9, 37, 36, 38] and new experiments.

1



Our classifier ensemble sets the strongest classification benchmark as com-
pared to participants of the Web Spam and ECML/PKDD Discovery
Challenges as well as the TREC Web track.

To foster research in the area, we make several feature sets and source
codes public1, including the temporal features of eight .uk crawl snapshots
that include WEBSPAM-UK2007 as well as the Web Spam Challenge
features for the labeled part of ClueWeb09.

1 Introduction

Web classification finds several use, both for content filtering and for building
focused corpora from a large scale Web crawl. As one notable use, Internet
archives actively participate in large scale experiments [8], some of them building
analytics services over their collections [6]. Most of the existing results on Web
classification originate from the area of Web spam filtering that have turned out
to generalize to a wide class of tasks including genre, Open Directory category, as
well as quality classification. Closely related areas include filtering and tagging
in social networks [50].

Web spam filtering, the area of devising methods to identify useless Web
content with the sole purpose of manipulating search engine results, has drawn
much attention in the past years [63, 49, 46]. The first mention of Web spam,
termed spamdexing as a combination of words spam and (search engine) in-
dexing, appears probably in a 1996 news article [27] as part of the early Web
era discussions on the spreading porn content [24]. In the area of the so-called
Adversarial Information Retrieval workshop series ran since 2005 [40] and eval-
uation campaigns including the Web Spam Challenges [18], the ECML/PKDD
Discovery Challenge 2010 [50] and the Spam task of TREC 2010 Web Track [29]
were organized. A recent comprehensive survey on Web spam filtering research
is found in [19].

In this paper we present, to our best knowledge, the most comprehensive
experimentation based on content, link as well as temporal features, both new
and recently published. Our spam filtering baseline classification procedures are
collected by analyzing the results [28, 1, 44] of the Web Spam Challenges and the
ECML/PKDD Discovery Challenge 2010 [45, 2, 58]. Our comparison is based
on AUC values [42] that we believe to be more stable as it does not depend on
the split point; indeed, while Web Spam Challenge 2007 used F-measure and
AUC, Web Spam Challenge 2008 used AUC only as evaluation measure.

Web spam appears in sophisticated forms that manipulate content as well
as linkage [47] with examples such as

• Copied content, “honey pots” that draw attention but link to unrelated,
spam targets;

• Garbage content, stuffed with popular or monetizable query terms and
phrases such as university degrees, online casinos, bad credit status or

1https://datamining.sztaki.hu/en/download/web-spam-resources

2



adult content;

• Link farms, a large number of strongly interlinked pages across several
domains.

The Web spammer toolkit consists of a clearly identifiable set of manipulation
techniques that has not changed much recently. The Web Spam Taxonomy of
Gyöngyi et al. [47] distinguishes content (term) and link spamming along with
techniques of hiding, cloaking and removing traces by e.g. obfuscated redirec-
tion. Most of the features designed fight either link or content spamming.

We realize that recent results have ignored the importance of the machine
learning techniques and concentrated only on the definition of new features.
Also the only earlier attempt to unify a large set of features [20] is already
four years old and even there little comparison is given on the relative power
of the feature sets. For classification techniques, a wide selection including
decision trees, random forest, SVM, class-feature-centroid, boosting, bagging
and oversampling in addition to feature selection (Fisher, Wilcoxon, Information
Gain) were used [45, 2, 58] but never compared and combined. In this paper we
address the following questions.

• Do we get the maximum value out of the features we have? Are we
sufficiently sophisticated at applying machine learning?

• Is it worth calculating computationally expensive features, in particular
some related to page-level linkage?

• What is an optimal feature set for a fast spam filter that can quickly react
at crawl time after fetching a small sample of a Web site?

We compare our result with the very strong baselines of the Web Spam
Challenge 2008 and ECML/PKDD 2010 Discovery Challenge data sets. Our
main results are as follows.

• We apply state-of-the-art classification techniques by the lessons learned
from KDD Cup 2009 [57]. Key in our performance is ensemble classifi-
cation applied both over different feature subsets as well as over different
classifiers over the same features. We also apply classifiers yet unexplored
against Web spam, including Random Forest [14] and LogitBoost [43].

• We compile a small yet very efficient feature set that can be computed by
sample pages from the site while completely ignoring linkage information.
By this feature set a filter may quickly react to a recently discovered site
and intercept in time before the crawler would start to follow a large
number of pages from a link farm. This feature set itself reaches AUC
0.893 over WEBSPAM-UK2007.

• Last but not least we gain strong improvements over the Web Spam Chal-
lenge best performance [18]. Our best result in terms of AUC reaches 0.9
and improves on the best Discovery Challenge 2010 results.

Several recent papers propose temporal features [61, 55, 31, 52] to improve
classification accuracy. We extend link-based similarity algorithms by proposing
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metrics to capture the linkage change of Web pages over time. We describe a
method to calculate these metrics efficiently on the Web graph and then measure
their performance when used as features in Web spam classification. We propose
an extension of two link-based similarity measures: XJaccard and PSimRank
[41].

We investigate the combination of temporal and non-temporal, both link-
and content-based features using ensemble selection. We evaluate the perfor-
mance of ensembles built on the latter feature sets and compare our results to
that of state-of-the-art techniques reported on our dataset. Our conclusion is
that temporal and link-based features in general do not significantly increase
Web spam filtering accuracy. However, information about linkage change might
improve the performance of a language independent classifier: the best results
for the French and German classification tasks of the ECML/PKDD Discovery
Challenge [45] were achieved by using host level link features only, outperform-
ing those who used all features [2].

In this paper we address not just the quality but also the computational
efficiency. Earlier lightweight classifiers include Webb et al. [64] describing a
procedure based solely on the HTTP session information. Unfortunately they
only measure precision, recall and F-measure that are hard to compare with
later results on Web spam that use AUC. In fact the F and similar measures
greatly depend on the classification threshold and hence make comparison less
stable and for this reason they are not used starting with the Web Spam Chal-
lenge 2008. Furthermore in [64] the IP address is a key feature that is trivially
incorporated in the DC2010 data set by placing all hosts from the same IP
address into the same training or testing set. The intuition is that if an IP
address contains spam hosts, all hosts from that IP address are likely to be
spam and should be immediately manually checked and excluded from further
consideration.

The rest of this paper is organized as follows. In Section 2 we describe
the data sets used in this paper. We give an overview of temporal features
for spam detection and propose new temporal link similarity based ones in
Section 3. In Section 4 we describe our classification framework. The results of
the experiments to classify WEBSPAM-UK2007, ClueWeb09 and DC2010 can
be found in Section 5. The computational resource needs of various feature sets
are summarized in Section 6.

2 Data Sets

In this paper we use three data sets, WEBSPAM-UK2007 of the Web Spam
Challenge 2008 [18], the Waterloo Spam Rankings for ClueWeb09, and DC2010
created for the ECML/PKDD Discovery Challenge 2010 on Web Quality. We
only give a brief summary of the first data set described well in [18, 22] and the
second in [38], however, we describe the third one in more detail in Section 2.3.
Also we compare the amount of spam in the data sets.
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Figure 1: The number of total and labeled hosts in the 13 UK snapshots. We
indicate the number of positive and negative labels separate for the WEBSPAM-
UK2006 and WEBSPAM-UK2007 label sets.

2.1 Web Spam Challenge 2008: WEBSPAM-UK2007

The Web Spam Challenge was first organized in 2007 over the WEBSPAM-
UK2006 data set. The last Challenge over the WEBSPAM-UK2007 set was
held in conjunction with AIRWeb 2008 [18]. The Web Spam Challenge 2008
best result [44] achieved an AUC of 0.85 by also using ensemble undersampling
[23]. They trained a bagged classifier on the standard content-based and link-
based features published by the organizers of the Web Spam Challenge 2008
and on custom host-graph based features, using the ERUS strategy for class-
inbalance learning. For earlier challenges, best performances were achieved by
a semi-supervised version of SVM [1] and text compression [28]. Best results
either used bag of words vectors or the so-called “public” feature sets of [20].

We extended the WEBSPAM-UK2007 data set with 13 .uk snapshots pro-
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Label Set Instances %Positive

Training 4000 5.95%
Testing 2053 4.68%

Table 1: Summary of label sets for Web Spam Challenge 2008.

vided by the Laboratory for Web Algorithmics of the Università degli studi di
Milano. We use the training and testing labels of the Web Spam Challenge
2008, as summarized in Table 1. In order to prepare a temporal collection, we
extracted maximum 400 pages per site from the original crawls. The last 12
of the above .uk snapshots were analyzed by Bordino et al. [12] who observe
a relative low URL but high host overlap2. The first snapshot (2006-05) that
is identical to WEBSPAM-UK2006 was chosen to be left out from their exper-
iment since it was provided by a different crawl strategy. We observed that
in the last eight snapshots the number of hosts have stabilized in the sample
and these snapshots have roughly the same amount of labeled hosts as seen in
Fig. 1. From now on we restrict attention to the aforementioned subset of the
snapshots and the WEBSPAM-UK2007 labels only.

2.2 The Waterloo Spam Rankings for ClueWeb09

The English part of ClueWeb09 consist of approximately 20M domains and
500M pages. For Web spam labels we used the Waterloo Spam Rankings [29].
While the Waterloo Spam Rankings contain negative training instances as well,
we extended the negative labels with the set of the Open Directory Project
(ODP) hosts. We used 50% split for training and testing.

We labeled hosts in both the .pt crawl and ClueWeb09 by top-level ODP
categories using links extracted from topic subtrees in the directory. Out of
all labeled hosts, 642643 received a unique label. Because certain sites (e.g.,
bbc.co.uk) may belong to even all 14 top-level English categories, we discarded
the labels of 18734 hosts with multiple labels to simplify the multi-label task.
As Bordino et al. [13] indicate, multitopical hosts are often associated to poor
quality sites and spam as another reason why their labels may mislead the
classification process. The resulting distribution of labels is shown in Table 2.

2.3 Discovery Challenge 2010: DC2010

The Discovery Challenge was organized over DC2010, a new data set that we
describe in more detail next. DC2010 is a large collection of annotated Web
hosts labeled by the Hungarian Academy of Sciences (English documents), In-
ternet Memory Foundation (French) and L3S Hannover (German). The base
data is a set of 23M pages in 190K hosts in the .eu domain crawled by the
Internet Memory Foundation in early 2010.

2The dataset can be downloaded from: http://law.di.unimi.it/datasets.php
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Category No. of Hosts % of Labeled Hosts

spam 439 0.07%
Arts 97355 15.1%
Business 193678 30.1%
Computers 66159 10.3%
Recreation 65594 10.2%
Science 43317 6.7%
Society 122084 19%
Sports 54456 8.5%

Table 2: Number of positive ClueWeb09 host labels for spam and the ODP
categories.

UK2006 UK2007 ClueWeb09 DC2010

en de fr all

Hosts 10 660 114 529 500,000 61 703 29 758 7 888 190 000

Spam 19.8% 5.3% unknown 8.5% of valid labels; 5% of
all in large domains.

Table 3: Fraction of Spam in WEBSPAM-UK2006, UK2007, ClueWeb09 and
DC2010. Note that three languages English, German and French were selected
for labeling DC2010, although Polish and Dutch language hosts constitute a
larger fraction than the French. Since to our best knowledge, no systematic
random sample was labeled for ClueWeb09, the number 439 of labeled spam
hosts is not representative for the collection.

The labels extend the scope of previous data sets on Web Spam in that, in
addition to sites labeled spam, we included manual classification for genre into
five categories Editorial, Commercial, Educational, Discussion and Personal as
well as trust, factuality and bias as three aspects of quality. Spam label is
exclusive since no other assessment was made for spam. However other labels
are non-exclusive and hence define nine binary classification problems. We con-
sider no multi-class tasks in this paper. Assessor instructions are for example
summarized in [62], a paper concentrating on quality labels.

In Table 3, we summarize the amount of spam in the DC2010 data set in com-
parison with the Web Spam Challenge data sets. This amount is well-defined
for the latter data sets by the way they were prepared for the Web Spam Chal-
lenge participants. However for DC2010, this figure may be defined in several
ways. First of all, when creating the DC2010 labels, eventually we considered
domains with or without a www. prefix the same such as www.domain.eu vs.
domain.eu. However in our initial sampling procedure we considered them as
two different hosts and merged them after verifying that the labels of the two
versions were identical. Also, several domains consist of a single redirection page
to another domain and we counted these domains, too. Finally, a large fraction
of spam is easy to spot and can be manually removed. As an example of many
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Count IP address Comment

3544 80.67.22.146 spam farm *-palace.eu

3198 78.159.114.140 spam farm *auts.eu

1374 62.58.108.214 blogactiv.eu

1109 91.204.162.15 spam farm x-mp3.eu

1070 91.213.160.26 spam farm a-COUNTRY.eu

936 81.89.48.82 autobazar.eu

430 78.46.101.76 spam farm 77k.eu and 20+ domains
402 89.185.253.73 spam farm mp3-stazeni-zdarma.eu

Table 4: Selection of IP addresses with many subdomains in the DC2010 data
set.

Label Group Yes Maybe No

Spam Spam 423 4 982
News/Editorial Genre 191 4 791
Commercial 2 064 2 918
Educational 1 791 3 191
Discussion 259 4 724
Personal-Leisure 1 118 3 864
Non-Neutrality Quality 19 216 3 778
Bias 62 3 880
Dis-Trustiness 26 201 3 786

Table 5: Distribution of assessor labels in the DC2010 data set.

hosts on same IP, we include a labeled sample from DC2010, that itself contains
over 10,000 spam domains in Table 4. These hosts were identified by manually
looking at the IP addresses that serve the largest number of domain names.
Thus our sample is biased and obtaining an estimate of the spam fraction is
nontrivial, as indicated in Table 3.

The distribution of labels for the nine categories with more than 1% positive
samples (spam, news, commercial, educational, discussion, personal, neutral,
biased, trusted) is given in Table 5. For Neutrality and Trust the strong negative
categories have low frequency and hence we fused them with the intermediate
negative (maybe) category for the training and testing labels.

The Discovery Challenge 2010 best result [58] achieved an AUC of 0.83 for
spam classification while the overall winner [45] was able to classify a number
of quality components at an average AUC of 0.80. As for the technologies,
bag of words representation variants proved to be very strong for the English
collection while only language independent features were used for German and
French. The applicability of dictionaries and cross-lingual technologies remains
open.

New to the construction of the DC2010 training and test set is the handling
of hosts from the same domain and IP address. Since no IP address and do-
main was allowed to be split between training and testing, we might have to
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reconsider the applicability of propagation [48, 66] and graph stacking [54]. The
Web Spam Challenge data sets were labeled by uniform random sampling and
graph stacking appeared to be efficient in several results [22] including our prior
work [30]. The applicability of graph stacking remains however unclear for the
DC2010 data set. Certain teams used some of these methods but reported no
improvement [2].

3 Temporal Features for Spam Detection

Spammers often create bursts in linkage and content: they may add thousands
or even millions of machine generated links to pages that they want to promote
[61] that they again very quickly regenerate for another target or remove if
blacklisted by search engines. Therefore changes in both content and linkage
may characterize spam pages.

Recently the evolution of the Web has attracted interest in defining features,
signals for ranking [34] and spam filtering [61, 55, 31, 52, 37]. The earliest results
investigate the changes of Web content with the primary interest of keeping a
search engine index up-to-date [25, 26]. The decay of Web pages and links and
its consequences on ranking are discussed in [4, 35]. One main goal of Boldi et
al. [11] who collected the .uk crawl snapshots also used in our experiments was
the efficient handling of time-aware graphs. Closest to our temporal features
is the investigation of host overlap, deletion and content dynamics in the same
data set by Bordino et al. [12].

Perhaps the first result on the applicability of temporal features for Web
spam filtering is due to Shen et al. [61] who compare pairs of crawl snapshots and
define features based on the link growth and death rate. However by extending
their ideas to consider multi-step neighborhood, we are able to define a very
strong feature set that can be computed by the Monte Carlo estimation of
Fogaras and Rácz [41]. Another result defines features based on the change of
the content [31] who obtain page history from the Wayback Machine.

For calculating the temporal link-based features we use the host level graph.
As observed in [12], pages are much more unstable over time compared to
hosts. Note that page-level fluctuations may simply result from the sequence the
crawler visited the pages and not necessarily reflect real changes. The inherent
noise of the crawling procedure and problems with URL canonization [5] rule
out the applicability of features based on the change of page-level linkage.

3.1 Linkage Change

In this section we describe link-based temporal features that capture the extent
and nature of linkage change. These features can be extracted from either the
page or the host level graph where the latter has a directed link from host a to
host b if there is a link from a page of a to a page of b.

The starting point of our new features is the observation of [61] that the in-
link growth and death rate and change of clustering coefficient characterize the
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evolution patterns of spam pages. We extend these features for the multi-step
neighborhood in the same way as PageRank extends the in-degree. The ℓ-step
neighborhood of page v is the set of pages reachable from v over a path of length
at most ℓ. The ℓ-step neighborhood of a host can be defined similarly over the
host graph.

We argue that the changes in the multi-step neighborhood of a page should
be more indicative of the spam or honest nature of the page than its single-step
neighborhood because spam pages are mostly referred to by spam pages [21],
and spam pages can be characterized by larger change of linkage when compared
to honest pages [61].

In the following we review the features related to linkage growth and death
from [61] in Section 3.1.1, then we introduce new features based on the similarity
of the multi-step neighborhood of a page or host. We show how the XJaccard
and PSimRank similarity measure can be used for capturing linkage change in
Section 3.1.3 and Section 3.1.4, respectively.

3.1.1 Change Rate of In-links and Out-links

We compute the following features introduced by Shen et al. [61] on the host
level for a node a for graph instances from time t0 and t1. We let G(t) denote the
graph instance at time t and I(t)(a), Γ(t)(a) denote the set of in and out-links
of node a at time t, respectively.

• In-link death (IDR) and growth rate (IGR):

IDR(a) =
|I(t0)(a)| − |I(t0)(a) ∩ I(t1)(a)|

|I(t0)(a)|

IGR(a) =
|I(t1)(a)| − |I(t0)(a) ∩ I(t1)(a)|

|I(t0)(a)|

• Out-link death and growth rates (ODR, OGR): the above features calcu-
lated for out-links;

• Mean and variance of IDR, IGR, ODR and OGR across in-neighbors of a
host (IDRMean, IDRVar, etc.);

• Change rate of the clustering coefficient (CRCC), i.e. the fraction of linked
hosts within those pointed by pairs of edges from the same host:

CC(a, t) =
|{(b, c) ∈ G(t)|b, c ∈ Γ(t)(a)|

|Γ(t)(a)|

CRCC(a) =
CC(a, t1)− CC(a, t0)

CC(a, t0)

• Derivative features such as the ratio and product of the in and out-link
rates, means and variances. We list the in-link derivatives; out-link ones
are defined similarly:
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IGR·IDR, IGR/IDR, IGRMean/IGR, IGRVar/IGR, IDRMean/IDR,
IDRVar/IDR, IGRMean · IDRMean, IGRMean/IDRMean, IGRVar ·
IDRVar, IGRVar/IDRVar.

3.1.2 Self-Similarity Along Time

In the next sections we introduce new linkage change features based on multi-
step graph similarity measures that in some sense generalize the single-step
neighborhood change features of the previous section. We characterize the
change of the multi-step neighborhood of a node by defining the similarity of
a single node across snapshots instead of two nodes within a single graph in-
stance. The basic idea is that, for each node, we measure its similarity to itself
in two identically labeled graphs representing two consecutive points of time.
This enables us to measure the linkage change occurring in the observed time
interval using ordinary graph similarity metrics.

First we describe our new contribution, the extension of two graph similarity
measures, XJaccard and PSimRank [41] to capture temporal change; moreover,
we argue why SimRank [51] is inappropriate for constructing temporal features.

SimRank of a pair of nodes u and v is defined recursively as the average
similarity of the neighbors of u and v:

Simℓ+1(u, v) = 0, if I(u) or I(v) is empty;

Simℓ+1(u, v) = 1, if u = v; (1)

Simℓ+1(u, v) =
c

|I(u)||I(v)|

∑

v′∈I(v)
u′∈I(u)

Simℓ(u
′, v′),

where I(x) denotes the set of vertices linking to x and c ∈ (0, 1) is a decay factor.
In order to apply SimRank for similarity of a node v between two snapshots t0
and t1, we apply (2) so that v

′ and u′ are taken from different snapshots.
Next we describe a known deficiency of SimRank in its original definition

that rules out its applicability for temporal analysis. First we give the example
for the single graph SimRank. Consider a bipartite graph with k nodes pointing
all to another two u and v. In this graph there are no directed paths of length
more than one and hence the Sim values can be computed in a single iteration.
Counter-intuitively, we get Sim(u, v) = c/k, i.e. the larger the cocitation of
u and v, the smaller their SimRank value. The reason is that the more the
number of in-neighbors, the more likely is that a pair of random neighbors will
be different.

While the example of the misbehavior for SimRank is somewhat artificial
in the single-snapshot case, next we show that this phenomenon almost always
happens if we consider the similarity of a single node v across two snapshots.
If there is no change at all in the neighborhood of node v between the two
snapshots, we expect the Sim value to be maximal. However the situation is
identical to the bipartite graph case and Sim will be inversely proportional to
the number of out-links.
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3.1.3 Extended Jaccard Similarity Along Time

Our first definition of similarity is based on the extension of the Jaccard coef-
ficient in a similar way XJaccard is defined in [41]. The Jaccard similarity of
a page or host v across two snapshots t0 and t1 is defined by the overlap of its
neighborhood in the two snapshots, Γ(t0)(v) and Γ(t1)(v) as

Jac
(t0,t1)(v) =

|Γ(t0)(v) ∩ Γ(t1)(v)|

|Γ(t0)(v) ∪ Γ(t1)(v)|

The extended Jaccard coefficient, XJaccard for length ℓ of a page or host is

defined via the notion of the neighborhood Γ
(t)
k (v) at distance exactly k as

XJac
(t0,t1)

ℓ
(v) =

ℓ∑

k=1

|Γ
(t0)
k (v) ∩ Γ

(t1)
k (v)|

|Γ
(t0)
k (v) ∪ Γ

(t1)
k (v)|

· ck(1− c),

where c is a decay factor.
The XJac values can be approximated by the min-hash fingerprinting tech-

nique for Jaccard coefficients [15], as described in Algorithm 3 of [41]. The
fingerprint generation algorithm has to be repeated for each graph snapshot,
with the same set of independent random permutations.

We generate temporal features based on the XJac values for four length
values ℓ = 1 . . . 4. We also repeat the computation on the transposed graph, i.e.
replacing out-links Γ(t)(v) by in-links I(t)(v). As suggested in [41], we set the
decay factor c = 0.1 as this is the value where, in their experiments, XJaccard
yields best average quality for similarity prediction.

Similar to [61], we also calculate the mean and variance XJac(t0,t1)ℓ(w) of the
neighbors w for each node v. The following derived features are also calculated:

• similarity at path length ℓ = 2, 3, 4 divided by similarity at path length
ℓ− 1, and the logarithm of these;

• logarithm of the minimum, maximum, and average of the similarity at
path length ℓ = 2, 3, 4 divided by the similarity at path length ℓ− 1.

3.1.4 PSimRank Along Time

Next we define similarity over time based on PSimRank, a SimRank variant
defined in [41] that can be applied similar to XJaccard in the previous section.
As we saw in Section 3.1.2, SimRank is inappropriate for measuring linkage
change in time. In the terminology of the previous subsection, the reason is
that path fingerprints will be unlikely to meet in a large neighborhood and
SimRank values will be low even if there is completely no change in time.

We solve the deficiency of SimRank by allowing the random walks to meet
with higher probability when they are close to each other: a pair of random
walks at vertices u′, v′ will advance to the same vertex (i.e., meet in one step)

with probability of the Jaccard coefficient |I(u
′)∩I(v′)|

|I(u′)∪I(v′)| of their in-neighborhood

I(u′) and I(v′).
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The random walk procedure corresponding to PSimRank along with a fin-
gerprint generation algorithm is defined in [41].

For the temporal version, we choose independent random permutations σℓ

on the hosts for each step ℓ. In step ℓ if the random walk from vertex u is at
u′, it will step to the in-neighbor with smallest index given by the permutation
σℓ in each graph snapshot.

Temporal features are derived from the PSimRank similarity measure very
much the same way as for XJaccard, for four length values ℓ = 1 . . . 4. We also
repeat the computation on the transposed graph, i.e. replacing out-links Γ(t)(v)
by in-links I(t)(v). As suggested in [41], we set the decay factor c = 0.15 as this
is the value where, in their experiments, PSimRank yields best average quality
for similarity prediction. Additionally, we calculate the mean and variance
PSimRank(w) of the neighbors w for each node v and derived features as for
XJaccard.

3.2 Content and its Change

The content of Web pages can be deployed in content classification either via
statistical features such as entropy [59] or via term weight vectors [67, 31].
Some of the more complex features that we do not consider in this work include
language modeling [3].

In this section we focus on capturing term-level changes over time. For each
target site and crawl snapshot, we collect all the available HTML pages and
represent the site as the bag-of-words union of all of their content. We tokenize
content using the ICU library3, remove stop words4 and stem using Porter’s
method.

We treat the resulting term list as the virtual document for a given site at a
point of time. As our vocabulary we use the most frequent 10,000 terms found
in at least 10% and at most 50% of the virtual documents.

To measure the importance of each term i in a virtual document d at time
snapshot T , we use the BM25 weighting [60]:

t
(T )
i,d = IDF

(T )
i ·

(k1 + 1)tf
(T )
i,d

K + tf
(T )
i,d

where tf
(T )
i,d is the number of occurrences of term i in document d and IDF

(T )
i is

the inverse document frequency (Robertson-Spärck Jones weight) for the term
at time T . The length normalized constant K is specified as

k1((1− b) + b× dl(T )/avdl(T ))

such that dl(T ) and avdl(T ) denote the virtual document length and the average
length over all virtual documents at time T , respectively. Finally

IDF(T ) = log
N − n(T ) + 0.5

n(T ) + 0.5
3http://icu-project.org/
4http://www.lextek.com/manuals/onix/stopwords1.html
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where N denotes the total number of virtual documents and n(T ) is the number
of virtual documents containing term i. Note that we keep N independent of T

and hence if document d does not exist at T , we consider all tf
(T )
i,d = 0.

By using the term vectors as above, we calculate the temporal content fea-
tures described in [31] in the following five groups.

• Ave: Average BM25 score of term i over the Tmax snapshots:

Avei,d =
1

Tmax
·

Tmax∑

T=1

t
(T )
i,d

• AveDiff: Mean difference between temporally successive term weight
scores:

AveDiffi,d =
1

Tmax − 1
·

Tmax−1∑

T=1

|t
(T+1)
i,d − t

(T )
i,d |

• Dev: Variance of term weight vectors at all time points:

Devi,d =
1

Tmax − 1
·

Tmax∑

T=1

(t
(T )
i,d −Avei,d)

2

• DevDiff: Variance of term weight vector differences of temporally suc-
cessive virtual documents:

DevDiffi,d =
1

Tmax − 2
·

Tmax−1∑

T=1

(|t
(T+1)
i,d − t

(T )
i,d | −AveDiffi,d)

2

• Decay: Weighted sum of temporally successive term weight vectors with
exponentially decaying weight. The base of the exponential function, the
decay rate is denoted by λ. Decay is defined as follows:

Decayi,d =

Tmax∑

T=1

λeλ(Tmax−T )t
(T )
i,d

4 Classification Framework

For the purposes of our experiments we computed all the public Web Spam
Challenge content and link features of [20]. We built a classifier ensemble by
splitting features into related sets and for each we use a collection of classifiers
that fit the data type and scale. These classifiers were then combined by ensem-
ble selection. We used the classifier implementations of the machine learning
toolkit Weka [65].

Ensemble selection is an overproduce and choose method allowing to use
large collections of diverse classifiers [17]. Its advantages over previously pub-
lished methods [16] include optimization to any performance metric and refine-
ments to prevent overfitting, the latter being unarguably important when more
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classifiers are available for selection. The motivation for using ensemble selection
is that recently this particular ensemble method gained more attention thanks
to the winners of KDD Cup 2009 [57]. In our experiments [38] ensemble selec-
tion performed significantly better than other classifier combination methods
used for Web spam detection in the literature, such as log-odds based averaging
[56] and bagging.

In the context of combining classifiers for Web classification, to our best
knowledge, ensemble selection has not been applied yet. Previously, only sim-
ple methods that combine the predictions of SVM or decision tree classifiers
through logistic regression or random forest have been used [28]. We believe
that the ability to combine a large number of classifiers while preventing over-
fitting makes ensemble selection an ideal candidate for Web classification, since
it allows us to use a large number of features and learn different aspects of the
training data at the same time. Instead of tuning various parameters of dif-
ferent classifiers, we can concentrate on finding powerful features and selecting
the main classifier models which we believe to be able to capture the differences
between the classes to be distinguished.

We used the ensemble selection implementation of Weka [65] for performing
the experiments. Weka’s implementation supports the proven strategies to avoid
overfitting such as model bagging, sort initialization and selection with replace-
ment. We allow Weka to use all available models in the library for greedy sort
initialization and use 5-fold embedded cross-validation during ensemble train-
ing and building. We set AUC as the target metric to optimize for and run 100
iterations of the hillclimbing algorithm.

We mention that we have to be careful with treating missing feature values.
Since the temporal features are based on at least two snapshots, for a site
that appears only in the last one, all temporal features have missing value.
For classifiers that are unable to treat missing values we define default values
depending on the type of the feature.

4.1 Learning Methods

We use the following models in our ensemble: bagged and boosted decision
trees, logistic regression, naive Bayes and variants of random forests. For most
classes of features we use all classifiers and let selection choose the best ones.
The exception is static and temporal term vector based features where, due to
the very large number of features, we may only use Random Forest and SVM.
We train our models as follows.

Bagged LogitBoost: we do 10 iterations of bagging and vary the number
of iterations from 2 to 64 in multiples of two for LogitBoost.

Decision Trees: we generate J48 decision trees by varying the splitting
criterion, pruning options and use either Laplacian smoothing or no smoothing
at all.

Bagged Cost-sensitive Decision Trees: we generate J48 decision trees
with default parameters but vary the cost sensitivity for false positives in steps
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of 10 from 10 to 300. We do the same number of iterations of bagging as for
LogitBoost models.

Logistic Regression: we use a regularized model varying the ridge param-
eter between 10−8 to 104 by factors of 10. We normalize features to have mean
0 and standard deviation 1.

Random Forests: we use FastRandomForest [39] instead of the native
Weka implementation for faster computation. The forests have 250 trees and,
as suggested in [14], the number of features considered at each split is s/2, s, 2s,
4s and 8s, where s is the square root of the total number of features available.

Naive Bayes: we allow Weka to model continuous features either as a single
normal or with kernel estimation, or we let it discretize them with supervised
discretization.

5 Results and Discussion

In this section we describe the various ensembles we built and measure their
performance5. We compare feature sets by using the same learning methods
described in Section 4 while varying the subset of features available for each
of the classifier instances when training and combining these classifiers using
ensemble selection. We also concentrate on the value of temporal information
for Web spam detection. As our goal is to explore the computational cost
vs. classification performance tradeoff, we will describe the resource needs for
various features in detail in Section 6.

For training and testing we use the official Web Spam Challenge 2008 train-
ing and test sets [20]. As it can be seen in Table 1 these show considerable class
imbalance which makes the classification problem harder. For DC2010 we also
use the official training set as described in Table 5. For ClueWeb09 we used a
50% random split.

To make it easy to compare our results to previous results, we cite the Web
Spam Challenge 2008 and Discovery Challenge 2010 winner’s performance in the
summary tables next. For ClueWeb09 the only previous evaluation is in terms
of TREC retrieval performance [29] that we cannot directly compare here.

5.1 Content-only Ensemble

We build three different ensembles over the content-only features in order to
assess performance by completely eliminating linkage information. The feature
sets available for these ensembles are the following:

• (A) Public content [59, 22] features without any link based information.
Features for the page with maximum PageRank in the host are not used
to save the PageRank computation. Corpus precision, the fraction of
words in a page that is corpuswise frequent and corpus recall, the fraction

5The exact classifier model specification files used for Weka and the data files used for the
experiments are available upon request from the authors.
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of corpuswise frequent terms in the page are not used either since they
require global information from the corpus.

• (Aa) The tiniest feature set of 24 features from (A): query precision and
query recall defined similar to corpus precision and recall but based on
popular terms from a proprietary query log6 instead of the entire corpus.
A very strong feature set based on the intuition that spammers use terms
that make up popular queries.

• (B) The full public content feature set [22], including features for the
maximum PageRank page of the host.

• Feature set (B) plus a bag of words representation derived from the BM25
[60] term weighting scheme.

Table 6 presents the performance comparison of ensembles built using either
of the above feature sets. The DC2010 and ClueWeb09 detailed results are in
Table 8 and Table 9, respectively. Performance is given in AUC for all data
sets.

Feature Set N
u
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F
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10

C
lu
eW

eb
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Content (A) 74 0.859 0.757 0.829
Content (Aa) 24 0.841 0.726 0.635
Content (B) 96 0.879 0.799 0.827
BM25 + (B) 10096 0.893 0.891 0.870

Challenge best - 0.852 0.830 -

Table 6: AUC value of spam ensembles built from content based features.

Surprisingly, with the small (Aa) feature set of only 24 features a perfor-
mance only 1% worse than that of the Web Spam Challenge 2008 winner can
be achieved who employed more sophisticated methods to get their result. By
using all the available content based features without linkage information, we
get roughly the same performance as the best which have been reported on our
data set so far. However this achievement can be rather attributed to the better
machine learning techniques used than the feature set itself since the features
used for this particular measurement were already publicly accessible at the
time of the Web Spam Challenge 2008.

As it can be seen in Table 6 relative performance of content based features
over different corpora varies a lot. In case of DC2010 and ClueWeb09 the small
(Aa) feature set achieves much worse result than the largest feature set having
best performance for all data sets. The fact that the content (A, Aa, B) and
link (Table 7) performances are always better for UK2007 might be explained

6A summary is available as part of our data release at https://dms.sztaki.hu/sites/

dms.sztaki.hu/files/download/2013/enpt-queries.txt.gz.
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by the fact that the UK2007 training and testing sets were produced by random
sampling without considering domain boundaries. Hence in a large domain
with many subdomains, part of the hosts belong to the training and part to
the testing set with very similar distribution. This advantage disappears for the
BM25 features.

5.2 Full Ensemble

Feature Set N
u
m
b
er
o
f

F
ea
tu
re
s

U
K
2
0
0
7
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C
2
0
1
0

C
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eW

eb
0
9

Public link-based [7] 177 0.759 0.587 0.806
All combined 10 273 0.902 0.885 0.876

Table 7: Performance of ensembles built on link based and all features.

Results of the ensemble incorporating all the previous classifiers is seen in
Table 7. The DC2010 detailed results are in Table 8. Overall, we observe that
BM25 is a very strong feature set that may even be used itself for a lightweight
classifier. On the other hand, link features add little to quality and the gains
apparently diminish for DC2010, likely due to the fact that the same domain
and IP address is not split between training and testing.

The best Web Spam Challenge 2008 participant [44] reaches an AUC of
0.85 while for DC2010, the best spam classification AUC of [58] is 0.83. We
outperform these results by a large margin.

For DC2010 we also show detailed performance for nine attributes in Table 8,
averaged in three groups: spam, genre and quality (as in Table 5). Findings
are similar: with BM25 domination, part or all of the content features slightly
increase the performance. Results for the quality attributes and in particular
for trust are very low. Classification for these aspects remains a challenging
task for the future.

For ClueWeb09 detailed performance for selected ODP categories can be
seen in Table 9. Identically to DC2010 results BM25 features provide the best
classification performance. However, combinations with other feature sets yield
gains only for spam classification. For the ODP classification tasks linkage in-
formation does not help in general: the content based feature set has roughly
the same performance with or without page-level linkage information, and com-
bining with the link based feature set does not improve performance notably in
most labeling tasks.

5.3 Temporal Link Ensembles

First, we compare the temporal link features proposed in Section 3.1 with those
published earlier [61]. Then, we build ensembles that combine the temporal with
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Public link-based [7] 0.655 0.614 0.519 0.587
Content (A) 0.757 0.713 0.540 0.660
Content (Aa) 0.726 0.662 0.558 0.634
Content (B) 0.799 0.735 0.512 0.668
BM25 0.876 0.805 0.584 0.739

Public link-based + (B) 0.812 0.731 0.518 0.669
BM25 + (A) 0.872 0.816 0.580 0.754

BM25 + (B) 0.891 0.810 0.612 0.744

All combined 0.885 0.813 0.553 0.734

Table 8: Performance over the DC2010 labels in terms of AUC.
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Link [7] .806 .569 .593 .591 .532 .624 .540 .504 .595
Content (A) .829 .676 .726 .632 .669 .720 .639 .673 .695
Content (Aa) .635 .508 .524 .554 .487 .558 .502 .522 .536
Content (B) .827 .673 .727 .634 .670 .720 .629 .674 .694
BM25 .845 .913 .890 .931 .907 .883 .915 .959 .914

Link + (B) .848 .675 .731 .646 .669 .727 .631 .669 .699
BM25 + (A) .871 .895 .881 .896 .879 .851 .904 .935 .892
BM25 + (B) .869 .895 .881 .898 .892 .850 .906 .934 .894

All combined .876 .896 .883 .898 .892 .852 .905 .936 .895

Table 9: Performance over the ClueWeb09 labels in terms of AUC.

the public link-based features described by [7]. The results are summarized in
Table 10. Note that all experiments in this section and Section 5.4 were carried
out on the WEBSPAM-UK2007 data set.

As these measurements show, our proposed graph similarity based features
successfully extend the growth and death rate based ones by achieving higher
accuracy, improving AUC by 1.3%. However, by adding temporal to static
link-based features we get only marginally better ensemble performance.

To rank the link-based feature sets by their contribution in the ensemble, we
build classifier models on the three separate feature subsets (public link-based,
growth/death rate based and graph similarity based features, respectively) and
let ensemble selection combine them. This restricted combination results in
a slightly worse AUC of 0.762. By calculating the total weight contribution,
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Section Feature Set
No. of

AUC
Features

3.1.1 Growth/death rates 29 0.617
3.1.3-4 XJaccard + PSimRank 63 0.625

Public link-based [7] 176 0.765

3.1.1
Public +

205 0.758
growth/death rates

3.1.3-4
Public +

239 0.769
XJaccard + PSimRank

All link-based 268 0.765

WSC 2008 Winner - 0.852

Table 10: Performance of ensembles built on link-based features.

we get the following ranked list (weight contribution showed in parenthesis):
public link-based (60.8%), graph similarity based (21.5%), growth/death rate
based (17.7%). This ranking also supports the findings presented in Table 10
that graph similarity based temporal link-based features should be combined
with public link-based features if temporal link-based features are used.

To separate the effect of ensemble selection on the performance of temporal
link-based feature sets we repeat the experiments with bagged cost-sensitive
decision trees only, a model reported to be effective for web spam classification
[59]. The results for these experiments are shown in Table 11.

Section Feature Set
No. of

AUC
Features

3.1.1 Growth/death rates 29 0.605
3.1.3 XJaccard 42 0.626
3.1.4 PSimRank 21 0.593
3.1.3-4 XJaccard + PSimRank 63 0.610

Public link-based [7] 176 0.731

3.1.1
Public +

205 0.696
growth/death rates

3.1.3-4
Public +

239 0.710
XJaccard + PSimRank

All link-based 268 0.707

WSC 2008 Winner - 0.852

Table 11: Performance of bagged cost-sensitive decision trees trained on link-
based features.

As it can be seen in Table 11, when using bagged cost-sensitive decision
trees, our proposed temporal link-based similarity features achieve 3.5% better
performance than the growth/death rate based features published earlier.
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When comparing results in Table 11 and in Table 10 we can see that ensemble
selection i) significantly improves accuracy (as expected) and ii) diminishes the
performance advantage achievable by the proposed temporal link-based features
over the previously published ones.

As evident from Table 11, the proposed PSimRank based temporal features
perform roughly the same as the growth and death rate based ones while the
XJaccard based temporal features perform slightly better.
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Figure 2: Sensitivity of temporal link-based features. Top: AUC values av-
eraged across 10 measurements. Bottom: standard deviations of AUC for
different training set sizes.

Next we perform sensitivity analysis of the temporal link-based features by
using bagged cost-sensitive decision trees. We build 10 different random training
samples for each of the possible fractions 10%, 20%, . . . , 100% of all available
labels. In Fig. 2 we can see that the growth/death rate based features as well
as the PSimRank based features are not sensitive to training set size while the
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XJaccard based ones are. That is, even though XJaccard is better in terms of
performance than the other two feature sets considered it is more sensitive to
the amount of training data used as well.

5.4 Temporal Content Ensembles

We build ensembles based on the temporal content features described in Section
3.2 and their combination themselves, with the static BM25 features, and with
the content-based features of [59]. The performance comparison of temporal
content-based ensembles is presented in Table 12.

Feature Set
No. of

AUC
Features

Static BM25 10,000 0.736
Ave 10,000 0.749

AveDiff 10,000 0.737
Dev 10,000 0.767

DevDiff 10,000 0.752
Decay 10,000 0.709

Temporal combined 50,000 0.782
Temporal combined + BM25 60,000 0.789

Public content-based [59] + temporal 50,096 0.901

All combined 60,096 0.902

Table 12: Performance of ensembles built on temporal content-based features.

By combining all the content and link-based features, both temporal and
static ones, we train an ensemble which incorporates all the previous classifiers.
This combination resulted in an AUC of 0.908 meaning no significant improve-
ment can be achieved with link-based features over the content-based ensemble.

6 Computational Resources

For the experiments we used a 45-node Hadoop cluster of dual core machines
with 4GB RAM each as well as multi-core machines with over 40GB RAM.
Over this architecture we were able to compute all features, some of which
would require excessive resources either when used by a smaller archive or if the
collection is larger or if fast classification is required for newly discovered sites
during crawl time. Some of the most resource bound features involve the multi-
step neighborhood in the page level graph that already requires approximation
techniques for WEBSPAM-UK2007 [22].

We describe the computational requirements of the features by distinguish-
ing update and batch processing. For batch processing an entire collection is
analyzed at once, a procedure that is probably performed only for reasons of
research. Update is probably the typical operation for a search engine. For an
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Feature Set Step Hours Configuration

Content (A)
+ BM25

Parsing 36 45 dual core Pentium-D
3.0GHz machines, 4GB
RAM, Hadoop 0.21

Feature generation 36
Selection of labeled pages 3

Link
PageRank 10

5 eight-core Xeon 1.6GHz
machines, 40+GB RAM

Neighborhood 4
Local features 1

Table 13: Processing times and cluster configurations for feature sets over
ClueWeb09.

Internet Archive, update is also advantageous as long as it allows fast reaction
to sample, classify and block spam from a yet unknown site.

6.1 Batch Processing

The first expensive step involves parsing to create terms and links. The time
requirement scales linearly with the number of pages. Since apparently a few
hundred page sample of each host suffices for feature generation, the running
time is also linear in the number of hosts. For a very large collection such
as ClueWeb09, distributed processing may be necessary. Over 45 dual core
Pentium-D 3.0GHz machines running Hadoop 0.21, we parsed the uncompressed
9.5TB English part of ClueWeb09 in 36 hours. Additional tasks such as term
counting, BM25 or content feature generation fits within the same time frame.
If features are generated only a small labeled part of the data, it took us 3
hours to select the appropriate documents and additional processing time was
negligible. Processing times are summarized in Table 13.

Host level aggregation allows us to proceed with a much smaller size data.
However for aggregation we need to store a large number of partial feature
values for all hosts unless we sort the entire collection by host, again by external
memory or Map-Reduce sort.

After aggregation, host level features are inexpensive to compute. The fol-
lowing features however remain expensive:

• Page level PageRank. Note that this is required for all content features
involving the maximum PageRank page of the host.

• Page level features involving multi-step neighborhood such as neighbor-
hood size at distance k as well as graph similarity.

In order to be able to process graphs of ClueWeb09 scale (4.7 billion nodes and
17 billion edges), we implemented message passing C++ codes. Over a total
30 cores of six Xeon 1.6GHz machines, each with at least 40GB RAM, one
PageRank and one Bit Propagation iteration both took approximately one hour
while all other, local features completed within one hour.

Training the classifier for a few 100,000 sites can be completed within a
day on a single CPU on a commodity machine with 4-16GB RAM; here costs
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Configuration Number Feature Example Expected Computation

of Hosts Sets Accuracy

Small 10,000 Content (A) subset of 0.80-0.87 Non-
1-2 machines BM25 UK2007 distributed
Medium 100,000 Content (A) DC2010 0.87-0.90 MapReduce

3-10 machines BM25, link and Disk-based
e.g. GraphChi

Large 1,000,000 Content (B) ClueWeb09 0.9+ MapReduce
10+ machines BM25, link and Pregel

Table 14: Sample configurations for Web spam filtering in practice.

strongly depend on the classifier implementation. Our entire classifier ensemble
for the labeled WEBSPAM-UK2007 hosts took a few hours to train.

6.2 Incremental Processing

As preprocessing and host level aggregation is linear in the number of hosts,
this reduces to a small job for an update. This is especially true if we are able
to split the update by sets of hosts; in this case we may even trivially parallelize
the procedure.

The only nontrivial content based information is related to document fre-
quencies: both the inverse document frequency term of BM25 [60] and the cor-
pus precision and recall dictionaries may in theory be fully updated when new
data is added. We may however approximate by the existing values under the
assumption that a small update batch will not affect these values greatly. From
time to time however all features beyond (Aa) need a global recomputation step.

The link structure is however nontrivial to update. While incremental al-
gorithms exist to create the graph and to update PageRank type features
[32, 33, 53], these algorithms are rather complex and their resource require-
ments are definitely beyond the scale of a small incremental data.

Incremental processing may have the assumption that no new labels are
given, since labeling a few thousand hosts takes time comparable to batch pro-
cess hundreds of thousands of them. Given the trained classifier, a new site can
be classified in seconds right after its feature set is computed.

7 Conclusions

With the illustration over the 100,000 host WEBSPAM-UK2007, the half billion
page ClueWeb09, and the 190,000 host DC2010 data sets, we have investigated
the tradeoff between feature generation and spam classification accuracy. We
observe that more features achieve better performance, however, when combin-
ing them with the public link based feature set we get only marginal perfor-
mance gain. By using the WEBSPAM-UK2007 data along with seven previous
monthly snapshots of the .uk domain, we have presented a survey of temporal
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features for Web spam classification. We investigated the performance of link,
content and temporal7 Web spam features with ensemble selection. As practi-
cal message, we may conclude that, as seen in Table 14, single machines may
compute content and BM25 features for a few 10,000 hosts only. Link features
need additional resources and either compressed, disk based or, in the largest
configuration, Pregel-like distributed infrastructures.

We proposed graph similarity based temporal features which aim to capture
the nature of linkage change of the neighborhoods of hosts. We have shown
how to compute these features efficiently on large graphs using a Monte Carlo
method. Our features achieve better performance than previously published
methods, however, when combining them with the public link-based feature set
we get only marginal performance gain.

By our experiments it has turned out that the appropriate choice of the
machine learning techniques is probably more important than devising new
complex features. We have managed to compile a minimal feature set that can
be computed incrementally very quickly to allow to intercept spam at crawl
time based on a sample of a new Web site. Sample configurations for Web spam
filtering are summarized in Table 14.

Our results open the possibility for spam filtering practice in Internet archives
who are mainly concerned about their resource waste and would require fast re-
acting filters. BM25 based models are suitable even for filtering at crawl time.

Some technologies remain open to be explored. For example, unlike ex-
pected, the ECML/PKDD Discovery Challenge 2010 participants did not deploy
cross-lingual technologies for handling languages other than English. Some ideas
worth exploring include the use of dictionaries to transfer a bag of words based
model and the normalization of content features across languages to strengthen
the language independence of the content features. The natural language pro-
cessing based features were not used either, that may help in particular with
the challenging quality attributes.
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ABSTRACT
In this paper we exploit the connectivity structure of edits in
Wikipedia to identify recent events that happened at a given
time via identifying bursty changes in linked articles around
a specified date. Our key results include algorithms for node
relevance ranking in temporal subgraph and neighborhood
selection based on measurements for structural changes in
time over the Wikipedia link graph. We measure our algo-
rithms over manually annotated queries with relevant events
in September and October 2011; we make the assessment
publicly available. While our methods were tested over clean
Wikipedia metadata, we believe the methods are applicable
to general temporal Web collections as well.

1. INTRODUCTION
Considering a chain of events, we are often interested in

the causes and effects, naturally represented by citations
and links. If we want to understand what and why did
happen, what other stories had influences on the event, it is
worth discovering connected articles. The problem is even
more interesting if we want to know how a story evolved in
time. In this case we also need the information about the
time of appearance of pages and links, and this can help
understanding the temporal causality of the analyzed event.

In this paper we develop methods to automatically dis-
cover temporal events along important connections. For our
experiments we selected Wikipedia as a clean corpus where
measurements are not biased for example by date identi-
fication, yet the methods can directly be applied for any
hyperlinked collection. Wikipedia is certainly the most used
and best-known online encyclopedia and knowledge-base of
the past decade. Almost every action or event, be it tiny
or slightly remarkable, immediately appears in blog posts,
news articles or sometimes even in Wikipedia articles.

Certainly not all Wikipedia modifications are triggered by
headline news. People contribute to pages for various rea-
sons. Sometimes a mistake is found and gets corrected or
the editor has a special field of interest without a satisfying
of coverage so she starts to add new pieces of information to
the encyclopedia. In this case we expect isolated edits of a
low number of editors and hence less accumulated change in
the neighborhood. In addition, these pages, even being just
created, will link old, stable pages and will collect incoming
links with moderate speed.
This work was supported in part by the EC FET Open project “New tools and
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In our experiments we use three monthly snapshots of
Wikipedia from September to November 2011. We selected
20 queries for September and 15 for October and manually
assessed the articles for relevant events at that time. We
made the queries and the set of relevant articles public1.

Our results complement recent results on temporal infor-
mation retrieval where the main goal was to correctly date
the events mentioned in Web pages. In Wikipedia we may
rely on exact metadata to date addition and deletion and
our main goal is to distinguish bursty, time relevant modifi-
cations from sporadic edits of past events and general, time
independent information.

For ranking we use both the link structure and the con-
tent. The user can specify a query and should get a “tem-
porally changing” subgraph of relevant articles. First we try
to find the relevant articles respective to the query by a text
search engine. As the next step, based on these articles, we
try to find those nodes that have not only important changes
according to the definition above but also their content is
related to the original query. In a recursive definition remi-
niscent of PageRank [12] and HITS [8], we will consider the
change of a page relevant if relevant changes can be observed
in the neighborhood of the page as well. Finally we retrieve
and present the top ranking articles and their linkage.

2. RANKING BY CHANGE AND LINKAGE
In our temporal information retrieval task, the user spec-

ifies a broad topic (e.g. Arab spring) and a date. Relevant
documents should describe events that happened around the
specific date involving the broad topic in question. A query
with sample relevant Wikipedia articles is in Table 1.

Our ranking model combines text relevance with scores
for change at the specified date that we boost by bursty
changes of interlinked articles. First we identify a seed set
scored by classical ranking techniques, e.g. Okapi BM25.We
extend this seed set by neighboring articles that changed.
These steps yield a candidate subgraph that is small enough
to run subgraph scoring at query time, yet sufficiently large
to contain most information relevant to the user query.

2.1 Measure of change in time
In order to discover recent events and trends, we consider

changes both in linkage and content. We expect pages re-
lated to a certain event increase in content as well as con-
nectivity of both in and out-edges after the specific event.
Consequently, we measure change

As illustrated in Table 1, we measure change as the sum
of the change of the logarithm of the in and out-degree as
well as the absolute difference between the number of words
in the article between two fixed dates t1 and t2 as

change(u) = | log
degin,t1(u)

degin,t2(u)
|+| log

degout,t1(u)

degout,t2(u)
|+| log

wordst1(u)

wordst2(u)
|.

1http://dms.sztaki.hu/en/download/
wimmut-searching-and-navigating-wikipedia



Sep-Oct Oct-Nov Sep-Nov

Muammar
Gaddafi

content 0.044 0.18 0.23
inlink 0.55 0.12 0.68
outlink 0.033 0.04 0.074

Death of
Muammar
Gaddafi

content 0 7.71 7.71
inlink 0 4.21 4.21
outlink 0 4.64 4.64

Battle of
Sirte (2011)

content 7.78 0.79 8.56
inlink 4.78 0.21 4.99
outlink 4.9 0.14 5.06

Table 1: Change of articles related to Muammar Gaddafi.

2.2 Expanding the seed set
Seed expansion requires a score over the nodes that mea-

sure their relevance and freshness. In a naive solution one
would specify a given number of steps and consider the en-
tire neighborhood in this distance. As it turns out, even the
one-step neighborhood is too large and hence we have to
score candidate neighbors v. We use the following formula:

score(v) = max
u ∈ seed

BM25(u)+change(u)+change(v). (1)

2.3 Scores for change and relevance
We take a convex combination of the IR and change scores

by a parameter α. Before combination, we transform both
IR and change scores into [0, 1]. IR scores are normalized
by the maximum while change scores are saturated by us-
ing parameter T in order to avoid extreme large values of
change. The final formula becomes

p(u) = α · IR(u)

maxIR
+ (1− α) · change(u)

(change(u) + T )
. (2)

The above score forms a class of baseline ranking schemes
depending on the parameters. While the dependence on
T turned out to be relative low, the values of α balance be-
tween two extremities. Case α = 1 returns the text relevance
score and case α = 0 takes only the amount of change into
account. Note that even in this case, text relevance scores
are involved in the seed set and the expansion process.

2.4 Personalized PageRank, random walks and
electric networks

Our first algorithm scores graph nodes by PageRank [12]
personalized on the IR score. In [6] an electric network based
method is presented to select a subgraph connecting a set of
nodes; we show that this result is a special case of our per-
sonalized PageRank method. We briefly review some useful
properties of personalized PageRank from e.g. [13] and their
connection to the electric network formulation of [6]. Let
PPRp(v) denote the personalized PageRank of vertex v ∈ V
where p = p(u) ∈ R|V | is the personalization vector. Then
personalized PageRank is the solution of the system of equa-
tions

PPRp(v) = (1− c)
∑
uv∈E

PPRp(u)
w(uv)

w(u)
+ c · p(v), (3)

where w(uv) denotes the edge weight normalized so that the
total weight of out-edges from u is 1. PageRank is equal to
the probability that a random walk of length drawn from a

geometric distribution terminates at the given node:

PPRp(v) =

∞∑
k=0

c(1− c)k
∑

v0,v1,...,vk=v

p(v0) · w(v0v1) · · ·w(vk−1vk).

(4)
Next we consider special personalization vectors that ap-

ply for a single node only. With an abuse of notation, PPRu

will denote personalization to a vector p with p(u) = 1 and
0 otherwise. For such personalization vectors, the system of
equations is equivalent to

PPRu(x) = (1− c)
∑
uv∈E

PPRv(x) · w(uv) + c · p(v). (5)

The electric network formulation of [6] uses the equation

V (u) =
∑
v

V (v) · w(uv) ∀u 6= s, t (6)

with boundary conditions V (s) = 1 and V (t) = 0, see [6] for
details. Note that equations (5) and (6) have the same form
with Vu corresponding to PPRu except for the additive term
c · p(v). These terms in equations (3) and (5) correspond to
a universal sink S which can be added to the electric net-
work with edge weight w(v, S) = p(v). Universal sinks are
also introduced in [6] with the difference that their method
immediately taxes the large degree nodes while the uniform
additive term in (5) taxes equally, regardless of the degree.

2.5 Personalized HITS
Our next class of graph ranking procedures are based on

HITS [8]. HITS is known to be vulnerable to topic drift,
the preference of nodes in a large but irrelevant clique or
dense region in the neighborhood of the original topic. A few
papers consider the question of personalizing HITS to reduce
topic drift [2, 7] but these algorithms are rather complex.

We give a simple personalization to HITS by using a “su-
persource”. We can think of the supersource as a new node
of the graph which is connected with each node of the orig-
inal graph, and the weight of an edge corresponds to the
importance of the respective node in the personalization,
with weight 0 also allowed. The supersource distributes a
fixed amount of score in each iteration split proportional to
the personalization distribution. At the end of each iter-
ation, we normalize the authority and hub vectors, so the
maximal element in the vector is 1. With the notation of a
as the vector of authorities, h as the vector of hubs, c as the
importance of the supersource and p as the personalization
vector, we have

â(v) =
∑
uv∈E

w(uv) · h(u) + c · p(v), a = â/‖a‖∞; (7)

ĥ(v) =
∑
vu∈E

w(vu) · a(u) + c · p(v), h = ĥ/‖h‖∞, (8)

where w(vu) denotes the weight of vu. We obtain personal-
ized vectors a and h; the corresponding node scoring method
will be denoted by HitsAuth and HitsHub.

3. EXPERIMENTS
Our experiments are based on three monthly Wikipedia

snapshots of 2011-09-01, 2011-10-07 and 2011-11-15, with
over 7M nodes and 180M edges. We selected 35 queries that
are related to headline news events either from September or
from October 2011. For each query we set a list of manually



Month of change The other month
NDCG recall MRR recall MRR

None 0.243 0.456 0.865 0.327 0.423
PageRank-0.9 0.258 0.555 0.964 0.368 0.731
HitsAuth-200 0.315 0.543 1.101 0.377 0.689
HitsHubs-200 0.266 0.531 0.953 0.378 0.527
Combined 0.268 0.557 0.994 0.365 0.746

Table 2: Recall@15 and MRR with the overall best param-
eter settings. Scores in bold show performances statistically
significantly better than the baseline (p < 0.01).

N
D

C
G

Figure 1: NDCG as a function of the values of α (0.0, 0.5 and
1.0), for different algorithms and the baseline. The top 100
BM25 score articles are expanded by another 100. Change
is saturated with T = 10 and personalization is c = 0.9 for
PageRank and 200 for HITS.

selected relevant articles. We made the list of queries and
the assessment publicly available2.

For all queries, we measured our methods focusing both
on the change from September to October and from October
to November. We expect that September events score higher
in the first while October events in the second case. Results
for the accuracy measures are found in Table 2.

3.1 Evaluation measures
We evaluate the performance by the Normalized Discounted

Cumulative Gain (NDCG), Mean Reciprocal Rank (MRR),
Early Recall, Graph Density Change and Tendency of short
paths staying within the top hits. The last two measures
consider the change in the connectivity of top ranked arti-
cles. We not only expect that the pages in the result set
are relevant but we also show temporal evolution, growth
or densification. Therefore we also measure the number of
edges for the top ranked 15 articles.

We apply PageRank to measure the fraction of short paths
staying inside the top 15 hits. By equation (4) if we define a
personalization vector p that is identically distributed over
the nodes of the selected subgraph, the sum of PPRp(v) over
nodes v of the subgraph gives a weighted sum of paths that
terminate within the subgraph.

3.2 Retrieval performance
We overview the results of various combinations of change

measures, graph ranking and the BM25 score in Table 2
with statistically significant improvements shown bold (p <
0.01). As best parameters we identified the following values

2http://dms.sztaki.hu/en/download/
wimmut-searching-and-navigating-wikipedia
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Figure 2: NDCG as the function of the size of the expansion
(0, 100, 1000 and 2000), for different algorithms and the
baseline. Here α = 0.5, change is saturated with T = 10,
and personalization is c = 0.9 for PageRank and 200 for
HITS.
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Figure 3: The number of edges among the top 15 hits in
the snapshots before and after the event as well as their
difference as the function of α (0.0, 0.5 and 1.0), for different
algorithms and the baseline.

or ranges: seed set size of 10-100; seed set expanded by
100 more articles; change saturation T = 10 (it has little
effect); change and IR combination ratio α = 0.5; PageRank
damping c = 0.9 and HITS personalization c = 200.

In Fig. 1 we show how NDCG is influenced by the value of
α, and in Fig. 2 we show how NDCG is influenced by size of
the expansion. We observe that the balanced mix of α = 0.5
is the best choice by including both text based relevance and
change measures. The importance of the temporal aspect of
our queries is clear in the weaker performance of the BM25
score itself (α = 1) while the change-only α = 0 performs
weakest.

We should be careful in expanding the seed set: best re-
sults are obtained if we extend the original top 100 articles
with another 100 changing ones in the neighborhood. How-
ever, for much larger subgraphs, all algorithms show topic
drift and strong personalization is needed with c = 0.9-0.95
for PageRank and 100-200 for HITS.

3.3 Graph density
We compare the quality and connectivity of the linkage

within the top results both by counting the edges and com-
puting the sum of personalized PageRank kept within the
displayed result set in Figs. 3–4. Note that the denser sub-
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Figure 4: The difference of the number of edges among the
top 15 hits between the snapshots before and after the event
as the function of the size of the expansion (0, 100, 1000 and
2000), for different algorithms and the baseline.
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Figure 5: The fraction of short paths kept within the top
15 hits as the function of α (0.0, 0.5 and 1.0), for different
algorithms and the baseline.

graphs are also of improved relevance, as seen in Section 3.2.
When comparing the effect of α (Fig. 3) and the expan-

sion size (Fig. 4), we note that the graph algorithms tend to
overfit for irrelevant lists, for example for very large expan-
sion (1000-2000) and α = 1 considering change only. The
results show clear topic drift in these cases while good per-
formance for low expansion. The findings are similar for the
PageRank based measure of short paths staying inside the
subgraph in Fig. 5.

4. RELATED RESULTS
Temporal information retrieval has mainly been consid-

ered as a task for either temporal query aspect detection or
Web content dating. We are aware of no results for ranking
with respect to a specified date as part of the input query. In
a result with goals similar to ours for timestamped news [5],
time sensitive queries are analyzed by relying on the publi-
cation date of documents. However, their goal is to identify
relevant time ranges for queries, unlike in our result where
we search for events in a given time related to the query.

Similar to our task is the identification of important events
from the Blogosphere [10] as in the TREC Top Stories Iden-
tification task. Among others these results rely on timing
and relevance as key factors but their results do not take con-
nectivity into account. Topic detection by analyzing term

bursts is first described in [9]; subsequent results rely on
topic detection and tracking (TDT) achievements [3]. The
general properties of the Wikigraph including degrees and
their change in time is measured in [1].

As a different task, the extraction of a chronological order
from free text turns out to be a difficult [11] and considered
as part of the TAC Temporal Slot Filling task [14, 15]. In
one application, the timeline of events related to G8 leaders
is extracted [4] by starting with a query for a given politician
and then identifying the date from free text. We believe that
these tasks can be enhanced by our techniques.

Conclusions
We identified events in time by relying on edit dates aggre-
gated in a neighborhood defined by hyperlinks. We proposed
algorithms based on personalized HITS and PageRank that
amplify changes and relevance in a given graph neighbor-
hood. Part of our results is a query set with relevance as-
sessment suited for the data set as well as the annotated
document collection. We believe that our results find appli-
cation in other related social networking and Web IR tasks.
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ABSTRACT
Although web crawlers have been around for twenty years
by now, there is virtually no freely available, open-source
crawling software that guarantees high throughput, over-
comes the limits of single-machine tools and at the same
time scales linearly with the amount of resources available.
This paper aims at filling this gap.

We describe BUbiNG, our next-generation web crawler
built upon the authors’ experience with UbiCrawler [8] and
on the last ten years of research on the topic. BUbiNG is
an open-source Java fully distributed crawler (no central co-
ordination), and single BUbiNG agents using sizeable hard-
ware can crawl several thousands pages (per agent) per sec-
ond respecting strict politeness constraints, both host- and
IP-based. Unlike existing open-source distributed crawlers
that rely on batch techniques (like MapReduce), BUbiNG
job distribution is based on modern high-speed protocols so
to achieve very high throughput.

1. INTRODUCTION
A web crawler (sometimes also known as a (ro)bot or spi-

der) is a system that downloads systematically a large num-
ber of web pages starting from a seed. Web crawlers are, of
courses, used by search engines, but also by companies sell-
ing“Search–Engine Optimization”services, archival projects
such as the Internet Archive, surveillance systems (e.g., that
scan the web looking for cases of plagiarism), and by enti-
ties performing statistical studies of the structure and the
content of the web, just to name a few.

∗The authors were supported by the EU-FET grant NA-
DINE (GA 288956).
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The basic inner working of a crawler is surprisingly simple
form a theoretical viewpoint: it is a form of traversal (for
example, a breadth-first visit). Starting from a given seed
of URLs, a set of associated pages is downloaded, their con-
tent is parsed, and the resulting links are used iteratively to
collect new pages.

Albeit in principle a crawler just performs a visit of the
web, there are a number of factors that make the visit of a
crawler inherently different from a textbook algorithm. The
first and most important difference is that the size of the
graph to be explored is unknown and huge; in fact, infinite.
The second difference is that visiting a node (i.e., download-
ing a page) is a complex process that has intrinsic limits
due to network speed, latency, and politeness—the require-
ment of not overloading servers during the download. Not
to mention the countless problems (errors in DNS resolu-
tions, protocol or network errors, presence of traps) that
the crawler may find on its way.

In this paper we describe the design and implementation
of BUbiNG, our new web crawler built upon the experience
with UbiCrawler [8] and on the last ten years of research on
the topic. BUbiNG aims at filling an important gap in the
range of available crawlers. In particular:

• It is a pure-Java, open-source crawler released under
the Gnu GPLv3.

• It is fully distributed: multiple agents perform the
crawl concurrently and handle the necessary coordi-
nation without the need of any central control; given
enough bandwidth, the crawling speed grows linearly
with the number of agents.

• Its design acknowledges that CPUs and OS kernels
have become extremely efficient in handling a large
number of threads, in particular if they are mainly
I/O-bound, and that large amounts of RAM are by
now easily available at a moderate cost.

• More in detail, we assume that the memory used by
an agent must be constant in the number of discovered
URLs, but that it can scale linearly in the number
of discovered hosts. This assumption simplifies and
makes several data structures more efficient.

• It is very fast: on a 64-core, 64GB workstation it can
download hundreds of million of pages at more than



9 000 pages per second respecting politeness both by
host and by IP, analyzing, compressing and storing
more than 140 MB/s of data.

• It is extremely configurable: beyond choosing the sizes
of the various data structures and the communication
parameters involved, implementations can be speci-
fied by reflection in a configuration file and the whole
dataflow followed by a discovered URL can be con-
trolled by arbitrary user-defined filters, that can fur-
ther be combined with standard Boolean-algebra op-
erators.

• It guarantees that hostwise the visit is an exact breadth-
first visit (albeit the global policy can be customized).

• It guarantees that politeness intervals are satisfied both
at the host and the IP level, that is, that two data
fetch to the same host or IP are separated by at least
a specified amount of time. The two intervals can be
set independently, and, in principle, customized per
host or IP.

When designing a crawler, one should always ponder over
the specific usage the crawler is intended for. This deci-
sion influences many of the design details that need to be
taken. Our main goal is to provide a crawler that can be
used out-of-the-box as an archival crawler, but that can be
easily modified to accomplish other tasks. Being an archival
crawler, it does not perform any refresh of the visited pages,
and moreover it tries to perform a visit that is as close to
breadth-first as possible (more about this below). Both be-
haviors can in fact be modified easily in case of need, but
this discussion (on the possible ways to customize BUbiNG)
is out of the scope of this paper.

We plan to use BUbiNG to provide new data sets for the
research community. Datasets crawled by UbiCrawler have
been used in hundreds of scientific publications, but BUb-
iNG makes it possible to gather data orders of magnitude
larger.

2. RELATED WORKS
Web crawlers have been developed since the birth of the

web. The first generation crawler dates back to the early 90s:
World Wide Web Worm [24], RBSE spider [16], MOMspi-
der [18], WebCrawler [30]. One of the main contributions of
these works has been that of pointing out some of the main
algorithmic and design issues of crawlers. In the meanwhile,
several commercial search engines, having their own crawler
(e.g., AltaVista) were born. In the second half of the 90s,
the fast growth of the web called for the need of large-scale
crawlers, like the crawler of Internet Archive Module [11]
and the first generation of the Google crawler [9]. This gen-
eration of spiders was able to download efficiently tens of
millions of pages. At the beginning of 2000, the scalability,
the extensibility, and the distribution of the crawlers become
a key design point: this was the case of the Java crawler Mer-
cator [28] (distributed version of [19]), Polybot [32], IBM
WebFountain [15], and UbiCrawler [8]. These crawlers were
able to produce snapshots of the web of hundreds of millions
of pages.

Recently, a new generation of crawlers was designed, aim-
ing to download billions of pages, like [22]. Nonetheless,
none of them is freely available and open source: BUbiNG

is the first open-source crawler designed to be fast, scalable
and runnable on commodity hardware.

For more details about previous works or in the main is-
sues in the design of crawlers, we refer the reader to [29, 26,
31].

2.1 Open-source crawlers
Although web crawlers have been around for twenty years

by now (since the spring of 1993, according to [29]), the
area of freely available ones, let alone open-source, is still
quite narrow. With the few exceptions that will be discussed
below, most stable projects we are aware of (GNU wget, Ht-
//Dig, mngoGoSearch, to cite a few) do not (and are not
designed to) scale to download more than few thousands or
tens of thousands pages. They can be useful to build an
intranet search engine, but not for web-scale experiments.

Heritrix [1, 27] is one of the few examples of an open-
source search engine designed to download large datasets: it
was developed starting from 2003 by Internet Archive [2] (a
non-profit corporation aiming to keep large archival-quality
historical records of the world-wide web) and it has been
since actively developed. Heritrix (available under the Apache
license) is a single-machine crawler, although it is of course
multi-threaded, which is the main hindrance to its scalabil-
ity. The default crawl order is breadth-first, as suggested
by the archival goals behind its design. On the other hand,
it provides a powerful checkpointing mechanism and a flex-
ible way of filtering and processing URLs after and before
fetching. It is worth noting that Internet Archive proposed,
implemented (in Heritrix) and fostered a standard format
for archiving web content, called WARC, that is now an ISO
standard [4] and that BUbiNG is also adopting for storing
the downloaded pages.

Nutch [21] is one of the best known existing open-source
web crawlers; in fact, the goal of Nutch itself is much broader
in scope, because it aims at offering a full-fledged search en-
gine under all respects: besides crawling, Nutch implements
features such as (hyper)text-indexing, link analysis, query
resolution, result ranking and summarization. It is natively
distributed (using Apache Hadoop as task-distribution back-
bone) and quite configurable; it also adopts breadth-first as
basic visit mechanism, but can be optionally configured to
go depth-first or even largest-score first, where scores are
computed using some scoring strategy which is itself con-
figurable. Scalability and speed are the main design goals
of Nutch; for example, Nutch was used to collect TREC
ClueWeb09 dataset1, the largest web dataset publicly avail-
able as of today consisting of 1 040 809 705 pages, that were
downloaded at the speed of 755.31 pages/s [3], but to do
this they used a Hadoop cluster of 100 machines [12], so
their real throughput was of about 7.55 pages/s per machine.
This figure is not unexpected: using Hadoop to distribute
the crawling jobs is easy, but not efficient, because it con-
strains the crawler to work in a batch fashion. It shouldn’t
be surprising that using a modern job-distribution frame-
work like BUbiNG does increases the throughput by orders
of magnitude.

1The new ClueWeb12 dataset, that is going to be released
soon, was collected using Heritrix, instead: five instances of
Heritrix, running on five Dell PowerEdge R410, were run for
three months, collecting 1.2 billions of pages. The average
speed was of about 38.6 pages per second per machine.



3. ARCHITECTURE OVERVIEW
BUbiNG stands on a few architectural choices which in

some cases contrast the common folklore wisdom. We took
our decisions after carefully benchmarking several options
and gathering the hands-on experience of similar projects.

• The fetching logic of BUbiNG is built around thou-
sands of identical fetching threads performing essen-
tially only synchronous (blocking) I/O. Experience with
recent Linux kernels and increase in the number of
cores per machine shows that this approach consis-
tently outperforms asynchronous I/O. This strategy
simplifies significantly the code complexity, and makes
it trivial to implement features like HTTP/1.1“keepalive”
multiple-resource downloads.

• Lock-free [25] data structures are used to “sandwich”
fetching threads, so that they never have to access
lock-based data structures. This approach is particu-
larly useful to avoid direct access to synchronized data
structures with logarithmic modification time, such as
priority queues, as contention between fetching threads
can become very significant.

• URL storage (both in memory and on disk) is entirely
performed using byte arrays. While this approach
might seen anachronistic, the Java String class can
easily occupy three times the memory used by a URL
in byte-array form (both due to additional fields and
to 16-bit characters) and doubles the number of ob-
jects. BUbiNG aims at exploiting the large memory
sizes available today, but garbage collection has a lin-
ear cost in the number of objects: this factor must be
taken into account.

• Following UbiCrawler’s design [8], BUbiNG agents are
identical and autonomous. The assignment of URLs to
agents is entirely customizable, but by default we use
consistent hashing as a fault-tolerant, self-configuring
assignment function.

In this section, we overview the structure of a BUbiNG
agent: the following sections detail the behavior of each
component. The inner structure and data flow of an agent
is depicted in Figure 1.

The bulk of the work of an agent is carried out by low-
priority fetching threads, which download pages, and parsing
threads, which parse and extract information from down-
loaded pages. Fetching threads are usually thousands, and
spend most of their time waiting for network data, whereas
one usually allocates as many parsing threads as the num-
ber of available cores, because their activity is mostly CPU
bound.

Fetching threads are connected to parsing threads using a
lock-free result list in which they enqueue buffers of fetched
data, and wait for a parsing thread to analyze them. Pars-
ing threads poll the result list using an exponential backoff
scheme, perform actions such as parsing and link extraction,
and signal back to the fetching thread that that the buffer
can be filled again.

As parsing threads discover new URLs, they enqueue them
to a sieve that keeps track of which URLs have been al-
ready discovered (we do not want to download the same
URL twice). A sieve is a data structure similar to a queue
with memory: each enqueued element will be dequeued at

some later time, with the guarantee that an element that is
enqueued multiple times will be dequeued just once. URLs
are added to the sieve as they are discovered by parsing. A
cache sits in front of the sieve to avoid that frequently found
URLs put the sieve under stress. The cache has also an-
other important goal: it avoids that frequently found URLs
assigned to another agent are retransmitted several times.

URLs that come out of the sieve are ready to be visited,
and they are taken care of (stored, organized and managed)
by the frontier, which is actually itself decomposed into sev-
eral modules.

The most important data structure of the frontier is the
workbench, an in-memory data structure that keeps track of
the visit state of each host currently visited and that can
check in constant time whether some host can be accessed
for download without violating the politeness constraints.
Note that to attain the goal of several thousands downloaded
pages per second without violating politeness constraints it
is necessary to keep track of the visit state of hundreds of
thousands of hosts.

When a host is ready for download, its visit state is ex-
tracted from the workbench and moved to a lock-free todo
queue by a suitable thread. Fetching threads poll the todo
queue with an exponential backoff, fetch resources from the
retrieved visit state2 and then put it back on the workbench.
Note that we expect that once a large crawl has started, the
todo queue will never be empty, so fetching threads will
never have to wait. Most of the efforts of the components of
the frontier are actually geared towards avoiding that fetch-
ing threads ever wait on an empty todo queue.

The only active component (i.e., a thread) of the fron-
tier is the distributor : it is a high-priority thread that pro-
cesses URLs that come out of the sieve (and must therefore
be crawled). Assuming for a moment that memory is un-
bounded, the only task of the distributor is that of iteratively
dequeueing a URL from the sieve, checking whether it be-
longs to a host for which a visit state already exists, and
then either creating a new visit state or enqueuing the URL
to an existing one. If a new visit state is necessary, it is
passed to a set of DNS threads that perform DNS resolution
and then move the visit state on the workbench.

Since, however, breadth-first visit queue grows exponen-
tially, and the workbench can use only a fixed amount of
in-core memory, it is necessary to virtualize it, that is, writ-
ing on disk part of the URLs coming out of the sieve. To
decide whether to keep a visit state entirely in the workbench
or to virtualize it, and also to decide when and how URLs
should be moved from the virtualizer to the workbench, the
distributor uses a complex policy that is described later.

Finally, every agent stores resources in its store (that
may possibly reside on a distributed or remote file system).
The native BUbiNG store is a compressed file in the Web
ARChive (WARC) format (the standard proposed and made
popular by Heritrix). This standard specifies how to com-
bine several digital resources with other information into an
aggregate archive file. In BUbiNG compression happens in
a heavily parallelized way, with parsing threads compressing
independently pages and using concurrent primitives to pass
compressed data to a flushing thread.

3.1 The sieve
2Possibly multiple resources on a single TCP connection us-
ing the “keepalive” feature of HTTP 1.1.
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Figure 1: Overview of the architecture of a BUbiNG agent. Ovals represent data structures, whereas rect-
angles represent threads (or sets of threads).

A sieve is a queue with memory: it provides enqueue
and dequeue primitives, similarly to a standard queue; each
element enqueued to a sieve will be eventually dequeued
later. However, a sieve guarantees also that if an element
is enqueued multiple times, it will be dequeued just one
time. Sieves (albeit not called with this name) have always
been recognized as a fundamental basic data structure for
a crawler: their main implementation issue lies in the un-
bounded, exponential growth of the number of discovered
URLs. While it is easy to write enqueued elements to a
disk file, checking that an element is not returned multiple
times requires ad-hoc data structures, as standard dictionar-
ies would use too much in-core memory.

The actual sieve implementation used by BUbiNG can be
customized, but the default one, called MercatorSieve, is
similar to the one suggested in [19] (hence its name). Each
element known to the sieve is stored as a 64-bit hash in a
disk file. Every time a new element is enqueued, its hash
is stored in an in-memory array, and the element is saved
in an auxiliary file. When the array is full, it is sorted and
compared with the set of elements known to the sieve. The
auxiliary file is then scanned, and previously unseen ele-
ments are stored for later dequeueing. All these operations
require only sequential access to all files involved. Note that
the output order is guaranteed to be the same of the input
order (i.e., elements are appended in the same order in which
they appeared the first time).

A generalization of the idea of a sieve, which adds the

possibility of associating values with elements, is the DRUM
(Disk Repository with Update Management) structure used
by IRLBot and described in [22]. A DRUM provides ad-
ditional operations that retrieve or update the values asso-
ciated with elements. From an implementation viewpoint,
DRUM is a Mercator sieve with multiple arrays, called buck-
ets, in which a careful orchestration of in-memory and on-
disk data makes it possible to sort in one shot sets of ele-
ments an order of magnitude larger than what the Mercator
sieve would allow using the same in-core memory. However,
to do so DRUM must sacrifice breadth-first order: due to
the inherent randomization of key placement in the buckets,
there is no guarantee that URLs will be crawled in breadth-
first order, not even per host. Finally, the tight analysis
in [22] about the properties of DRUM is unavoidably bound
to the single-agent approach of IRLBot: for example, the
authors conclude that a URL cache to reduce the number
of insertions in the DRUM is not useful, but the same cache
reduces significantly network transmissions. Once the cache
is in place, the Mercator sieve becomes much more compet-
itive.

There are several other implementations of the sieve logic
currently used. A quite common choice is to use an ex-
plicit queue and a Bloom filter [7] to remember enqueued el-
ements. Albeit popular, this choice has no theoretical guar-
antee: while it is possible to decide a priori the maximum
number of pages that will ever be crawled, it is very diffi-
cult to bound in advance the size of the discovered URLs,
and this number is essential in sizing the Bloom filter. If



the discovered URLs are significantly more than expected,
several pages are likely to be lost because of false positives.
A better choice is to use a dictionary of fixed-size finger-
prints obtained from URLs using a suitable hash function.
The disadvantage is that the structure would no longer use
constant memory.

3.2 The workbench
The workbench is an in-memory data structure that con-

tains the next URLs to be visited, and can check in constant
time whether a URL is ready for download without violat-
ing politeness limits. It is one of the main novel ideas in
BUbiNG’s design, and it is one of the main reasons why we
can attain a very high throughput.

First of all, URLs associated with a specific host3 are kept
in a structure called visit state, containing a FIFO queue
of the next URLs to be crawled for that host along with
a next-fetch field that specifies the first instant in time
when a URL from the queue can be downloaded, according
to the per-host politeness configuration. Note that inside a
visit state we only store a byte-array representation of the
path and query of a URL: this approach significantly reduces
object creation, and provides a simple form of compression
by prefix omission.

Visit states are further gathered by IP address in work-
bench entries; every time the first URL for a given host is
found, a new visit state is created and then the IP address
is determined (by one of the DNS threads): the new visit
state is either put in a new workbench entry (if no known
host was as yet associated to that IP), or in an existing one.

A workbench entry contains a queue of visit states priori-
tized by their next-fetch field. In other words, a workbench
entry contains all visit states associated with the same IP,
along with an IP-specific next-fetch, containing the first
instant in time when the IP address can be accessed again,
according to the per-IP politeness configuration. The work-
bench is the queue of all workbench entries, prioritized on
the next-fetch field of each entry maximized with the next-
fetch field on the top element of its queue of visit states.
In other words, the workbench is a priority queue of priority
queues of FIFO queues.

We remark that due to our choice of priorities there is a
host that can be visited without violating host or IP politeness
if and only if the first URL of the top visit state of the top
workbench entry can be visited. Moreover, if there is no such
host, the delay after which a host will be ready is given by
the priority of the top workbench entry minus the current
time.

The workbench acts as a delay queue: its dequeue opera-
tion waits, if necessary, until a host is ready to be visited. At
that point, the top entry E is removed from the workbench
and the top visit state is removed from E. The visit state
and the associated workbench entry act as a token that is
virtually passed between BUbiNG’s components to guaran-
tee that no component is working on the same workbench
entry at the same time (in particular, this forces both kinds

3Every URL is made [6] by a scheme (also popularly called
“protocol”), an authority (a host, possibly a port number,
and possibly some user information) and a path to the re-
source, possibly followed by a query (that is separated from
the path by a “?”). BUbiNG’s data structures are built
around the pair scheme+authority, but in this paper we will
use the more common word “host” to refer to it.

of politeness). In practice, as we mentioned in the overview,
dequeueing is performed by a high-priority thread, the todo
thread, that constantly dequeues visit states from the work-
bench and enqueue them to a lock-free todo queue, which is
then accessed by fetching threads. This approach, besides
avoiding contention by thousands of threads on a relatively
slow structure, makes the number of visit states that are
ready for downloads easily measurable: it is just the size
of the todo queue. The downside is that, in principle, using
very skewed per-host or per-IP politeness delays might cause
the order of the todo queue not to reflect the actual priority
of the visit state contained therein.

3.3 Fetching threads
A fetching thread is a very simple thread that iteratively

extracts visit states from the todo queue. If the todo queue
is empty, a standard exponential backoff procedure is used to
avoid polling the list too frequently, but the design of BUb-
iNG aims at keeping the todo queue nonempty and avoiding
backoff altogether.

Once a fetching thread acquires a visit state, it tries to
fetch the first URL of the visit state FIFO queue. If suitably
configured, a fetching thread can also iterate the fetching
process on more URLs for a fixed amount of time, so to
exploit the “keepalive” feature of HTTP 1.1.

Each fetching thread has an associate fetch data instance
in which the downloaded data are buffered. Fetch data in-
clude a transparent buffering method that keeps in memory
a fixed amount of data and dumps on disk the remaining
part. By sizing the fixed amount suitably, most requests
can be completed without accessing the disk, but at the
same time rare large requests can be handled without allo-
cating additional memory.

After a URL has been fetched, the fetch data is put in the
results queue so that one of the parsing threads will parse
it. One the parsing is over, the parsing thread will signal
back so the fetching thread will be able to start working on
a new URL. Once a fetching thread has to work a new visit
state, it puts the current visit state on a done queue, from
which it will be dequeued by a suitable thread that will put
it back on the workbench together with its associated entry.

Most of the time, a fetching thread is blocked on I/O,
which makes it possible to run thousands of them in paral-
lel. Indeed, the number of fetching threads determines the
amount of parallelization BUbiNG can achieve while fetch-
ing data from the network, so it should be chosen as large
as possible, compatibly with the amount of bandwidth avail-
able and with the memory used by fetch data.

3.4 Parsing threads
A parsing thread iteratively extracts from the results queue

fetch data that have been previously enqueued by a fetch-
ing thread. Then, the content of the HTTP response is
analyzed and possibly parsed. If the response contains an
HTML page, the parser will produce a set of URLs that will
be first checked against the URL cache, and then, if not al-
ready seen, either sent to another agent, or enqueued to the
sieve (given that the maximum number of URLs per host
has not been exceeded).

During the parsing phase, a parsing thread computes a sig-
nature of the content of the response. In the case of HTML
pages, some heuristic is used to collapse near-duplicates (e.g.,
most HTML attributes are stripped). The signature is stored



in a Bloom filter [7] and it is used to avoid crawling several
times the same page (or near-duplicate pages).4 Finally, the
content of the response is saved to the store.

The number of parsing threads should be equal to the
number of available cores.

3.5 DNS threads
DNS threads are used to solve host names of new hosts:

a DNS thread continuously dequeues from the list of newly
discovered visit states and resolves its host name, adding it
to a workbench entry (or creating a new one, if the IP itself
is new), and putting it on the workbench.

The number of DNS threads is limited by the kind of
DNS service the crawler relies upon. In our experience, it
is essential to run a local recursive DNS server to avoid the
bottleneck of an external server.

3.6 The workbench virtualizer
The workbench virtualizer is a sequence of k on-disk URL

queues (at the beginning k = 1), called virtual queues; the
last virtual queue is called overflow queue. This design is
inspired by the BEAST module of IRLbot [22], albeit it is
more geared towards maintaining the visit order as close as
possible to a breadth-first visit, rather than using prioriti-
zation.

Conceptually, all URLs that have been extracted from the
sieve but have not yet been fetched are enqueued in the
workbench visit state they belong to, in the exact order in
which they came out of the sieve. Since, however, we aim at
crawling with an amount of memory that is constant in the
number of discovered URLs, part of the queue must be writ-
ten on disk. Each virtual queue contains a fraction of URLs
from each visit state, in such a way that the overall URL
order respects, per host, the original breadth-first order.

Virtual queues are consumed as the visit proceeds, fol-
lowing the natural per-host breadth-first order. As fetching
threads download URLs, the workbench is partially freed
and can be filled with URLs coming from the virtual queues.
When all virtual queues preceding the overflow queue have
been exhausted, the number of virtual queues is increased
(usually doubled) and the content of the overflow queue is
redistributed on the set of new queues based on an estimate
of the future time at which each URL will be needed.

3.7 The distributor
The distributor is a high-priority thread that orchestrates

the movement of URLs out of the sieve, and loads as neces-
sary URLs from virtual queues into the workbench.

As the crawl proceeds, URLs get accumulated in work-
bench visit states at different speeds, both because hosts
have different responsiveness and because websites have dif-
ferent sizes and branching factors. Moreover, the size occu-
pied by the workbench has a (configurable) limit that cannot
be exceeded, as one of the central design goals of BUbiNG
is that the amount of central memory occupied cannot grow
unboundedly in the size of the discovered URLs, but only in
the number of hosts discovered. Thus, filling the workbench
blindly with URLs coming out of the sieve would soon re-
sult in having in the workbench only URLs belonging to a
limited number of hosts.

4In a post-crawl phase, there are several more sophisticated
approaches that can be applied, like shingling [10], simhash
[14], fuzzy fingerprinting [17, 13] and others, like [23].

The front of a crawl, at any given time, is the number
of visit states that is ready for download by politeness con-
straints. The front size determines the overall throughput
of the crawler—because of politeness, the number of dis-
tinct hosts currently being visited is the crucial datum that
establishes how fast or slow the crawl is going to be.

One of the two forces driving the distributor is, indeed,
that the front should always be large enough so that no fetch-
ing thread has ever to wait. To attain this goal, the distrib-
utor enlarges dynamically the required front size: each time
a fetching thread has to wait, although the current front
size is larger than the current required front size, the latter
is increased. After a warmup phase, the required front size
stabilizes to a value that depends on the kind of host visited
and on the amount of resources available. At that point, it is
impossible to have a faster crawl given the resources avail-
able, as all fetching threads are continuously downloading
data. Increasing the number of fetching threads, of course,
may cause an increase of the required front size.

The second force driving the distributor is the (somewhat
informal) requirement that we try to be as close to a breadth-
first visit as possible. Note that this force works in an op-
posite direction with respect to enlarging the front—URLs
that are already in existing visit states should be in principle
visited before any URL in the sieve, but enlarging the front
requires dequeueing from the sieve to find new hosts.

The distributor is also responsible for filling the work-
bench with URLs coming either out of the sieve, or out of
virtual queues (circle numbered (1) in Figure 1). Once again,
staying close to a breadth-first visit requires loading URLs
in virtual queues, but keeping the front large might require
reading URLs from the sieve to discover new hosts.

The distributor balances these two forces by keeping an
eye on the limbo—the set of visit states that currently have
URLs in virtual queues, but few (or no) no URLs in memory:

• if the limbo is large, the distributor will try to read
from the virtual queues, in the hope that the front (the
number of hosts currently being visited) can increase
at the expense of the limbo size;

• if the limbo is small, the distributor will rather read
from the sieve, hoping to find new sites to make the
front larger.

The limbo is considered to be large when it contains more
than a small fraction (typically, 1%) of the visit states with
some URLs in virtual queues. If there is no room in the
workbench, or the front is already large enough, the distrib-
utor just waits. The overall behavior is depicted in Figure 2.

Note that if the distributor takes the decision to read from
the virtual queues (i.e., to read the first URL of the first non-
empty queue), the URL is always put in the workbench (and
will be later fetched). On the other hand, if the workbench
reads a URL from the sieve it can be either put in the work-
bench or written in a virtual queue, depending on the esti-
mate of the future time at which the URL will be needed. If
the distributor decides to write the URL on a virtual queue,
another URL will have to be taken either from the sieve or
from the virtual queues, and so on until the workbench is
full again or until the front is large enough.

3.8 Configuration and Heuristics
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Figure 2: How the distributor interacts with the
sieve, the workbench and the workbench virtualizer.

To make BUbiNG capable of a versatile set of tasks and
behaviors, every crawling phase (fetching, parsing, following
the URLs of a page, scheduling new URLs, storing pages) is
controlled by a filter, a Boolean predicate that determines
whether a given resource should be accepted or not. Filters
can be configured both at startup and at runtime allowing
for a very fine-grained control.

The type of objects a filter considers is called the base type
of the filter. In most cases, the base type is going to be a
URL or a fetched page. More precisely, a prefetch filter is
one that has a BUbiNG URL as its base type (typically: to
decide whether a URL should be scheduled for later visit, or
should be fetched); a postfetch filter is one that has a fetched
response as base type and decides whether to do something
with that response (typically: to parse it, to store it, etc.).

Even if it is relatively easy to write a filter, BUbiNG con-
tains a number of filters ready to be used. The prefetch
filters include, for instance filters that accept only URLs
whose host ends with a certain string, or URLs whose path
ends with one of a given set of suffixes. The postfetch filters
include, for instance, filters accepting certain contain types,
or streams that appear to be binary.

Filters can be composed by means of Boolean operators
with a short-circuit semantics. Additionally, we provide a
parser that makes it possible creating filters by reflection.
An example of a textual description of a composed filter is:

(HostEndsWith(foo.bar) and not
ForbiddenHost(http://xxx.yyy/list-of-hosts))

or NoMoreSlashThan(10)

One filter, in particular, accepts only URLs whose path
does not contain too many duplicate segments. Indeed, it is
not uncommon to find URLs generated by badly configured
servers that look like http://.../foo/bar/foo/bar/.... Our
filter will not accept URLs containing a sequence of consecu-
tive segments appearing more times than a given threshold.
The implementation uses ideas from [20] to simulate a suffix-
tree visit on a suffix array, and the approach of [33], for the
linear-time detection of tandem arrays using suffix trees: the

resulting code is one order of magnitude faster than regu-
lar expressions. We observe that, for the same purpose of
avoiding bad URLs (of different kinds), it would be inter-
esting to add a filter implementing the DUSTER (Different
URL’s with Similar Text) technique [5].

3.9 Distributed crawling
BUbiNG crawling activity can be distributed by running

several agents over multiple machines. All agents are iden-
tical instances of BUbiNG, without any explicit leadership,
similarly to UbiCrawler [8]: all data structures described
above are part of each agent.

URL assignment to agent is entirely configurable. By de-
fault, BUbiNG uses just the host to assign a URL to an
agent, which avoids that two different agents can crawl the
same host at the same time. Moreover, since most hyperlinks
are relative, each agent will be himself responsible for the
large majority of URLs found in a typical HTML page [29].
Assignment of hosts to agent is performed using consistent
hashing [8].

Communication of URLs between agents is handled by
the message-passing methods of the JGroups Java library;
in particular, to make communication lightweight URLs are
by default distributed using UDP. More sophisticated com-
munications between the agents rely on the TCP-based JMX
Java standard remote-control mechanism, which exposes most
of the internal configuration parameters and statistics. Most
of the crawler structures are indeed modifiable at runtime,
including, for instance, the number of parsing, fetching and
DNS threads.

4. EXPERIMENTS
Testing a crawler is a delicate, intricate, arduous task:

on one hand, every real-world experiment is obviously in-
fluenced by the hardware at one’s disposal (in particular,
by the available bandwidth). Moreover, real-world tests are
difficult to repeat many times with varying parameters: you
will either end up disturbing the same sites over and over
again, or choosing to visit every time a different portion of
the web, with the risk of introducing artifacts in the evalu-
ation. Given these considerations, we ran two kinds of ex-
periments: one batch was performed in vitro with a HTTP
proxy5 simulating network connections towards the web and
generating fake HTML pages (with a configurable behavior
that includes delays, protocol exceptions etc.), and another
group of experiments were performed in vivo.

4.1 In vitro experiments
To verify the robustness of BUbiNG when varying some

basic parameters, such as the number of fetching threads
or the IP delay, we have run some in vitro simulations on
a group of four machines sporting 64 cores and 64 GB of
core memory. In all experiments, the number of parsing and
DNS threads has been fixed and set respectively to 64 and
10. The size of the workbench has been set to 512MB, while
the size of the sieve has been set to 256MB. Every in vitro
experiment was run for 90 minutes.

Fetching threads. The first thing we wanted to test was
that increasing the number of fetching threads produces a

5The proxy software is distributed along with the rest of
BUbiNG.



Resources Resources/s Speed in MB/s
Crawler Machines (Millions) overall per agent overall per agent

Nutch (ClueWeb09) 100 (Hadoop) 1 200 430 4.3 10 0.1
Heritrix (ClueWeb12) 5 2 300 300 60 19 3.9
IRLBot 1 6 380 1 790 1 790 40 40
BUbiNG (Milano) 3 650 2 200 735 96 32
BUbiNG (Pisa) 1 100 2 500 2 500 71 71
BUbiNG (Pisa) 4 37 5 400 1 350 168 42
BUbiNG (iStella) 1 115 3 700 3 700 135 135
BUbiNG (in vitro) 4 1 000 36 600 9 150 584 146

Table 1: Comparison between BUbiNG and the main existing open-source crawlers. Resources are HTML
pages for ClueWeb09 and IRLBot, but include other data types (e.g., images) for ClueWeb12. For reference,
we also report the throughput of IRLbot [22], although the latter is not open source. Note that ClueWeb09
was gathered using a heavily customized version of Nutch.
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Figure 3: The average number of pages per second
with respect to the number of threads using a sim-
ulated slow connection. Note the linear increase in
speed until the plateau, due to the limited (300)
number of threads of the simulator.

better usage of the network, and hence a larger number of re-
quests, until the bandwidth is saturated. The results of this
experiment are shown in Figure 3 and have been obtained by
having the proxy simulate a network that saturates quickly,
using no politeness delay. The behavior visible in the plot
tells us that the increase in the number of fetching threads
produces a linear increase in the number of requests until the
available (simulated) bandwidth is reached; after that, the
number of requests stabilizes to a plateau. Also this part of
the plot tells us something: after saturating the bandwidth,
we do not see any decrease in the throughput, witnessing the
fact that our infrastructure does not cause any hindrance to
the crawl.

Politeness. The experiment described so far uses a small
number of fetching threads, because the purpose was to show
what happens before saturation. Now we show what hap-
pens under a heavy load. Our second in vitro experiment
keeps the number of fetching threads fixed but increases the
amount of politeness, as determined by the IP delay. The
IP (respectively host) delay is a lower bound of the time be-
tween two successive requests to the same IP (respectively

host). In our simulations we varied the IP delay and always
set the host delay to be eight times the IP delay. We plot
BUbiNG’s throughput as the IP delay (hence the host delay)
increases in Figure 4 (top): to maintain the same through-
put, the front size (i.e., the number of hosts being visited
in parallel) must increase, as expected. Moreover, this is
independent on the number of threads (of course, until the
network is saturated). In the same Figure we show that the
average throughput is essentially independent from the po-
liteness (and from the number of fetching threads) and the
same is true of the CPU load. Even if this could seem sur-
prising, this is the natural consequence of the following two
observations:

• even with a small amount of fetching threads, BUbiNG
always tries to fill the bandwidth and to maximize the
computational resources;

• even varying the IP and host delay, BUbiNG modifies
the number of hosts under visit in order to tune the
interleaving between their processing.

Raw speed. Finally, we wanted to test the raw speed of a
cluster of BUbiNG agents. We thus ran four agents using a
larger workbench (2 GB) and 1000 fetching threads, IP delay
500 ms and host delay 4 s. We ran the agents until we gath-
ered one billion pages, averaging 36 600 pages per second on
the whole cluster. We also ran the same test on a single
machine, obtaining essentially the same per-machine speed,
showing that BUbiNG scales linearly with the number of
agents in the cluster.

4.2 In vivo experiments
We performed a number of experiments in vivo at different

sites. The main problem we had to face is that a single
BUbiNG agent on sizable hardware can saturate a 1 Gb/s
geographic link, so, in fact, we were not able to perform
any test in which the network was not capping the crawler.
Due to resource constraints, we decided to perform medium-
size experiments on a variety of architectures and network
connections. In the final version of the paper, we will report
data for longer-running experiments.

A first, longer experiment was performed at our univer-
sity (Milano): three BUbiNG agents using the same hard-
ware of the in vitro experiments gathered 650 million pages
from domains of the EU, but the connection was capped at
250 Mb/s. A second set of short-running experiments was
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Figure 4: The average size of the front, the aver-
age number of requests per second, and the average
CPU load with respect to the IP delay (the host de-
lay is set to eight times the IP delay). Note that
the front adapts linearly to the growth of the IP de-
lay, and, due to the essentially unlimited bandwidth
of the simulator, the number of fetching threads is
irrelevant.

performed at Università di Pisa, using slower hardware (24-
core, 24 GB RAM) capped at 1 Gb/s. Finally, iStella, an
Italian commercial search engine provided us with a 48-core,
512 GB RAM machine capped at 1 Gb/s.

The results confirm the knowledge we have gathered with
our in vitro experiment: in the iStella experiment we were
able to saturate the 1 Gb/s link using a single BUbiNG
agent. The two experiment at Pisa show a single, small-sized
agent being able to download 2 500 pages per second, using
about 2/3 of the available bandwidth, and three agents, sat-
urating the 1 Gb/s link, downloading 5 400 pages per second.
Finally, the long-running experiment at our university, albeit
slow in comparison, shows the steadiness of BUbiNG after a
large number of pages have been downloaded (see Figure 5).

5. COMPARISON
When comparing crawlers, many measures are possible,

and depending on the task at hand, different measures might
be suitable. For instance, crawling all types of data (CSS,
images, etc.) usually yields a significantly higher through-
out than crawling just HTML, as HTML pages are often
rendered dynamically, sometimes causing a significant delay,
whereas most other types are served statically. The crawling
policy has also a huge influence on the throughput: priori-
tizing by indegree (as IRLBot does [22]) or alternative im-
portance measure shifts most of the crawl on sites hosted on
powerful servers with large-bandwidth connection. Ideally,
crawler should be compared on a crawl with given number
of pages in breadth-first fashion from a fixed seed, but some
crawlers are not available to the public, which makes this
goal unattainable.

In this section, as a tradeoff, we briefly give some very sim-
ple comparison with recent crawls made for the ClueWeb
project: ClueWeb09 and ClueWeb12. The data used in
this comparison are those available in [12] along with those
found at http://lemurproject.org/clueweb09/ and http:

//boston.lti.cs.cmu.edu/crawler/crawlerstats.html: no-
tice that the data we have about those collections are some-
times slightly contradictory. We report the throughput de-
clared by IRLBot [22], too, albeit the latter is not open
source.

The results of the comparison are shown in Table 1: they
show quite clearly that the speed of BUbiNG is several
times that of IRLBot and one to two orders of magnitude
greater than that of Heritrix or Nutch. While the com-
parison with the ClueWeb09 crawl is somewhat unfair (the
hardware was “retired search-engine hardware”), it shows
the inherent slowness of batch, Hadoop-based crawlers. The
comparison with ClueWeb12 is more interesting, as the hard-
ware used was recent and very similar to the one used in the
Milano and in the in vitro experiment, sporting 64 GB of
core memory.

All in all, our experiments show that BUbiNG’s design
provides a very high throughput: indeed, from our compar-
ison, the highest throughput. The fact that the throughput
can be scaled linearly just by adding agents makes it by far
the fastest crawling system publicly available.

6. CONCLUSIONS
In this paper we have presented BUbiNG, our next-generation

distributed open-source Java crawler. BUbiNG is order of
magnitudes faster than existing open-source crawlers, scales



Figure 5: Network usage as reported by FlowViewer for the last 24 hours of the Milano experiment. Note
that constant network usage. The peak around midnight is due to an internal data transfer.

linearly with the number of agents, and will provide the sci-
entific community with a reliable tool to gather large data
sets: this is the reason why, in the first place, the develop-
ment of BUbiNG was financed in the framework of the EU-
FET grant NADINE (New Algorithms for DIrected NEt-
works).

Future work on BUbiNG includes integration with spam-
detection software, policies for IP/host politeness throttling
based on download times and site branching speed, and in-
tegration with different stores like HBase, HyperTable and
similar distributed storage systems.
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