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Abstract

This paper studies the distribution of a family of rankings, which includes Google’s PageR-
ank, on a directed configuration model. In particular, it is shown that the distribution of the
rank of a randomly chosen node in the graph converges in distribution to a finite random vari-
able R∗ that can be written as a linear combination of i.i.d. copies of the endogenous solution
to a stochastic fixed point equation of the form

R D=
N∑

i=1
CiRi +Q,

where (Q,N , {Ci}) is a real-valued vector with N ∈ {0, 1, 2, . . . }, P (|Q| > 0) > 0, and the {Ri}
are i.i.d. copies of R, independent of (Q,N , {Ci}). Moreover, we provide precise asymptotics
for the limit R∗, which when the in-degree distribution in the directed configuration model has
a power law imply a power law distribution for R∗ with the same exponent.

Kewywords: PageRank, ranking algorithms, directed configuration model, complex networks,
stochastic fixed-point equations, weighted branching processes, power laws.
2000 MSC: Primary: 05C80, 60J80, 68P20. Secondary: 41A60, 37A30, 60B10.

1 Introduction

Ranking of nodes according to their centrality, or importance, in a complex network such as the
Internet, the World Wide Web, and other social and biological networks, has been a hot research
topic for several years in physics, mathematics, and computer science. For a comprehensive overview
of the vast literature on rankings in networks we refer the reader to [27], and more recently to [7]
for a thorough up-to-date mathematical classification of centrality measures.
In this paper we analyze a family of ranking algorithms which includes Google’s PageRank, the
algorithm proposed by Brin and Page [10], and which is arguably the most influential technique for
computing rankings of nodes in large directed networks. The original definition of PageRank is the
following. Let Gn = (Vn, En) be a directed graph, with a set of (numbered) vertices Vn = {1, . . . , n},
and a set of directed edges En. Choose a constant c ∈ (0, 1), which is called a damping factor, and
let q = (q1, q2, . . . , qn) be a personalization probability vector, i.e., qi ≥ 0 and ∑n

i=1 qi = 1. Denote
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by di = |{j : (i, j) ∈ En}| the out-degree of node i ∈ Vn. Then the PageRank vector r = (r1, . . . , rn)
is the unique solution to the following system of linear equations:

ri =
∑

j:(j,i)∈En

c

dj
rj + (1− c)qi, i = 1, . . . , n. (1.1)

Google’s PageRank was designed to rank Web pages based on the network’s structure, rather than
their content. The idea behind (1.1) is that a page is important if many important pages have a
hyperlink to it. Furthermore, by tuning the personalization values, qi’s, one can, for instance, give
preference to specific topics [20] or penalize spam pages [19].
In the original definition, r is normalized so that ||r||1 = 1, where the norm ||x||1 = ∑n

i=1 |xi|
denotes the l1 norm in Rn. Since the average PageRank in r scales as O(1/n), it is more convenient
for our purposes to work with a scaled version of PageRank:

nr =: R = (R1, R2, . . . , Rn).

Then, also using the notation Cj for c/dj , and notation Qi for n(1− c)qi, we rewrite (1.1) to obtain

Ri =
∑

j:(j,i)∈En

Cj Rj +Qi, i = 1, . . . , n. (1.2)

Throughout the paper, we will refer to R as the PageRank vector and to Q = (Q1, Q2, . . . , Qn) as
the personalization vector.
The basic definition (1.1) has many modifications and generalizations. The analysis in this paper
will cover a wide range of them by allowing a general form of the coefficients in (1.2). For example,
our model admits a random damping factor as studied in [15]. Numerous applications of PageRank
and its modifications include graph clustering [5], spam detection [19], and citation analysis [13, 43].
In real-world networks, it is often found that the fraction of nodes with (in- or out-) degree k is
≈ c0k

−α−1, usually α ∈ (1, 3), see e.g., [10, 29]. Thus, a lot of research has been devoted to the
study of random graph models with highly skewed, or scale-free, degree distributions. By now,
classical examples are the Chung-Lu model [14], the Preferential Attachment model [9], and the
Configuration Model [35, Chapter 7]. New models continue to appear, tuned to the properties
of specific networks. For example, an interesting “super-star” model was recently developed to
describe retweet graphs [6]. We refer to [35, 17, 29] for a more detailed discussion of random graph
models for complex networks. In this paper we focus on the Directed Configuration Model as studied
in [11]. Originally, an (undirected) Configuration Model is defined as a graph, randomly sampled
from the set of graphs with a given degree sequence [8]. We emphasize that, to the best of our
knowledge, [11] is the only paper that formally addresses the directed version of the Configuration
Model and obtains its exact mathematical properties. We will provide more details in Section 3.
From the work of Pandurangan et al. [31], and many papers that followed, the following hypothesis
has always been confirmed by the data.
The power law hypothesis: If the in-degree distribution in a network follows a power law then
the PageRank scores in this network will also follow a power law with the same exponent.
The power law hypothesis is plausible because in (1.1) the number of terms in the summation on
the right-hand side is just the in-degree of i, so the in-degree provides a ‘mean-field’ approximation
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for PageRank [18]. However, this argument is not exact nor accurate enough, which is confirmed by
the fact that the top-ranked nodes in PageRank are not exactly those with the largest in-degrees
[13, 42, 38]. Exact mathematical evidence supporting the power law hypothesis is surprisingly
scarce. As one of the few examples, [26] obtains the power law behavior of average PageRank
scores in a preferential attachment graph by using Polya’s urn scheme and advanced numerical
methods.
In a series of papers, Volkovich et al. [28, 41, 40] suggested an analytical explanation for the
power law behavior of PageRank by comparing the PageRank of a randomly chosen node to the
endogenous solution of a stochastic fixed point equation (SFPE) that mimics (1.2):

R
D=

N∑
i=1

CiRi +Q. (1.3)

Here N (in-degree) is a nonnegative integer random variable having a power law distribution with
exponent α, Q (personalization) is an arbitrary positive random variable, and the Ci’s are random
coefficients that in [40] equal c/Di, with Di being the out-degree of a node provided Di ≥ 1. The
symbol D= denotes equality in distribution. Assuming that N is regularly varying and using Laplace
transforms, it was proved in [40] that R has a power law with the same exponent as N if N has
a heavier tail than Q, whereas the tail of R is determined by Q if it is heavier than N . The same
result was also proved independently in [22] using a sample-path approach.
The properties of equation (1.3) and the study of its multiple solutions has itself been an interesting
topic in the recent literature [4, 22, 24, 23, 30, 2], and is related to the broader study of weighted
branching processes (WBPs) [32, 33, 34]. The tail behavior of the endogenous solution, the one
relevant to PageRank, was given in [22, 24, 23, 30]. In particular, in [22] it was discovered that when
the Ci’s are not bounded by one and there exists a positive root to the equation E

[∑N
i=1 |Ci|α

]
= 1

with 0 < E
[∑N

i=1 |Ci|α log |Ci|
]
< ∞, then R will have a power law tail with exponent α; the

main tool for this type of analysis is the implicit renewal theory on trees developed there and later
extended in [24, 23] to study (1.3) in its full generality.
However, the SFPE does not fully explain the behavior of PageRank in networks since it implicitly
assumes that the underlying graph is an infinite tree, a condition that is never true in real-world
networks. In this work we complete the argument when the underlying network is a Directed
Configuration Model by showing that the distribution of the PageRank in the graph converges
to the endogenous solution of a SFPE. Our techniques are likely to be useful in the analysis of
PageRank in other locally tree-like graphs.
The essential theoretical contribution of this work is two-fold. First, we prove that the PageRank
in the Directed Configuration Model is well approximated by the endogenous solution to a specific
SFPE of the same type as (1.3). Second, we develop a methodology to analyze processes on graphs
based on a coupling with a new type of stochastic process: a weighted branching process. Due to
the presence of weights, couplings with weighted branching processes are more complex compared
to traditional couplings with standard branching processes, and therefore, our approach may be of
independent interest.
In Section 2 we describe our main results, outline the methodology, and provide an overview of the
rest of the paper.
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2 Overview of the paper

Although a rigorous presentation of the main result in the paper requires a significant amount of
notation, we provide here a somewhat imprecise version that still captures the essence of our work.
The paper is written according to the different steps needed in the proof of the main result, outlined
in Section 2.2, and the precise statement can be found in Section 6.2.

2.1 An overview of the main result

Let Gn = (Vn, En) be a directed graph. We number the nodes Vn = {1, 2, . . . , n} in an arbitrary
fashion and let R1 =: R(n)

1 denote the PageRank of node 1, as defined by (1.2). The in-degree of
node 1 is then a random variable N1 picked uniformly at random from the in-degrees of all n nodes
in the graph (i.e., from the empirical distribution). Next, we use the notation Ni+1 to denote the
in-degree of the ith inbound neighbor of node 1 (i.e., (i + 1, 1) ∈ En), and note that although the
{Ni}i≥2 have the same distribution, it is not necessarily the same of N1 since their corresponding
nodes implicitly have one or more out-degrees. More precisely, the distribution of the {Ni}i≥2 is an
empirical size-biased distribution where nodes with high out-degrees are more likely to be chosen.
The two distributions can be significantly different when the number of dangling nodes (nodes with
zero out-degrees) is a positive fraction of n and their in-degree distribution is different than that of
nodes with one or more out-degrees. Similarly, let Q1 and {Qi}i≥2 denote the personalization values
of node 1 and of its neighbors, respectively, and let {Ci}i≥2 denote the coefficients, or weights, of
the neighbors.
As already mentioned, we will assume throughout the paper that Gn is constructed according
to the Directed Configuration Model (DCM). To briefly explain the construction of the DCM
consider a bi-degree sequence (Nn,Dn) = {(Ni, Di) : 1 ≤ i ≤ n} of nonnegative integers satisfying∑n
i=1Ni = ∑n

i=1Di. To draw the graph think of each node, say node i, as having Ni inbound
and Di outbound half-edges or stubs, then pair each of its inbound stubs with a randomly chosen
outbound stub from the set of unpaired outbound stubs (see Section 3 for more details). The
resulting graph is in general what is called a multigraph, i.e., it can have self-loops and multiple
edges in the same direction.
Our main result requires us to make some assumptions on the bi-degree sequence used to construct
the DCM, as well as on the coefficients {Ci} and the personalization values {Qi}, which we will refer
to as the extended bi-degree sequence. The first set of assumptions (see Assumption 5.1) requires
the existence of certain limits in the spirit of the weak law of large numbers, including 1

n

∑n
i=1D

2
i

to be bounded in probability (which essentially imposes a finite variance on the out-degrees). This
first assumption will ensure the local tree-like structure of the graph. The second set of assumptions
(see Assumption 6.2) requires the convergence of certain empirical distributions, derived from the
extended bi-degree sequence, to proper limits as the graph size goes to infinity. This type of weak
convergence assumption is typical in the analysis of random graphs [35]. We point out that the
two sets of assumptions mentioned above are rather weak, and therefore our result is very general.
Moreover, as an example, we provide in Section 7 an algorithm to generate an extended bi-degree
sequence from a set of prescribed distributions that satisfies both assumptions.
To state our main result let (N0,Q0) and (N ,Q, C) denote the weak limits of the joint random
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distributions of (N1, Q1) and (N2, Q2, C2), respectively, as defined in Assumption 6.2. Let R denote
the endogenous solution to the following SFPE:

R D=
N∑
j=1
CjRj +Q, (2.1)

where {Ri} are i.i.d. copies of R, independent of (N ,Q, {Ci}), and with {Ci} i.i.d. and independent
of (N ,Q). Our main result establishes that under the assumptions mentioned above, we have that

R
(n)
1 ⇒ R∗, n→∞,

where ⇒ denotes weak convergence and R∗ is given by

R∗ :=
N0∑
j=1
CjRj +Q0, (2.2)

where the {Ri} are again i.i.d. copies of R, independent of (N0,Q0, {Ci}), and with {Ci} indepen-
dent of (N0,Q0). Thus, R(n)

1 is well approximated by a linear combination of endogenous solutions
of a SFPE. Here R∗ represents the PageRank of node 1, and the Ri’s represent the PageRank of
its inbound neighbors. We give more details on the explicit construction of R and comment on
why it is called the “endogenous” solution in Section 6. Furthermore, since R has been thoroughly
studied in the weighted branching processes literature, we can establish the power law behavior of
PageRank in a wide class of DCM graphs.

2.2 Methodology

As mentioned earlier, the proof of our main result is given in several steps, each of them requiring
a very different type of analysis. For the convenience of the reader, we include in this section a
map of these steps.
We start in Section 3 by describing the DCM, which on its own does not require any assumptions
on the bi-degree sequence. Then, in Section 4 we define a class of ranking algorithms, of which
PageRank and its various modifications are special cases. These algorithms produce a vector R(n)

that is a solution to a linear system of equations, where the coefficients are the weights {Ci} assigned
to the nodes. For example, in the classical PageRank scenario, we have Ci = c/Di, if Di 6= 0.
The proof of the main result consists of the following three steps:

1. Finite approximation (Section 4.2). Show that the class of rankings that we study can be
approximated in the DCM with any given accuracy by a finite (independent of the graph size
n) number of matrix iterations. The DCM plays a crucial role in this step since it implies
that the ranks of all the nodes in the graph have the same distribution. A uniform bound on
the sequence {CiDi} is required to provide a suitable rate of convergence.

2. Coupling with a tree (Section 5). Construct a coupling of the DCM graph and a “thorny
branching tree” (TBT). In a TBT each node with the exception of the root has one outbound
link to its parent and possibly several other unpaired outbound links. During the construction,
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all nodes in both the graph and the tree are also assigned a weight Ci. The main result in
this section is the Coupling Lemma 5.4, which states that the coupling between the graph
and the tree will hold for a number of generations in the tree that is logarithmic in n. The
locally tree-like property of the DCM and our first set of assumptions (Assumption 5.1) on
the bi-degree sequence are important for this step.

3. Convergence to a weighted branching process (Section 6). Show that the rank of the root node
of the TBT converges weakly to (2.2). This last step requires the weak convergence of the
random distributions that define the TBT in the previous step (Assumption 6.2).

Finally, Section 7 gives an algorithm to construct an extended bi-degree sequence satisfying the
two main assumptions. The technical proofs are postponed to Section 8.

3 The directed configuration model

The Configuration Model (CM) was originally defined as an undirected graph sampled uniformly at
random from the collection of graphs with a given degree sequence [8]. In order to ensure a desired
degree distribution, one may generate an i.i.d. degree sequence sampled from this distribution, see
[35, Section 7.6]. In this case each node receives a random number of half-edges, or stubs, and
then the stubs are paired uniformly at random. The resulting graph is, in general, a multi-graph,
because two stubs of the same node may form an edge (self-loop), or a node may have two or more
stubs connected to the same other node (multiple edges). There are two ways to create a simple
graph. In the repeated CM, the pairing is repeated until a simple graph is obtained. This will occur
with positive probability if the degrees have finite variance, see [35, Section 7.6.]. In the erased CM
self-loops and double-edges are removed. In the erased CM, the degree sequence is altered because
of edge removal, but the distribution of the original degree sequence is preserved asymptotically
under very general conditions, see again [35, Section 7.6]. A literature review and discussion of the
undirected CM is provided in [35, Section 7.9].
While the undirected CM has been thoroughly studied, a formal analysis of the Directed Configu-
ration Model (DCM) with given in- and out-degree distributions has only been recently presented
by Chen and Olvera-Cravioto [11]. The crucial difference compared to the undirected case is that
now we have a bi-degree sequence, i.e., a pair of sequences of nonnegative integers determining the
in- and out-degrees of the nodes. Note that the sums of the in-degrees must be equal to that of
the out-degrees for one to be able to draw a graph. The difficulty and originality of the DCM is
that sums of i.i.d. in- and out-degrees will only be equal with a probability converging to zero as
the size of the graph grows. To circumvent this problem, the algorithm given in [11], and included
in Section 7 in this paper, forces the sums to match by adding the necessary half-edges in such a
way that the degree distributions are essentially unchanged.
In order to analyze the distribution of ranking scores on the DCM we also need other node attributes
besides the in- and out-degrees, such as the coefficients and the personalization values. With this
in mind we give the following definition.

Definition 3.1 We say that the sequence (Nn,Dn,Cn,Qn) = {(Ni, Di, Ci, Qi) : 1 ≤ i ≤ n} is an
extended bi-degree sequence if for all 1 ≤ i ≤ n it satisfies Ni, Di ∈ N = {0, 1, 2, 3, . . . }, Qi, Ci ∈ R,
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and is such that
Ln :=

n∑
i=1

Ni =
n∑
i=1

Di.

In this case, we call (Nn,Dn) a bi-degree sequence.

Formally, the DCM can be defined as follows.

Definition 3.2 Let (Nn,Dn) be a bi-degree sequence and let Vn = {1, 2, . . . , n} denote the nodes
in the graph. To each node i assign Ni inbound half-edges and Di outbound half-edges. Enumerate
all Ln inbound half-edges, respectively outbound half-edges, with the numbers {1, 2, . . . , Ln}, and let
xn = (x1, x2, . . . , xLn) be a random permutation of these Ln numbers, chosen uniformly at random
from the possible Ln! permutations. The DCM with bi-degree sequence (Nn,Dn) is the directed
graph Gn = (Vn, En) obtained by pairing the xith outbound half-edge with the ith inbound half-edge.

We point out that instead of generating the permutation xn of the outbound half-edges up front, one
could alternatively construct the graph in a breadth-first fashion, by pairing each of the inbound
half-edges, one at a time, with an outbound half-edge, randomly chosen with equal probability
from the set of unpaired outbound half-edges. In Section 5 we will follow this approach while
simultaneously constructing a coupled TBT.
We emphasize that the DCM is, in general, a multi-graph. It was shown in [11] that the random
pairing of inbound and outbound half-edges results in a simple graph with positive probability
provided both the in-degree and out-degree distributions possess a finite variance. In this case, one
can obtain a simple realization after finitely many attempts, a method we refer to as the repeated
DCM, and this realization will be chosen uniformly at random from all simple directed graphs
with the given bi-degree sequence. Furthermore, if the self-loops and multiple edges in the same
direction are simply removed, a model we refer to as the erased DCM, the degree distributions will
remain asymptotically unchanged.
For the purposes of this paper, self-loops and multiple edges in the same direction do not affect the
main convergence result for the ranking scores, and therefore we do not require the DCM to result
in a simple graph. A similar observation was made in the paper by van der Hofstad et al. [36] when
analyzing distances in the undirected CM.
Throughout the paper, we will use Fn = σ((Nn,Dn,Cn,Qn)) to denote the sigma algebra gen-
erated by the extended bi-degree sequence, which does not include information about the random
pairing. To simplify the notation, we will use Pn(·) = P (·|Fn) and En[·] = E[·|Fn] to denote the
conditional probability and conditional expectation, respectively, given Fn.

4 Spectral ranking algorithms

In this section we introduce the class of ranking algorithms that we analyze in this paper. Following
the terminology from [7], these algorithms belong to the class of spectral centrality measures, which
‘compute the left dominant eigenvector of some matrix derived from the graph’. We point out that
the construction of the matrix of weights and the definition of the rank vector that we give in
Section 4.1 is not particular to the DCM.
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4.1 Definition of the rank vector

The general class of spectral ranking algorithms we consider are determined by a matrix of weights
M = M(n) ∈ Rn×n and a personalization vector Q ∈ Rn. More precisely, given a directed graph
with (Nn,Dn,Cn,Qn) as its extended bi-degree sequence, we define the (i, j)th component of
matrix M as follows:

Mi,j =
{
sijCi, if there are sij edges from i to j,
0, otherwise.

(4.1)

The rank vector R = (R1, . . . , Rn) is then defined to be the solution to the system of equations

R = RM + Q. (4.2)

Remark 4.1 In the case of the PageRank algorithm, Ci = c/Di, Qi = 1 − c for all i, and the
constant 0 < c < 1 is the so-called damping factor.

4.2 Finitely many iterations

To solve the system of equations given in (4.2) we proceed via matrix iterations [27]. To initialize
the process let 1 be the (row) vector of ones in Rn and let r0 = r01, with r0 ∈ R. Define

R(n,0) = r0,

and for k ≥ 1,

R(n,k) = r0M
k +

k−1∑
i=0

QM i.

With this notation, we have that the solution R to (4.2), provided it exists, can be written as

R = R(n,∞) =
∞∑
i=0

QM i.

We are interested in analyzing a randomly chosen coordinate of the vector R(n,∞). The first step, as
described in Section 2.2, is to show that we can do so by using only finitely many matrix iterations.
To this end note that

R(n,k) −R(n,∞) = r0M
k −

∞∑
i=k

QM i =
(

r0 −
∞∑
i=0

QM i

)
Mk.

Moreover, ∣∣∣∣∣∣R(n,k) −R(n,∞)
∣∣∣∣∣∣

1
≤
∣∣∣∣∣∣r0M

k
∣∣∣∣∣∣

1
+
∞∑
i=0

∣∣∣∣∣∣QMk+i
∣∣∣∣∣∣

1
.
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Next, note that for any row vector y = (y1, y2, . . . , yn),

||yM r||1 ≤
n∑
j=1
|y(M r)•j | ≤

n∑
j=1

n∑
i=1
|yi(M r)ij |

=
n∑
i=1
|yi|

n∑
j=1
|(M r)ij | =

n∑
i=1
|yi| · ||M r

i•||1

≤ ||y||1 ||M r||∞ ,

where Ai• and A•j are the ith row and jth column, respectively, of matrix A, and ||A||∞ =
max1≤i≤n ||Ai•||1 is the operator infinity norm. It follows that if we assume that max1≤i≤n |Ci|Di ≤
c for some c ∈ (0, 1), then we have

||M r||∞ ≤ ||M ||r∞ =
(

max
1≤i≤n

|Ci|Di

)r
≤ cr.

In this case we conclude that∣∣∣∣∣∣R(n,k) −R(n,∞)
∣∣∣∣∣∣

1
≤ ||r0||1ck +

∞∑
i=0
||Q||1ck+i

= |r0|nck + ||Q||1
ck

1− c .

Now note that all the coordinates of the vector R(n,k) −R(n,∞) have the same distribution, since
by construction, the configuration model makes all permutations of the nodes’ labels equally likely.
Hence, the randomly chosen node may as well be the first node, and the error that we make by
considering only finitely many iterations in its approximation is bounded in expectation by

En
[∣∣∣R(n,k)

1 −R(n,∞)
1

∣∣∣] = 1
n
En
[∣∣∣∣∣∣R(n,k) −R(n,∞)

∣∣∣∣∣∣
1

]
≤ |r0|ck + En [||Q||1] ck

n(1− c)

=
(
|r0|+

1
n(1− c)

n∑
i=1
|Qi|

)
ck.

It follows that if we let
Bn =

{
max

1≤i≤n
|Ci|Di ≤ c,

1
n

n∑
i=1
|Qi| ≤ H

}
(4.3)
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for some constants c ∈ (0, 1) and H <∞, then Markov’s inequality yields

P
(∣∣∣R(n,k)

1 −R(n,∞)
1

∣∣∣ > n−ε
∣∣∣Bn)

= 1
P (Bn)E

[
1(Bn)En

[
1
(∣∣∣R(n,k)

1 −R(n,∞)
1

∣∣∣ > n−ε
)]]

≤ 1
P (Bn)E

[
1(Bn)nεEn

[∣∣∣R(n,k)
1 −R(n,∞)

1

∣∣∣]]
≤
(
|r0|+

1
1− cE

[
1
n

n∑
i=1
|Qi|

∣∣∣∣∣Bn
])

nεck

≤
(
|r0|+

H

1− c

)
nεck. (4.4)

We have thus derived the following result.

Proposition 4.2 Consider the directed configuration graph generated by the extended bi-degree
sequence (Nn,Dn,Cn,Qn) and let Bn be defined according to (4.3). Then, for any xn → ∞ and
any k ≥ 1, we have

P
(∣∣∣R(n,∞)

1 −R(n,k)
1

∣∣∣ > x−1
n

∣∣∣Bn) = O
(
xnc

k
)

as n→∞.

This completes the first step of our approach. In the next section we will explain how to couple
the graph, as seen from a randomly chosen node, with an appropriate branching tree.

5 Construction of the graph and coupling with a branching tree

The next step in our approach is to approximate the distribution of R(n,k)
1 with the rank of the

root node of a suitably constructed branching tree. To ensure that we can construct such a tree we
require the extended bi-degree sequence to satisfy some further properties with high probability.
These properties are summarized in the following assumption.

Assumption 5.1 Let (Nn,Dn,Cn,Qn) be an extended bi-degree sequence for which there exists
constants H, νi > 0, i = 1, . . . , 5, with

µ := ν2/ν1, λ := ν3/ν1 and ρ := ν5µ/ν1 < 1,
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0 < κ ≤ 1, and 0 < c, γ, ε < 1 such that the events

Ωn,1 =
{∣∣∣∣∣

n∑
r=1

Dr − nν1

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,2 =
{∣∣∣∣∣

n∑
r=1

DrNr − nν2

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,3 =
{∣∣∣∣∣

n∑
r=1

D2
r − nν3

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,4 =
{∣∣∣∣∣

n∑
r=1

D2+κ
r − nν4

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,5 =
{∣∣∣∣∣

n∑
r=1
|Cr|Dr − nν5

∣∣∣∣∣ ≤ n1−γ , max
1≤r≤n

|Cr|Dr ≤ c
}
,

Ωn,6 =
{

n∑
r=1
|Qr| ≤ Hn

}
,

satisfy as n→∞,

P (Ωc
n) = P

(( 6⋂
i=1

Ωn,i

)c)
= O

(
n−ε

)
.

It is clear from (4.3) that Ωn ⊆ Bn, hence Proposition 4.2 holds under Assumption 5.1. We also
point out that all six conditions in the assumption are in the spirit of the Weak Law of Large
Numbers, and are therefore general enough to be satisfied by many different constructions of the
extended bi-degree sequence. As an example, we give in Section 7 an algorithm based on sequences
of i.i.d. random variables that satisfies Assumption 5.1.
In Sections 5.1–5.4 we describe in detail how to construct a coupling of the directed graph Gn and its
approximating branching tree. We start by explaining the terminology and notation in Section 5.1,
followed by the construction itself in Section 5.2. Then, in Section 5.3 we present the Coupling
Lemma 5.4, which is the main result of Section 5. Finally, Section 5.4 explains how to compute the
rank of the root node in the coupled tree.

5.1 Terminology and notation

Throughout the remainder of the paper we will interchangeably refer to the {Ni} as the in-
degrees/number of offspring/number of inbound stubs, to the {Di} as the out-degrees/number
of outbound links/number of outbound stubs, to the {Ci} as the weights, and to the {Qi} as the
personalization values. We will refer to these four characteristics of a node as the node attributes.
The fact that we are working with a directed graph combined with the presence of weights, means
that we need to use a more general kind of tree in our coupling than the standard branching
process typically used in the random graph literature. To this end, we will define a process we
call a Thorny Branching Tree (TBT), where each individual (node) in the tree has a directed edge
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pointing towards its parent, and also a certain number of unpaired outbound links (pointing, say,
to an artificial node outside of the tree). The name ‘thorny’ is due to these unpaired outbound
links, see Figure 1. We point out that the structure of the tree (i.e., parent-offspring relations) is
solely determined by the number of offspring.

Figure 1: Graph construction process. Unpaired outbound links are in blue.

The simpler structure of a tree compared to a general graph allows for a more natural enumeration
of its nodes. As usually in the context of branching processes, we let each node in the TBT have
a label of the form i = (i1, i2, . . . , ik) ∈ U , where U = ⋃∞

k=0(N+)k is the set of all finite sequences
of positive integers. Here, the convention is that N0

+ = {∅} contains the null sequence ∅. Also, for
i = (i1) we simply write i = i1, that is, without the parenthesis. Note that this form of enumeration
gives the complete lineage of each individual in the tree.
We will use the following terminology and notation throughout the paper.

Definition 5.2 We say that a node i in the graph (resp. TBT) is at distance k of the first (resp.
root) node if it can reach the first (resp. root) node in k steps, but not in any less than k steps.

In addition, for r ≥ 0, we define on the graph/tree the following processes:

• Ar: set of nodes in the graph at distance r of the first node.
• Âr: set of nodes in the tree at distance r of the root node (Âr is also the set of nodes in the
rth generation of TBT, with the root node being generation zero).
• Zr: number of inbound stubs of all the nodes in the graph at distance r of the first node

(Zr ≥ |Ar+1|).
• Ẑr: number of inbound stubs of all the nodes in generation r of the TBT (Ẑr = |Âr+1|).
• Vr: number of outbound stubs of all the nodes in the graph at distance r of the first node.
• V̂r: number of outbound stubs of all the nodes in generation r of the TBT.

Finally, given the extended bi-degree sequence (Nn,Dn,Cn,Qn), we introduce two empirical distri-
butions that will be used in the construction of the coupling. The first one describes the attributes
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of a randomly chosen node:

f∗n(i, j, s, t) =
n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t)Pn(node k is sampled)

= 1
n

n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t). (5.1)

The second one, corresponds to the attributes of a node that is chosen by sampling uniformly at
random from all the Ln outbound stubs:

fn(i, j, s, t) =
n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t)Pn(an outbound stub from node k is sampled)

=
n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t)Dk

Ln
. (5.2)

Note that this is a size-biased distribution, since nodes with more outbound stubs are more likely
to be chosen, whereas nodes with no outbound stubs (dangling nodes) cannot be chosen.

5.2 Construction of the coupling

Given an extended bi-degree sequence (Nn,Dn,Cn,Qn) we now explain how to construct the graph
Gn and its coupled TBT through a breadth-first exploration process. From this point onwards we
will ignore the implicit numbering of the nodes in the definition of the extended bi-degree sequence
and rename them according to the order in which they appear in the graph exploration process.
To keep track of which outbound stubs have already been matched we borrow the approach used
in [36] and label them 1, 2, or 3 according to the following rules:

1. Outbound stubs with label 1 are stubs belonging to a node that is not yet attached to the graph.
2. Outbound stubs with label 2 belong to nodes that are already part of the graph but that have

not yet been paired with an inbound stub.
3. Outbound stubs with label 3 are those which have already been paired with an inbound stub

and now form an edge in the graph.

The graph Gn is constructed as follows. Right before the first node is sampled, all outbound stubs
are labeled 1. To start the construction of the graph, we choose randomly a node (all nodes with the
same probability) and call it node 1. The attributes of this first node, denoted by (N1, D1, C1, Q1),
are sampled from distribution (5.1).
After the first node is chosen, its D1 outbound stubs are labeled 2. We then proceed to pair the
first of the Z0 = N1 inbound stubs of the first node with a randomly chosen outbound stub. The
corresponding node is attached to the graph by forming an edge pointing to node 1 using the chosen
outbound stub, which receives a label 3, and all the remaining outbound stubs from the new node
are labeled 2. Note that it is possible that the chosen node is node 1 itself, in which case the
pairing forms a self-loop and no new nodes are added to the graph. We continue in this way until
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all Z0 inbound stubs of node 1 have been paired with randomly chosen outbound stubs. Since these
outbound stubs are sampled independently and with replacement from all the possible Ln outbound
stubs, this corresponds to drawing the node attributes independently from the random distribution
(5.2). Note that in the construction of the graph any unfeasible matches will be discarded, and
therefore the attributes of nodes in Gn do not necessarily have distribution (5.2), but rather have
the conditional distribution given the pairing was feasible. We will use the vector (Ni, Di, Ci, Qi)
to denote the attributes of the ith node to be added to the graph.
In general, the kth iteration of this process is completed when all Zk−1 inbound stubs have been
matched with an outbound stub, and the corresponding node attributes have been assigned. The
process ends when all Ln inbound stubs have been paired. Note that whenever an outbound stub
with label 2 is chosen a cycle or a double edge is formed in the graph.
Next, we explain how the TBT is constructed. To distinguish the attribute vectors of nodes in the
TBT from those of nodes in the graph, we denote them by (N̂i, D̂i, Ĉi, Q̂i), i ∈ U . We start with
the root node (node ∅) that has the same attributes as node 1 in the graph: (N̂∅, D̂∅, Ĉ∅, Q̂∅) ≡
(N1, D1, C1, Q1), sampled from distribution (5.1). Next, for k ≥ 1, each of the Ẑk−1 individuals in
the kth generation will independently have offspring, outbound stubs, weight and personalization
value according to the joint distribution fn(i, j, s, t) given by (5.2).
Now, we explain how the coupling with the graph, i.e., the simultaneous construction of the graph
and the TBT, is done.

1) Whenever an outbound stub is sampled randomly in an attempt to add an edge to Gn,
then, independently of the stub’s label, a new offspring is added to the TBT. This is done
to maintain the branching property (i.i.d. node attributes). In particular, if the chosen
outbound stub belongs to node j, then the new offspring in the TBT will have Dj−1 outbound
stubs (which will remain unpaired), Nj inbound stubs (number of offspring), weight Cj , and
personalization value Qj .

2) If an outbound stub with label 1 is chosen, then both the graph and the TBT will connect the
chosen outbound stub to the inbound stub being matched, resulting in a node being added
to the graph and an offspring being born to its parent. We then update the labels by giving
a 2 label to all the ‘sibling’ outbound stubs of the chosen outbound stub, and a 3 label to the
chosen outbound stub itself.

3) If an outbound stub with label 2 is chosen it means that its corresponding node already
belongs to the graph, and a cycle, self-loop, or multiple edge is created. We then relabel the
chosen outbound stub with a 3. An offspring is born in the TBT according to 1).

4) If an outbound stub with label 3 is chosen it means that the chosen outbound stub has already
been matched. In terms of the construction of the graph, this case represents a failed attempt
to match the current inbound stub, and we have to keep sampling until we draw an outbound
stub with label 1 or 2. Once we do so, we update the labels according to the rules given
above. An offspring is born in the TBT according to 1).

Note that as long as we do not sample any outbound stub with label 2 or 3, the graph Gn and
the TBT are identical. Once we draw the first outbound stub with label 2 or 3 the processes Zk
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and Ẑk may start to disagree. The moment this occurs we say that the coupling has been broken.
Nonetheless, we will continue with the pairing process following the rules given above until all Ln
inbound stubs have been paired. The construction of the TBT also continues in parallel by keeping
the synchronization of the pairing whenever the inbound stub being matched belongs to a node
that is both in the graph and the tree. If the pairing of all Ln inbound stubs is completed after k
iterations of the process, then we will have completed k generations in the TBT. Moreover, up to
the time the coupling breaks, a node i ∈ Âk is also the jth node to be added to the graph, where:

j = 1 +
k−2∑
r=0

Ẑr +
ik−1−1∑
s=1

N̂(i1,...,ik−2,s) + ik,

with the convention that ∑b
r=a xr = 0 if b < a.

Definition 5.3 Let τ be the number of generations in the TBT that can be completed before the
first outbound stub with label 2 or 3 is drawn, i.e., τ = k if and only if the first inbound stub to
draw an outbound stub with label 2 or 3 belonged to a node i ∈ Âk.

The main result in this section consists in showing that provided the extended bi-degree sequence
(Nn,Dn,Cn,Qn) satisfies Assumption 5.1, the coupling breaks only after a number of generations
that is of order logn, which combined with Proposition 4.2 will allow us to approximate the rank
of a randomly chosen node in the graph with the rank of the root node of the coupled TBT.

5.3 The coupling lemma

It follows from the construction in Section 5.2 that, before the coupling breaks, the neighborhood
of node 1 in Gn and of the root node in the TBT are identical. Recall also from Proposition 4.2 that
we only need a finite number k of matrix iterations to approximate the elements of the rank vector
to any desired precision. Furthermore, the weight matrix M is such that the elements (M r)i,1,
1 ≤ i ≤ n, 1 ≤ r ≤ k, depend only on the k-neighborhood of node 1. Hence, if the coupling holds
for τ > k generations, then the rank score of node 1 in Gn is exactly the same as that of the root
node of the TBT restricted to those same k generations. The following coupling lemma will allow
us to complete the appropriate number of generations in the tree to obtain the desired level of
precision in Proposition 4.2. Its proof is rather technical and is therefore postponed to Section 8.1.

Lemma 5.4 Suppose (Nn,Dn,Cn,Qn) satisfies Assumption 5.1. Then,

• for any 1 ≤ k ≤ h logn with 0 < h < 1/(2 logµ), if µ > 1,

• for any 1 ≤ k ≤ nb with 0 < b < min{1/2, γ}, if µ ≤ 1,

we have

P (τ ≤ k|Ωn) =


O
(
(n/µ2k)−1/2

)
, µ > 1,

O
(
(n/k2)−1/2

)
, µ = 1,

O
(
n−1/2

)
, µ < 1,

as n→∞.
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Remark 5.5 The constant µ was defined in Assumption 5.1, and it corresponds to the limiting
expected number of offspring that each node in the TBT (with the exception of the root node) will
have. The coupling between the graph and the TBT will hold for any µ > 0.

We conclude from Lemma 5.4 that if R̂(n,k) := R̂
(n,k)
∅ denotes the rank of the root node of the TBT

restricted to the first k generations, then, for any δ > 0,

P
(∣∣∣R(n,k)

1 − R̂(n,k)
∣∣∣ > n−δ

∣∣∣Ωn

)
≤ P (τ < k|Ωn) := ϕ(k, n).

Note that the super index n does not refer to the number of nodes in the tree, and is being used
only in the definition of the distributions f∗n and fn (given in (5.1) and (5.2), respectively).
This observation, combined with Proposition 4.2, implies that if we let kn = dh logne, when µ > 1,
and kn = nε, when µ ≤ 1, where h = (1− ε)/(2 logµ) and 0 < ε < min{1/3, γ}, then

P
(∣∣∣R(n,∞)

1 − R̂(n,kn)
∣∣∣ > n−δ

∣∣∣Ωn

)
≤ P

(∣∣∣R(n,∞)
1 −R(n,kn)

1

∣∣∣ > n−δ/2
∣∣∣Ωn

)
+ P

(∣∣∣R(n,kn)
1 − R̂(n,kn)

∣∣∣ > n−δ/2
∣∣∣Ωn

)
= O

(
nδckn + ϕ(kn, n)

)
= O

(
nδ−h| log c| + n−ε/2

)
. (5.3)

In view of (5.3), analyzing the distribution of R(n,k)
1 in the graph reduces to analyzing the rank of

the root node of the coupled TBT, R̂(n,k). In the next section, we compute R̂(n,k) by relating it to
a linear process constructed on the TBT.

5.4 Computing the rank of nodes in the TBT

In order to compute R̂(n,k) we need to introduce a new type of weights. To simplify the notation,
for i = (i1, . . . , ik) we will use (i, j) = (i1, . . . , ik, j) to denote the index concatenation operation; if
i = ∅, then (i, j) = j. Each node i is then assigned a weight Π̂i according to the recursion

Π̂∅ ≡ 1 and Π̂(i,j) = Π̂iĈ(i,j), i ∈ U .

Note that the Π̂i’s are the products of all the weights Ĉj along the path leading to node i, as
depicted in Figure 2.

Next, for each fixed k ∈ N and each node i in the TBT define R̂(n,k)
i to be the rank of node i

computed on the subtree that has i as its root and that is restricted to having only k generations,
with each of the |Âk| nodes having rank r0. In mathematical notation,

R̂
(n,k)
i =

N̂i∑
j=1

Ĉ(i,j)R̂
(n,k−1)
(i,j) + Q̂i, k ≥ 1, R̂

(n,0)
j = r0. (5.4)
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Π̂ = 1

Π̂1 = Ĉ1 Π̂2 = Ĉ2 Π̂3 = Ĉ3

Π̂(1,1) = Ĉ(1,1)Ĉ1

Π̂(1,2) = Ĉ(1,2)Ĉ1

Π̂(2,1) = Ĉ(2,1)Ĉ2

Π̂(3,1) = Ĉ(3,1)Ĉ3

Π̂(3,2) = Ĉ(3,2)Ĉ3

Π̂(3,3) = Ĉ(3,3)Ĉ3

Figure 2: Weighted tree.

Iterating (5.4) gives

R̂(n,k) =
∑
i∈Â1

Π̂iR̂
(n,k−1)
i + Q̂∅ =

∑
i∈Â1

Π̂i

 N̂i∑
j=1

Ĉ(i,j)R̂
(n,k−2)
(i,j) + Q̂i

+ Q̂∅

=
∑
i∈Â2

Π̂iR̂
(n,k−2)
i +

∑
i∈Â1

Π̂iQ̂i + Q̂∅ = · · · =
∑

i∈Âk

Π̂ir0 +
k−1∑
s=0

∑
i∈Âs

Π̂iQ̂i. (5.5)

The last step in our proof of the main result is to identify the limit of R̂(n,kn) as n → ∞, for a
suitable chosen kn →∞. This is done in the next section.

6 Coupling with a weighted branching process

The last step in the derivation of our approximation for the rank of a randomly chosen node in the
graph Gn is to substitute the rank of the root node in the TBT, which is defined with respect to
empirical distributions based on the extended bi-degree sequence (Nn,Dn,Cn,Qn), with a limiting
random variable independent of the size of the graph, n.
The appropriate limit will be given in terms of a solution to a certain stochastic fixed-point equation
(SFPE). The appeal of having such a representation is that these solutions have been thoroughly
studied in the WBPs literature, and in many cases exact asymptotics describing their tail behavior
are available [22, 23, 30]. We will elaborate more on this point after we state our main result.
As already mentioned in Section 2, our main result shows that

R
(n,∞)
1 ⇒ R∗

as n→∞, where R∗ can be written in terms of the so-called endogenous solution to a linear SFPE.
Before we write the expression for R∗ we will need to introduce a few additional concepts.
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6.1 The linear branching stochastic fixed-point equation

We define the linear branching SFPE according to:

R D=
N∑
j=1
CjRj +Q, (6.1)

where (N ,Q, C1, C2, . . . ) is a real-valued random vector with N ∈ N ∪ {∞}, P (|Q| > 0) > 0,
and the {Ri} are i.i.d. copies of R, independent of the vector (N ,Q, C1, C2, . . . ). The vector
(N ,Q, C1, C2, . . . ) is often referred to as the generic branching vector, and in the general setting is
allowed to be arbitrarily dependent with the weights {Ci} not necessarily identically distributed.
This equation is also known as the “smoothing transform” [21, 16, 1, 3].
In the context of ranking algorithms, we can identify N with the in-degree of a node, Q with its
personalization value, and the {Ci} with the weights of the neighboring nodes pointing to it. We
now explain how to construct a solution to (6.1).
Similarly as what we did in Section 5.4 and using the same notation introduced there, we con-
struct a weighted tree using a sequence {(Ni,Qi, C(i,1), C(i,2), . . . )}i∈U of i.i.d. copies of the vector
(N ,Q, C1, C2, . . . ) to define its structure and its node attributes. This construction is known in the
literature as a WBP [32]. Next, let Ak denote the number of individuals in the kth generation of
the tree, and to each node i in the tree assign a weight Πi according to the recursion

Π∅ ≡ 1 and Π(i,j) = Πi C(i,j), i ∈ U .

Then, the random variable formally defined as

R :=
∞∑
k=0

∑
i∈Ak

ΠiQi (6.2)

is called the endogenous solution to (6.1), and provided E
[∑N

i=1 |Ci|β
]
< 1 for some 0 < β ≤ 1, it

is well defined (see [23], Lemma 4.1). The name “endogenous” comes from its explicit construction
in terms of the weighted tree. We point out that equation (6.1) has in general multiple solutions
[3, 4], so it is important to emphasize that the one considered here is the endogenous one.
Comparing (5.5) and (6.2) suggests that R̂(n,kn) should converge to R provided the distribution of
the attribute vectors in the TBT converges to the distribution of the generic branching vector in the
WBP, but in order to formalize this heuristic there are two difficulties that we need to overcome. The
first one is that the TBT was defined using a sequence of (conditionally) independent vectors of the
form {(N̂i, Q̂i, Ĉi)}i∈U , where by construction (see Assumption 5.1 and (5.2)) the generic attribute
vector (N̂1, Q̂1, Ĉ1) is dependent. Note that this implies that the vectors (N̂i, Q̂i, Ĉ(i,1), Ĉ(i,2), . . . )
and {(N̂(i,j), Q̂(i,j), Ĉ(i,j,1), Ĉ(i,j,2), . . . )}j≥1 are dependent through the dependence between N̂(i,j)
and Ĉ(i,j), which destroys the branching property of the WBP. The second problem is that the root
node of the TBT has a different distribution from the rest of the nodes in the tree.
It is therefore to be expected that we will need something more than weak convergence of the node
attributes to obtain the convergence of R̂(n,kn) we seek. To solve the first problem we will require
that (N̂1, Q̂1, Ĉ1) converges to (N ,Q, C) with C independent of (N ,Q). Note that this will naturally
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lead to the {Ci} being i.i.d. in (6.1). To solve the second problem we will allow the attributes of
the root node in the TBT to converge to their own limit (N0,Q0). In view of these observations
we can now identify the limit of R̂(n,kn) to be:

R∗ :=
N0∑
i=1
CiRi +Q0, (6.3)

where the {Ri} are i.i.d. copies of R, as given by (6.2), independent of the vector (N0,Q0, {Ci})
with {Ci} i.i.d. and independent of (N0,Q0). The appropriate condition ensuring that R∗ is the
correct limit is given in terms of the Kantorovich-Rubinstein distance (also known as the minimal
l1 distance or the Wasserstein distance).

Definition 6.1 Consider the metric space (Rd, || · ||1), where ||x||1 is the l1 norm in Rd. Let
M(µ, ν) denote the set of joint probability measures on Rd×Rd with marginals µ and ν. Then, the
Kantorovich-Rubinstein distance between µ and ν is given by

d1(µ, ν) = inf
π∈M(µ,ν)

∫
Rd×Rd

||x− y||1 dπ(x,y).

We point out that d1 is only strictly speaking a distance when restricted to the subset of measures

P1(Rd) :=
{
µ ∈P(Rd) :

∫
Rd
||x− x0||1 dµ(x) <∞

}
,

for some x0 ∈ Rd, where P(Rd) is the set of Borel probability measures on Rd. We refer the
interested reader to [39] for a thorough treatment of this distance, since Definition 6.1 gives only a
special case.
An important property of the Kantorovich-Rubinstein distance is that if {µk}k∈N is a sequence of
probability measures in P1(Rd), then convergence in d1 to a limit µ ∈ P1(Rd) is equivalent to
weak convergence. Furthermore, d1 satisfies the useful duality formula:

d1(µ, ν) = sup
||ψ||Lip≤1

{∫
Rd
ψ(x)dµ(x)−

∫
Rd
ψ(x)dν(x)

}
for all µ, ν ∈P1(Rd), where the supremum is taken over al Lipschitz continuous functions ψ : Rd →
R with Lipschitz constant one (see Remark 6.5 in [39]).
We now give the required assumption. With some abuse of notation, for joint distribution func-
tions Fn, F ∈ Rd we write d1(Fn, F ) to denote the Kantorovich-Rubinstein distance between their
probability measures µn and µ. The symbol P→ denotes convergence in probability.

Assumption 6.2 Given the extended bi-degree sequence (Nn,Dn,Cn,Qn) define

F ∗n(m, q) := 1
n

n∑
k=1

1(Nk ≤ m,Qk ≤ q) and Fn(m, q, x) :=
n∑
k=1

1(Nk ≤ m,Qk ≤ q, Ck ≤ x)Dk

Ln
.

Suppose there exist random vectors (N0,Q0) and (N ,Q), and a random variable C, such that

d1(F ∗n , F ∗)
P→ 0 and d1(Fn, F ) P→ 0,
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as n→∞, where

F ∗(m, q) := P (N0 ≤ m,Q0 ≤ q) and F (m, q, x) := P (N ≤ m,Q ≤ q)P (C ≤ x).

Remark 6.3 Note that Assumption 6.2 and the duality formula imply that

sup
{
En
[
ψ(N̂1, Q̂1, Ĉ1)

]
− E[ψ(N ,Q, C)] : ψ is bounded and continuous

}
converges to zero in probability, and therefore, by the bounded convergence theorem,

E
[
ψ(N̂1, Q̂1, Ĉ1)

]
→ E[ψ(N ,Q, C)], n→∞,

for any bounded and continuous function ψ, or equivalently, (N̂1, Q̂1, Ĉ1) ⇒ (N ,Q, C); similarly,
(N̂∅, Q̂∅) ⇒ (N0,Q0). The duality formula, combined with Assumption 5.1, also implies that
E[N0] = ν1, E[N ] = µ and E[C] = ν5/ν1.

6.2 Main Result

We are now ready to state the main result of this paper, which establishes the convergence of the
rank of a randomly chosen node in the DCM to a non-degenerate random variable R∗.

Theorem 6.4 Suppose the extended bi-degree sequence (Nn,Dn,Cn,Qn) satisfies Assumptions 5.1
and 6.2. Then,

R
(n,∞)
1 ⇒ R∗

as n→∞, where R∗ is defined as in (6.3) with the weights {Ci} i.i.d. and independent of (N0,Q0),
respectively of (N ,Q) in (2.1).

Proof. Define Ωn according to Assumption 5.1 and note that P (Ωc
n) = O(n−ε), so it suffices

to show that R(n,∞)
1 , conditional on Ωn, converges weakly to R∗. Note that by Assumption 5.1,

ρ = E[N ]E[|C|] = ν5µ/ν1 < 1, which is a sufficient condition forR to be well defined (see Lemma 4.1
in [23]). First, when µ > 1, fix 0 < δ < | log c|/(2 logµ) and let kn = s logn, where δ/| log c| < s <
1/(2 logµ). Next, note that by the arguments leading to (5.3),

P
(∣∣∣R(n,∞)

1 − R̂(n,kn)
∣∣∣ > n−δ

∣∣∣Ωn

)
= O

(
nδckn + (µ2kn/n)1/2

)
= O

(
nδ−s| log c| + n(2s logµ−1)/2

)
= o(1)

as n→∞. When µ ≤ 1 we can take kn = nε, with ε < min{1/2, γ}, to obtain that the probability
converges to zero. We then obtain that conditionally on Ωn,∣∣∣R(n,∞)

1 − R̂(n,kn)
∣∣∣⇒ 0.

That R̂(n,kn) ⇒ R∗ conditionally on Ωn will follow from Theorem 4.8 in [12] and Assumption 6.2
once we verify that, as n→∞,

En
[
N̂1|Ĉ1|

]
P→ E[N ]E[|C|] and En

[
|Q̂1Ĉ1|

]
P→ E[|Q|]E[|C|]. (6.4)
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To show that (6.4) holds define φK(q, x) = (|q| ∧K)(|x| ∧ 1) for K > 0, and note that since φK is
bounded and continuous, Assumption 6.2 and Remark 6.3 imply that

En
[
φK(Q̂1, Ĉ1)

]
P→ E[φK(Q, C)] = E[|Q| ∧K]E[|C|], n→∞.

Next, fix ε > 0 and choose K such that E[|Q|1(|Q| > K)] < ε/4. Then,∣∣∣En [|Q̂1Ĉ1|
]
− E[|QC|]

∣∣∣ ≤ ∣∣∣En [φK(Q̂1, Ĉ1)
]
− E[φK(Q, C)]

∣∣∣
+ En

[
(|Q̂1| −K)+|Ĉ1|

]
+ E[(|Q| −K)+|C|]

≤
∣∣∣En [φK(Q̂1, Ĉ1)

]
− E[φK(Q, C)]

∣∣∣+ cEn
[
(|Q̂1| −K)+

]
+ cε/4,

where we used that both |Ĉ1| and |C| are bounded by c < 1. It follows that

lim
n→∞

P
(∣∣∣En [|Q̂1Ĉ1|

]
− E[|QC|]

∣∣∣ > ε
)
≤ lim

n→∞
P
(
En
[
(|Q̂1| −K)+

]
> ε/2

)
.

To show that this last limit is zero note that (|x| − K)+ is Lipschitz continuous with Lipschitz
constant one, so by the duality formula we obtain

En
[
(|Q̂1| −K)+

]
P→ E[(|Q| −K)+] < ε/4

as n→∞, which gives the desired limit.

The proof for En
[
|N̂1Ĉ1|

]
follows the same steps and is therefore omitted.

6.3 Asymptotic behavior of the limit

We end this section by giving a limit theorem describing the tail asymptotics of R∗; its proof
is given in Section 8.2. This result covers the case where the weights {Ci} are nonnegative and
either the limiting in-degree N or the limiting personalization value Q have a regularly varying
distribution, which in turn implies the regular variation of R. Then, we deduce the asymptotics of
R∗ using some results for weighted random sums with heavy-tailed summands. The corresponding
theorems can be found in [30, 40].

Definition 6.5 We say that a function f is regularly varying at infinity with index −α, denoted
f ∈ R−α, if f(x) = x−αL(x) for some slowly varying function L; and L : [0,∞)→ (0,∞) is slowly
varying if limx→∞ L(λx)/L(x) = 1 for any λ > 0.

We use the notation f(x) ∼ g(x) as x→∞ for limx→∞ f(x)/g(x) = 1.

Theorem 6.6 Suppose the generic branching vector (N ,Q, C1, C2, . . . ) is such that the weights {Ci}
are nonnegative, bounded i.i.d. copies of C, independent of (N ,Q), N ∈ N and Q ∈ R. Define
ρ = E[N ]E[C] and ρα = E[N ]E[Cα] and let R be defined as in (6.2).
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• If P (N > x) ∈ R−α, α > 1, ρ∨ ρα < 1, P (N0 > x) ∼ κP (N > x) as x→∞ for some κ > 0,
E[Q], E[Q0] > 0, and E

[|Q|α+ε + |Q0|α+ε] <∞ for some ε > 0, then

P (R∗ > x) ∼ (E[N0]E[Cα] + κ(1− ρα)) (E[Q]E[C])α
(1− ρ)α(1− ρα)P (N > x), x→∞.

• If P (Q > x) ∈ R−α, α > 1, ρ ∨ ρα < 1, P (Q0 > x) ∼ κP (Q > x) as x→∞ for some κ > 0,
E[|Q|β + |Q0|β] <∞ for all 0 < β < α, and E

[|N |α+ε + |N0|α+ε] <∞ for some ε > 0, then

P (R∗ > x) ∼ (E[N0]E[Cα] + κ(1− ρα)) (1− ρα)−1P (Q > x), x→∞.

Remark 6.7 (i) For PageRank we have Ci = c/Di and Qi = 1−c, where c ∈ (0, 1) is the damping
factor. This leads to a limiting weight distribution of the form

P (C ≤ x) = lim
n→∞

1
Ln

n∑
i=1

1(c/Di ≤ x)Di,

which is not the limiting distribution of the reciprocal of the out-degrees, {c/Di}, but rather a
size-biased version of it.
(ii) Applying Theorem 6.6 to PageRank when P (N > x) ∈ R−α and P (N0 > x) ∼ κP (N > x) for
some constant κ > 0 gives that

P (R∗ > x) ∼ κ′P (N > x) as x→∞,

where κ′ > 0 is determined by the theorem.
(iii) The theorem above only includes two possible cases of the relations between (N0,Q0) and
(N ,Q). The exact asymptotics of R∗ can be obtained from those of R in more cases than these
using the same techniques; we leave the details to the reader.
(iv) Theorem 6.6 requires the weights {Ci} to be nonnegative, which is not a condition in Theo-
rem 6.4. The tail asymptotics of R, and therefore of R∗, in the real-valued case are unknown.

7 Algorithm to generate bi-degree sequences

As an example of an extended bi-degree sequence satisfying Assumptions 5.1 and 6.2, we give in this
section an algorithm based on sequences of i.i.d. random variables. The method for generating the
bi-degree sequence (Nn,Dn) is taken from [11], where the goal was to generate a directed random
graph with prescribed in- and out-degree distributions.
To define the algorithm we need to first specify target distributions for the in- and out-degrees,
which we will denote by f in

k = P (N = k), and fout
k = P (D = k), k ≥ 0, respectively. Furthermore,

we will assume that these target distributions satisfy E[N ] = E[D ],

F in(x) =
∑
k>x

f in
k ≤ x−αLin(x) and F out(x) =

∑
k>x

fout
k ≤ x−βLout(x),

for some slowly varying functions Lin and Lout, and α > 1, β > 2. To the original construction given
in [11] we will need to add two additional steps to generate the weight and personalization sequences
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Cn and Qn, for which we need two more distributions F ζ(x) = P (ζ ≤ x) and FQ(x) = P (Q ≤ x)
with support on the real line and satisfying

P (|ζ| ≤ c) = 1 for some 0 < c < 1, and E[|Q|1+εQ ] <∞ for some 0 < εQ ≤ 1.

Let
κ0 = min{1− α−1, 1/2}.

The IID Algorithm:

1. Fix 0 < δ0 < κ0.
2. Sample an i.i.d. sequence {N1, . . . ,Nn} from distribution F in; let N n = ∑n

i=1 Ni.
3. Sample an i.i.d. sequence {D1, . . . ,Dn} from distribution F out, independent of {Ni}; let

Dn = ∑n
i=1 Di.

4. Define ∆n = N n −Dn. If |∆n| ≤ n1−κ0+δ0 proceed to step 5; otherwise repeat from step 2.
5. Choose randomly |∆n| nodes {i1, i2, . . . , i|∆n|} without replacement and let

Ni =
{

Ni + 1 if ∆n < 0 and i ∈ {i1, i2, . . . , i|∆n|},
Ni otherwise,

Di =
{

Di + 1 if ∆n ≥ 0 and i ∈ {i1, i2, . . . , i|∆n|},
Di otherwise.

6. Sample an i.i.d. sequence {Q1, . . . , Qn} from distribution FQ, independent of {Ni} and {Di}.
7. Sample an i.i.d. sequence {ζ1, . . . , ζn} from distribution F ζ , independent of {Ni}, {Di} and
{Qi}, and set Ci = ζi/Di if Di ≥ 1 or Ci = c sgn(ζi) otherwise.

Remark 7.1 Note that since E[|N − D |1+a] < ∞ for any 0 < a < min{α − 1, β − 1}, then
E[|N −D |1+(κ0−δ0)/(1−κ0)] <∞, and Corollary 8.4 in Section 8 gives

P
(
|∆n| > n1−κ0+δ0

)
= O

(
n−δ0(κ0−δ0)/(1−κ0)

)
(7.1)

as n→∞.

The two propositions below give the desired properties. Their proofs are given in Section 8.3.

Proposition 7.2 The extended bi-degree sequence (Nn,Dn,Cn,Qn) generated by the IID Algo-
rithm satisfies Assumption 5.1 for any 0 < κ < β−2, any 0 < γ < min{(κ0−δ0)2/(1−δ0), (β−2−
κ)/β}, µ = ν1 = E[N ] = E[D ], ν2 = (E[D ])2, ν3 = E[D2], ν4 = E[D2+κ], ν5 = E[|ζ|]P (D ≥ 1),
H = E[|Q|] + 1, and some ε > 0.

Proposition 7.3 The extended bi-degree sequence (Nn,Dn,Cn,Qn) generated by the IID Algo-
rithm satisfies Assumption 6.2 with

F ∗(m, q) = P (N ≤ m)P (Q ≤ q) and

F (m, q, x) = P (N ≤ m)P (Q ≤ q)E[1(ζ/D ≤ x)D ]/µ.
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7.1 Numerical examples

To complement the theoretical contribution of the paper, we use the IID Algorithm described in the
previous section to provide some numerical results showing the accuracy of the WBP approximation
to PageRank. To generate the in- and out-degrees we use the zeta distribution. More precisely, we
set

Ni = X1,i + Y1,i, Di = X2,i + Y2,i,

where {X1,i} and {X2,i} are independent sequences of i.i.d. Zeta random variables with parameters
α+ 1 and β + 1, respectively; {Y1,i} and {Y2,i} are independent sequences of i.i.d. Poisson random
variables with different parameters chosen so that N and D have equal mean. Note that the
Poisson distribution has a light tail so that the power law tail behavior of N and D is preserved
and determined by α and β, respectively.
Once the sequences {Ni} and {Di} are generated, we use the IID Algorithm to obtain a valid
bi-degree sequence (Nn,Dn). Note that in PageRank, we have ζi = c and Qi = 1 − c. Given this
bi-degree sequence we next proceed to construct the graph and the TBT simultaneously, according
to the rules described in Section 5. To compute R(n,∞) we perform matrix iterations with r0 = 1
until ‖R(n,k) − R(n,k−1)‖2 < ε0 for some tolerance ε0. We only generate the TBT for as many
generations as it takes to construct the graph, with each generation corresponding to a step in the
breadth first graph exploration process. The computation of the root node of the TBT, R̂(n,k) is
done recursively starting from the leaves using

R̂
(n,0)
i = 1 for i ∈ Âk, R̂

(n,r)
i =

N̂i∑
j=1

c

D̂(i,j)
R̂

(n,r−1)
(i,j) + 1− c, for i ∈ Âr, 0 ≤ r < k.

To draw a sample from R∗, note that by Proposition 7.3, R∗ in the IID Algorithm has the same
distribution as R, i.e., the endogenous solution to the SFPE

R D=
N∑
i=1
CiRi + 1− c,

where P (C ≤ x) = E[1(c/D ≤ x)D ]/µ. To sample R we construct a WBP with generic branching
vector (N , 1−c, {Ci}), with the {Ci} i.i.d. and independent of N and proceed as in the computation
of R̂(n,k). To simulate samples of C we use the acceptance-rejection method.

To show the convergence of R(n,∞)
1 to R∗, we let n = 10, 100 and 10000. The values of the other

parameters are α = 1.5, β = 2.5, E[N ] = E[D ] = 2, c = 0.3. For the TBT, we simulate up to
kn = blognc generations. For the WBP, we simulate 10 generations. For each n, we draw 1000
samples of R(n,∞)

1 , R(n,kn)
1 , R̂(n,kn) and R∗, respectively, to approximate the distribution of these

quantities.

Figure 3 shows the empirical CDFs of 1000 i.i.d. samples of the true PageRank, R(n,∞)
1 ; finitely many

iterations of PageRank, R(n,kn)
1 ; and the TBT approximation R̂(n,kn); it also plots the distribution

of the limit R∗ using 1000 simulations. The approximations are so accurate that the CDFs are
almost indistinguishable. Figure 4 illustrates the weak convergence of PageRank on the graph,
R

(n,∞)
1 , to its limit R∗ as the size of the graph grows.
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To quantify the distance between the CDFs, we sort the samples in ascending order and compute
the mean squared error (MSE) ∑1000

i=1 (x(n)
i − yi)/1000, where yi is the sorted ith sample of R∗ and

x
(n)
i is the sorted ith sample of R(n,∞)

1 . For robustness, we discard the squared error of the maximal
value. As a result, the MSEs are 0.2950, 0.1813 and 0.0406 respectively for n = 10, 100 and 10000.
It is clear that the approximation improves as n increases.
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Figure 3: The empirical CDFs of 1000 samples of R∗, R(n,∞)
1 , R(n,kn)

1 and R̂(n,kn) for n = 10000
and kn = 9.

8 Proofs

The last section of the paper contains most of the proofs. For the reader’s convenience we have
organized them in subsections according to the order in which their corresponding statements
appear in the paper.

8.1 Proof of the coupling lemma

Recall from Section 5 that N̂∅ denotes the number of offspring of the root node in the TBT (chosen
from distribution (5.1)) and N̂1 denotes the number of offspring of a node chosen from distribution
(5.2). Throughout this section we will also need to define

µ∗n = En
[
N̂∅
]

=
∑
i,j,s,t

if∗n(i, j, s, t) = 1
n

n∑
k=1

Nk = Ln
n
,
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Figure 4: The empirical CDFs of 1000 samples of R∗ and R
(n,∞)
1 for n = 10, 100 and 10000.

and
µn = En

[
N̂1
]

=
∑
i,j,s,t

ifn(i, j, s, t) = 1
Ln

n∑
k=1

NkDk.

Before we give the proof of the Coupling Lemma 5.4 we will need the following estimates for the
growth of the process {Ẑk}.

Lemma 8.1 Suppose (Nn,Dn,Cn,Qn) satisfies Assumption 5.1 and recall that µ = ν2/ν1. Then,
for any constants K > 0, any nonnegative sequence {xn} with xn →∞ and any k = O(nγ),

P

(
max

0≤r≤k

Ẑr
µr

> Kxn

∣∣∣∣∣Ωn

)
= O

(
x−1
n

)
, n→∞.

Proof. Start by noting that for any r = 0, 1, 2, . . . ,

En[Ẑr] = µ∗nµ
r
n. (8.1)

Moreover, on the event Ωn,

µn = nν2(1 +O(n−γ))
nν1(1 +O(n−γ)) = µ(1 +O(n−γ)), and

µ∗n = nν1(1 +O(n−γ))
n

= ν1(1 +O(n−γ)).
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Next, note that conditionally on Fn, the process

Xr = Ẑr
µ∗nµ

r
n

= 1
µ∗nµ

r
n

∑
i∈Âr−1

N̂i, r ≥ 1, X0 = N̂∅
µ∗n

is a nonnegative martingale with respect to the filtration σ (Fr ∪Fn), where Fr = σ
(
N̂i : i ∈ Âs, s ≤ r

)
.

Therefore, we can apply Doob’s inequality, conditionally on Fn, to obtain

P

(
max

0≤r≤k

Ẑr
µr

> Kxn

∣∣∣∣∣Ωn

)
= P

(
max

0≤r≤k

Xrµ
∗
nµ

r
n

µr
> Kxn

∣∣∣∣Ωn

)
= P

(
max

0≤r≤k
Xrν1(1 +O(n−γ))r+1 > Kxn

∣∣∣∣Ωn

)
≤ 1
P (Ωn)E

[
1(Ωn)En

[
1
(

max
0≤r≤k

Xr >
Kxn

ν1(1 +O(n−γ))k+1

)]]
≤ 1
P (Ωn)E

[
1(Ωn)En[Xk]ν1(1 +O(n−γ))k+1

Kxn

]

= ν1(1 +O(n−γ))k+1

Kxn
(since En[Xk] = 1).

Noting that (1 +O(n−γ))k = eO(kn−γ) = O(1) as n→∞ gives that this last term is O(x−1
n ). This

completes the proof.

We now give the proof of the coupling lemma.
Proof of Lemma 5.4. Start by defining

xn =


(n/µ2k)1/2, µ > 1,
(n/k2)1/2, µ = 1,
n1/2, µ < 1,

and Fk =
{

max
0≤r≤k

Ẑr
µr
≤ xn

}
.

Note that xn → ∞ as n → ∞ for all 1 ≤ k ≤ h logn when µ > 1 and for all 1 ≤ k ≤ nb,
b < min{1/2, γ}, when µ ≤ 1. The constraint b < γ will allow us to use Lemma 8.1.
Next, note that the jth inbound stub of node i ∈ As (where the label i refers to the order in which
the node was added to the graph during the exploration process) will be the first one to be paired
with an outbound stub having label 2 or 3 with probability

1
Ln

(
s−1∑
r=0

V̂r +
i−1∑
t=1

Dt + (j − 1)
)
≤ 1
Ln

s∑
r=0

V̂r =: Ps.

It follows that,

P (τ = s|Ωn) ≤ P (τ = s, Fk|Ωn) + P (τ = s, F ck |Ωn)
≤ P (Bin(Ẑs, Ps) ≥ 1, Fk|Ωn) + P (τ = s, F ck |Ωn),
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where Bin(n, p) is a Binomial random variable with parameters (n, p). It follows that if we let
Fk = σ(Ẑr, V̂r : 1 ≤ r ≤ k), then

P (τ ≤ k|Ωn) =
k∑
s=0

P (τ = s|Ωn)

≤
k∑
s=0

{
P
(

Bin(Ẑs, Ps) ≥ 1, Fk
∣∣∣Ωn

)
+ P (τ = s, F ck |Ωn)

}

≤
k∑
s=0

E
[
1(Fk)P (Bin(Ẑs, Ps) ≥ 1|Fk)

∣∣∣Ωn

]
+ P (F ck |Ωn)

≤
k∑
s=0

E
[
1(Fk)ẐsPs

∣∣∣Ωn

]
+ P (F ck |Ωn) ,

where in the last step we used Markov’s inequality. Now, use the bound for Ẑs implied by Fk and
recall that |Âr| = Ẑr−1 to obtain

E
[
1(Fk)ẐsPs

∣∣∣Ωn

]
≤ E [µsxnPs|Ωn] (8.2)

= µsxn
ν1n

s∑
r=0

E
[
V̂r
∣∣∣Ωn

]
(1 +O(n−γ))

= µsxn
ν1n

{
E
[
V̂0
∣∣∣Ωn

]
+

s∑
r=1

E
[
En
[
V̂r|Ẑr−1

]∣∣∣Ωn

]}
(1 +O(n−γ))

= µsxn
ν1n

{
E [µ∗n|Ωn] +

s∑
r=1

E
[
Ẑr−1λn

∣∣∣Ωn

]}
(1 +O(n−γ)),

where in the first equality we used that on the set Ωn we have Ln = ν1n(1 +O(n−γ)), and on the
second equality we used the observation that

En
[
V̂0
]

= En
[
D̂∅
]

= µ∗n, En
[
V̂r
∣∣∣ Ẑr−1

]
= Ẑr−1λn, r ≥ 1,

where λn = En[D̂1]. Moreover, on the set Ωn we have that

λn = 1
Ln

n∑
k=1

D2
k = nν3(1 +O(n−γ))

nν1(1 +O(n−γ)) = λ(1 +O(n−γ)),

so we obtain

E
[
1(Fk)ẐsPs

∣∣∣Ωn

]
≤ µsxn

ν1n

{
ν1 +

s∑
r=1

λE
[
Ẑr−1

∣∣∣Ωn

]}
(1 +O(n−γ))

= µsxn
ν1n

{
ν1 +

s∑
r=1

λE
[
µ∗nµ

r−1
n

∣∣∣Ωn

]}
(1 +O(n−γ)) (by (8.1)).

Using the observation that E
[
µ∗nµ

r−1
n

∣∣Ωn
]

= ν1µ
r−1(1 +O(n−γ))r−1 (see the proof of Lemma 8.1),

and the condition r − 1 < s ≤ k = O(nγ), gives

P (τ ≤ k|Ωn) ≤ (1 +O(1))(λ+ 1)xn
n

k∑
s=0

s∑
r=0

µs+r + P (F ck |Ωn).
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Note that we did not compute E
[
ẐsPs

∣∣∣Ωn

]
in (8.2) directly, since that would have led to having

to compute En
[
Ẑ2
s−1

]
and neither N̂0 nor N̂1 are required to have finite second moments in the

limit. Now, since by Lemma 8.1 we have that P (F ck |Ωn) = O
(
x−1
n

)
, and

k∑
s=0

s∑
r=0

µs+r ≤


µ2(k+1)/(µ− 1)2, µ > 1,
(k + 1)(k + 2)/2, µ = 1,
1/(1− µ), µ < 1,

we conclude that

P (τ ≤ k|Ωn) =


O
(
xnµ

2kn−1 + x−1
n

)
= O

(
(n/µ2k)−1/2

)
, µ > 1,

O
(
xnk

2n−1 + x−1
n

)
= O

(
(n/k2)−1/2

)
, µ = 1,

O
(
xnn

−1 + x−1
n

)
= O

(
n−1/2

)
, µ < 1,

as n→∞. This completes the proof.

8.2 Proof of the asymptotic behavior of R∗

We give in this section the proof of Theorem 6.6 which describes the asymptotic behavior of the
limit R∗, which is essentially determined by the asymptotic behavior of the endogenous solution R
given in (6.2). The tail behavior of R is the main focus of the work in [40, 22, 24, 23, 30].

Proof of Theorem 6.6. We consider the case when N is regularly varying first. By Theorem 3.4
in [30] and the remarks that follow it (see also Theorem 4.1 in [40]),

P (R > x) ∼ (E[Q]E[C1])α
(1− ρ)α(1− ρα)P (N > x), x→∞,

and therefore, P (R > x) ∈ R−α. Next, since the {Ci} are i.i.d. and independent of N , Minkowski’s
inequality gives for any β ≥ 1,

E

( N∑
i=1
Ci
)β = E

E
( N∑

i=1
Ci
)β∣∣∣∣∣∣N

 ≤ E [N βE[Cβ1 ]
]
. (8.3)

Applying Lemma 2.3 in [30] with β = 1 + δ gives that E[|R|1+δ] < ∞ for all 0 < δ < α − 1. By
conditioning on the filtration Fk = σ

(
(Ni, C(i,1), C(i,2), . . . ) : i ∈ As, s < k

)
it can be shown that

E
[∑

i∈Ak ΠiQi
]

= ρkE[Q], which implies that E[R] = (1− ρ)−1E[Q] > 0. Also, by Lemma 3.7(2)
in [25] we have

P

N0∑
i=1
Ci > x

 ∼ (E[C1])α P (N0 > x) ∼ κ(1− ρ)α(1− ρα)
(E[Q])α P (R > x).
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Using Theorem A.1 in [30] we conclude that

P (R∗ > x) ∼
(
E[N0]E[Cα1 ] + κ

(1− ρ)α(1− ρα)
(E[Q])α (E[R])α

)
P (R > x)

∼ (E[N0]E[Cα1 ] + κ(1− ρα)) (E[Q]E[C1])α
(1− ρ)α(1− ρα)P (N > x)

as x→∞.

Now, for the case when Q is regularly varying, note that E
[(∑N

i=1 Ci
)α+ε

]
<∞ by (8.3) and the

theorem’s assumptions. Then, by Theorem 4.4 in [30] (see also Theorem 4.1 in [40]) we have

P (R > x) ∼ (1− ρα)−1P (Q > x), x→∞.

The same observations made for the previous case give E[|R|1+δ] < ∞ for all 0 < δ < α − 1. In
addition, note that the same argument used above gives E

[(∑N0
i=1 Ci

)α+ε
]
<∞. Also,

P (Q0 > x) ∼ κP (Q > x) ∼ κ(1− ρα)P (R > x).

It follows, by Theorem A.2 in [30], that

P (R∗ > x) ∼ (E[N0]E[Cα1 ] + κ(1− ρα))P (R > x)
∼ (E[N0]E[Cα1 ] + κ(1− ρα)) (1− ρα)−1P (Q > x)

as x→∞.

8.3 Proofs of properties of the IID Algorithm

Before giving the proofs of Propositions 7.2 and 7.3 we will need some general results for sequences
of i.i.d. random variables, which may be of independent interest. The first result establishes a
bound for the sum of the largest order statistics in a sample. The second result is essentially an
explicit version of the Weak Law of Large Numbers.

Lemma 8.2 Let X1, X2, . . . , Xn be i.i.d. nonnegative random variables satisfying E[X1+κ
1 ] < ∞

for some κ > 0, and let X(i) denote the ith smallest observation from the set {X1, X2, . . . , Xn}. Let
{π1, π2, . . . , πn} be any permutation of the set {1, 2, . . . , n}. Then, for any kn ∈ {1, 2, 3, 4, . . . , n}
we have

P

 n∑
i=n−kn+1

X(i) > n1−γ

 = O
(
kκ/(1+κ)
n n−(κ/(1+κ)−γ)

)
as n→∞.

Proof. Note that, by Markov’s inequality,

P (X1 > x) ≤ E[X1+κ
1 ]x−1−κ,
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and therefore,
P (Xi > x) ≤ P (Yi > x),

where {Y1, Y2, . . . , Yn} are i.i.d. Pareto random variables having distribution G(x) = 1− (x/b)−1−κ

for x > b :=
(
E[X1+κ

1 ]
)−1/(1+κ)

. We then have that

P

 n∑
i=n−kn+1

X(i) > n1−γ

 ≤ P
 n∑
i=n−kn+1

Y(i) > n1−γ


≤ 1
n1−γ

n∑
i=n−kn+1

E[Y(i)],

where Y(i) is the ith smallest from the set {Y1, Y2, . . . , Yn}. Moreover, it is known (see [37], for
example) that

E[Y(i)] = b · n!
(n− i)! ·

Γ(n− i+ 1− (1 + κ)−1)
Γ(n+ 1− (1 + κ)−1) ,

where Γ(·) is the Gamma function. By Wendel’s inequality [44], for any 0 < s < 1 and x > 0,(
x

x+ s

)1−s
≤ Γ(x+ s)

xsΓ(x) ≤ 1,

and therefore, for i < n, and ϑ = (1 + κ)−1,

E[Y(i)] ≤ b ·
n!

Γ(n+ 1− ϑ) ·
1

(n− i)ϑ ≤ b
(
n+ 1− ϑ
n− i

)ϑ
.

We conclude that

1
n1−γ

n∑
i=n−kn+1

E[Y(i)] ≤
b

n1−γ

 n−1∑
i=n−kn+1

(
n+ 1− ϑ
n− i

)ϑ
+ n!Γ(1− ϑ)

Γ(n+ 1− ϑ)


≤ b(n+ 1− ϑ)ϑ

n1−γ

 n−1∑
i=n−kn+1

( 1
n− i

)ϑ
+ Γ(1− ϑ)


≤ b(n+ 1)ϑ

n1−γ

kn−1∑
j=1

∫ j

j−1

1
tϑ
dt+ Γ(1− ϑ)


= b(n+ 1)ϑ

n1−γ

(
(kn − 1)1−ϑ

1− ϑ + Γ(1− ϑ)
)

= O

(
k1−ϑ
n

n1−ϑ−γ

)
,

where in the second inequality we used Wendel’s inequality. This completes the proof.

Lemma 8.3 Let {X1, X2, . . . , Xn} be i.i.d. random variables satisfying E[|X1|1+κ] <∞ for some
κ > 0 and µ = E[X1]. Set Sm = X1 + · · · + Xm and θ = min{1 + κ, 2}. Then, for any K > 0,
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any nonnegative sequence {xn} such that xn → ∞ as n → ∞, and all m = o
(
x1+κ
n

)
, there exists

an n0 ≥ 1 such that for all n ≥ n0 ,

P (|Sm −mµ| > Kxn) ≤ E[|X1|θ]
( 2
K2 + 1

)
m

xθn
.

Proof. If κ ≥ 1, then Chebyshev’s inequality gives, for all m ≥ 1,

P (|Sm −mµ| > Kxn) ≤ mVar(X1)
K2x2

n

≤ mE[|X1|2]
K2x2

n

= mE[|X1|θ]
K2xθn

.

Suppose now that 0 < κ < 1 and let G(t) = P (|X1| ≤ t). Set t = xn and define P (X̃i ≤ x) =
P (Xi ≤ x|Xi ≤ t), and note that∣∣∣E[X̃1]− µ

∣∣∣ = |E[X11(|X1| ≤ t)]/G(t)− µ|

≤ 1
G(t) |E[X11(|X1| ≤ t)]− µ|+

|µ|G(t)
G(t)

= 1
G(t)

(
|E[X11(|X1| > t)]|+ |µ|G(t)

)
≤ 1
G(t)

(
tG(t) +

∫ ∞
t

G(x)dx+ |µ|G(t)
)

≤ E[|X1|1+κ]
G(t)

(
t−κ +

∫ ∞
t

x−1−κ dx+ |µ|t−1−κ
)

(by Markov’s inequality)

= E[|X1|1+κ]
G(t)

(1 + κ

κ
+ |µ|t−1

)
t−κ.

Then, for sufficiently large n, we obtain that∣∣∣E[X̃1]− µ
∣∣∣ ≤ 2E[|X1|1+κ]

(1 + κ

κ
+ |µ|

)
t−κ , K ′t−κ = K ′x−κn .

It follows that for sufficiently large n and m = o(x1+κ
n ),

P (|Sm −mµ| > Kxn)

= P

(∣∣∣∣∣
m∑
i=1

(X̃i − µ)
∣∣∣∣∣ > Kxn

)
G(t)m + P

(∣∣∣∣∣
m∑
i=1

(Xi − µ)
∣∣∣∣∣ > Kxn, max

1≤i≤m
|Xi| > t

)

≤ P
(∣∣∣∣∣

m∑
i=1

(X̃i − E[X̃1])
∣∣∣∣∣+m

∣∣∣E[X̃1]− µ
∣∣∣ > Kxn

)
G(t)m + P

(
max

1≤i≤m
|Xi| > t

)

≤ G(t)m

(Kxn −K ′mt−κ)2 ·mVar(X̃1) + 1−G(t)m (by Chebyshev’s inequality)

≤ G(t)mmVar(X̃1)
K2x2

n(1−mx−1−κ
n K ′/K)2 +mG(t).

To estimate Var(X̃1) note that

Var(X̃1) ≤ E[X̃2
1 ] = E[X2

1 1(|X1| ≤ t)]
G(t) ≤ E[|X1|1+κ]t1−κ

G(t) ,
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so using Markov’s inequality again to estimate G(t) gives us

P (|Sm −mµ| > Kxn) ≤ E[|X1|1+κ]
K2(1−mx−1−κ

n K ′/K)2 ·
mt1−κ

x2
n

+ E[|X1|1+κ]m
t1+κ

= E[|X1|1+κ]
(

1
K2(1−mx−1−κ

n K ′/K)2 + 1
)

m

x1+κ
n

= E[|X1|θ]
(

1
K2(1−mx−1−κ

n K ′/K)2 + 1
)
m

xθn
.

This completes the proof.

By setting m = n and xn = n1−γ we immediately obtain the following corollary.

Corollary 8.4 Let {X1, X2, . . . , Xn} be i.i.d. random variables satisfying E[|X1|1+κ] < ∞ for
some κ > 0 and µ = E[X1]. Set Sn = X1 + · · · + Xn. Then, for any 0 ≤ γ < 1 − 1/θ ,
θ = min{1 + κ, 2} and any constant K > 0, there exists an n0 ≥ 1 such that for all n ≥ n0

P
(
|Sn − nµ| > Kn1−γ

)
≤ E[|X1|θ]

( 2
K2 + 1

)
n−θ(1−1/θ−γ).

We now proceed to prove that the extended bi-degree sequence generated by the IID Algorithm
satisfies Assumptions 5.1 and 6.2.

Proof of Proposition 7.2. It suffices to show that P
(
Ωc
n,i

)
= O(n−ε) for some ε > 0 and

i = 1, . . . , 6. Throughout the proof let En = {|∆n| ≤ n1−κ0+δ0} and recall that by (7.1) P (Ecn) =
O
(
n−δ0η

)
, where η = (κ0 − δ0)/(1− κ0).

We start with Ωn,2. Let ν2 = (E[D ])2 and define χi = Di−Di, τi = Ni−Ni. Note that χi, τi ∈ {0, 1}
for all i = 1, . . . , n; moreover, either all the {χi} or all the {τi} are zero, and therefore χiτj = 0 for
all 1 ≤ i, j ≤ n. We now have∣∣∣∣∣

n∑
i=1

DiNi − nν2

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

DiNi − nν2 +
n∑
i=1

(Diτi + χiNi)
∣∣∣∣∣

≤
∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣+ max


n∑

i=n−∆n+1
D(i),

n∑
i=n−∆n+1

N(i)

 ,
where D(i) (respectively, N(i)) is the ith smallest value from the set {D1, . . . ,Dn} (respectively,
{N1, . . . ,Nn}). Since |∆n| ≤ n1−κ0+δ0 on En, we have

P (Ωc
n,2) = P

(∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣ > n1−γ
∣∣∣∣∣En

)

≤ 1
P (En)

{
P

(∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣ > n1−γ

2

)

+P

 n∑
i=n−bn1−η(1−κ0)c+1

D(i) >
n1−γ

2

+ P

 n∑
i=n−bn1−η(1−κ0)c+1

N(i) >
n1−γ

2

 .
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Now apply Corollary 8.4 to Xi = DiNi, which satisfies E[(D1N1)1+η] = E[N 1+η
1 ]E[D1+η

1 ] < ∞,
to obtain

P

(∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣ > n1−γ

2

)
= O

(
n−η+(1+η)γ

)
.

For the remaining two probabilities use Lemma 8.2 to see that

P

 n∑
i=n−bn1−η(1−κ0)c+1

D(i) >
n1−γ

2

+ P

 n∑
i=n−bn1−η(1−κ0)c+1

N(i) >
n1−γ

2


= O

(
n(1−η(1−κ0))η/(1+η)−(η/(1+η)−γ)

)
= O

(
n−η(κ0−δ0)/(1+η)+γ

)
.

It follows from these estimates that

P (Ωc
n,2) = O

(
n−η(κ0−δ0)/(1+η)+γ

)
. (8.4)

Next, we can analyze Ωn,1,Ωn,3 and Ωn,4 by considering the sequence {Dϑ
i } where ϑ can be taken

to be 1, 2 or 2 + κ. Correspondingly, we have ν1 = E[D ], ν3 = E[D2] and ν4 = E[D2+κ]. Similarly
as what was done for Ωn,2, note that∣∣∣∣∣

n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣+
n∑
i=1

(
(Di + χi)ϑ −Dϑ

i

)
≤
∣∣∣∣∣
n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣+
n∑
i=1

ϑ(Di + 1)ϑ−1χi,

where we used the inequality (d+x)ϑ−dϑ ≤ ϑ(d+1)ϑ−1x for d ≥ 0, x ∈ [0, 1] and ϑ ≥ 1. Now note
that E[(Dϑ)1+σ] <∞ for any 0 < σ < (β − 2− κ)/(2 + κ); in particular, since γ < (β − 2− κ)/β,
we can choose γ/(1− γ) < σ < (β − 2− κ)/(2 + κ). For such σ, Corollary 8.4 gives

P

(∣∣∣∣∣
n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣ > n1−γ

2

)
= O

(
n−σ+(1+σ)γ

)
.

For the term involving the {χi} we use again Lemma 8.2 to obtain

P

(
n∑
i=1

ϑ(Di + 1)ϑ−1χi >
n1−γ

2

)
≤ P

 n∑
i=n−dn1−ηe+1

ϑ(D(i) + 1)ϑ−1 >
n1−γ

2


= O

(
n(1−η)(1−1/2)−(1−γ−1/2)

)
= O

(
n−η/2+γ

)
.

It follows that

P (Ωc
n,i) ≤

1
P (En) ·O

(
n−σ+(1+σ)γ + n−η/2+γ

)
, i = 1, 3, 4. (8.5)
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Now note that since |ζ| ≤ c < 1 a.s., then E[|ζ|2] <∞ and Corollary 8.4 gives

P (Ωc
n,5) = P

(∣∣∣∣∣
n∑
r=1
|ζr|1(Dr ≥ 1)− nν5

∣∣∣∣∣ > n1−γ
)

= P

(∣∣∣∣∣
n∑
r=1
|ζr|1(Dr ≥ 1)− nν5

∣∣∣∣∣+ c|∆n| > n1−γ
)

= O
(
n−1+2γ

)
. (8.6)

Finally, by Corollary 8.4 and (7.1),

P (Ωc
n,6) ≤ P

(∣∣∣∣∣
n∑
r=1
|Qr| − nE[|Q|]

∣∣∣∣∣ > n

∣∣∣∣∣En
)

= O
(
n−εQ + n−δ0η

)
. (8.7)

Our choice of 0 < γ < min{η(κ0 − δ0)(1 + η), σ/(1 + σ)} guarantees that all the exponents of n in
expressions (8.4) - (8.6) are strictly negative, which completes the proof.

Proof of Proposition 7.3. We will show that d1(F ∗n , F ∗) and d1(Fn, F ) converge to zero a.s. by
using the duality formula for the Kantorovich-Rubinstein distance. To this end, let Sn = ∑n

i=1 Di,
Ck = ζk/Dk1(Dk ≥ 1) + c sgn(ζk)1(Dk = 0), and fix ψ∗ : R2 → R and ψ : R3 → R to be Lipschitz
continuous functions with Lipschitz constant one. Then,

E0 :=
∣∣∣∣∣ 1n

n∑
k=1

ψ∗(Nk, Qk)−
1
n

n∑
k=1

ψ∗(Nk, Qk)
∣∣∣∣∣

≤ 1
n

n∑
k=1
|ψ∗(Nk + 1, Qk)− ψ∗(Nk, Qk)| 1(Nk = Nk + 1)

≤ 1
n

n∑
k=1

1(Nk = Nk + 1) ≤ |∆n|
n

,

and

E1 :=
∣∣∣∣∣
n∑
k=1

ψ(Nk, Qk, Ck)
Dk

Ln
−

n∑
k=1

ψ(Nk, Qk,Ck)
Dk

Sn

∣∣∣∣∣
≤

n∑
k=1

Dk

Sn
|ψ(Nk, Qk,Ck)− ψ(Nk, Qk,Ck)| 1(∆n ≤ 0)

+
n∑
k=1

Dk

Ln
|ψ(Nk, Qk, Ck)− ψ(Nk, Qk,Ck)| 1(∆n > 0)

+
n∑
k=1

∣∣∣∣ψ(Nk, Qk, ζk/Dk)
(
Dk

Ln
− Dk

Sn

)∣∣∣∣ 1(∆n > 0)

≤
n∑
k=1

Dk

Sn
1(Nk = Nk + 1) +

n∑
k=1

Dk

Ln
|ζk/(Dk + 1)− Ck| 1(Dk = Dk + 1)

+
n∑
k=1
|ψ(Nk, Qk,Ck)|

∣∣∣∣(Dk −Dk)Sn −Dk∆n

LnSn

∣∣∣∣ 1(∆n > 0),
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where we used the fact that ψ∗ and ψ have Lipschitz constant one. To bound further E1 use the
Cauchy-Schwarz inequality to obtain

n∑
k=1

Dk

Sn
1(Nk = Nk + 1) ≤ n

Sn

(
1
n

n∑
k=1

D2
k

)1/2 ( |∆n|
n

)1/2
.

Now, use the observation that |ζk| ≤ c to obtain
n∑
k=1

Dk

Ln
|ζk/(Dk + 1)− Ck| 1(Dk = Dk + 1)

≤ c
n∑
k=1

1
LnDk

1(Dk = Dk + 1,Dk ≥ 1) +
n∑
k=1

1
Ln
|ζk − c sgn(ζk)| 1(Dk = Dk + 1,Dk = 0)

≤ c

Ln

n∑
k=1

1(Dk = Dk + 1) ≤ c|∆n|
Sn

.

Next, use the bound |ψ(m, q, x)| ≤ ||(m, q, x)||1 + |ψ(0, 0, 0)| and Hölder’s inequality to obtain
n∑
k=1
|ψ(Nk, Qk,Ck)|

∣∣∣∣(Dk −Dk)Sn −Dk∆n

LnSn

∣∣∣∣ 1(∆n > 0)

≤
n∑
k=1
|ψ(Nk, Qk,Ck)|

1(Dk = Dk + 1)
Sn

+
n∑
k=1
|ψ(Nk, Qk,Ck)|

Dk|∆n|
S2
n

≤ 1
Sn

n∑
k=1
||(Nk, Qk, c)||1 1(Dk = Dk + 1) + |∆n|

S2
n

n∑
k=1

(NkDk + |Qk|Dk + c) + 2|ψ(0, 0, 0)∆n|
Sn

≤ n

Sn


(

1
n

n∑
k=1

N 1+δ
k

)1/(1+δ)

+
(

1
n

n∑
k=1
|Qk|1+δ

)1/(1+δ)

( |∆n|

n

)δ/(1+δ)

+ |∆n|
S2
n

n∑
k=1

(NkDk + |Qk|Dk) + H|∆n|
Sn

,

where 0 < δ < min{α − 1, εQ} and H = 2|ψ(0, 0, 0)| + 2c. Now note that since the bi-degree
sequence is constructed on the event |∆n| ≤ n1−κ0+δ0 , we have that E0 ≤ n−κ0+δ0 a.s. To show that
E1 converges to zero a.s. use the Strong Law of Large Numbers (SLLN) (recall that E[D2] < ∞
and that N ,D , Q are mutually independent) and the bounds derived above.
Finally, by the SLLN again and the fact that E[||(N , Q,C )||1] <∞, we have

lim
n→∞

1
n

n∑
k=1

ψ∗(Nk, Qk) = lim
n→∞

1
n

n∑
k=1

ψ∗(Nk, Qk) = E[ψ∗(N , Q)] a.s.

and

lim
n→∞

n∑
i=1

ψ(Nk, Qk, Ck)
Di

Sn
= lim

n→∞

n∑
k=1

ψ(Nk, Qk,Ck)
Dk

Sn
= 1
µ
E[ψ(N , Q,C )D ] a.s.
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The first limit combined with the duality formula gives that d1(F ∗n , F ∗) → 0 a.s. For the second
limit we still need to identify the limiting distribution, for which we note that

1
µ
E[ψ(N , Q,C )D ] = 1

µ
E [E[ψ(N , Q,C )D |N , Q]] = 1

µ
E

[ ∞∑
i=1

∫ ∞
−∞

ψ(N , Q, z/i)i dF ζ(z)P (D = i)
]

= 1
µ
E

[ ∞∑
i=1

∫ ∞
−∞

ψ(N , Q, y)i dF ζ(yi)P (D = i)
]

=: E [ψ(N , Q, Y )] ,

where Y has distribution function

P (Y ≤ x) = 1
µ
E

[ ∞∑
i=1

∫ ∞
−∞

1(y ≤ x)i dF ζ(yi)P (D = i)
]

= 1
µ
E

[ ∞∑
i=1

iF ζ(ix)P (D = i)
]

= 1
µ
E[DF ζ(Dx)] = 1

µ
E[D1(ζ/D ≤ x)] = P (C ≤ x).

It follows that E[ψ(N , Q,C )D ]/µ = E[ψ(N , Q, C)], which combined with the duality formula
gives that d1(Fn, F )→ 0 a.s.
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random graph process. Random Structures & Algorithms, 18(3):279–290, 2001.

37



[10] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. Comput.
Networks ISDN Systems, 30(1-7):107–117, 1998.

[11] N. Chen and M. Olvera-Cravioto. Directed random graphs with given degree distributions.
Stochastic Systems, 3(1):147–186, 2013.

[12] N. Chen and M. Olvera-Cravioto. Coupling on weighted branching trees. http://www.
columbia.edu/˜mo2291/Coupling_Chen_Olv.pdf, 2014. Preprint.

[13] P. Chen, H. Xie, S. Maslov, and S. Redner. Finding scientific gems with Google’s PageRank
algorithm. Journal of Informetrics, 1(1):8–15, 2007.

[14] F. Chung and L. Lu. Connected components in random graphs with given expected degree
sequences. Annals of combinatorics, 6(2):125–145, 2002.

[15] P.G. Constantine and D.F. Gleich. Random alpha pagerank. Internet Mathematics, 6(2):189–
236, 2009.

[16] R. Durret and T. Liggett. Fixed points of the smoothing transformation. Z. Wahrsch. verw.
Gebeite, 64:275–301, 1983.

[17] R. Durrett. Random graph dynamics. Cambridge Series in Statistics and Probabilistic Math-
ematics. Cambridge university press Cambridge, 2007.

[18] S. Fortunato, M. Boguñá, A. Flammini, and F. Menczer. Approximating PageRank from
in-degree. In Algorithms and Models for the Web-Graph, pages 59–71. Springer, 2008.

[19] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating Web spam with TrustRank. In
Proceeding of VLDB2004, pages 576–587, 2004.

[20] T. H. Haveliwala. Topic-sensitive PageRank. In Proceedings of the 11th international confer-
ence on World Wide Web, pages 517–526. ACM, 2002.

[21] R. Holley and T. Liggett. Generalized potlatch and smoothing processes. Z. Wahrsch. verw.
Gebeite, 55:165–195, 1981.
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[24] P.R. Jelenković and M. Olvera-Cravioto. Implicit renewal theory and power tails on trees.
Adv. Appl. Prob., 44(2):528–561, 2012.

[25] A.H. Jessen and T. Mikosch. Regularly varying functions. Publications de L’Institut Mathe-
matique, Nouvelle Serie, 80(94):171–192, 2006.

[26] and D. Lebedev K. Avrachenkov. PageRank of scale-free growing networks. Internet Mathe-
matics, 3(2):207–231, 2006.

38

http://www.columbia.edu/~mo2291/Coupling_Chen_Olv.pdf
http://www.columbia.edu/~mo2291/Coupling_Chen_Olv.pdf


[27] A.N. Langville and C.D. Meyer. Google’s PageRank and beyond: The science of search engine
rankings. Princeton University Press, 2011.

[28] N. Litvak, W.R.W. Scheinhardt, and Y. Volkovich. In-degree and PageRank: Why do they
follow similar power laws? Internet Math., 4(2-3):175–198, 2007.

[29] Mark Newman. Networks: an introduction. Oxford University Press, 2010.

[30] M. Olvera-Cravioto. Tail behavior of solutions of linear recursions on trees. Stochastic Processes
and their Applications, 122(4):1777–1807, 2012.

[31] G. Pandurangan, P. Raghavan, and E. Upfal. Using pagerank to characterize web structure.
In Computing and Combinatorics, pages 330–339. Springer, 2002.

[32] U. Rösler. The weighted branching process. Dynamics of complex and irregular systems
(Bielefeld, 1991), pages 154–165, 1993. Bielefeld Encounters in Mathematics and Physics
VIII, World Science Publishing, River Edge, NJ.

[33] U. Rösler, V.A. Topchii, and V.A. Vatutin. Convergence conditions for the weighted branching
process. Discrete Math. Appl., 10(1):5–21, 2000.

[34] U. Rösler, V.A. Topchii, and V.A. Vatutin. The rate of convergence for weighted branching
processes. Siberian Adv. Math., 12(4):57–82, 2002.

[35] R. van der Hofstad. Random graphs and complex networks. http://www.win.tue.nl/
rhofstad/NotesRGCN.pdf, 2014.

[36] R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem. Distances in random graphs with
finite variance degrees. Random Structures and Algorithms, 27(1):76–123, 2005.

[37] K. Vännman. Estimators based on order statistics from a Pareto distribution. Journal of the
American Statistical Association, 71(355):704–708, 1976.

[38] S. Vigna. A weighted correlation index for rankings with ties. Preprint, 2014. arXiv: 1404.3325.

[39] C. Villani. Optimal transport, old and new. Springer, New York, 2009.

[40] Y. Volkovich and N. Litvak. Asymptotic analysis for personalized web search. Adv. Appl.
Prob., 42(2):577–604, 2010.

[41] Y. Volkovich, N. Litvak, and D. Donato. Determining factors behind the PageRank log-log
plot. In Proceedings of the 5th International Conference on Algorithms and Models for the
Web-graph, pages 108–123, 2007.

[42] Y. Volkovich, N. Litvak, and B. Zwart. Extremal dependencies and rank correlations in power
law networks. In Complex Sciences, pages 1642–1653. Springer, 2009.

[43] L. Waltman and N.J. van Eck. The relation between eigenfactor, audience factor, and influence
weight. J. Am. Soc. Inf. Sci., 61(7):1476–1486, 2010.

[44] J.G. Wendel. Note on the gamma function. Amer. Math. Monthly, 55(9):563–564, 1948.

39

http://www.win.tue.nl/rhofstad/NotesRGCN.pdf
http://www.win.tue.nl/rhofstad/NotesRGCN.pdf


Distributed Frameworks for
Alternating Least Squares

Márton Balassi Róbert Pálovics András A. Benczúr
{mbalassi, rpalovics, benczur}@ilab.sztaki.hu

Informatics Laboratory, Department of Computer and Automation Research Institute,
Hungarian Academy of Sciences

The publication was supported in part by the EC FET Open project “New
tools and algorithms for directed network analysis” (NADINE No

288956)

8th ACM Conference on Recommender Systems
Foster City, Silicon Valley, USA, 6th-10th October 2014
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ALTERNATING LEAST SQUARES

fRMSE(P,Q) =
∑

(u,i)∈Training

(Rui − pu · qT
i )

2 + λ · (‖P‖2
F + ‖Q‖2

F)

I Update step for Q: Qi ← (PTP)−1PTRi

I For each nonzero rating we communicate (PTP)−1 of dim
k2
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ALS MULTI-MACHINE NO SHARED

MEMORY

I Goal: efficient ALS and models for other algorithms
I Problem: Large amount of communication alternating

between rows and columns
– ALS message size is quadratic in number of latent factors

I Drawback of "think as a node" philosophy
– Repeat the same message for all graph nodes
– Even if they reside on the same server



DISTRIBUTION OVERHEAD

I Partitioned graph or ratings
matrix

I Naive approach: qj

communicates to each pi

individually
I In ALS, PageRank, . . . ,

messages from qj are identical
I Network communication

becomes the bottleneck.

qj pc

pb

pa

pd
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Part A

Part B



PROPOSED SOLUTION

I Efficient communication
between partitions

I Translated to graph
processing this is just a
multicast.

qj pc

pb

pa

pd

pe

Part A

Part B



BIG DATA FRAMEWORKS

I Big Data frameworks lack an operator for this job.

Hadoop (Mahout) Map, Reduce
Spark “Functional” operators on (memory) Resilient

Distributed Datasets
Flink “Functional” operators and iteration

Our experimental platform
I Notion of the partition hidden from user when

implementing ALS by vector-to-vector communication.



BIG DATA FRAMEWORKS - SOLUTION

I Mahout implementation: “CustomALS”.
I Algorithm provides an artificial partition ID
I Map-Reduce grouped by partition ID, expected one

partition per reducer
I Partitioning to minimize the communication between

partitions not ensured but left for the framework



GRAPH PROCESSING ENGINES

I Bulk Synchronous Parallel (BSP)
– Sends along ALL nonzero ratings
– Even if the message is identical
– This issue holds even for PageRank

I Example: Giraph
– “Think like a vertex”, no partition notion
– No multicast support in framework



DISTRIBUTED GRAPHLAB

I Several optimization over plain BSP:
– Framework support to distribute very high degree nodes:

PowerGraph partitions scatters and gathers
– Optimization: emit unchanged information by caching on

gather side
– Optimization: graph partitioning to reduce number of

edges cut (hard to partition a real implicit ratings matrix)

I But no handling for multiple identical messages



EXPERIMENTS – DISTRIBUTED MESSAGE

PASSING IN C++

I Proof of concept for a low communication task: PageRank
I We rely on direct control over partitions
I Each vertex sends the message to relevant partitions once
I Test on large Web crawl (.pt): 300M nodes, 1B edges
I Significant improvement



CUSTOM PAGERANK IN C++



CUSTOMPAGERANK IN APACHE FLINK

I We define hypernodes – Mahout CustomALS style
I Insufficient for low communication tasks
I Web-Google graph from Stanford Large Network Dataset

Collection, 9 · 105 nodes,

5 · 106

edges



CUSTOMALS IN APACHE FLINK

I Generated test data 15 million ratings (courtesy: Gravity)
I Framework support already sufficient for ALS



CONCLUSIONS

I ALS multi-machine no shared memory
– Heavy communication alternating between rows and

columns
– ALS message size is quadratic in number of latent factors
– Affects MapReduce with no permanent storage (Mahout

“CustomALS”)
– Graph parallel frameworks with nonzero ratings mapped

to edges
I Ongoing experiments with Message Passing, Giraph,

Apache Flink, and its Pregel implementation Spargel.
– Communication primitives to bind identical messages - use

multicast
– Promising even for seemingly low communication intense

algorithms such as PageRank.
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ABSTRACT
Kernel methods are popular in machine learning tasks. For
Support Vector Machine classification or Support Vector Re-
gression, the central question is the selection of the appro-
priate kernel. The task is difficult in particular if the data
points have complex or multimodal attributes such as time
series or visual content enhanced with geographic, numeric
or text metadata. Unlike earlier approaches of the so-called
Multiple Kernel Learning problem, where a large number of
kernels are fused by wrapper methods as part of the opti-
mization process, in this paper we mathematically derive an
optimal kernel for the data set in question. We begin with se-
lecting appropriate distances for the appropriate modalities,
for example dynamic time warping distance for time series
and Jensen-Shannon distance for the bag of words text rep-
resentation. Our kernel is defined, without needs of wrapper
methods, by considering the distances as attributes gener-
ated by a Markov Random Field. For the Markov Random
Field, the natural kernel is based on the Fisher information
matrix and its exact form can be computed from the data.
We experiment with the above similarity kernel over a wide
variety of data sets, including

• 64-channel EEG data;
• General time series data sets;
• Images with text annotations;
• Web documents;
• Gene expression levels.

Over the complex, multimodal or multiple time series clas-
sification tasks, our method outperforms the state of the art
while reaching identical performance even over the simple
unimodal problems as well, hence our method seems appli-
cable under very general settings.

General Terms
Kernel methods, Classification, Mining rich data types, Similarity-
based methods, Bioinformatics, Web mining
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1. INTRODUCTION
Kernel methods [47] are popular in various fields of data

mining and knowledge discovery such as classification, re-
gression, clustering or dimensionality reduction. Its numer-
ous applications range from relation extraction [57] to the
prediction of protein-protein interactions [4] and other prob-
lems in computational biology [45].

While kernel methods are well-founded from the theoret-
ical point of view, the selection of the appropriate kernel is
essential in many real-world tasks. In order to allow wide
range of applications, various kernels have been introduced
in the last decades such as the general-purpose polynomial
and RBF-kernels as well as application-specific kernels, see
e.g. string-kernels in text mining [6] or computational biol-
ogy [31]. Learning optimal hyperparameters of these kernels
may be computationally prohibitive in case of large datasets.
Furthermore, even if the best hyperparameters have been
found, the resulting kernel may not completely reflect the
true structure of the data, which is likely to manifest in
suboptimal results regardless of the particular analysis task.

The selection of feature set dependent distance or simi-
larity metrics is crucial for learning. Although selecting and
in some cases computing the potential metrics may consti-
tute a challenging task, once metrics are defined, they can
often be used to transform the original complex optimiza-
tion problem to a less challenging one. Most notably, the
Support Vector Machine (SVM) optimization phase is in-
dependent of the underlying metric based on precomputed
kernel values.

An additional and interesting opportunity arise from the
freedom of selecting similarity or distance metrics to define
SVM kernels. In a number of practical applications such
as image or document classification, we have to learn over
multiple representations, often with different kernel func-
tions. Images are often enriched by text description or other
non-visual metadata such as geo-location or date, yielding a
multimodal classification task with each mode (visual, text,
geospatial) having its own natural metric [19]. Another ex-
ample is Web content, where text, hyperlinks and style give
us different kernels when categorizing Web pages or filtering
Web spam [10].

In order to address the kernel selection problem, in this pa-
per, we propose a principled meta-kernel learning approach
based on Fisher information theory. Our new approach is
computationally inexpensive and needs no wrapper methods



for learning a kernel over multiple modalities. In experi-
ments on publicly-available real-world datasets from various
domains such as classification of images, texts, time series
and gene expression data, we show that our approach out-
performs the state-of-the-art.

2. RELATED WORK
In many cases, one single kernel may perform subopti-

mally. In the last decade, this issue has primarily been ad-
dressed in the framework of multiple kernel learning (MKL)
[3, 30, 49, 23]. With proposing a method to learn a ker-
nel over multiple modalities, in this paper, we address a
problem that is related to MKL, but is substantially differ-
ent from MKL in several respects. First, we assume that
all the modalities are used in the kernel, not only a frac-
tion of them. Second, in order to devise a computationally
efficient approach, we only calculate the distance between
each instance and a small set of reference instances. This
is in contrast to MKL techniques that require full kernel
matrices. Last, but not least, our approach runs only one
SVM optimization procedure while most MKL approaches
are wrapper approaches and therefore they execute large
amount of SVM optimizations.

Selecting the appropriate kernel under multiple modali-
ties can be seen as a special case of the Multiple Kernel
Learning problems where the kernels are computed on dif-
ferent feature sets. Bach et al. [39] suggested to solve the
MKL problem with an iterative, wrapper like, sparse algo-
rithm where in each iteration they solve a standard SVM
dual problem and update the weights of the basic kernels.
Instead of optimizing multiple times over the training set
with a combination of kernel functions, we will define a novel
kernel function combining all the representations into a sin-
gle feature space. Our method is wrapper-free and is hence
scalable for large data sets as well.

Late fusion approaches, see e.g. [56] and the references
therein, combine the outputs of various kernel methods.
Usually, they take an estimated certainty of each kernel
method into account. In contrast to late fusion, our ap-
proach learns a kernel over various modalities instead of
combining the outputs of different kernel methods.

3. THE SIMILARITY KERNEL
A natural idea to handle distances of pairs of observation

is to use kernel methods. A kernel acts as an inner product
between two observations in certain large dimensional space
where Support Vector Machine, a form of a high dimensional
linear classifier, can be used to separate the data points [44].
Under certain mathematical conditions, we have a freedom
to define the kernel function by giving the formula for each
pair of observations.

In this section, we show how the Fisher information ma-
trix defines a natural distance over a possibly multimodal
representation of complex instances. Our goal is to define a
unified kernel function with the following properties:

1. A single kernel should include all modalities to avoid
the computational complexity of the multiple kernel
learning problem and in particular the need for wrap-
per methods.

2. The kernel should be based on an underlying model
that captures the connection and dependencies between
the modalities or the multiple representations.

3. Data points should posses a generative model so that
the Fisher information matrix can be used to define a
mathematically justified optimal kernel.

3.1 Random Field representation
As the first step, we represent our data as a Random Field

by assuming that the data instances are generated by defin-
ing their distances from certain selected instances S. Prac-
tically, we will select the training instances or, in case of too
many of them, a subset of the training set but we may in
fact use an arbitrary sample S.

We will consider our data points as random variables form-
ing a Markov Random Field described by an undirected
graph. For a target instance x, we define a generative model
by a simple graph that has edges between x and each ele-
ments of the sample S.

We define a generative model of x based on its similarity or
distance dist(x, s) to elements of sample S. In this random
field, the factor graph is a star that consists of the pairs of
x connected to the elements s ∈ S. By the Hammersley–
Clifford theorem [40], the joint distribution of the generative
model for X is a Gibbs distribution. Next we derive this
distribution via an appropriate potential function.

3.2 The potential function
Given a Markov Random Field defined by a graph, a wide

variety of proper potential functions can be used to define a
Gibbs distribution. The weak but necessary restrictions are
that the potential function has to be positive real valued,
additive over the maximal cliques of the graph, and more
probable configurations (specific sets of parameters) have to
have lower potential.

Our first and least complex graph is a bipartite graph
connecting only the actual observations and the finite set of
previously known observations. For simplicity first we will
discuss the single modality case. In this graph the maximal
cliques are the pairs of the actual observation and the ele-
ments of the sample set, therefore our potential function can
have a really simple form,

U(X | S, θ = {αi}) =

|S|∑
i=1

αidist(x, si), (1)

where θ is the hyperparameter and si ∈ S is the ith sample.
For K modalities with different distance functions be-

tween the instances, the potential function has the form

U(x | S, θ = {αik}) =

|S|∑
i=1

K∑
k=1

αikdistk(x, si), (2)

where K is the number of different distance functions and
θ = {αik} is the set of the parameters. For simplicity, from
now on we omit S and use θ to denote the hyperparameters.

Given the potential function over the maximal cliques, by
the Hammersley–Clifford theorem [40], the joint distribution
of the generative model for X is a Gibbs distribution

p(X | θ) = e−U(X|θ)/Z(θ) (3)

where

Z(θ) =

∫
X∈X

e−U(X|θ)dX (4)

is the expected value of the energy function over our gener-
ative model, a normalization term called the partition func-



tion. If the model parameters are previously determined, Z
is a constant.

3.3 The Fisher Kernel
According to Jaakkola and Haussler [27], generative mod-

els have a natural kernel function based on the Fisher infor-
mation matrix F .

The main innovation of Jaakkola and Haussler [28] is to
obtain the kernel function directly from a generative proba-
bility model and therefore obtain a kernel quite closely re-
lated to the underlying model. They consider a parametric
class of probability models P (X|θ) where θ ∈ Θ ⊆ Rl for
some positive integer l.

Provided that the dependence on θ is sufficiently smooth,
the collection of models with parameters from Θ can then
be viewed as a (statistical) manifold MΘ. MΘ can be turned
into a Riemannian manifold1 [29] by giving a scalar prod-
uct at the tangent space of each point. P (X|θ) ∈ MΘ via
a positive semidefinite matrix F (θ), which varies smoothly
with the base point θ. Such positive semidefinite matrices
are provided by the Fisher information matrix

F (θ) := E(∇θ logP (X|θ)∇θ logP (X|θ)T ),

where the gradient vector ∇θ logP (X|θ) is

∇θ logP (X|θ) =

(
∂

∂θ1
logP (X|θ), . . . , .. ∂

∂θl
logP (X|θ)

)
,

and the expectation is taken over P (X|θ). In particular,
if P (X|θ) is a probability density function, then the ij-th
entry of F (θ) is

fij =

∫
X

P (X|θ)( ∂

∂θi
logP (X|θ))( ∂

∂θj
logP (X|θ))dX.

In many cases the kernel can actually be viewed as an
inner product:

K(X,Y ) = φTXφY ,

where the feature vectors φX , φY ∈ Rk are obtained via a
fixed, problem specific map X 7→ φX which describes the
examples X in terms of a real vector of length k.

The vector GX = ∇θ logP (X|θ) is called the Fisher score
of the example X. Now the mapping X 7→ φX of exam-

ples to feature vectors can be X 7→ F−
1
2GX (we suppressed

here the dependence on θ), the Fisher vector. Thus, to cap-
ture the generative process, the gradient space of the model
space MΘ is used to derive a meaningful feature vector. The
corresponding kernel function

K(X,Y ) := GTXF
−1GY

is called the Fisher kernel.
An intuitive interpretation is that GX gives the direction

where the parameter vector θ should be changed to fit best
the data X [36].

1A Riemannian manifold M is a smooth real manifold,
where for each point p ∈ M there is an inner product de-
fined on the tangent space of p. This inner product varies
smoothly with p. One can define the length of a tangent
vector via this inner product on the tangent space. This
makes possible to define the length of a curve γ(t) on M by
integrating the length of the tangent vector γ̇(t). This in
turn allows to define a metric on M . The distance between
two points Q and Q′ is just the length of the shortest curve
on M from. Q to Q′.

3.4 Fisher Kernel over Markov Random Fields
In this section we prove that the Fisher Information ma-

trix assuming Gibbs distribution with potential function (1)
is the variance matrix of the distances distk(x, si) for s ∈ S,
and therefore the Fisher kernel is the linear kernel over the
normalized distances.

First, let us calculate the Fisher score based on our general
generative model,

GiX = ∇θi log p(X|θ) (5)

= − ∂(U(X|θ)
∂θi

+ 1
Z(θ)

∫
X∈X eU(X|θ) ∂(U(X|θ)

∂θi
dX.

As we set our model θ fixed, Z(θ) is a constant and our
formula can be simplified as

GiX = Eθ[
∂(U(X|θ)

∂θi
]− ∂(U(X|θ)

∂θi
. (6)

The first part of the formula can be calculated from the
observationX while the expected value (the mean of the gra-
dient of the potential function) is hard to compute. Worth
to mention, if there exists a probability density function
f(X | θ) such that

U(X | θ) = − log f(X | θ) (7)

then the expected term of (6) is zero trivially. For a potential
function as in equation (1), the Fisher score of X has a
simple form,

GiX = Eθ[dist(x, si)]− dist(x, si). (8)

Before we move on to the analysis of the dimensionality,
let us examine the computational properties of the Fisher
information matrix.

3.5 Approximation of the Fisher Kernel over
Gibbs distribution

The computational complexity of the Fisher information
matrix is O(N |θ|2) where N is the size of the training set.
The linearization of the Fisher kernel through Cholesky de-
composition is also an expensive procedure depending only
on the size of the parameter set.

To reduce the complexity to O(N |θ|) we can approximate
the Fisher information matrix with the diagonal as suggested
in [27, 36].

Focusing on the diagonal of the Fisher information matrix,
we get

fi,i = Eθ[∇θi log p(X|θ)T∇θi log p(X|θ)] (9)

= Eθ[(Eθ[
∂U(X|θ)
∂θi

]− ∂(U(X|θ)
∂θi

)2]

=
∫
X∈X p(X | θ)(Eθ[

∂U(X|θ)
∂θi

]− ∂U(X|θ)
∂θi

)2dX.

For the potential function of equation (1), the diagonal of
the Fisher kernel is the standard deviation of the distances
from the samples and therefore the Fisher vector of X has
the following form

GiX = F
− 1

2
ii GiX =

Eθ[dist(x, si)]− dist(x, si)

E
1
2
θ [(Eθ[dist(x, si)]− dist(x, si))2]

(10)

The above formula can be directly computed from the dis-
tance matrix of the sample S and the training and testing
instances X. The dimensionality of the Fisher vector (the
normalized Fisher score) is equal to the size of the parame-
ter set of our joint distribution. In our case it depends only
on the size of the sample S and the number of modalities
(K), dimFisher = K · |S|.



4. EXPERIMENTS
We performed experiments on publicly available real-world

datasets from various domains. Next, we briefly describe the
datasets, the underlying domains followed by the experimen-
tal protocol, results and discussion.

In all our experiments, we approximate the mean and vari-
ance of distk(x, si) from the training data to compute the
kernel as defined by equation (10). Since kernel methods are
feasible for regression [38, 44], we also use the methods for
predicting numerical values.

We used LibSVM [12] for classification problems and the
Weka implementation of SMOReg [54][38] for regression.

Table 1: EEG prediction
Method AUC Gain(%)
DTW k-NN k=1 0.7534 +0.0
DTW k-NN k=100 0.7847 +0.0%
SimKer: 64xDTW |S|=100 0.8275 +5.4%
SimKer: MultiDTW |S|=|T| 0.8506 +8.4%

Table 2: Visual concept detection over the Yahoo!
MIR Flickr dataset

Method Mod. MiAP Gain(%)
ColHOG (CH) Vis. 0.3670
SimKer: Flickr tags (Sim.JS) Text. 0.3015
SimKer: CH + JS (Sim.JSCH) Multi 0.4257 +2.0%
L.Comb: CH + Sim.JS Multi 0.4170 +0.0%
L.Comb: Sim.JSCH + CH + Sim.JS Multi 0.4467 +7.1%
SLWF by Liu (2014) [33] Multi 0.4367

Table 3: Quality prediction over the C3 dataset
Method Mod. MAE RMSE Gain(%)
BM25 SVM (BM) Text. 0.6144 0.7915 +0.0%
C3 features GBT (GBT) Netw. 1.3528 1.4961
Lin. Comb.: BM + GBT Multi 0.7459 0.8839
SimKer: BM25 Text. 0.6196 0.8095
SimKer: C3 Netw. 0.6900 0.8278
SimKer: BM25 + C3 Multi 0.5891 0.7753 +4.2%

4.1 Time series classification
We performed experiments on the publicly available EEG

dataset [58] from UCI machine learning repository2 and the
time series datasets from the UCR time series archive.3

For the classification of time-series, the k nearest-neighbor
(k-NN) method using dynamic time warping (DTW) as dis-
tance measure was reported to be competitive, if not su-
perior, to many state-of-the-art time-series classifiers, such
as neural networks, hidden Markov models or support vec-
tor machines, see e.g. [15, 24, 55] and the references therein.
Furthermore, Chen et al. [14] gave theoretical guarantees for
the performance of nearest neighbor-like classifiers for time
series. Therefore, we use k-NN with DTW as baseline.

EEG (electroencephalogram) is usually recorded on multi-
ple channels, therefore, multimodality naturally arises with

2http://archive.ics.uci.edu/ml/datasets/EEG+Database
3www.cs.ucr.edu/˜eamonn/time series data

Table 4: Quality prediction over the C3 dataset
Method Mod AUC Gain(%)
tf SVM linear Text. 0.6531
tf SVM poly. d=2 Text. 0.6498
tf SVM poly. d=3 Text. 0.6530
tf.idf SVM linear Text. 0.6496
tf.idf SVM poly. d=2 Text. 0.6428
tf.idf SVM poly. d=3 Text. 0.6464
BM25 SVM linear (Lin) Text. 0.6923
BM25 SVM poly. d=2 Text. 0.6826
BM25 SVM poly. d=3 Text. 0.6714
C3 features LibFM Netw. 0.6695
C3 features GBT Netw. 0.6688
L.Comb.: Lin + LibFM Multi 0.7100
L.Comb.: Lin + GBT Multi 0.7133 +0.0%
SimKer: tf JS (Sim.JS) Text. 0.6978
SimKer: BM25 L2 (Sim.BM) Text. 0.7141
SimKer: C3 Netw. 0.6571
SimKer: BM+JS+C3 (Sim.All) Multi 0.7363 +3.2%

Table 5: Web Spam detection over ClueWeb dataset
Method Mod. AUC Gain(%)
BM25 SVM Text. 0.8450
Content features Cont. 0.7882
L.Comb.: BM + Cont. Multi 0.8517 +0.0%
SimKer: BM25 Text. 0.8546
SimKer: BM25 + Cont. Multi 0.8622 +1.2%

Table 6: Classification of gene expression data
Method AUC Gain(%)
Linear SVM 0.9338
Cosine SVM 0.9496 +0.0%
SimKer: cosine distance 0.9588 +0.9%

such data. Classification of EEG signals is one of the most
prominent application domains in the light of ongoing Amer-
ican and European large scale research projects dedicated to
study the brain and its disorders, such as the BRAIN Ini-
tiative 4 and the European Human Brain Project5. EEG is
one of the most well-established techniques to capture the
activity of the brain, it is widely used in research and clinical
practice, see e.g. [2, 20, 42]. Paralyzed patients may benefit
from EEG-controlled devices, such as spelling tools [8] or
web browsers [5]. Furthermore, there were attempts to pre-
dict upcoming emergency braking based on EEG signals [26]
which could result in reducing the braking distance of vehi-
cles. A common feature of the aforementioned applications
is that they involve classification of EEG signals.

The UCI EEG collection [58] contains in total 11028 EEG
signals recorded from 122 persons. The total (decompressed)
size of the data is several gigabytes which is roughly three
orders of magnitude larger than the datasets from the UCR
repository. Out of the 122 persons, there are 77 alcoholic
patients and 45 healthy individuals. While capturing EEG,
both alcoholic patients and healthy individuals were exposed
to three different stimuli: subjects were shown either one
picture or two different pictures or the same picture twice.

4http://en.wikipedia.org/wiki/BRAIN Initiative
5https://www.humanbrainproject.eu



The dataset contains recordings for all the tree types of stim-
uli for all the subjects. Each signal was recorded using 64
electrodes at 256 Hz for 1 second. Therefore, each EEG
signal is a 64-dimensional time series of length 256 in this
collection. Multimodality, a core aspect of the proposed
technique, naturally arises with multidimensional time se-
ries: each channel may correspond to a modality.

As a noise filter, a simple preprocessing step, we reduced
the length of the signals from 256 to 64 by binning with a
window size of four, i.e., we averaged four consecutive values
of the signal.

In order to simulate the clinically relevant scenario in
which the classifier is applied to the EEG of new patients,
we randomly assign each person to either training or test
split of the data and all the signals of the same person were
either assigned to the training set or to the test set. In total,
randomly selected 50 % of the all persons were assigned to
the training set, while the remaining persons were assigned
to the test set.

We performed two experiments on EEG data. In the first
experiment, we randomly selected 100 signals as sample set
S and calculated the DTW distances between these reference
signals and other train and test signals for each channel sep-
arately. This experiment simulates application scenarios in
which classification time is essential: in order to classify a
new time series, we only need to calculate its distance to
relatively few reference signals and use these distances as
features in our approach. This allows quick and accurate
classification of new signals. As the third row of Table 1
shows, our approach outperforms the baseline in terms of
AUC.

In the second experiment, we used multivariate DTW as
distance of two EEG signals. For a detailed description of
multivariate DTW we refer to [9]. In this experiment, the
distances from all the training signals were used as features
in our approach, SimKer. While the DTW-calculations in
this scenario require non-negligible computational effort, as
Table 1 shows, this results in further improvements in terms
of classification accuracy as measured by AUC.

Additionally, we performed experiments on the datasets of
UCR time series archive which is one of the most frequently
used benchmark in the time series literature. Note that the
datasets in this collection are rather small, a few megabytes
each, therefore, training advanced models on the datasets
from the UCR collection is inherently difficult. Consequently,
the advantage of complex models to simpler ones may not
be pronounced on the UCR time series datasets, and we do
not expect to observe substantial differences between dif-
ferent models on the UCR time series. In our approach,
SimKer, we used DTW as distance measure and considered
the distances from each training time series.

The results on the datasets of the UCR archive show that
our approach clearly outperformed the baseline on some of
the datasets of the archive, while the overall difference be-
tween the performance of our approach and the baseline was
not found to be statistically significant using paired t-test at
significance level of 0.05. We note that while we performed
experiments on the data from the UCR time series archive,
we considered only one modality (the DTW-distance of a
time series x from the train time series), because no other
modality was available for this data. Therefore, we could
not exploit one of the major advantages of the proposed
method, i.e., its ability to fuse several modalities.

4.2 Gene Expression
Proteins play essential role in almost all biological pro-

cesses at the cellular level. Genes are particular subse-
quences of DNA that code for proteins. While each cell
of the organism has the same DNA, the activation levels of
genes may vary in different tissues: informally speaking, the
expression level of a gene means how frequently the corre-
sponding DNA fragment is transcribed to RNA and trans-
lated to proteins. Various tissues are characterized by differ-
ent gene expression patterns, furthermore, diseases such as
cancer may be associated with characteristic gene expres-
sion patterns. Therefore, classification of gene expression
data may contribute to diagnosis of various types of cancer
such as colon cancer, lymphoma, lung cancer or subtypes of
breast cancer [32]. In this paper, we used publicly available
gene expression data of breast cancer tissues, colon cancer
tissues, and lung cancer tissues, see [32] and the references
thereoin for details. In these datasets, the expression levels
of 7650, 6500 and 12,600 genes have been measured for 95,
62 and 203 patients in the breast cancer, colon cancer and
lung cancer datasets respectively.

Similarly to [32], we performed experiments according to
the 5-fold crossvalidation protocol. As baselines, we used
SVMs, because SVMs were reported to perform excellently
on these datasets.

Table 6 summarizes our results: we report AUC averaged
over all the three datasets for SimKer and SVMs with linear
and cosine kernel. The results show that SimKer outper-
forms both types of SVMs.

4.3 Web Spam detection over ClueWeb09
The first results on automatic Web quality classification

focus on Web spam [11]. In this section, we show experi-
ments over the Waterloo Spam Rankings [16] of the ClueWeb09
corpus.

Our baseline classification procedures are collected in [48]
by analyzing the results of the Web Spam Challenges and
the ECML/PKDD Discovery Challenge 2010. As our main
conclusion, Web spam can be classified purely based on the
terms used. Over different Web spam and quality corpora
[22], the bag-of-words classifiers based on the top few 10,000
terms performed best and significantly improved the tradi-
tional Web spam features [11]. SVM based content classi-
fication was first used in [1]. In our earlier result, we use
libSVM [12] with several kernels and apply late fusion as
described in [48]. We improve over this later result by using
the Fisher kernel next.

Our most important feature set is the bag of words rep-
resentation of the text over the Web host. Let there be H
hosts consisting of an average ` terms. Given a term t of
frequency f over a given host that contains ` terms, we used
the BM25 term weightning scheme, where the weight of t in
the host becomes

log
H − h+ 0.5

h+ 0.5
· f(k + 1)

f + k(1− b+ b · `
`
)
. (11)

Low k means very quick saturation of the term frequency
function while large b downweights content from very large
Web hosts.

In addition, we use the public feature set [10] that includes
the following values computed for the home page, page with
the maximum pagerank and average over the entire host:



1. Number of words in the page, title;

2. Average word length, average word trigram likelihood;

3. Compression rate, entropy;

4. Fraction of anchor text, visible text;

5. Corpus and query precision and recall.

Here feature classes 1–4 can be normalized by using the av-
erage and standard deviation values over the two collections
while class 4 is likely domain and language independent.

Corpus precision and recall are defined over the k most
frequent words in the dataset, excluding stopwords. Corpus
precision is the fraction of words in a page that appear in
the set of popular terms while corpus recall is the fraction of
popular terms that appear in the page. This class of features
is language independent but rely on different lists of most
frequent terms for the two data sets.

Results for spam detection in Table 5 show 1.2% improve-
ment for the multimodal Similarity kernel over the linear
combination of the predictions of the BM25 based SVM and
the content feature based SVM.

4.4 Web credibility classification
Mining opinion from the Web and assessing its quality

and credibility became a well-studied area [21]. Classify-
ing various aspects of quality was introduced as part of
the ECML/PKDD Discovery Challenge 2010 tasks [48] and
among others, Microsoft created a reference data set [46].

Recent results on Web credibility assessment [34] use con-
tent quality and appearance features combined with social
and general popularity and linkage. After feature selection,
they use 10 features of content and 12 of popularity by stan-
dard machine learning methods of the scikit-learn toolkit.

In this section we show the performance of the Fisher ker-
nel for the WebQuality 2015 Data Challenge by comparing
prediction methods for the C3 data set. The data set was
created in the Reconcile6 project and contains 22325 Web
page evaluations in five dimensions (credibility, presentation,
knowledge, intentions, completeness) of 5704 pages given by
2499 people. The mTurk platform were used for collecting
evaluations. Ratings are similar to the dataset built by Mi-
crosoft for assessing Web credibility [46], on a scale of four
values 0-4, with 5 indicating no rating. Since multiple val-
ues may be assigned to the same aspect of a page, we simply
average the human evaluations per page. We may also con-
sider binary classification problems by assigning 1 for above
2.5 and 0 for below 2.5.

While we are aware of no other results over the C3 data
set, we collect reference methods from Web credibility re-
search results. Existing results fall in four categories: Bag of
Words; language statistical, syntactic, semantic features; nu-
meric indicators of quality such as social media activity; and
assessor-page based collaborative filtering. User and page-
based collaborative filtering is suggested in [35] in combina-
tion with search engine rankings. Social media and network
based features appear already for Web spam [25, 11]. Con-
tent statistics as a concise summary that may replace the
actual terms in the document were introduced first in the
Web spam research [11]. The C3 data set includes content
quality and appearance features described among others in
[34].

6http://reconcile.pjwstk.edu.pl/

In order to perform text classification, we crawled the
pages listed in the C3 data set. By using the bag of words
representation of the Web page content, our goal is to com-
bine all above methods with known and new kernel based
text classifiers.

Our classifier ensemble consists of the following compo-
nents:

• Gradient Boosted Trees and recommenders
• Standard text classifiers
• Similarity kernel based SVM using not only the text

but also the C3 attributes.

In our experiments the Bag of words models contain the
top 30k term frequencies after stemming. Besides BM25
(see Section 4.3), we experimented with two additional term
frequency normalization schemes:

• Term frequency (tf): simply f , for all terms in the
documents of H.

• Term frequency times inverse document frequency (tf.idf):

log
H − h+ 0.5

h+ 0.5
· f. (12)

One of the main questions is how to select proper distance
measures over the bag of words and C3 features. In addition
to the linear metric over the C3 attributes and the L2 nor-
malized bag of words representations (tf, tf.idf and BM25),
we apply Jensen-Shannon divergence (JS) over the L1 nor-
malized term distributions according to our previous results
[48, 18].

Our most complex Fisher kernel (Sim.All) is based on
three representations: Jensen-Shannon divergence over raw
term distribution, Euclidean distance over L2 normalized
BM25, Euclidean distance over scaled site features.

According the results in in Table 4 the use of Fisher kernel
over the term frequency based Jensen-Shannon divergence
(Sim.JS) already reaches accuracy of the best non Fisher
method with a single modality (Lin, linear SVM over the
BM25 features). Out of the non Fisher methods using only
the C3 attributes the LibFM and the Gradient Boosted Tree
(GBT) perform very similar. The ensemble of GBT and the
linear SVM over BM25 performs 0.713 in AUC, achieving
the accuracy of the best Fisher kernel with only one distance
(Sim.BM).

The best method (Sim.All) outperforms the best non Fisher
method (Linear combination of Lin and GBT) by 3.2% on
average in AUC. The largest difference is 7.2% by classifying
“knowledge”. Similarity kernel performs similarly for regres-
sion (Table 3). We measured 4.2% improvement in MAE
(Mean Absolute Error) and 2.1% in RMSE (Root Mean
Squared Error) over the baseline method.

4.5 Visual concept detection: Yahoo! MIR Flickr
dataset

Images are rarely being present alone, usually we can ex-
tract some content related textual or other non-visual in-
formation such as geo-location or date from their context.
Besides non visual meta features we can think of any visual
representation as an individual modality. Altogether we can
easily define a set of very diverse distance functions over
images.

Vast amount of tagged images is available over photo shar-
ing services or even the public Web. In our experiments we



used the Yahoo! MIR Flickr dataset containing 15k im-
ages as the training set and 10k images as a test set [51].
The dataset was used for various challenges such as Image-
CLEF 2012 Photo Annotation task [51] and in recent articles
[33][7][50]. The aim is to detect the presence of 94 categories
(a wide variety of concepts not limited to objects, e.g. day-
light, indoor, underwater or citylife) in terms of their visual
and textual features.

Among large number of Bag of Visual Words models (su-
per vector [59], kernel codebook [52], locality-constrained
[53] to name a few), Gaussian Mixture based Fisher encod-
ing [37] appears best out of BoVW models by the evalu-
ation work of [13][43], hence we choose the same method.
The Fisher metric over Gaussian mixtures is a well-known
method to measure the distance between two images based
on their visual content [36, 13, 43]. The model extracts a
large amount of local descriptors over various parts of the
image. The Gaussian Mixture model describes the set of de-
scriptors of the image assuming naive independence between
the descriptors. In our experiments we calculated grayscale
HOG (Histogram of Oriented Gradients [17]) and RGB color
moments over a dense grid and multiple scales using four
different macroblock sizes (24x24, 32x32, 48x48 and 64x64
pixels per block). Both descriptors were L2 normalized. To
reduce the dimension of the descriptors we transformed the
vectors by Principal Component Analysis (PCA). The pro-
cedure resulted approximately 140k descriptors per image.
The final visual Fisher vectors with 512 Gaussians were cal-
culated over the descriptors per image. Moreover we splitted
the images into three parts according to Lazebnik et al. [41]
increasing the number poolings per image.

Additionally, we computed Jensen-Shannon divergence of
the images based on their Flickr tags. As a baseline, we
combined linearly the predictions of the linear SVM over
the Gaussian Mixture based visual Fisher kernel and the
Similarity kernel of the Jensen-Shannon divergence over the
Flickr tags. The multimodal Similarity kernel (JSCH) out-
performs the baseline by 2% (see Table 2) in MiAP (Mean
interpolated Average Precision, the metric at the task [51]).
Our best method, surprassing the baseline by 7.1%, is a lin-
ear combination of the predictions using the visual Fisher
kernel and the Similarity kernels, both textual and multi-
modal.

In comparison to recent results, our method outperforms
the Selective Weighted Late Fusion (Liu et al. [33]) by
2.28%, the best result published to our knowledge over the
MIR Flickr dataset.

5. CONCLUSIONS
From a generative model based on instance similarities,

we derived a “similarity” kernel applicable for SVM classifi-
cation and regression. The method is capable of defining a
single unified kernel even in the case of rich data types, in-
cluding multimodal or multiple time series data. The param-
eters of the kernel are directly computable from the data and
hence we may avoid the high computational costs of multi-
ple kernel learning and in particular the need for wrapper
methods.

We evaluated our methods on a variety of publicly avail-
able real data sets, including multi-channel EEG, univariate
time series, gene expression data, Web spam and credibil-
ity as well as image content with text annotation. Besides
the presence of multiple modalities, complexity of classifi-

cation and regression tasks in the aforementioned domains
arise from various additional sources, such as high dimen-
sionality (compared to the number of available instances),
interdependence between attributes, presence of noise and
uncertainty. Our experiments show that the proposed ap-
proach is able to successfully solve the underlying machine
learning tasks, even under the presence of such additional
domain and data complexity.

In particular, on all the aforementioned data sets, our
method reaches and in many cases improves over the state-
of-the-art. Hence we conclude generative models based on
instance similarities with multiple modes is a generally ap-
plicable model for classification and regression tasks ranging
over various domains, including but not limited to the ones
presented in this paper.
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ABSTRACT
In this paper we give methods for time-aware music rec-
ommendation in a social media service with the potential
of exploiting immediate temporal influences between users.
We consider events when a user listens to an artist the first
time and this event follows some friend listening to the same
artist short time before. We train a blend of matrix factor-
ization methods that model the relation of the influencer, the
influenced and the artist, both the individual factor decom-
positions and their weight learned by variants of stochastic
gradient descent (SGD). Special care is taken since events
of influence form a subset of the positive implicit feedback
data and hence we have to cope with two different defini-
tions of the positive and negative implicit training data. In
addition, in the time-aware setting we have to use online
learning and evaluation methods. While SGD can easily
be trained online, evaluation is cumbersome by traditional
measures since we will have potentially different top recom-
mendations at different times. Our experiments are carried
over the two-year “scrobble” history of 70,000 Last.fm users
and show a 5% increase in recommendation quality by pre-
dicting temporal influences.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
filtering; I.2.6 [Artificial Intelligence]: Learning

Keywords
temporal recommendation and evaluation; social influence;
online matrix factorization; Last.fm; music recommendation

1. INTRODUCTION
Part of the appeal of Web 2.0 is to find other people who

share similar interests. Last.fm organizes its social network
around music recommendation: users may automatically
share their listening habits and at the same time grow their
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friendship. Based on the profiles shared, users may see what
artists friends really listen to the most.

In a recent paper [22], we proved the existence of the in-
fluence of friends on musical taste by carefully decoupling
trends and homophily, the fact that friends are a priori more
likely to have similar taste. In this paper we exploit the
timely information gathered by the Last.fm service on users
with public profile to exploit the potential influence between
friends for recommendation. Last.fm’s service is unique in
that we may obtain a detailed timeline and catch immedi-
ate effects by comparing the history of friends in time and
comparing to pairs of random users instead of friends.

As our main contribution, we give a matrix factorization
mixture model for influence between friends that yield im-
proved collaborative filtering methods. In the simplest set-
ting, we may recommend a new artist a to a user u closely
after a friend v listened to the same artist. When we turn to
modeling the tensor data < u, v, a > that may even involve
the time elapsed since v listening to a, we face a very sparse
problem. Hence instead of modeling the tensor, we flatten
out along the variables and define three matrices in addition
to single-variable effects similar to the ones defined by the
centralization procedures of [4].

Since influence from friends has a very strong time de-
pendence in that only the events of the last few hours or
days may have an effect on the user behavior, in this paper
we consider online learning with very strong time sensitiv-
ity. Compared to standard collaborative filtering methods,
we process events only once and in the order they have ap-
peared. As baseline we use online stochastic gradient de-
scent (SGD) with high learning rate so that recent events
have high contribution to the factor weights. The online fac-
tor model already incorporates not just popularity by using
a high learning rate and involving an online updated item
bias, but also part of friends’ influence. Immediately after
a user listens to an artist, the corresponding factor weights
are relative strongly adjusted due to the high learning rate.
If a friend has similar factor weights e.g. by homophily, the
same artist will have high recommendation score after the
learning step. The online factor model hence involves an im-
plicit variant of an influence recommender by itself that we
will further improve by a direct modeling of the influences.

To obtain the weighted combination of the baseline and
the influence recommenders, we propose a new method for
online learning user-dependent blending weights. If the deriva-
tives of the individual models are available, a single SGD
could optimize both the internal parameters and the blend-
ing weights. However as it turns out, the influence recom-



mender requires a different set of implicit positive items and
a procedure for generating a negative sample than the tra-
ditional online matrix factor model.

In our blend, we obtain a 5% of increase in quality, a
strong result in view of the three-year Netflix Prize com-
petition [6] to improve recommender quality by 10%. The
fact that influences blend well with collaborative filtering
and temporal effects prove that close events in the network
bring in new information: friends’ close events in the past
can be exploited in a recommender system.

Finally, as part of our results, we introduce quality mea-
sures for time-aware recommender evaluation. As influence
from friends has only a short, typically few hours effect, we
retrain part of our models after each event and hence po-
tentially give completely new top list of items for each event
in the testing period. We highlight that discounted cumula-
tive gain (DCG) computed individually for each event and
averaged over time is an appropriate measure for real time
recommender evaluation.

The rest of this paper is organized as follows. After de-
scribing our Last.fm data in Section 2, we explore for mea-
surable signs of influence by friends in Section 3. Our main
influence recommender is defined in Section 4, our online
evaluation metric in Section 5, the online blending method
in Section 6 and the baseline algorithms in Section 7. Finally
we show our measurements for improved recommendation
quality in Section 8.

1.1 Related results
The Netflix Prize competition [6] has recently generated

increased interest in recommender algorithms in the research
community and put recommender algorithms under a sys-
tematic thorough evaluation on standard data [5]. The final
best results blended a very large number of methods whose
reproduction is out of the scope of this paper.

Bonchi [7] summarizes the data mining aspects of research
on social influence. He concludes that “another extremely
important factor is the temporal dimension: nevertheless
the role of time in viral marketing is still largely (and sur-
prisingly) unexplored”, an aspect that is key in our result.
Notion of influence similar to ours is derived in [3, 8] for
Flickr and Twitter cascades, respectively.

Closest to our results are the applications of network influ-
ence in collaborative filtering under the term of “social reg-
ularization” [18, 21, 25, 26]. These results add smoothing to
make friends’ model similar. We use social regularization as
one baseline model in our experiments. In other results, only
ratings and no social contacts are given [11], or in [13], both
friendship and view information was present over Flickr, but
the main goal was to measure the strength of the influence
and no measurements were designed to separate influence
from other effects.

Since our goal is to recommend different artists at different
times, our evaluation must be based on the quality of the
top list produced by the recommender. This so-called top-K
recommender task is known to be hard [10]. A recent result
on evaluating top-K recommenders is found in [9].

Music recommendation is considered in several results or-
thogonal to our methods that will likely combine well. Mood
data set is created in [14]. Similarity search based on au-
dio is given in [16]. Tag based music recommenders [12, 23]
and many more, a few of them based on Last.fm tags, use
annotation and fall into the class of content based methods
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Figure 1: The number of the users and friendship edges in
time as the fraction of the values at the time of the data set
creation (2012).

as opposed to collaborative filtering considered in our paper
[15, 19, 20].

2. THE LAST.FM DATA SET
Last.fm became a relevant online service in music based

social networking. For registered users, it collects, “scrob-
bles”1 what they have listened. Each user has its own statis-
tics on listened music that is shown in her profile. Most
user profiles are public, and each user of Last.fm may have
friends inside the Last.fm social network. Therefore one rel-
evant information for the users is that they see their own
and their friends’ listening statistics.

We investigate a data set that consists of the contacts
and the implicit feedback timeline, the “scrobble history”
of the users. Our goal is to exploit the influence of social
contacts for recommendation. For privacy considerations,
throughout our research, we selected an anonymous sample
of users. Anonymity is provided by selecting random users
while maintaining a connected friendship network. We set
the following constraints for random selection:

• User location is stated in UK;

• Age between 14 and 50, inclusive;

• Profile displays scrobbles publicly (privacy constraint);

• Daily average activity between 5 and 500.

• At least 10 friends that meet the first four conditions.

The above selection criteria were set to select a representa-
tive part of Last.fm users and as much as possible avoid users
who artificially generate inflated scrobble figures. In this
anonymized data set of two years of artist scrobble timeline,
edges of the social network are undirected and timestamped
by creation date (Fig. 1). The number of users both in the
time series and in the network is 71,000 with 285,241 edges;
no edges are ever deleted from the network.

The time series contain 979,391,001 scrobbles from 2,073,395
artists and were collected between 01 January 2010 and 31
December 2011. The same user can scrobble an artist sev-
eral times. The number of unique user-artist scrobbles is
57,274,158.

1The name “scrobbling” is a word by Last.fm, meaning the
collection of information about user listening.



Friends of u
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Figure 2: Potential influence on u by other users to scrobble
(u, a, tu).

3. NETWORK INFLUENCE
The key concept in this paper is a user v influencing an-

other u to scrobble a. The sign of an influence is if u scrob-
bles artist a the first time at time tu, after v last scrobbling
the same artist at some time tv < tu before. The time dif-
ference ∆t = tu − tv is the delay, as seen in Fig. 2. Our key
assumption is that we observe such a subsequent first time
scrobbling between non-friends only by coincidence while
some of these events between friends are the result of cer-
tain interaction. Our goal is to prove that friends indeed
influence each other and this effect can be exploited for rec-
ommendations.

Similar influence definitions are given in [3, 8, 13]. As
detailed in [3], one main difference between these definitions
is that in some papers tv is defined as the first and not the
last time when user v scrobbles a. The smaller the delay
∆t between the scrobbles of v and u, the more certain we
are that u is affected by the previous scrobble of v. The
distribution of delay with respect to friends and non-friends
will help us in determining the frequency and strength of
influence over the Last.fm social network.

Out of the 57,274,158 first-time scrobbles of a certain
artist a by some user, we find a friend who scrobbled a be-
fore 10,993,042 times (19%) in the whole time series and
4,203,109 times in the second year. Note that one user can
be influenced by more friends, therefore the total number of
influences is 24,204,977. If we only consider influences with
delay less than one week, this number reduces to 4,625,141.
Note that there is no influencing user for the very first scrob-
bler of a in the data set. For other scrobbles there is always
an earlier scrobble by some other user, however, that user
may not be a friend of u. Some of the observed subsequent
scrobbles may result by pure coincidence, especially when
a new album is released or the popularity of the artist in-
creases for some other reason.

In order to quantify real influence within the set of sub-
sequent first time scrobbles, our goal is to determine the
probability that the subsequent scrobbles are result of in-
fluence. If we condition this probability for friends and by
a limit t on the delay, we should obtain a monotonically
decreasing function Infl(t).

To formalize, let us consider the probability space of sub-
sequent first time scrobbles among all users. Let I denote
the event that an subsequent first time scrobble is the result
of an influence. Ic is the opposite, no influence occurs. Coin-
cidence or other, external reason such as the overall increase
in popularity causes the subsequent first time scrobble in
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Figure 3: Fraction of subsequent first time scrobbles with
delay ∆t ≤ t as the function of t, in case of friends (P (∆t ≤
t | f)) and non-friends (P (∆t ≤ t | fc)) over the entire
timeline (top) and the first 24 hours (bottom).

the time series. Let f denote events between friends and fc

between non-friends. Finally let ∆t ≤ t denote the set of
events with delay at most t. With these notations,

Infl(t) = P (I | ∆t ≤ t, f) = (1)

=
P (I,∆t ≤ t, f)

P (∆t ≤ t, f)
=
P (∆t ≤ t, I | f)P (f)

P (∆t ≤ t | f)P (f)
(2)

=
P (∆t≤t,I|f)
P (∆t≤t|f)

= P (∆t≤t|f)−P (∆t≤t,Ic|f)
P (∆t≤t|f)

. (3)

As non-friends fc should not have any real influence on each
other, we assume that

P (∆t ≤ t, Ic | f) ≈ P (∆t ≤ t, Ic | fc) = P (∆t ≤ t | fc). (4)

Using this approximation, we can compute the probability
of influences between friends as in (1) by expanding (3),

Infl(t) = P (I | ∆t ≤ t, f) ≈ P (∆t≤t|f)−P (∆t≤t|fc)
P (∆t≤t|f)

. (5)

By the above equation, the influence probability can be ap-
proximated by observing the cumulative density curves in
Fig. 3. The estimate of this function as in (5) is shown in
Fig. 4. As expected, Infl(t) is a monotonically decreasing
function of t. However, the decrease is slow unlike in some
recent influence models that propose exponential decay in
time [13]. Therefore, we approximate the influence proba-
bility with a slowly decreasing logarithmic function instead
of an exponential decay,

Infl(t) = 1− c log t, (6)

where c is a constant.

4. INFLUENCE BASED RECOMMENDATION
Based on the measurements in the previous section, we

model the observed influences and give a method to apply for
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recommendation. Influence depends on time and no matter
how relative slow, the influential power of a friend scrobbling
an artist decays as time passes by. For this reason, the
influence based recommender must learn online.

To formalize, let v
a;∆t∈T−−−−−→ u denote the event that user

u scrobbles artist a the first time in her time series, and ∆t
time after her friend v also scrobbled a. The time difference
∆t is restricted to be in a time interval T . As illustrated
in Fig. 5, we would like to decompose the probability that

v
a;∆t∈T−−−−−→ u happens and the reason for this event is influ-

ence (I) between the users into a factor that only depends
on ∆t and another one that is independent of ∆t. First we
decompose the full event into a conditional probability as

P (I, v
a;∆t∈T−−−−−→ u) = P (I | v a;∆t∈T−−−−−→ u) · P (v

a;∆t∈T−−−−−→ u). (7)

When a scrobble event happens at time exactly t after the
scrobble of v, the interval becomes a point and hence we are
looking for the derivative

lim
τ→0

(
P (I, v

a;∆t≤t+τ−−−−−−→ u)− P (I, v
a;∆t≤t−−−−→ u)

)
/τ. (8)

We model the right hand side of (7), the “strength” of the
influence between users u and v, independent of time as

f(v
a−→ u) := P (v

a;∆t∈T−−−−−→ u)/|T |, (9)

hence by equation (7) we may divide the derivative (8) by

f(v
a−→ u) to get

lim
τ→0

(
P (I | v a;∆t≤t+τ−−−−−−→ u)(t+ τ)− P (I | v a;∆t≤t−−−−→ u)t

)
/τ. (10)

We model influence conditional probabilities by a global
function for all users that depend only on the time ∆t elapsed,

P (I | v a;∆t≤t−−−−→ u) ≈ P (I | ∆t ≤ t, f). (11)

By using our function in (5) and (6), equation (10) becomes

lim
τ→0

((1− c log(t+ τ)) · (t+ τ)− (1− c log t) · t) /τ (12)

= 1− c(1 + log t). (13)

Now we give our matrix factorization model for f(v
a−→ u).

We decompose the model into seven terms that give a global
model for one or more of the three variables u, v, a in (v

a−→
u). By replacing variables considered globally by q and not-
ing that the last term with all three variables global is a
constant, we get

f(v
a−→ u) ∼ w0 + w( q q

−→ u) + w(v
q
−→ q) + w( q a−→ q)

+ w( q a−→ u) + w(v
a−→ q) + w(v

q
−→ u).

(14)

We have four global effects, a constant, an influencer, an
influenced, and an artist, and three bivariate terms that can
be modeled by matrix factorization as

f(v
a−→ u) ∼ α0 + α1bv + α2bu + α3ba

+ ~U ~A+ ~A′~V + ~U ′ ~V ′.
(15)

The three bias terms bv, bu and ba correspond to the frequen-
cies of user v influencing, user u being influenced and influ-
ences occurred with artist a. α1, . . . , α3 are learned weights
of the biases, and α0 is the global learned bias. The six
vectors correspond to six different latent vectors.

The final prediction score r̂ is based on (8), by using (15)
and (13) we can write it in a form

r̂(u, a, tu) =
∑

v∈n(u)

(α0 + α1bv + α2bu + α3ba

+ ~U ~A+ ~A′~V + ~U ′ ~V ′)(1− c(1 + log(tu − tv))),

(16)

where we sum up for all neighbors of u and tv is when v
last scrobbled a before tu. For training, we only update
f(v

a−→ u) by the actual positive events and a generated sam-
ple of negative events. In our algorithm we use SGD with
respect to MSE to train the latent factors and the weights
α0, . . . , α3. Notice that the weight of the factor models is
included within the factors, since the entire formula (15) is
trained by a single SGD procedure. As we learn online, the
weight of the effects are also trained by SGD and not by the
least squares optimization procedure proposed in [4].

In an efficient implementation, since the expression (13)
quickly decays with t, we only need to retrieve the past
scrobbles of all friends of u. This step is computationally
inexpensive unless u has too many friends, when the rec-
ommendation is noisy anyway. To speed up computations,
we only consider influence with delay T not more than a
predefined time frame and hence we set c = 1/ (1 + log T ).
With a sufficiently small parameter of the time frame in
the range of a few days, our algorithm can hence be imple-
mented even to provide recommendations based on real time
updated models.
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Figure 6: Number of new (u, a) scrobbles as the function of
time.

5. ONLINE EVALUATION
Recommender systems in practice need to rank the best K

items for the user. In this top-K recommendation task [10,
9] the goal is not to rate some of the individual items but to
provide the best candidates. Despite the fact that only pre-
diction for the top list matters in top-K evaluation, several
authors propose models trained for RMSE with good top-K
performance [17, 24] and hence we follow their approach.

In a time sensitive or online recommender that poten-
tially retrains its model after each and every scrobble, we
have to generate new top-K recommendation list for every
single scrobble in the test period. The online top-K task
is hence different from the standard recommender evalua-
tion settings, since there is always a single item only in the
ground truth and the goal is to aggregate the rank of these
single items over the entire testing period. For our task,
we need carefully selected quality metrics that we describe
next.

Out of the two year scrobbling data, we use the full first
year as training period. The second year becomes the testing
period where we consider scrobbles one by one. We allow a
recommender algorithm to use part or full of the data before
the scrobble in question for training and require a ranked
top list of artists as output. We evaluate the given single
actual scrobble a in question against the recommended top
list of length K. As seen in Fig. 6, by the second year, the
number of first-time scrobbles stabilize around 50,000 a day
after the artificial peak in the beginning caused by the lack
of earlier data. For the reason of stability, we measure our
recommender methods in Year 2 of the timeline.

One possible measure for the quality of a recommended
top list of length K could be precision and recall [25, 26].
Note that we evaluate against a single scrobble. Both the
number of relevant (1) and the number of retrieved (K)
items are fixed. Precision is 1/K if we retrieve the single
item scrobbled and 0 otherwise. Recall is 0 if we do not
retrieve the single relevant item and 1 otherwise. The value
of K that maximizes precision is the rank of the item scrob-
bled and hence “maximal precision” follows the function of
1/rank.

Recently, measures other than precision and recall are pre-
ferred for measuring the quality of top-K recommendation
[2]. The most common measure is NDCG that is a normal-
ized version of the discounted cumulative gain (DCG) with
threshold K

DCG@K(a) =

{
0 if rank(a) > K;

1
log2(rank(a) + 1)

otherwise.
(17)
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Since DCG is a slower decreasing function of the rank than
what we observed for maximal precision, DCG is more ad-
vantageous since we have a large number of artists of poten-
tial interest to each user. Our choice is in accordance with
the observations in [2] as well.

Note that in our unusual setting of DCG evaluation, there
is a single relevant item and hence for example no normaliza-
tion is needed as in case of the DCG measure. Also note that
the DCG values will be small since the NDCG of a relative
short sequence of actual scrobbles will roughly be equal to
the sum of the individual DCG values. The DCG measured
over 100 subsequent scrobbles of different artists cannot be
more than the ideal DCG, which is

∑100
i=1 1/ log2(i + 1) =

20.64 in this case (the ideal value is 6.58 for K = 20). Hence
the DCG of an individual scrobble will on average be less
than 0.21 for K = 100 and 0.33 for K = 20.

In our evaluation we discard infrequent artists from the
data set both for efficiency considerations and due to the
fact that our item based recommenders will have too little
information on them. As seen in Fig. 7, top, the number of
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artists with a given scrobble count follow a power-law dis-
tribution with near 60% of the artists appearing only once.
While 90% of the artists gathered less than 20 scrobbles in
two years, as seen in Fig. 7, bottom, they attribute to only
less than 10% of the data set. In other words, by discard-
ing a large number of artists, we only lose a small fraction
of the scrobbles. For efficiency we only consider artists of
frequency more than 14.

As time elapses, we observe near linear increase in the
number of artists that appear in the data set in Fig. 8. This
figure shows artists with at least 14 scrobbles separately.
Their count grows slower but still we observe a large number
of new artist that appear in time and exceed the minimum
count of 14. Very fast growth for infrequent artists may be
a result of noise and unidentified artists from e.g. YouTube
videos and similar Web sources.

6. ONLINE BLENDING
We give two methods based on SGD that learn the online

blending weight of recommender algorithms. Note that the
algorithms may or may not themselves be based on SGD, i.e.
the derivative of the individual models may or may not be
available for the blending optimization procedure. Further-
more, we may blend methods with different definitions of the
implicit feedback data sequence: the positive instances for
the influence based recommender form a small subset of all
the events and hence the influence recommender also needs
different methods for generating negative training samples.

If the derivatives of the individual models are available for
the top level optimizer, we may optimize in a single layer
(top of Fig. 9) by minimizing

F (r̂ua) = F

(∑
m

(αm + βum)r̂mua

)
, (18)

where we sum over all models m, and F is the error measure,
MSE in our case. Notice that we learn a user dependent
blending weight vector βum, hence for example the blending
of a k and a k′ factorization will in theory have at most as
high F as a single k+k′ one, and in our experience performed
only slightly better.

We may take the derivatives for both the constants α and

β and the individual model parameters ~θm:

∂F

∂~θm
=

∂F

∂r̂ua

∂r̂ua
∂r̂mua

∂r̂mua

∂~θm
=

∂F

∂r̂ua
(αm + βum)

∂r̂mua

∂~θm
; (19)

∂F

∂αm
=

∂F

∂r̂ua

∂r̂ua
∂αm

=
∂F

∂r̂ua
r̂mua; (20)

∂F

∂βum
=

∂F

∂r̂ua

∂r̂ua
∂βum

=
∂F

∂r̂ua
r̂mua. (21)

If the derivatives are not available, the individual models are
considered as black box for blending and we have to train in
two layers (bottom of Fig. 9) and we may only use the last
two derivatives (20) and (21).

If different models need different training samples, we can-
not use the derivative (19) either. This is the case if we com-
bine the baseline matrix factorization with the algorithm of
Section 4. If the current positive event is not the result of
an influence (i.e. not a first time scrobble or no friend scrob-
bling the same artist before), then we only update the base-
line models. And if there is at least one possible influencer
v
a−→ u for the current event (u, a), then we generate separate

negative training instances for the baseline and the influence
models. Notice that even a negative influence training data
v′

a−→ u must satisfy that v′ is a friend of u who scrobbled a
and hence we usually have to choose from a restricted small
set. Blending is meaningful only over this restricted set too,
since for other events, the influence recommender has no t
value in equation (16) to compute its prediction. Hence for
blending, we have to use the same negative samples as for
training the influence model.

7. MUSIC RECOMMENDATION BASELINE
METHODS

We describe three baseline methods. The first one is based
on dynamic popularity in Section 7.1. The second one in
Section 7.2 is an online matrix factorization and the third
one in Section 7.3 adds regularization over friendship as in
[18].

All the methods discussed here are online algorithms, as
opposed to the batch methods used in challenges such as
Netflix. In some preliminary experiments the batch algo-
rithms performed significantly worse in the online task com-
pared to their online versions. We plan to compare the per-
formance of batch and online versions of the algorithms in
an online task more extensively in the future.

7.1 Dynamic popularity based recommenda-
tion

Given a predefined time frame T as in Section 4, at time tu
we recommend an artist based on the popularity in time not
earlier than tu−T but before tu. In our algorithm we update
the counts and store artists sorted by the current popularity.
In one time step, we may either add a new scrobble event or
remove the earliest one, corresponding to a count increment
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Figure 10: Online performance of the three different recom-
menders.

or decrement. For globally popular items, the sorted order
can be maintained by a few changes in the order only.

7.2 Online matrix factorization
Stochastic gradient descent methods in batch setting may

iterate several times over the training set until convergence.
In an online setting [1], the model needs to be retrained af-
ter each new event and hence reiterations over the earlier
parts of the data is ruled out. We may implement an online
recommender algorithm by allowing a single iteration over
the training data only, and this single iteration processes the
events in the order of time. We used the first time scrobbles
as positive training instances and generated negative train-
ing instances by selecting three random artists uniformly at
the time when a user first scrobbled an artist.

Online recommenders seem more restricted than those
that may iterate over the data set several times and one
would expect inferior quality by the online methods. On-
line methods however have the advantage of giving much
more emphasis on recent events. In some sense, the online
methods may incorporate the notion of influence from Sec-
tion 3: if friends have similar taste and hence similar factor
weights, a friend scrobbling some artist a will in the near
future strengthen the weight for this artist for all users who
have similar taste.

7.3 Social regularization
Ma et al. [18] propose a method to implement constraints

in a factor model based recommender algorithm for keep-
ing the profile of friends similar. We implemented both
the average-based and the individual-based regularization of
[18] and found the latter superior, hence we use individual-
based regularization in our experiments. Note that these
algorithms have no knowledge of time and hence cannot in-
corporate our notion of subsequent first time scrobbles as in
Section 3, even though they may work very well for other,
non-first-time scrobbles that we do not consider in this pa-
per.

8. EXPERIMENTS
In this section we describe the quality of our results for

the second year testing period. Under various settings, we
give daily average DCG@K defined by equation (17).
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Figure 11: Combination of the influence and factor models.

Our experiments were carried out over the single core of an
AMD based virtual server with 128GB RAM. On average, it
took 28 minutes to process one day of scrobble history, up-
date the online models and provide top-K recommendation
corresponding to each user event.

Parameter K in equation (17) controls the length of the
top list considered for evaluation. In other words, K can
be interpreted as the size of the list presented to the user.
Practically K must be small in order not to flood the user
with information. We show results for K = 10 and 100.
In Fig. 10, DCG@100 is shown for two baseline methods,
matrix factorization and temporal popularity, as well as our
influence model.

When combining variants of baseline and influence recom-
mendation predictions, we observed that that social regular-
ization did not improve matrix factorization and temporal
popularity did not blend with online factorization. Indeed
in Fig. 10 we may observe that peaks in temporal popu-
larity performance immediately appear as peaks in matrix
factorization performance, since online factorization learns
temporal trends very well.

In Fig. 11, one can see that the online combination with
influence recommendation improves over online matrix fac-
torization both for DCG@10 and DCG@100. The aver-
age improvement is roughly 7% for DCG@10, and 3% for
DCG@100. Over the same figure, we plot the performance
of the constant term alone in equation (15). This simple rec-
ommender corresponds to adding up all the (1− c(1 + log t))
values for possible influencers without model building be-



yond learning the blending weight involved. At first this
simple model blends best with the baseline, however, as the
factor models get more training data, they become superior
and the importance of the constant term α0 in the model
diminishes.

Conclusions
Based on a 70,000-entry sample of Last.fm users, we were
able to exploit the effect of users influencing the taste of
friends for improving the quality of music recommendation.
Over static baseline recommenders, we achieved a 5% im-
provement in recommendation accuracy when presenting artists
from friends’ past scrobbles that the given user had never
seen before.

Our system has very strong time-awareness: when we rec-
ommend, we look back in the near past and combine friends’
scrobbles with the baseline methods. The influence from a
friend at a given time is certain function of the observed
influence in the past and the time elapsed since the friend
scrobbled the given artist.

All of our methods learn online and provide top-K recom-
mendation lists recomputed for every user query. Because
of the inherent time dependence, we defined average DCG
as our evaluation metric and gave a new online blending
procedure that learns online user-dependent weights.
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ABSTRACT
We compare machine learning methods to predict quality
aspects of the C3 dataset collected as a part of the Recon-
cile project. We give methods for automatically assessing
the credibility, presentation, knowledge, intention and com-
pleteness by extending the attributes in the C3 dataset by
the page textual content. We use Gradient Boosted Trees
and recommender methods over the evaluator, site, eval-
uation triplets and their metadata and combine with text
classifiers. In our experiments best results can be reached
by the theoretically justified normalized SVM kernel. The
normalization can be derived by using the Fisher informa-
tion matrix of the text content. As the main contribution,
we describe the theory of the Fisher matrix and show that
SVM may be particularly suitable for difficult text classifi-
cation tasks.
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1. INTRODUCTION
Mining opinion from the Web and assessing its quality and

credibility became a well-studied area [9]. Known results
typically mine Web data on the micro level, analyzing in-
dividual comments and reviews. Recently, several attempts
were made to manually label and automatically assess the
credibility of Web content [19, 21]; among others, Microsoft
created a reference data set [27]. Classifying various aspects
of quality on the Web host level were, to our best knowl-
edge, first introduced as part of the ECML/PKDD Discov-
ery Challenge 2010 tasks [28].

Classification for quality aspects of Web pages or hosts
turned out to be very hard. For example, the ECML/PKDD
Discovery Challenge 2010 participants stayed with AUC val-
ues near 0.5 for classifying trust, bias and neutrality. Later
we were able to slightly improve their results and our best
performance has only slightly extended the AUC of 0.6 [28].
Since these attributes constitute key aspects of Web quality,
our goal is to improve the classification techniques for these
tasks.

In this paper we address the WebQuality 2015 Data Chal-
lenge by comparing prediction methods for the C3 data set.
The data set was created in the Reconcile1 project and con-
tains 22325 evaluations (five dimensions, among them cred-
ibility) of 5704 pages given by 2499 people. The mTurk
platform were used for collecting evaluations.

In our earlier findings on different Web spam and quality
corpora [12], the bag-of-words classifiers based on the top
few 10,000 terms performed best. We were able to signifi-
cantly improve the traditional Web spam features [5] similar
to the C3 attributes. In this paper our main goal is to eval-
uate known methods and combine them with new means of
text classification particularly suited to the quality related
tasks in question.

While we are aware of no other results over the C3 data
set, we collect reference methods from Web credibility re-
search results. Existing results fall in four categories: Bag
of Words; language statistical, syntactic, semantic features;
numeric indicators of quality such as social media activity;
and assessor-page based collaborative filtering.

User and page-based collaborative filtering is suggested in
[21] in combination with search engine rankings. We reuse
our RecSys Challenge 2014 second place winner solution [20]
to build a strong baseline method over the evaluator, site,
evaluation triplets including the evaluator and site side in-
formation.

1http://reconcile.pjwstk.edu.pl/



Social media and network based features appear already
for Web spam [5, 15]. In a collection designed similar to
C3 [19], social and general popularity and linkage were in-
troduced and used for credibility assessment. Some of these
features, in particular social media popularity, are used by
the RecSys Challenge 2014 [20] as well and hence we deploy
the methods we used there.

Content statistics as a concise summary that may replace
the actual terms in the document were introduced first in
the Web spam research [5]. The C3 data set includes content
quality and appearance features described among others in
[19].

In order to perform text classification, we crawled the
pages listed in the C3 data set. By using the bag of words
representation of the Web page content, our goal is to com-
bine all above methods with known and new kernel based
text classifiers. Our classifier ensemble consists of the fol-
lowing components:

• Gradient Boosted Trees and recommender methods
that reached us second place at the RecSys Challenge
2014 [20].
• Standard text classifiers, including our biclustering based

method that performed best over the DC2010 data set
[28].
• A new similarity kernel based SVM on the Fisher Infor-

mation Matrix that may work over arbitrarily defined
similarity measures over pairs of pages, using not only
the text but also the C3 attributes.

Our best results reach the AUC of 0.74 for credibility, 0.81
for Presentation, 0.70 for Knowledge, 0.71 for Intentions and
0.70 for Completeness. We may hence say that all results
reach the level of practical usability. Text classification is
the main component: alone it reaches 0.73, 0.77, 0.69, 0.71
and 0.70, respectively, for the five quality dimensions.

The rest of this paper is organized as follows. First we
begin with an extended motivation of our new text classifi-
cation technique. After listing related results, in Section 2
we describe the data set used in this paper. In Section 3
we describe our classification framework. The results of the
classification experiments over the C3 data set can be found
in Section 4.

1.1 Motivation
In our new similarity kernel method, our goal is to move

from terms as features to content similarity as features. On
one hand, content similarity is more general and it can be
defined by using the attributes other than term frequencies
as well. Similarity based description is also scalable since we
may select the number of reference documents as large as it
remains computationally feasible.

In the paper our main goal is to define a theoretically
justified kernel function over Web page similarities defined
in a general way. Similarity may be based on the distribution
of terms, the distance in the numeric C3 data attributes, or
distances from clusters as we defined in [28].

By considering general notions of similarity as object de-
scriptors for classification, we may combine different modali-
ties in a theoretically justified way too. For example, kernel
selection methods [23] performed well for image classifica-
tion tasks [8] but kernel fusion methods from [23] have a
very large number of parameters that are difficult to learn.

In our new method, we consider the similarity of a Web
page in question to a set of selected reference pages as a
generative model. By assuming independence of the refer-
ence pages, the generative model can be computed as we
will describe in Section 3.2. Hence we may obtain theoret-
ically justified coefficients to weight the importance of the
different similarity functions and reference Web pages.

1.2 Related Results
Web users usually lack evidence about author expertise,

trustworthiness and credibility [5]. The first results on au-
tomatic Web quality classification focus on Web spam. In
the area of the so-called Adversarial Information Retrieval
workshop series ran for five years [13] and evaluation cam-
paigns, the Web Spam Challenges [4] were organized. The
ECML/PKDD Discovery Challenge 2010 extended the scope
by introducing labels for genre and in particular for three
quality aspects [28].

Our baseline classification procedures are collected by an-
alyzing the results of the Web Spam Challenges and the
ECML/PKDD Discovery Challenge 2010. In our previous
work [11, 28], we improved over the best results of the par-
ticipants by using new text classification methods.

Recent results on Web credibility assessment [19] use con-
tent quality and appearance features combined with social
and general popularity and linkage. After feature selection,
they use 10 features of content and 12 of popularity by stan-
dard machine learning methods of the scikit-learn toolkit.

If sufficiently many evaluators assess the same Web page,
one may consider evaluator and page-based collaborative fil-
tering [21] for credibility assessment. In this setting, we face
a dyadic prediction task where rich metadata is associated
with both the evaluator and especially with the page. The
Netflix Prize competition [3] put recommender algorithms
through a systematic evaluation on standard data [2]. The
final best results blended a very large number of methods
whose reproduction is out of the scope of this experiment.
Among the basic recommender methods, we use matrix fac-
torization [17, 29]. In our experiments we use the factor-
ization machine [24] as a very general toolkit for express-
ing relations within side information. Recently, the RecSys
Challenge 2014 run a similar dyadic prediction task where
Gradient Boosted Trees [30] performed very well [20].

2. THE DATA SET
The C3 data set consists of 22325 Web page evaluations

in five dimensions (credibility, presentation, knowledge, in-
tentions, completeness) of 5704 pages given by 2499 people.
Ratings are similar to the dataset built by Microsoft for as-
sessing Web credibility [27], on a scale of four values 0-4,
with 5 indicating no rating. The distribution of the scores
for the five evaluation dimensions can be seen in Fig. 1.
Since multiple values may be assigned to the same aspect of
a page, we simply average the human evaluations per page.
We may also consider binary classification problems by as-
signing 1 for above 2.5 and 0 for below 2.5.

Since earlier results [21] suggest the use of collaborative
filtering along the page and evaluator dimensions, we mea-
sure the distribution of the number of evaluations given by
the same evaluator and for the same site in Fig. 2.

Distribution of the variance of the ratings is shown by
heatmap of all pairs of ratings given for the same page and
same dimension by pairs of different evaluators in Fig. 3.



Figure 1: The distribution of the scores for the five
evaluation dimensions.

Figure 2: The distribution of the number of evalua-
tions given by the same evaluator (top) and for the
same site (bottom).

Note that 65% of the C3 URLs returned OK HTTP sta-
tus but 7% of them could no longer be crawled. Redirects
reached over 20% that we followed and substituted for the
original page.

Figure 3: The number of pairs of ratings given by
different assessors for the same aspect of the same
page.

3. CLASSIFICATION FRAMEWORK
In this section we enumerate the methods we combine for

assessing the five quality aspects. The C3 data set con-
tains numeric attributes for the evaluator, the page, and the
evaluation itself, which can be considered as triplets in a rec-
ommender system. The majority of the evaluators however
rated only one Web page and hence we expect low perfor-
mance of the recommender methods over this data set. Most
important elements of our classifier ensemble will hence use
the bag of words representation of the page content.

3.1 SVM over bag of words
The classification power of Support Vector Machine [7]

over bag of words representations has been shown in [1, 5].
The models rely on term and inverse document frequency
values (TF and IDF): aggregated as TF.IDF and BM25.
The BM25 scheme turned out to perform best in our earlier
results [11, 28], where we applied SVM with various linear
and polynomial kernel functions and their combinations.

3.2 New method: Fisher Kernel over similar-
ities

A natural idea to handle distances of pairs of observation
is to use kernel methods. A kernel acts as an inner product
between two observations in certain large dimensional space
where Support Vector Machine, a form of a high dimensional
linear classifier, can be used to separate the data points [26].
Under certain mathematical conditions, we have a freedom
to define the kernel function by giving the formula for each
pair of observations.

In order to combine the textual and C3 data attributes
for kernel based classification and regression, we use a linear
kernel support vector machine over distances from a selected
set of reference pages as described in [8].

Given a sample R of the Web pages, we define a generative
model where testing pages are characterized based on their
similarity to samples in R. By Jaakkola and Haussler [16],
generative models have a natural kernel function based on
the Fisher information matrix F :

KFisher(X,Y ) = GT
XF
−1GY , (1)

where GX and GY are the gradient vectors (Fisher score)
derived from the underlying generative model. The Fisher
kernel can be translated into a linear kernel function using



Cholesky decomposition of the Fisher information matrix.
We will refer the normalized Fisher score as Fisher vector:
FX = GxF

− 1
2 . In our experiments we approximate the

Fisher information matrix with the diagonal as suggested in
[16].

Next we sketch the steps of deriving that the Fisher matrix
based distance is simply the Euclidean distance over the
K · |R| dimensional vector of the similarity to pages in R
with K representations.

In the generative model of pages based on the similarity
to pages in the sample R, our factor graph is a star that
consists of the pairs of x connected to the elements r ∈ R.
We think of our graph as a Markov Random Field over the
samples. By the Hammersley–Clifford theorem [25] our joint
distribution has a form of

p(x | Ω) =
exp(−U(x | Ω))

Z
, (2)

where Z is a normalizing constant and Ω is the set of param-
eters of our joint distribution. We define our energy function
as

U(x | Ω = {α}) =
∑
r∈R

K∑
k=1

αrkdistk(x, xr), (3)

where K is the number of different distance functions and
Ω = {αrk} is the set of the parameters.

It can be shown that the Fisher information matrix is sim-
ply the normalized variance matrix of the joint distribution
distk(x, xr) for r ∈ R, i.e. the Fisher kernel is the linear ker-
nel over the normalized distances. In the Fisher kernel αrk
cancel out in the derivatives. The mean and the variance of
distk(x, xr) can be approximated by the training data.

The dimensionality of the Fisher vector (the normalized
Fisher score) equals with the size of the parameter set of our
joint distribution, in our case it depends only on the size of
the reference set and the number of representations, K · |R|.

Since kernel methods are feasible for regression [22, 26],
we also use the methods of this subsection for predicting the
numeric evaluation scores.

3.3 Biclustering
We overview the method that performed best for assess-

ing the quality aspects of the DC2010 data [28]. We use
Dhillon’s information theoretic co-clustering algorithm [10]
to cluster pages and terms simultaneously. Important to
note that unlike in the original method [10] that uses Kullback-
Leibler divergence, we use Jensen-Shannon, the symmetric
version in the biclustering algorithm that makes very large
difference in classification quality.

In [28] we describe pages by distances from page clusters.
To exploit the Fisher kernel we can think of this page clusters
as additional samples with a specific distance function. This
results sparsity in our previously defined energy function

U(x | Ω = {α, β}) = U(x | Ω = {α}) +
∑
Ci∈C

βidist(x,Ci),

(4)
where Ci corresponds to the ith cluster, therefore the clus-
ters behave as a secondary sample set to R on a cost of
expanded dimension.

3.4 Gradient Boosted Trees and Matrix fac-
torization

We apply Gradient Boosting Trees [30] and matrix fac-
torization on the user and C3 data features. We used two
different matrix factorization techniques. The first one is a
traditional matrix factorization method [17], while the sec-
ond one is a simplified version of Steffen Rendle’s LibFM
algorithm [24]. Both techniques use stochastic gradient de-
scent to optimize for mean-square error on the training set.
LibFM is particularly designed to use the side information
of the evaluators and the pages.

3.5 Evaluation metrics
First, we consider binary classification problems by simply

averaging the human evaluations per page and assign them
1 for above 2.5 and 0 for below 2.5. The standard evalua-
tion metrics since the Web Spam Challenges [4] is the area
under the ROC curve (AUC) [14]. The use of Precision, Re-
call and F are discouraged by experiences of the Web spam
challenges.

Unlike spam classification, the translation of quality as-
sessments into binary values is not so obvious. We also
test regression methods evaluated by Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE).

4. RESULTS
In this section we measure the accuracy of various meth-

ods and their combinations. The detailed results are in Ta-
ble 1, in four groups. The first group gives the baseline
methods. Below, we apply the similarity kernel separate for
the corresponding attributes. In the third group we com-
bine multiple similarity functions by the similarity kernel.
Finally, in the last group, we average after standardizing
the predictions. In Table 2 part of the methods are tested
for regression.

4.1 C3 data attributes
For user and item features we experiment with GraphLab

Create2 [18] implementation of Gradient Boosted Tree and
matrix factorization techniques. In case of the gradient
boosted tree algorithm (GBT) we set the maximum depth of
the trees 4, and enabled maximum 18 iterations. To deter-
mine the advantage of additional side information over the
original matrix factorization technique (MF) we use factor-
ization machine (LibFM) for user and item feature included
collaborative filtering prediction. As seen from the tables,
matrix factorization (MF) fails due to the too low number
of ratings by user and by document but LibFM can already
take advantage of the website metadata with performance
similar to GBT.

4.2 Linear kernel SVM
Our Bag of words models use the top 30k stemmed terms.

For TF, TF.IDF and BM25, we show results for linear kernel
SVM as it outperforms the RBF and polynomial kernels. We
use LibSVM [6] for classification the Weka implementation
of SMOReg [22] for regression.

4.3 Fisher kernel methods
The similarity kernel described in Section 3.2 gives the

best results both for classification and for regression. For

2http://graphlab.com/products/create/



Method Credi- Presen- Know- Inten- Complete- Avg
bility tation ledge tions ness

Gradient Boosted Tree (GBT) 0.6492 0.6558 0.6179 0.6368 0.7845 0.6688
Factorization Machine (LibFM) 0.6563 0.6744 0.6452 0.6481 0.7234 0.6695
Marix Factorization (MF) 0.5687 0.5613 0.5966 0.5700 0.5854 0.5764
TF linear kernel 0.6484 0.6962 0.6239 0.6767 0.6205 0.6531
TF.IDF linear kernel 0.6571 0.7020 0.5935 0.6824 0.6128 0.6496
BM25 linear kernel (Lin) 0.7236 0.7480 0.6278 0.6987 0.6633 0.6923
Bicluster linear kernel 0.6402 0.7467 0.5796 0.6482 0.6382 0.6506

Bicluster Sim kernel 0.6744 0.7718 0.6379 0.6830 0.6560 0.6846
C3 attributes Sim kernel 0.6267 0.7706 0.6327 0.6408 0.6149 0.6571
TF J–S Sim kernel 0.6902 0.7404 0.6758 0.7047 0.6778 0.6978
TF L2 Sim kernel 0.6335 0.6882 0.6200 0.6585 0.6300 0.6460
TF.IDF J–S Sim kernel 0.7006 0.7546 0.6552 0.7073 0.6791 0.6994
TF.IDF L2 Sim kernel 0.6461 0.7152 0.6013 0.6902 0.6353 0.6576
BM25 J–S Sim kernel 0.6956 0.7473 0.6351 0.6529 0.6222 0.6706
BM25 L2 Sim kernel 0.7268 0.7715 0.6741 0.7081 0.6898 0.7141

BM25 L2 & J–S Sim kernel (BM25) 0.7313 0.7761 0.6926 0.7141 0.7003 0.7229
BM25 & C3 Sim kernel 0.7449 0.8029 0.7009 0.7148 0.6993 0.7326
BM25 & Bicluster & C3 (All) Sim kernel 0.7457 0.8086 0.7063 0.7158 0.7052 0.7363

Lin + GBT 0.7296 0.8056 0.6589 0.6783 0.6939 0.7133
Lin + LibFM 0.7400 0.7769 0.6622 0.6733 0.6975 0.7100
All Sim kernel + Lin + GBT 0.7549 0.8179 0.6916 0.7098 0.7123 0.7373

Table 1: Detailed performance over the C3 labels in terms of AUC

Method Credi- Presen- Know- Inten- Complete- Avg
bility tation ledge tions ness

Gradient Boosted Tree (GBT) MAE 1.5146 1.3067 1.2250 1.2737 1.4438 1.3528
RMSE 1.6483 1.4510 1.3658 1.4132 1.6021 1.4961

Factorization Machine (LibFM) MAE 1.5313 1.3213 1.2303 1.2632 1.4984 1.3689
RMSE 1.6725 1.4745 1.3744 1.4073 1.6759 1.5209

Matrix Factorization (MF) MAE 1.7450 1.4093 1.3676 1.2905 1.5794 1.4784
RMSE 1.9174 1.5912 1.5540 1.4636 1.7583 1.6569

BM25 linear kernel (Lin) MAE 0.5562 0.7230 0.6052 0.5979 0.5896 0.6144
RMSE 0.7085 0.9072 0.7784 0.7910 0.7724 0.7915

BM25 L2 Sim kernel MAE 0.5678 0.7083 0.6228 0.5946 0.6045 0.6196
RMSE 0.7321 0.9307 0.8038 0.7878 0.7930 0.8095

Bicluster Sim kernel MAE 0.5340 0.6868 0.6039 0.5883 0.5813 0.5989
RMSE 0.6958 0.8906 0.7861 0.7778 0.7624 0.7825

BM25 & Bicluster & C3 All Sim kernel MAE 0.5403 0.6324 0.5946 0.5952 0.5829 0.5891
RMSE 0.7106 0.8357 0.7763 0.7879 0.7661 0.7753

Table 2: Detailed performance over the C3 labels in terms of RMSE and MAE

distance, we use L2 for the C3 attributes as well as TF,
TF.IDF and BM25. For the last three, we also use the
Jensen–Shannon divergence (J–S) as we suggested in [28].
While the similarity kernel over the bicluster performs weak
for classification, it is the most accurate single method for
regression.

In the similarity kernel, we may combine multiple dis-
tance measures by Equation (3). The All Sim method fuses
four representations: J–S and L2 over BM25 and L2 for C3
and the bicluster representation. By the linearity of the
Fisher kernel, we may use LibSVM [6] for classification and
SMOReg [22] for regression.

4.4 Classifier ensembles
Without using the similarity kernel, the best method is

the average of the linear kernel over BM25 (Lin) and GBT.
The performance is similar to the BM25 L2 similarity ker-
nel. As a remarkable feature of the similarity kernel, we
may combine multiple distance functions in a single kernel.
The best method (All Sim) outperforms the best combina-
tion not using the similarity kernel (Lin + GBT) by 3.2%.
The difference is 7.2% for classifying“knowledge”. The same
method performs bests for regression too.

The similarity kernel method can also resist noise and
learn from small training sets. If we add 10% noise in the
training set, the combination of all similarity kernels deteri-
orates only to an average AUC of 0.7241 from 0.7363 (1.7%).
In contrast, the best BM25 SVM result 0.6923 degrades to



Figure 4: AUC as the function of the size of the
training set, given as percent of the full3040, for
the baseline BM25 with linear kernel and All with
similarity kernel.

0.6657 (3.85%), both with variance 0.004 for ten indepen-
dent samples. The robustness of the similarity kernel for
small training sets is similar to BM25 with linear kernel, as
seen in Fig. 4.

5. CONCLUSIONS
Over the C3 data sets, we gave a large variety of methods

to predict quality aspects of Web pages, including collabora-
tive filtering and methods that use evaluator and page meta-
data as well as the content of the page. We achieved best
performance by our theoretically justified kernel method over
the content of the page and C3 attributes. Our results are
promising in that our AUC is stable over 0.7 for all aspects
with “presentation” surpassing 0.8. The support vector re-
gression methods also perform with error less than one on
the range of 0–4.
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Temporally Evolving Models for Dynamic Networks∗

Róbert Pálovics Frederick Ayala-Gómez András A. Benczúr

1 Introduction

The research of complex networks and large graphs generated a wide variety of stochastic graph models
that try to capture the properties of these complex systems [2, 4, 5, 8, 7]. Most of the well-known models
can describe a static graph extracted from a real-world dataset. They are capable of generating an ensemble
of graphs, in which all graph instances are similar in terms of specific statistics to the original one. For
example, models that capture the power-law degree distribution of real-world networks such as the Albert-
Barabási one are dynamic but do not attempt to model the actual temporal evolution of large graphs. Our
goal is to give temporal stochastic graph model for the temporal dynamics of these complex systems.

Our models address the link prediction problem introduced by Liben-Nowell and Kleinberg, in a
temporal setting. More specifically, we try to predict accurately each new link in the graph at the time
when it is created in the network. This experimental setting is similar to our method introduced for
recommender systems [9]. In Section 3 we explain this setup in case of dynamic graphs. For baseline
algorithm, we apply online matrix factorization [6, 10, 11] on temporal network data (see Section 4).

Various node centrality measures capture the “importance” of a node by using the structural properties
of the graph [3]. While these metrics are widely investigated, few is known about the evolution of graph
centrality in temporal graphs. In our work, we investigate the applicability of node centrality metrics in
temporal graphs by examining their temporal behavior and computational complexity. We also use these
metrics as side features in our matrix factorization models.

2 Datasets

We perform our experiments on a variety of Twitter, Last.FM and the Koblenz Collection data sets. Twitter
is a highly temporal social system with dynamically evolving communities, a mass community with an
ever changing graph structure. Our goal is to investigate the dynamics of this community that can be
best described as an evolving complex network. The first issue on Twitter is to define a graph that well
describes the system. One can define several networks in Twitter. We focus on follower networks, retweet
cascades, root retweet networks, @mention graphs and @reply graphs. Our Twitter datasets contain
tweets around events of global relevance, including Euromaidan, Maidan, Olympic, Occupy, Yosoy, 15o,
20n, MH17 and Ayotzinapa. Last.fm is an online service in music based social networking. It collects
“scrobbles”—a word by Last.fm meaning that when you listen to a song, the name of the song is added to
your music profile. We selected a representative, well-connected, yet anonymous random sample of users.
These users had their location in UK with age between 14 and 50, inclusive. Only public scrobbles with a
daily average activity between 5 and 500 and at least 10 friends that meet the first four conditions. Other
temporal network datasets are available in the Koblenz Network Collection for Twitter mentions, arXiv
author network, Digg, Flickr and YouTube graphs.

∗The publication was supported in part by the EC FET Open project “New tools and algorithms for directed network analysis”
(NADINE No 288956).
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3 Experimental setting and evaluation metrics

In the dynamic link prediction task, we have to rank the best K links for the given node at the given time
instance. Our dataset contains records < u, v, t > of links between users u and v that appear at time t. Our
goal is to recommend new links for user u at time t with the constraint that there is only a single link that
appears at the given time t. This means that we have to maximize the rank of the given link in the actual
predicted list of links. A time sensitive or online link prediction system should retrain its model after each
and every training record < u, v, t >. We have to generate new top-K recommendation list for every single
record. The online top-K task is hence different from the standard recommender evaluation settings, since
there is always a single neighbor only in the ground truth and the goal is to aggregate the rank of these
single neighbors over the entire testing period. For our task, we need carefully selected quality metrics
that we describe next. We use our full dataset both for training and testing. We iterate on the records one
by one in temporal order. For a given record < u, v, t >, we allow the recommender algorithm to use full
of the data before t in question for training and require a ranked top list of possible neighbors as output.
We evaluate the given single actual neighbor v in question against the recommended top list of length K.

For measuring the accuracy of predicting a new link, we face the difficulty that only a single correct
answer exists at the given time and the next edge arrives to be tested against an updated model. We
propose DCG [9], a modified version of NDCG, the prefered model for batch top-K recommendation
[1]. DCG is a slowly decreasing function of the rank and hence measures how close the actual new link
appears in the top list.

4 Dynamic adjacency matrix factorization

Batch modeling algorithms may iterate several times over the graph until convergence. In our temporal
setting, the model needs to be retrained after each new event and hence reiterations over the earlier parts
of the data is ruled out.

In this section, we give an online factorization method for the graph adjacency matrix. Matrix factor-
ization yields a low-rank approximation of the adjacency matrix with entries for non-edges filled with
values that we consider an indication for the edge to appear. Links for a given node are predicted by tak-
ing the largest values in the corresponding row or column. In our algorithm, we allow a single iteration
over the training data only, and this single iteration processes the events in the order of time. We use each
record in the dataset as a positive training instance and generate negative training instances by selecting
random items for each positive record. We use the regularized matrix factorization method of [12], and
use the k-factor model for prediction.

Temporal modeling methods seem more restricted than those that may iterate over the data set several
times and one would expect inferior quality by the online methods. Online methods however have the
advantage of giving much more emphasis on recent events that we empirically verify in our research.

4.1 Centrality measures as side information

Matrix factorization algorithm may use so-called side information associated with the rows and columns
of the matrix. In our experiment we use centrality measures as side information associated with the nodes.
We may use directed centrality with different values for rows and columns of the same node. We compare
the following metrics in the temporal setting of dynamic networks based on [3]: Harmonic Centrality,
PageRank, HITS and SALSA.

5 Conclusion and Further Work

In this paper, we analyze the dynamic network data as a stream of nodes and edges. To predict link
formation, the regularized matrix factorization model is proposed. Different centrality measures are used

2



with online computation over the graph stream to identify the evolution of centrality. As the main lesson
learned, we show how recent results in recommender systems can be deployed for the analysis of complex
networks.
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ABSTRACT
In recent years Twitter became the social network for infor-
mation sharing and spreading. By retweeting, users spread-
ing information and build cascades of information pathways.
In this paper we investigate the possibility of predicting the
future popularity of emerging retweet cascades immediately
after the message appears. We introduce a supervised ma-
chine learning approach which employs a rich feature set
utilizing the textual content of the messages along with the
retweet networks of the users. We also propose a temporal
evaluation framework focusing on user level predictions in
time.

Keywords
Twitter, Retweet prediction, Temporal classification, Lan-
guage features

1. INTRODUCTION
Twitter, a mixture of a social network and a news media

[16], has recently became the largest medium where users
may spread information along their social contacts.

In this paper we investigate the temporal influence of mes-
sages sent over Twitter. Cha et al. [7] define influence as
“. . . the power of capacity of causing an effect in indirect in-
tangible ways. . . ”. In their key observation, the influence of
a user is best characterized by the size of the audience who
retweets rather than the size of the follower network.

Our goal is to predict the timely success of the information
spread, on the individual message level. We analyze how
certain messages may reach out to a large number of Twitter
users. In contrast to a similar investigation for analyzing the
influence of users [3], we investigate each tweet by taking
both the author user and the textual content of the message
into account.

We characterize the users both by the statistical proper-
ties of their follower network and their past retweet counts.
The textual content is described by the terms of the nor-
malized text and by several orthographic features along with
deeper (psycho)linguistic ones that try to capture the modal-
ity of the message in question.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

In our experiments we use the data set of [1] that consists
of the messages and the corresponding user network of the
Occupy movement.

The main contributions of this work is that we carried out
an intensive feature engineering both at network and content
analysis – instead of focusing on only one of them – and the
added value of the two worlds was empirically evaluated. In
our results we consider user and network features as defined
in [8] and our previous work [19] as baseline and concentrate
on the power of content analysis.

1.1 Related results
Social influence in Web based networks is investigated in

several results: Bakshy et al. [4] model social contagion
in the Second Life virtual world. Ghosh and Lerman [11]
compares network measures for predicting the number of
votes for Digg posts, who even give an empirical compar-
ison of information contagion on Digg vs. Twitter [17]. In
[12, 13], long discussion based cascades built from comments
are investigated in four social networks, Slashdot (technol-
ogy news), Barrapunto (Spanish Slashdot), Meneame (Span-
ish Digg) and Wikipedia. They propose models for cascade
growth and estimate model parameters but give no size pre-
dictions.

A number of related studies have largely descriptive focus,
unlike our quantitative prediction goals. In [7] high corre-
lation is observed between indegree, retweet and mention
influence, while outdegree (the number of tweets sent by the
user) is found to be heavily spammed. [16] reports similar
findings on the relation among follower, mention and retweet
influence. Several more results describe the specific means
of information spread on Facebook [5, 2, 6].

Similar to our results, Cheng et al. [8] predict retweet
count based on network features. Unlike in our result where
we predict immediately after the tweet is published, they
consider prediction after the first few retweets. The network
features used in their work are similar to the ones in the
present paper and in our earlier work [19]. We consider
these results as baseline in this paper.

From the content analysis point of view, there has been
several studies focusing exclusively on the analysis of the
tweet messages’ textual content to solve the re-tweet count
prediction problem. Besides the terms of the message, Naveed
et al. [18] introduced the features of direct message, men-
tion, hashtag, URL, exclamation mark, question mark, posi-
tive and negative sentiment, positive and negative emoticons
and valence, arousal, dominance lexicon features. Wang et
al. [22] proposed deeper linguistic features like verb tense,
named entities, discourse relations and sentence similarity.



Figure 1: Temporal density of tweeting activity.

Table 1: Size of the tweet time series.
Number of users 371,401
Number of tweets 1,947,234

Number of retweets 1,272,443

Table 2: Size of the follower network.
Number of users 330,677
Number of edges 16,585,837

Average in/out degree 37

Gupta et al. [14] addressed the task of scoring tweets ac-
cording to their credibility. Credibility is a highly related
phenomena to social influence. Moreover, this work is re-
lated to our ones as it also combines author, network and
content features. The feature set to describe the content of
a message included the following novel items: the length of
the message, swear words, pronouns and self words.

2. DATA SET
The dataset was collected by Aragón et al. [1] using the

Twitter API that we extended by a crawl of the user net-
work. Our data set hence consists of two parts:

• Tweet dataset: tweet text and user metadata on the
Occupy Wall Street movement1.

• Follower network: The list of followers of users who
posted at least one message in the tweet dataset.

Table 1 shows the number of users and tweets in the dataset.
One can see that a large part of the collected tweets are
retweets. Table 2 contains the size of the crawled social net-
works. Note that the average in- and outdegree is relatively
high. Fig. 1 shows the temporal density of tweeting activity.

For each tweet, our data contains

• tweet and user ID,

• timestamp of creation,

• hashtags used in the tweet, and

1http://en.wikipedia.org/wiki/Occupy Wall Street

Figure 2: Creation of retweet cascades: Figure (a)
shows the computation of the cascade edges. In Fig-
ures (b) and (c) we show the possible solutions in
case of missing cascade edges.

• the tweet text content.

In case of a retweet, we have all these information not only
on the actual tweet, but also on the original root tweet that
had been retweeted. We define the root tweet as the first
occurrence of a given tweet.

3. RETWEET CASCADES

3.1 Constructing retweet cascades
In case of a retweet, the Twitter API provides us with

the ID of the original tweet. By collecting retweets for a
given original tweet ID, we may obtain the set users who
have retweeted a given tweet with the corresponding retweet
timestamps. The Twitter API however does not tell us the
actual path of cascades if the original tweet was retweeted
several times. The information from the Twitter API on
the tweet needs to be combined with the follower network
to reconstruct the possible information pathways for a given
tweet. However it can happen that for a given retweeter,
more than one friend has retweeted the corresponding tweet
before and hence we do not know the exact information
source of the retweeter. The retweet ambiguity problem is
well described in [3]. In what follows we consider all friends
as possible information sources. In other words for a given
tweet we consider all directed edges in the follower network
in which information flow could occur (see Fig. 2 (a)).

3.2 Restoring missing cascade edges
For a given tweet, the computed edges define us a retweet

cascade. However our dataset contains only a sample of
tweets on the given hashtags and hence may not be com-
plete: it can happen that a few intermediate retweeters are
missing from our data. As a result, sometimes the recon-
structed cascade graphs are disconnected. As detailed in
Fig. 2 (b) and (c), we handle this problem in two differ-
ent ways. One possible solution is to only consider the first
connected component of the cascade (see Fig. 2 (b)). An-
other one is to connect each disconnected part to the root
tweeter with one virtual cascade edge (see Fig. 2 (c)). In
what follows, we work with cascades that contain virtual
edges, therefore every retweeter is included in the cascade.

4. FEATURE ENGINEERING



To train our models, we generate features for each root
tweet in the data and then we predict the future cascade
size of the root tweet from these feature sets. For a given
root tweet, we compute features about

• the author user (user features),

• the the follower network of the author (network fea-
tures) and

• the textual content of the tweet itself (content fea-
tures).

Table 3 gives an overview of the feature templates used in
our experiments.

4.1 Network Features
We consider statistics about the user and her cascades in

the past as well as the influence and impressibility of her
followers. We capture the influence and impressibility of a
user from previously observed cascades by measuring the
following quantities:

• Number of tweets in different time frames: for a given
root tweet appeared in time t and a predefined time
frame τ , we count the number of tweets generated by
the corresponding user in the time interval [t − τ, t].
We set τ for 1, 6, 12, 24, 48 and 168 hours.

• Average number of tweets in different time frames: We
divide the number of tweets in a given time frame by
τ .

• User influence: for a given user, we compute the num-
ber of times one of her followers retweeted her, divided
by the number of the followers of the user.

• User impressibility: for a given user, we compute the
number of times she retweeted one of her followees,
divided by the number of followees of the user.

4.2 Content features
The first step of content processing is text normalization.

We converted the text them into lower case form except
those which are fully upper cased and replaced tokens by
their stem given by the Porter stemming algorithm. We
replaced user mentions (starting with ’@’) and numbers by
placeholder strings and removed the punctuation marks.

The content features are extracted from the normalized
texts. The basic feature template in text analysis consists
the terms of the message. We used a simple whitespace
tokenizer rather than a more sophisticated linguistic tok-
enizer as previous studies reported its empirical advantage
[15]. We employed unigrams and bigrams of tokens because
longer phrases just hurt the performance of the system in
our preliminary experiments.

Besides terms, we extracted the following features describ-
ing the orthography of the message:

• Hashtags are used to mark specific topics, they can
be appended after the tweets or inline in the content,
marked by #. From the counts of hashtags the user
can tips the topic categories of tweet content but too
many hashtag can be irritating to the readers as they
just make confusion.

• Telephone number: If the tweet contains telephone
number it is more likely to be spam or ads.

• Urls: The referred urls can navigate the reader to text,
sound, and image information, like media elements and
journals thus they can attract interested readers. We
distinguish between full and truncated urls. The trun-
cated urls are ended with three dot, its probably copied
from other tweet content, so it was interested by some-
body.

• The like sign is an illustrator, encouragement to others
to share the tweet.

• The presence of question mark indicate uncertainty. In
Twitter they are usually a rhetorical question rather
than a concrete question (people do not search answer
on Twitter). The author more likely want to made the
reader to think on what contains the message.

• The Exclamation mark highlight the part of the tweet,
it express emotions and opinions.

• If Numerical expressions are present the facts are quan-
tified then it is more likely to have real information
content. The actual value of numbers were ignored.

• Mentions: If a user mentioned (referred) in the tweet
the content of the tweet is probably connected to the
mentioned user. It can have informal or private con-
tent.

• Emoticons are short character sequences representing
emotions. We clustered the emoticons into positive,
negative and other categories.

The last group of content features tries to capture the
modality of the message:

• Swear words occurring influence the style and attrac-
tiveness of the tweet. The reaction for swearing can be
ignorance and also reattacking, which is not relevant in
terms of retweet cascade size prediction. We extracted
the swear word list from http://www.youswear.com.

• Weasel words and phrases2 aimed at creating an im-
pression that a specific and/or meaningful statement
has been made when in fact only a vague or ambigu-
ous claim has been communicated. We used the weasel
word lexicon of [21].

• We employed the linguistic inquiry categories (LIWC)
[20] of the tweets’ words as well. These categories de-
scribe words from emotional, cognitive and structural
points of view. For example the “ask” word it is in
Hear, Senses, Social and Present categories. Differ-
ent LIWC categories can have different effect on the
influence of the tweet in question.

2See http://en.wikipedia.org/wiki/Wikipedia:
Embrace_weasel_words.



Table 3: Feature set.
user number of {followers, tweets, root tweets},

average {cascade size, root cascade size},
maximum {cascade size, root cascade size},
variance of {cascade sizes, root cascade sizes},
number of tweets generated with different time
frames,
time average of the number of tweets in different
time frames

network tweeter’s influence and impressibility
followers’ average influence and impressibility

terms normalized unigrams and bigrams
ortho-
graphic

number of # with the values 0, 1, 2 . . . 4 or 4 <
number of {like signs, ?, !, mentions}
number of full and truncated urls
number of arabic numbers and phone numbers
number of positive/negative/other emoticons

modality number of swear words and weasel phrases
union of the inquiry categories of the words

Figure 3: Cascade size distribution.

5. TEMPORAL TRAINING AND EVALUA-
TION

Here we describe the way we generate training and test
sets for our algorithms detailed in Section 6. First, for each
root tweet we compute the corresponding network and con-
tent features. We create daily re-trained models: for a given
day t, we train a model on all root tweets that have been
generated before t but appeared later than t − τ , where τ
is the preset time frame. After training based on the data
before a given day, we compute our predictions for all root
tweets appeared in that day.

Our goal is to predict cascade size at the time when the
root tweet is generated. As the cascade size follows a power
law distribution (see Fig. 3), we estimate sizes on the log-
arithmic scale. In our experiments multi-class classification
for ranges of cascade sizes performed better than regression
methods for directly predicting the logarithm of the size. We
defined three buckets, one with 0. . . 5 (referred as“low”), one

with 6. . . 50 (“medium”) and a largest one with more than 50
(“high”) retweeters participating in the cascade. We trained
multiclass random forest classifiers for the three buckets.

We evaluate performance by AUC [10] averaged for the
three classes. Note that AUC has a probabilistic interpre-
tation: for the example of the “high” class, the value of
the AUC is equal to the probability that a random highly
retweeted message is ranked before a random non-highly
retweeted one.

By the probabilistic interpretation of AUC, we may realize
that a classifier will perform well if it orders the users well
with little consideration on their individual messages. Since
our goal is to predict the messages in time and not the rather
static user visibility and influence, we define new averaging
schemes for predicting the success of individual messages.

We consider the classification of the messages of a single
user and define two aggregations of the individual AUC val-
ues. First, we simply average the AUC values of users for
each day (user average)

AUCuser =
1

N

N∑
i=1

AUCi, (1)

Second, we are weighting the individual AUC values with
the activity of the user (number of tweets by the user for
the actual day)

AUCwuser =

∑N
i=1AUCiTi∑N

i Ti

(2)

where Ti is the number of tweets by the i-th user.

6. RESULTS
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Figure 4: Daily average AUC of classifiers trained
with different set of features.

For each day in the testing period, we train a random
forest [9] classifier to predict the future retweet size of tweets
appearing on that day.

First, we measure classifier performance by computing the
average AUC values of the final results for the three size
ranges.



Figure 5: Daily average AUC of classifiers trained with different set of features.

Table 4: Retweet size classification daily average performance of different feature sets
Retweet range Low Medium High Weighted

Method Average
network AUC 0.799 0.785 0.886 0.799
network & modality AUC 0.827 0.814 0.905 0.827
network & orthographic AUC 0.844 0.829 0.912 0.843
network & terms AUC 0.857 0.847 0.914 0.857
network & all content AUC 0.862 0.849 0.921 0.862

Table 5: Retweet size classification daily average performance of different feature sets evaluated on the user
level as defined in equations (1) and (2).

Retweet range Low Medium High Average
Method Uniform Weighted Uniform Weighted Uniform Weighted Uniform Weighted
network AUC 0.684 0.712 0.752 0.800 0.746 0.796 0.719 0.756
network & modality AUC 0.700 0.722 0.751 0.796 0.737 0.756 0.726 0.757
network & orthographic AUC 0.702 0.731 0.753 0.797 0.768 0.782 0.730 0.764
network & terms AUC 0.705 0.732 0.757 0.800 0.767 0.786 0.733 0.766
network & all content AUC 0.740 0.783 0.763 0.812 0.769 0.820 0.752 0.797



As mentioned in Section 5, we may train our model with
different time frames. In Figure 4 we show the average AUC
value with different time frames. As Twitter trends change
rapidly, we achieve the best average results if we train our al-
gorithms on root tweets that were generated in the previous
week (approximately seven days).

We were interested in how different feature sets affect clas-
sifier performance. For this reason we repeated our exper-
iments with different feature subsets. Figure 5 shows our
results. For each day, the network features give a strong
baseline. The combination of these features with the con-
tent result in strong improvement in classifier performance.
In Table 4 we summarize the average AUC values for dif-
ferent feature subsets over all four datasets. Our results are
consistent: in each case the content related features improve
the performance.

Our main evaluation is found in Table 5 where we consider
the user level average AUC values as described in Section 5.
As expected, since the new evaluation metrics give more em-
phasis on distinguishing between the tweets of the same user,
we see even stronger gain of the modality and orthographic
features.

7. CONCLUSIONS AND FUTURE WORK
In this paper we investigated the possibility of predicting

the future popularity of a recently appeared text message
in Twitter’s social networking system. Besides the typical
user and network related features, we consider hashtag and
linguistic analysis based ones as well. Our results do not only
confirm the possibility of predicting the future popularity
of a tweet, but also indicate that deep content analysis is
important to improve the quality of the prediction.

In our experiments, we give high importance to the tem-
poral aspects of the prediction: we predict immediately after
the message is published, and we also evaluate on the user
level. We consider user level evaluation key in temporal
analysis, since the influence and popularity of a given user
is relative stable while the retweet count of her particular
messages may greatly vary in time.
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ABSTRACT
In this paper we model the properties of growing communi-
ties in social networks. Our main result is that small com-
munities have higher edge density compared to random sub-
graphs and their edge number follows power law in the num-
ber of nodes. In other words, the smaller the community, the
larger the relative density.

Our observation resembles the densification law of Leskovec,
Kleinberg and Faloutsos who show that the average degree
increases super-linearly as the size of the network grows. In
our settings, however, densification is natural since the aver-
age degree of a random subgraph grows linearly. In contrary,
sublinear growth translates to increased relative density in
smaller subgraphs.

Our experiments are carried over Twitter retweets and
hashtags as well as a detailed music consumption log from
Last.fm. In addition to the social network of Twitter fol-
lowers and Last.fm friends, key in our experiments is that
community subgraphs are defined by media use.

We give theoretical results and simulations to explain our
findings. The observed edge density can be explained by a
mixture of epidemic growth that infects a uniform random
neighbor of the community and a low probability selection
of a completely new, isolated element. We also explore the
relation of graph densification and subgraph sparsification
by simulations over graphs of the Stanford Large Network
Dataset Collection.

General Terms
Measurement, Theory

Keywords
Communities, Information spread, Power law, Densification
law, Twitter, Last.fm, Community subgraphs, Complex net-
works, Social networks, SNAP
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1. INTRODUCTION

1.1 Densification and sparsification
Part of the appeal of Web 2.0 is to find other people who

share similar interests. As an example, Last.fm organizes
its social network around music recommendation: users may
automatically share their listening habits and at the same
time grow their friendship. Based on the profiles shared,
users may see what artists friends really listen to the most.
Companies such as Last.fm use this data to organize and
recommend music to people.

While there are several large network datasets available
for research, only a few contain temporal information. We
exploit the timely information gathered from services of Twit-
ter and Last.fm to obtain microscopic measurements of in-
fluence propagating subgraphs of the social network. We
define sequences of subgraphs by selecting users that have
listened to the same artist, retweeted certain message or used
a given hashtag. In this way we obtain evolving communities
ordered in time in a fixed social network.

Our main result is a“subgraph sparsification law”of evolv-
ing community subgraphs. In time ordered subgraph se-
quences of the Twitter and Last.fm networks, we measure
an increased edge density compared to the average edge den-
sity of the whole network. The edge density, i.e. the average
degree of a node within the community follows power law of
the node count. The exponent is less than two, hence the
edge density growth is slower than quadratic and the relative
density decreases, larger communities are relatively sparser
than smaller communities. To understand the distinction,
let us consider a random subgraph of the same size n as a
selected community. As n approaches the size of the under-
lying network, the community and random subgraphs will
cover roughly the same edges. For smaller n, hence the den-
sity of the community is above that of the random subgraph.
In this sense, small communities that may only choose from
a small n intra-community contacts are relative denser than
the larger ones. Both the absolute and the relative density
follow power law, since the number of edges in a random
subgraph is quadratic.

We experiment over two large data sets. In case of Last.fm,
our experiments are carried over the two-year “scrobble” his-
tory and friendship network of 70,000 Last.fm users with
public profile. Last.fm’s service is unique in that we may
obtain a detailed timeline of how the fan community of an
artist grows in time over the network.

Twitter, a mixture of a social network and a news me-
dia [13], has in the past years became the largest medium



where users may spread information along their social con-
tacts. In our experiments we use the data set of [1] that
consists of the messages and the corresponding user net-
work of four global events. We extend the tweet data with
the list of followers of users with public profile who posted
at least one message in the tweet dataset. The anonymized
network with information spreading subgraphs is available at
https://dms.sztaki.hu/en/download/twitter-influence-

subgraphs.
As introduced before, in Last.fm and Twitter community

subgraphs, we measure increasing edge density. As in [18],
our subgraphs follow the densification law. However, the
relative density decreases compared to the average edge den-
sity of the whole network. Unlike previous models of net-
work growth, in our experiments the network is fixed and
as certain information appears in this network, subgraphs
are defined as the set of infected nodes. While the average
degree is increasing as more nodes join the graph, this may
happen for the simple reason that as larger part of a pre-
existing network is explored, more connections are found for
each node. Our explanation is similar to that of [21] where
a sequence of subgraphs is observed as the network is grad-
ually explored.

As a conclusion, the observed edge density can be ex-
plained by a mixture of epidemic growth that infects a ran-
dom neighbor of the community regardless of the age of its
infection and a low probability selection of a completely new,
isolated element to the community. We also measure the im-
portance of new isolated nodes and show that initially they
dominate the communities.

We find an explanation of the community edge density in
network models where new connections tend to close short
paths. Such models are the forest fire one [18], the trian-
gle closing variants of [15] and, if we add an edge to the
prototype as well, the copying model of [12].

While our prime goal is to model the way communities
build in social media, our models have surprising connections
to densifying graphs [18, 8], and subgraph sampling [21].

Edges in the Last.fm data are timestamped. This gives
us the possibility to investigate the original network densi-
fication law in case of Last.fm. We further investigate the
relation of network densification and subgraph sparsification
by epidemic simulations over graphs of the Stanford Large
Network Dataset Collection and observe that simulated in-
formation spread in these networks follows the same power
law edge density as seen in real communities.

Network growth can be considered as community growth
in an unobservable hidden background network. For exam-
ple, people join social networks (Facebook, LinkedIn, etc.)
and expose their connections; organizations and companies
exposed their relationship by gradually opening their web-
sites in the past decade. Certain networks that are hard to
fit into this category include scientific publications; indeed,
the epidemic simulations in these graphs give somewhat less
self-explaining exponents.

The rest of this paper is organized as follows. First we give
a preview of our main observations, followed by the survey
of related results. In Section 2 we give our new models for
community growth and enumerate some theoretical conse-
quences of different models of the underlying network. In
Section 3 we describe our Last.fm and Twitter data that we
use in our measurements in Section 4. The relations of the
observations and models are discussed in Section 5.

1.2 Summary of main observations

1. “Densifying” community subgraphs with edge number
following power law of node number. Note that ac-
tually the smaller subgraphs have higher relative den-
sity compared to a random subgraph of the same size.
This difference however vanishes with the community
growth, the subgraph “sparsifies”.

2. Power law fraction of nodes with at least one edge
within the community, with exponent greater than one.
This means that initially a large fraction of the nodes
are disconnected and these nodes quickly connect to
one another.

3. The edge number in a community as the function of
the number nodes with at least one edge also follows
power law. Surprisingly, the exponent of this process is
the same as the Leskovec-Kleinberg-Faloutsos [18] den-
sification exponent and the exponent of an epidemic
spread subgraph. In other words, information spread-
ing over a network and the dynamic growth of the net-
work are similar and closely related processes. The
network itself can be considered as a community in a
hidden social network.

4. Constant expansion: the number of edges leading out
from the set of infected nodes is linear as long as the
subgraph is not very large.

1.3 Related results
Bonchi [4] summarizes the data mining aspects of research

on social influence. He concludes that “another extremely
important factor is the temporal dimension: nevertheless
the role of time in viral marketing is still largely (and sur-
prisingly) unexplored”, an aspect that is key in our result.

Newman reviews the theoretical background of power-law
functions and distributions observed in empirical datasets in
[20, 7].

As a social media service, Twitter is widely investigated
for influence and spread of information. Twitter influence as
followers has properties very different from usual social net-
works [13]. Deep analysis of influence in terms of retweets
and mentions is given in [5]. Notion of influence similar to
ours is derived in [6, 2] for Flickr and Twitter cascades, re-
spectively. Cha et al. [5] define influence as “. . . the power of
capacity of causing an effect in indirect intangible ways. . . ”.
In their key observation, the influence of a user is best char-
acterized by the size of the audience who retweets rather
than the size of the follower network. We use the Twitter
collection of [1] in our experiments.

Our results build on the measurements and theoretical ex-
planations of network densification detailed in [18, 17, 19,
16]. First of all, these results state that graphs densify over
time, i.e. the number of edges grow super-linearly while the
average distance shrinks in evolving real world networks.
In contrast to this observation, older network models as-
sumed that evolving graphs have constant average degree
and slowly growing diameter. They conclude that it is the
degree sequence and not the edge sequence that has effect
on the diameter of the graph. In [18] two probabilistic gen-
erative models are presented, the Community Guided At-
tachment and the Forest Fire model, that explain edge den-
sification.

Dorogovtsev and Mendes calls edge densification the “ac-
celerated growth” of the network [8]. They introduce theo-



retical relations between the exponent of the power-law de-
gree distribution and the observed temporal edge densifica-
tion exponent. Their computations are based on the simple
assumption that the degree distribution of the graph is a
power-law function of the size of the graph.

More empirical observations of densification laws can be
found in [10, 22].

Pedarsani et al. investigates densification law in [21]. They
state that edge densification laws can be caused by the fact
that measurements on real networks are usually carried out
on edges samples from the whole network. In other words,
they believe that densification may arise as a feature of the
common edges sampling procedure to measure dynamic net-
works. They show that network growth can be a direct
consequence of the sampling process, therefore the sampling
process itself is a plausible explanation of network densifica-
tion laws.

Our experiments differ from all three lines of research
(Leskovec et al., Dorogovtsev and Mendes, and Pedarsani
et al.) in that we investigate a large number of coexisting
subgraphs of a network that we may even consider fixed
with only the communities evolving inside. Our communi-
ties show the“densification”as in the above results, however,
similar to the observation of [21], we claim that the small
graphs are in fact relative denser compared to the larger
ones.

The results of Leskovec et al., in our terminology, con-
sider extra-community edges as phantom nodes and phan-
tom edges, a part of the network that is not covered by the
dataset. While in a large network, this part has indeed a mi-
nor effect on the properties of edge densification, they play
key role in our investigation of evolving communities.

2. MODELS FOR COMMUNITY GROWTH

2.1 Underlying network models
First we shortly summarize three main types of models

for the purpose of community growth in an evolving net-
work: concentrated degree, triangle closing and preferential
attachment networks.

Certain network models impose constant degree, for ex-
ample the small world models [23, 11]. Concentrated degree
distribution arises in Erős-Rényi graphs [9].

Certain models build the graph by selecting edges that
close triangles or short paths as [15]. The copying model
[12] also falls in this category since

The main preferential attachment model is the Barabási-
Albert one [3]. There the probability of connecting to a node
is proportional to its degree, in other words edges connect
to subgraphs based on their density.

2.2 Random node selection
We intend to investigate a model with a fixed underlying

network. Nodes join after each other to the community. In
every step we select a new joining node uniformly at ran-
dom. In case of Last.fm that means uniform artist listening.
In Twitter this model is equivalent to users that post tweets
with a certain hashtag independently from each other. In
this case, the expected value of the number of edges in the
community is power law but with exponent equal to 2. This
can be easily proven. Let E and N mean the total num-
ber of nodes and edges in the social network. Let user i an
user j be part of the community with probability p, inde-

pendently. The expected total number of nodes and edges
in the subgraph is

〈n〉 = N · p, 〈e〉 = E · p · p,

therefore

〈e〉 ∼ n2.

It means that when we pick nodes uniform randomly, the
average degree within the community is linear function of
the subgraph size.

2.3 Epidemic spread
In the concentrated degree distribution models, the in-

crease in the number of edges by epidemic spread is at least
one and at most the maximum degree (or an upper bound
such that higher degrees are very unlikely). Hence the num-
ber of edges in the community e(n) grow linear with the size
n.

To model an epidemic spread in the preferential attach-
ment model, we use our observation that the edge expansion
is constant, and hence the average degree within the com-
munity is equal to the average degree outside. For this rea-
son, in the preferential attachment model, edges are equally
likely to connect to any node and the results of the pre-
vious subsection apply. Notice that the observation works
only under our assumption of constant expansion. In other
models where infection may reach high degree nodes fast, we
may have a higher probability for an edge connecting into
the community.

Finally in the short path closing models, a new node u
joining the community will connect to several of the close
neighbors of a contact w. Let us select a contact w from
the community A and let k denote the expected fraction
of “close” contacts of w that are also shared by u. In this
intuitive notion, the increase of the number of edges after u
joins the community is hence

∆e(n) = k · d(w,A). (1)

If we assume that d(w,A) is the average degree within A,
we obtain ∆e(n) = k · e(n)/n, and the solution of the above
equation becomes

e(n) = const · nk, (2)

that is the edge density exponent is the same as the short
path closing fraction k.

The value of k generalizes the clustering coefficient and
must be at least as large in average. In the triangle closing
model, all new edges close a triangle and hence k is equal to
the clustering coefficient.

In a mixture of epidemic spread and random node selec-
tion, the edge density stays below that of epidemic spread.
For concentrated degree distributions and preferential at-
tachment graphs, the exponent remains the same one and
two, respectively, with only a smaller constant in the edge
count. For the short path closing models, if we follow the
epidemic spread with probability c, we simply replace k by
c · k in equation (1) and hence we may obtain exponents
lower than the clustering coefficient.



3. DATA SETS

3.1 Last.fm
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Figure 1: The number of the users and friendship
edges in time as the fraction of the values at the
time of the data set creation (2012) in the Last.fm
dataset.

Last.fm became a relevant online service in music based
social networking. The idea of Last.fm is to create a rec-
ommendation system based on plugins nearly for all kind of
music listening platforms. For registered users it collects,
“scrobbles”1 what they have listened. Each user has its own
statistics on listened music that is shown in her profile. Most
user profiles are public, and each user of Last.fm may have
friends inside the Last.fm social network. We focus on two
types of user information,

• the timeline information of users: user u “scrobbled”
artist a at time t (u, a, t),
• and the social network of users.

Our data set hence consists of the contacts and the musi-
cal taste of the users. For privacy considerations, through-
out our research, we selected an anonymous sample of users.
Anonymity is provided by selecting random users while main-
taining a connected friendship network. We set the following
constraints for random selection:

• User location is stated in UK;
• Age between 14 and 50, inclusive;
• Profile displays scrobbles publicly (privacy constraint);
• Daily average activity between 5 and 500.
• At least 10 friends that meet the first four conditions.

The above selection criteria were set to select a represen-
tative part of Last.fm users and as much as possible avoid
users who artificially generate inflated scrobble figures. In
this anonymized data set of two years of artist scrobble time-
line, edges of the social network are undirected and times-
tamped by creation date (Fig. 1). Note that no edges are
ever deleted from the network.

The number of users both in the time series and in the
network is 71,000 with 285,241 edges. The average degree is

1The name “scrobbling” is a word by Last.fm, meaning the
collection of information about user listening.
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Figure 2: Degree distribution of the Last.fm social
network. The distribution follows shifted power law
with exponent α = 3.8. The estimated shift is s = 13.

therefore 8. The time series contain 979,391,001 scrobbles
from 2,073,395 artists and were collected between 01 Jan-
uary 2010 and 31 December 2011. Note that one user can
scrobble an artist at different times. The number of unique
user-artist scrobbles is 57,274,158.

As the dataset is based on our selection criteria. That
means it is not a simple connected part of the network, but
a representative part of it. Furthermore, as the edges are
timestamped, we not only see a few snapshots of the net-
work, but have a deeper view on the process.

The degree distribution of the underlying social network
follows shifted power law distribution

P (d(v) = k) = C · (k + s)α,

with exponent α = 3.8 and shift s = 13. The relatively large
shift is the result of our selection rules.

3.2 Twitter
The dataset was collected by Aragón et al. [1] using the

Twitter API that we extended by a crawl of the user net-
work. Our data set hence consists of two parts:

• Tweet dataset: tweet text and user metadata on four
main global events 15O2, 20N 3 occupywallstreet4, Yo
Soy 132 5.
• Follower network: The list of followers of users who

posted at least one message in the tweet dataset.

Table 1 shows the number of users and tweets in case of
each dataset. One can see that a large part of the collected
tweets are retweets. Table 2 contains the size of the crawled
social networks. Note that in all four networks, the average
in- and outdegree is relatively high. Fig. 4 shows the in-

2http://en.wikipedia.org/wiki/15 October 2011 global protests
3http://en.wikipedia.org/wiki/20-N
4http://en.wikipedia.org/wiki/Occupy Wall Street
5http://en.wikipedia.org/wiki/Yo Soy 132
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Figure 3: Temporal density of tweeting activity in
the four different Twitter datasets.
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Figure 4: Degree distributions of the Twitter fol-
lower networks.

and outdegree distribution of the collected networks. Fig. 3
shows the temporal density of tweeting activity in case of the
four different datasets. For each tweet, our data contains

• tweet and user ID,
• timestamp of creation,
• hashtags used in the tweet.

In case of a retweet, we have all these information not only
on the actual tweet, but also on the original tweet that had
been retweeted.

15 oc yo 20
# users 96,935 371,401 395,988 366,155
# tweets 410,482 1,947,234 2,439,109 1,947,234

# hashtags 28,014 93,706 62,008 123,925

Table 1: Sizes of the tweet time series.

15 oc yo 20
# users 83,640 330,677 363,452 336,892
# edges 3,093,966 16,585,837 22,054,165 18,809,308
avgdeg. 37 50 61 56

Table 2: Sizes of the follower networks.

3.3 SNAP graphs
We use the following graphs of the Stanford Large Net-

work Dataset Collection[14]:

• ArXiv HepPh: Arxiv High Energy Physics paper ci-
tation network (phenomenology),
• ArXiv HepTh: Arxiv High Energy Physics paper

citation network (theory),
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Figure 5: Network densification law in the Last.fm
dataset. The number of edges is power law func-
tion of the number of nodes in the evolving social
network with exponent β = 1.14− 1.17.

• DBLP: DBLP collaboration network,
• LiveJournal: LiveJournal online social network,
• CAIDA: The CAIDA AS Relationships Dataset,
• Google: Web graph from Google,
• EU email: Email network from a EU research insti-

tution.

4. EXPERIMENTS

4.1 Network densification
As observed in [18], one common property of complex net-

works is the edge densification law. As new nodes join in,
the number of edges follows a power law of the number of
nodes. For Last.fm, we sort the edges by their creation time
and then sort the nodes based on this list. Node by node
we measure the increase of the number of edges Figure 5.
Densification law holds in case of Last.fm with exponent
β = 1.14− 1.17. Note that regarding to Section 3 no edges
were ever deleted from the Last.fm network. Notice that we
do not have temporal information on the Twitter follower
graph.

4.2 Topical communities
Next we introduce three special community related sub-

sets and define topical communities in Last.fm and Twitter.
Let A(t) mean the subset of users in a social network that
have adopted a certain topic before time t. As shown in
Figure 6, we call a community subgraph the graph of users
in A.

The “non-zero” component is the subgraph of users that
have at least one edge within the community. This compo-
nent contains all the edges within the community. A con-
tains only isolated nodes besides the “non-zero” component.

The “main component” of A is measured as the one reach-
able through directed influence edges from the first infected
node. With high probability, this is also the largest compo-
nent. Note that we consider directed reachability, i.e. we do
not merge two initial seeds of infected nodes into the same
component when they both reach the same new node. Later
we investigate the properties of the community subgraph,



Figure 6: Important subsets of a community sub-
graph.

the non-zero component, and the main component.
In Last.fm, commmunities are formed by users that have

listened to the same artist. A(t) is the subset of users that
have scrobbled a given artist at least once before time t.

In case of Twitter a community subgraph is formed by
users that have tweeted a given hashtag before time t. In
other words we investigate artist subgraphs in Last.fm, and
hashtag subgraphs in the Twitter follower network.

In what follows we introduce measurements that result
power-law functions related to community subgraphs. Ta-
ble 3 summarizes the notations and our results in the Last.fm
dataset. Table 4 shows the measured exponents for the four
Twitter datasets. Next we introduce and investigate these
power-law exponents in details. Note that as we have more
hashtags than artists, our measurements are more accurate
in case of Last.fm than in case of Twitter-. In Table 4 the
error of the exponents are roughly 0.05.

4.3 Community subgraph density
To deeper understand the properties of a community sub-

graph, we set up the following measurement. For each time
t a new user adopts the community’s topic, we measure the
number of edges e(A,A) in the subgraph as the function of
the number of users n = |A| in the subgraph. We compute
function e(n) for each artist in case of Last.fm and for each
different hashtag in Twitter. We average the e(n) curves in
case of both social networks. Note that the Twitter follower
graph is directed. In that case an edge is part of the sub-
graph if its source joined earlier to the community than its
target. Figure 7 shows our results. In case of Twitter we
have four different curves corresponding to the four different
datasets. One of our key results is that number of edges is
power-law function of the size of the community subgraph

e(n) ∼ nγ . (3)

The exponent is 1.52 in Last.fm, and 1.42 − 1.5 in Twit-
ter communities. Note that we not only averaged the final
community subgraphs, but averaged all temporal states of
all community subgraphs. Our conclusion is that subgraphs
of users with the same activity in a social network show
power law growth. Both the number of edges and the aver-
age degree are increasing power law function of the number
of nodes in the graph.

Figure 8 shows the average degree to the community of the
joining node as the function of the community’s size. The
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Figure 7: Community subgraph densification in the
Last.fm (top) and Twitter (bottom) datasets. The
number of edges is power law function of the number
of nodes in a community subgraph.Top: Last.fm,
Bottom: Twitter.

curves are roughly the derivative of the ones in Figure 7.

4.4 Non-zero degree component
We introduce another power-law result as an explanation

of subgraph densification. We can measure the size of the
non-zero component z as the function of the size of the sub-
graph n. That is the number of nodes with non-zero degrees
in the subgraph. Figure 9 shows our results. z(n) is a power-
law function,

z ∼ nδ. (4)

Exponent δ is between 1.36 − 1.38 for Last.fm artists, and
1.1 for Twitter hashtags. Equations (3) and (4) predict that
edges in the non-zero component densify with another ex-
ponent βz,

e(z) ∼ zβz , βz = γ/δ. (5)

We can either compute βz = γ/δ or plot e as the function of
z (see Fig. 10). In Last.fm βz is between 1.15 - 1.17, while
it is between 1.31 - 1.38 for Twitter hashtags.

4.5 Main epidemic component
As introduced in Section 4.2, the main component is mea-

sured as the one reachable through directed influence edges
from the first infected node. Our next measurement (see
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Figure 8: Average degree of the connecting node
to the subgraph as the function of the community
subgraph size.Top: Last.fm, Bottom: Twitter.

Fig.10) is that the number of edges ε in the main compo-
nent is power-law function of the size its size m,

ε ∼ mβm . (6)

The corresponding exponent is 1.15 for Last.fm. It is be-
tween 1.32 - 1.37 for Twitter networks.

degree distribution α 3.8
network densification β 1.14 - 1.17
subgraph densification γ 1.52
uncorrelated model γ0 2

non-zero nodes δ 1.36 - 1.38
non-zero component densification βz 1.15 - 1.17

main component densification βm 1.15
epidemic βe 1.14 - 1.15

Table 3: Summary of the most important exponents
in th Last.fm dataset.

γ δ βz βm βe βr
Occupy 1.47 1.1 1.37 1.36 1.35 1.19 - 1.22

Yo Soy 132 1.49 1.1 1.36 1.37 1.27 1.19 - 1.25
20N 1.42 1.1 1.31 1.32 1.27 1.1 - 1.25
15O 1.5 1.07 1.38 1.37 1.32 1.16 - 1.3

Table 4: Exponents in the four Twitter datasets.
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Figure 9: Number of nodes with non-zero degrees as
the function of the number of nodes in a community
subgraph. Top: Last.fm, Bottom: Twitter.

4.6 Constant expansion
Figure 11 shows the number of edges leading out from the

Last.fm and Twitter communities as the function of the sub-
graph size. One can observe that in both cases the function
is linear as long as long as the subgraph is not very large.

4.7 Epidemic simulations
To investigate the model introduced in Section 2, we sim-

ulated epidemic processes in Last.fm, Twitter, and SNAP
networks. Starting from a uniform randomly picked node
we generated infection processes. At each step we select uni-
form randomly a node that is not joined to the community,
but connected to it in the network (see Fig. 6). Subgraph
densification holds for these communities with exponent βe.
Figure 10 shows our results for Last.fm and Twitter net-
works. Exponents can be found in Table 3 and Table 4.
Figure 12 shows our results for SNAP datasets. Table 5
summarizes the exponents for SNAP data. Figure 13 shows
for each network the relation of exponent βe and the aver-
age clustering coefficient of the network. Figure 14 shows the
number of edges leading out as the function of the epidemic
generated community’s size.

5. DISCUSSION
In this section we discuss how the network and community

densification laws relate to one another and the predictions
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Figure 10: Comparison of different processes with
similar exponents. Top: Last.fm, Bottom: Twitter.

network clustering coefficient βe
Last.fm 0.18 1.14

ArXiv HepTh 0.323 1.25
ArXiv HepPh 0.283 1.2

DBLP 0.63 1.06
CAIDA 0.208 1.1

LiveJournal 0.283 1.1
Google 0.5143 1.02

Twitter Occupy 0.12 1.35
EU email 0.0671 1.06

Table 5: βe and the clustering coefficient in case of
different real-world networks.

of the model in Section 2. Tables 3-4 summarize all power
law exponents that we discussed. Here we intend to focus
on β, γ and δ.

Figure 16 shows in one plot the result of the epidemic
model, the uniform model, and the measured artist subgraph
densification law in Last.fm. As introduced in Sections 1-2,
the measured curve is between the epidemic model and the
uniform random model. This indicates that artist densifica-
tion in Last.fm is the mixture of an epidemic and a random
process. This figure also shows how the relative densification
to the random model disappears from the community sub-
graphs. Larger artist subgraphs are relatively sparser then
smaller subgraphs.
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Figure 11: Number of edges leading out from the
community subgraph A as the function of the sub-
graph size. Top: Last.fm, Bottom: Twitter.
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Figure 12: Results of epidemic simulations on vari-
ous real-world graphs.

Next we compare the values of γ and βe in case of Last.fm
to the exponents measured in case of Twitter. As hashtags
can spread with retweets, γ is closer to βe in hashtag sub-
graphs than artist subgraphs. In other words information
spreading is much stronger in hashtag defined communities
then in artist defined ones.
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Our next observation is that regarding to Tables 3-4,

β = βe = βz = βm, (7)

the four exponents are identical for Last.fm, and similar for
Twitter. This result can be seen in Figure 10, where we
plotted the curves corresponding to these exponents. Sur-
prisingly, in case of Last.fm, not only the exponents, but the
curves are identical. Note that in case of Last.fm we can also
observe the network densification law with exponent β. Our
results show that epidemic processes over the network are
similar to the temporal evolution of the network. Moreover,
because of (5) and (7),

γ = β · δ. (8)

This relation between the exponents means that network
densification exponent β, and the non-zero exponent δ con-
trols the subgraph densification exponent. Edge density in
community subgraphs can be explained by a mixture of epi-
demic growth that infects a uniform random neighbor of the
community and a low probability selection of a completely
new, isolated element.

In case of Twitter we computed retweet community sub-
graphs. As shown in Figure 10, the curve of the epidemic
model and the retweet subgraph densification are similar.
Note that in contrast to Last.fm, the hashtag curve is over
the epidemic curve. However we believe this observation is
caused by the quality of the Twitter data. As it is con-
structed from multiple crawls, we do not have all the edges
of the follower network. Moreover, we have less hashtags
and retweets than artists in Last.fm.

Next we relate the densification coefficients to the clus-
tering coefficient as in the model of Section 2. As seen in
Table 5, for certain networks including Last.fm and the EU
email, the two values are very close and for Twitter, even
β > k, indicating a strong tendency to close short paths and
connect inside a small community.

For a large number of data sets, however, the cluster-
ing coefficient is larger than the densification exponent. As
we have no easy-to-define communities in these graphs, the
measurements simply indicate that epidemic growth in these
networks follow a somewhat different pattern.

In order to investigate graphs with β < k further, we
identify the reason for the deviation from equation (1) in



Section 2. There we assumed that the degree d(w,A) of
the existing member of the community who joins the new
member u does not deviate from the average. In particular,
d(w,A) should follow the power law e(n)/n. In Figure 15 we
see that the more a network deviates from the β ≈ k rule,
the quicker a decay in the increase of the average degree
happens. The effect of the decayed growth of d(w,A) is lower
edge count compared to our model. While the behavior
of epidemic spread in these networks is not directly in the
scope of this paper, we emphasize this finding as a potential
phenomenon that needs further explanation.

6. CONCLUSIONS
In this paper we investigated the properties of growing

communities in social networks. We used data from popu-
lar social networking sites Last.fm and Twitter to study in
details the evolution of communities in large graphs.

We introduced the community subgraph sparsification law.
To understand this effect, we carried over numerous of mea-
surements, that resulted various power-law functions be-
tween specific quantities related to community subgraphs.
We explained the theoretical background and the relation
of these power-law exponents. The results of our experi-
ments show that the observed edge density in a community
can be explained by a mixture of epidemic growth that in-
fects a uniform random neighbor of the community and a
low probability selection of a completely new, isolated ele-
ment. According to our results epidemic driven community
growth is similar to the original network densification: net-
work growth can be considered as community growth in an
unobservable social network.
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M-matrices
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Abstract

Step-asynchronous successive overrelaxation updates the values contained
in a single vector using the usual Gauß–Seidel-like weighted rule, but arbitrar-
ily mixing old and new values, the only constraint being temporal coherence—
you cannot use a value before it has been computed. We show that given
a nonnegative real matrix A, a σ ≥ ρ(A) and a vector w > 0 such that
Aw ≤ σw, every iteration of step-asynchronous successive overrelaxation for
the problem (sI −A)x = b, with s > σ, reduces geometrically the w-norm of
the current error by a factor that we can compute explicitly. Then, we show
that given a σ > ρ(A) it is in principle always possible to compute such a
w. This property makes it possible to estimate the supremum norm of the
absolute error at each iteration without any additional hypothesis on A, even
when A is so large that computing the product Ax is feasible, but estimating
the supremum norm of (sI −A)−1 is not.

Mathematical Subject Classification: 65F10 (Iterative methods for linear sys-
tems)

Keywords: Successive overrelaxation; M-matrices; asynchronous iterative solvers

1 Introduction

We are interested in providing computable absolute bounds in `∞ norm on the
convergence of a mildly asynchronous version of successive overrelaxation (SOR)
applied to problems of the form (sI − A)x = b, where A is a nonnegative real
matrix and s > ρ(A). A matrix of the form sI −A under these hypotheses is called
a nonsingular M-matrix [BP94].

We stress from the start that there are no other hypotheses on A such as irreducibil-
ity, symmetry, positive definiteness or (weak) 2-cyclicity, and that A is assumed to
be very large—so large that computing Ax (or performing a SOR iteration) is fea-
sible (maybe streaming over the matrix entries), but estimating

∥∥(sI − A)−1
∥∥
∞ is

not.

∗The author was supported by the EU-FET grant NADINE (GA 288956).
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Our main motivation is the parallel computation with arbitrary guaranteed precision
of various kinds of spectral rankings with damping [Vig09], most notably Katz’s
index [Kat53] and PageRank [PBMW98], which are solutions of problems of the
form above with A derived from the adjacency matrix of a very large graph, the
only relevant difference being that the rows of A are `1-normalized in the case of
PageRank.

By “computable” we mean that there must be a finite computational process that
provides a bound on

∥∥x̄ − x(t)
∥∥
∞, where x̄ is the solution and x(t) is the t-th

approximation. Such a bound would make it possible to claim that we know the
solution up to some given number of significant fractional digits. For example, with-
out further assumptions on A convergence results based on the spectral radius are
not computable in this sense and results concerning the residual are not applicable
because of the unfeasibility of estimating

∥∥(sI −A)−1
∥∥
∞.

We are also interested in highly parallel versions for modern multicore systems.
While SOR and other iterative methods are apparently strictly sequential algo-
rithms, there is a large body of literature that studies what happens when updates
are executed in arbitrary order, mixing old and new values. Essentially, as long
as old values come from a finite time horizon (e.g., there is a finite bound on the
“oldness” of a value) convergence has been proved for all major standard sequen-
tial hypothesis of convergence1 (for the main results, see the sections about partial
asynchrony in Bertsekas and Tsitsiklis’s encyclopedic book [BT89]).

Again, however, results are always stated in terms of convergence in the limit, and
the speed of convergence, which decays as the time horizon gets larger, often can-
not be stated explicitly. Moreover, the theory is modeled around message-passing
systems, where processor might actually use very old values due to transmission
delays. In the multicore, shared-memory system application we have in mind it
is reasonable to assume that after each iteration memory is synchronized and all
processors have the same view.

Our main motivation is obtaining (almost) “noise-free” scores to perform accurate
comparisons of the induced rankings using Kendall’s τ [Ken45]:

τ(r, s) :=

∑
i<j sgn(ri − rj) sgn(si − sj)√∑

i<j sgn(ri − rj)2
√∑

i<j sgn(si − sj)2
.

Computational noise can be quite problematic in evaluating Kendall’s τ because
the signum function has no way to distinguish large and small differences—they are
all mapped to 1 or −1 [BPSV08].

Suppose, for example, that we have a graph with a large number n of nodes, and
some centrality index that assigns score 0 the first n/2 nodes and score 1 the re-
maining nodes. Suppose we have also another index assigning the same scores, and
that this new index is defined by an iterative process, which is stopped at some
point (e.g., an iterative solver for linear systems). If the computed values include
computational random noise and evaluate τ on the two vectors, we will obtain a
τ close to 1/

√
2 ≈ 0.707, even if the ranks are perfectly correlated. On the other

1It is a bit surprising, indeed, that the statement that Gauß–Seidel is difficult to parallelize
appears so often in the literature. In a sense, an algorithm updating in arbitrary order using
possibly old values is not any longer Gauß–Seidel. On the other hand, this is exactly what one
expects when asking the question “is Gauß–Seidel parallelizable”?
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hand, with a sufficiently small guaranteed absolute error we can proceed to truncate
or round the second set of scores, obtaining a result closer to the real correlation.

This scenario is not artificial: when comparing, for instance, indegree with an in-
dex computed iteratively (e.g., Katz’s index, PageRank, etc.), we have a similar
situation. Surprisingly, the noise from iterative computations can even increase
correlation (e.g., between the dominant eigenvector of a graph that is not strongly
connected and Katz’s index, as the residual score in nodes whose actual score is
zero induces a ranking similar to that induced by Katz’s index).

In this paper, we provide convergence bounds in `∞ norm for SOR iterations for
the problem (sI −A)x = b, where A is a nonnegative real matrix and s > ρ(A), in
conditions of mild asynchrony, without any additional hypothesis on A. Our main
result are Theorem 1, which shows that given a σ < s and a vector w > 0 such that
Aw ≤ σw SOR iterations reduce geometrically the w-norm of the error (with a
computable contraction factor), and Theorem 2, which shows how to compute such
a w using only iterated products of A with a vector. The two results can be viewed
as a constructive and computable version of the standard convergence results on
SOR iteration based on the spectral radius.

We remark that SOR is actually not useful for PageRank, as shown recently by
Greif and Kurokawa [GK11]. The author has found experimentally that the same
phenomenon plagues the computation of Katz’s index. However, since generalizing
from Gauß–Seidel to SOR does not bring any significant increase in complexity in
the proof, we decided to prove our results in the more general setting.

2 Step-asynchronous SOR

We now define step-asynchronous SOR for the problem (sI −A)x = b. In general,
asynchronous SOR computes new values using arbitrarily old values; in this case,
the hypotheses for convergence are definitely stronger. In the partially asynchronous
case, instead, there is a finite limit on the “oldness” of the values used to compute
new values, and while there is a decrease in convergence speed, the hypotheses for
convergence are essentially the same of the sequential case (see [BT89] for more
details).

Step-asynchronous SOR uses the strictest possible time bound: one step. We thus
perform a SOR-like update in arbitrary order:

x
(t+1)
i = (1− ω)x

(t)
i +

ω

s− aii

(
bi +

∑
j∈N(t)

i

aijx
(t+1)
j +

∑
j∈P (t)

i \{ i }

aijx
(t)
j

)
. (1)

The only constraint is that for each iteration an update total preorder2 �(t) of the
indices is given: i �(t) j iff xi is updated before (or at the same time of) xj at

iteration t, and the set P
(t)
i of the indices for which we use the previous values is

such that for all j �(t) i we have j ∈ P
(t)
i , whereas N

(t)
i = n \ Pi(t) is the set

indices for which we use the next values. Essentially, we must use previous values
for all variables that are updated at the same time of xi or after xi, but we make

2A total preorder is a set endowed with a reflexive and transitive total relation. We remark that
a choice of a sequence of such preorders is equivalent to a scenario in the terminology of [BT89].
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no assumption on the remaining variables. In this way we take into account cache
incoherence, unpredictable scheduling of multiple threads, and so on.3

Matrixwise, the set N
(t)
i induces a nonnegative matrix L(t) given by

L
(t)
ij =

[
j ∈ N (t)

i

]
aij

and a regular splitting
sI −A =

(
D − L(t)

)
−R(t),

where D = sI−Diag(A) and R(t) is nonnegative with zeros on the diagonal. Then,
equation (1) can be rewritten as(

D − ωL(t)
)
x(t+1) = (1− ω)Dx(t) + ω

(
b +R(t)x(t)

)
.

There is of course a permutation of row and columns (depending on t) such that
L(t) is strictly lower triangular, but the only claim that can be made about R(t) is
that its diagonal is zero: actually, we could have L(t) = 0 and R(t) = sI −A−D.

In particular, independently from the choice of L(t), if x̄ is a solution we have as
usual (

D − ωL(t)
)
x̄ = (1− ω)Dx̄ + ω

(
b +R(t)x̄

)
and (

D − ωL(t)
)(
x̄− x(t+1)

)
= (1− ω)D

(
x̄− x(t)

)
+ ωR(t)

(
x̄− x(t)

)
. (2)

3 Suitability and convergence in w-norm

We now define suitability of a vector for a matrix, which will be the main tool
in proving our results. The idea is implicitly or explicitly at the core of several
classical proofs of convergence, and is closely related to that of generalized diagonal
dominance:

Definition 1 A vector w > 0 is σ-suitable for A if Aw ≤ σw.

The usefulness of suitable vectors is that they induce norms norms in which the
decrease of the error caused by a SOR iteration for of the problem (sI − A)x = b
can be controlled if s > σ. If A is irreducible, for instance, the dominant eigenvector
is suitable for the spectral radius, but it is exactly this kind of hypotheses that we
want to avoid.

Definition 2 Given a vector w > 0, the w-norm is defined by

‖x‖w∞ = max
i

|xi|
wi

.

The notation ‖ · ‖w∞ is used also for the operator norm induced in the usual way.
We note a few useful properties—many others can be found in [BT89]:

3For example, if we have exactly n parallel updates at the same time we would have, in fact, a

Jacobi iteration: in that case, N
(t)
i = ∅ for all i.
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Proposition 1 Given a vector w that is σ-suitable for a nonnegative matrix A,
the following statements are true for all vectors x:

1.
∣∣xi∣∣ ≤ wi‖x‖w∞;

2. mini wi‖x‖w∞ ≤ ‖x‖∞;

3. maxi wi‖x‖w∞ ≥ ‖x‖∞;

4. ‖w‖w∞ = 1;

5. ‖A‖w∞ = ‖Aw‖w∞;

6. if x ≥ 0, ‖x‖w∞ = min{α ≥ 0 | x ≤ αw }.

7. ‖Ax‖w∞ ≤ σ‖x‖w∞; in particular, ρ(A) ≤ ‖A‖w∞ ≤ σ.

Proof. The first claims are immediate from the definition of w-norm. For the last
claim,

‖Ax‖w∞ = max
i

∣∣∣∣
∑
j aijxj

wi

∣∣∣∣ ≤ max
i

∑
j aij |xj |
wi

= max
i

∑
j aijwj‖x‖w∞

wi
≤ σ‖x‖w∞.

The next theorem is based on the standard proof by induction of convergence for
SOR, but we make induction on the update time of a component rather than on its
index, and we use suitability to provide bounds to the norm of the error.

Theorem 1 Let A be a nonnegative matrix and let w be σ-suitable for A. Then,
given s > σ step-asynchronous SOR for the problem (sI −A)x = b converges for

0 < ω <
2

1 + max
k

σ − akk
s− akk

and letting x̄ = (sI −A)−1b we have∥∥x̄− x(t+1)
∥∥w
∞ ≤ r

∥∥x̄− x(t)
∥∥w
∞,

where

r = |1− ω|+ ωmax
k

σ − akk
s− akk

< 1.

Moreover, ∥∥x̄− x(t+1)
∥∥w
∞ ≤

r

1− r
∥∥x(t+1) − x(t)

∥∥w
∞.

Proof. Let �(t) be a sequence of update orders, and Pi(t) a sequence of previous-
value sets, one for each step t and variable index i, compatible with the respective
update orders. We work by induction on the order �(t), proving the statement

∣∣e(t+1)
i

∣∣ ≤ (|1− ω|+ ω
σ − aii
s− aii

)
wi
∥∥e(t)∥∥w∞, (3)
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where e(t) = x̄− x(t), assuming it is true for all k ≺(t) i.

Note that for all i

0 <
σ − aii
s− aii

< 1,

so for 0 < ω ≤ 1

|1− ω|+ ω
σ − aii
s− aii

= 1− ω
(

1− σ − aii
s− aii

)
< 1,

and analogously for

1 ≤ ω < 2

1 + max
k

σ − akk
s− akk

we have

|1−ω|+ω
σ − aii
s− aii

= ω

(
1+

σ − aii
s− aii

)
−1 <

2

1 + max
k

σ − akk
s− akk

(
1+

σ − aii
s− aii

)
−1 < 1.

Writing explicitly (2) for the i-th coordinate, we have∣∣e(t+1)
i

∣∣ =

∣∣∣∣(1− ω)e
(t)
i +

ω

s− aii

( ∑
j∈N(t)

i

aije
(t+1)
j +

∑
j∈P (t)

i \{ i }

aije
(t)
j

)∣∣∣∣.
Since j ∈ N (t)

i implies by definition j ≺(t) i, we can apply the induction hypothesis

on e
(t+1)
j to state that e

(t+1)
j ≤ wj

∥∥e(t)∥∥w∞. The same bound applies to e
(t)
j using

the first statement of Proposition 1.

We now notice that σ-suitability implies

(A−Diag(A))w ≤ (σI −Diag(A))w,

which in coordinates tells us that∑
j 6=i

aijwj ≤
(
σ − aii)wi.

Thus,∣∣e(t+1)
i

∣∣ ≤ (|1− ω|wi + ω
1

s− aii

( ∑
j∈N(t)

i

aijwj +
∑

j∈P (t)
i \{ i }

aijwj

))∥∥e(t)∥∥w∞
≤
(
|1− ω|+ ω

σ − aii
s− aii

)
wi
∥∥e(t)∥∥w∞.

By the very definition of w-norm, (3) yields∥∥e(t+1)
i

∥∥w
∞ ≤

(
|1− ω|+ ωmax

k

σ − akk
s− akk

)∥∥e(t)∥∥w∞.
For the second statement, we have∥∥x− x(t)

∥∥w
∞ −

∥∥x(t+1) − x(t)
∥∥w
∞ ≤

∥∥x− x(t+1) + x(t) − x(t)
∥∥w
∞

=
∥∥x− x(t+1)

∥∥w
∞ ≤ r

∥∥x− x(t)
∥∥w
∞,
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whence ∥∥x− x(t+1)
∥∥w
∞ ≤ r

∥∥x− x(t)
∥∥w
∞ ≤

r

1− r
∥∥x(t+1) − x(t)

∥∥w
∞.

We remark that the smallest contraction factor is obtained when ω = 1, that is,
with no relaxation. This does not mean, however, that relaxation is not useful:
convergence might be faster with ω 6= 1; it is just that the error bound we provide
features the best constant when ω = 1.

Corollary 1 With the same hypotheses and notation of Theorem 1, step-asynchronous
Gauß–Seidel iterations converge and

∥∥x̄− x(t+1)
∥∥w
∞ ≤

max
k

σ − akk
s− akk

1−max
k

σ − akk
s− akk

∥∥x(t+1) − x(t)
∥∥w
∞.

Corollary 2 Let A be an irreducible nonnegative matrix and w its dominant eigen-
vector. Then the statement of Theorem 1 is true in w-norm with σ = ρ(A).

A simple consequence is that if we know a σ-suitable vector w for A we can just
behave as if the step-asynchronous SOR is converging in the standard supremum
norm, but we have a reduction in the strength of the bound given by the ratio
between the maximum and the minimum component of w:

Corollary 3 With the same hypotheses and notation of Theorem 1, step-asynchronous
Gauß–Seidel iterations converge and

∥∥x̄− x(t+1)
∥∥
∞ ≤

maxi wi
mini wi

max
k

σ − akk
s− akk

1−max
k

σ − akk
s− akk

∥∥x(t+1) − x(t)
∥∥
∞.

Proof. An application of Proposition 1.2 and 1.3.

We remark that

max
k

σ − akk
s− akk

≤ σ

s
,

so it is possible to restate all results in a simplified (but less powerful) form.

4 Practical issues

In principle it is always better to compute the actual w-norm, rather than using
the rather crude bound of Corollary 3.4 On the other hand, computing the w-norm
requires storing and accessing w, which could be expensive.

In practice, it is convenient to restrict oneself to vectors w satisfying ‖w‖∞ = 1,
as in that case ‖x‖∞ ≤ ‖x‖w∞, and for some x we actually have equality. Then, we

4The bound is actually very crude, in particular on reducible matrices when σ is close to ρ(A).

7



can store in few bits an approximate vector w′ ≤ w, which can be used to estimate∥∥x̄(t+1) − x(t)
∥∥w
∞, as we have, using the notation of Theorem 1,∥∥x̄−x(t+1)

∥∥
∞ ≤

∥∥x̄−x(t+1)
∥∥w
∞ ≤

r

1− r
∥∥x(t+1)−x(t)

∥∥w
∞ ≤

r

1− r
∥∥x(t+1)−x(t)

∥∥w′

∞ .

A reasonable choice is that of keeping in memory d− log2 wie. Using a byte of
storage we can keep track of wi’s no smaller than Moreover, during the evaluation
of the norm we just have to multiply by a power of two, which can be done very
quickly in IEEE 754 format.

5 Choosing a suitable vector

We now come to the main result: given a nonnegative matrix A and a σ > ρ(A),
it is possible (constructively) to compute a vector w that is σ-suitable for A. In
essence, the computation of a σ-suitable vector for A “tames” the non-normality of
the iterative process, at the price of a reduction of the convergence range.

Theorem 2 Let A be nonnegative and σ > ρ(A). Let

w(k)
σ =

k∑
i=0

(
A

σ

)i
1

and
wσ = lim

k→∞
w(k)
σ

Then, Awσ < σwσ. In particular, wσ is σ-suitable for A, and there is a k such
that

Aw(k)
σ ≤ σw(k)

σ ,

so w
(k)
σ is σ-suitable for A.

Proof. Consider the matrix A+δ11∗, where δ > 0. Since it is strictly positive, the
Perron–Frobenius Theorem tells us that there is a dominant eigenvector wδ > 0.
Moreover, since for δ → ∞ we have ρ(A + δ11∗) → ∞, and the spectral radius is
continuous in the matrix entries, there must be a δσ such that

ρ
(
A+ δσ11∗

)
= σ.

We have (
A+ δσ11∗

)
wδσ = σwδσ

Awδσ + δσ‖wδσ‖11 = σwδσ

δσ‖wδσ‖1
σ

1 =

(
1− A

σ

)
wδσ

wδσ =
δσ‖wδσ‖1

σ

∞∑
i=0

(
A

σ

)i
1.
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We now observe that the scaling factor is irrelevant: wδσ is an eigenvector, so it is
defined up to a multiplicative constant. We can thus just write

wσ =

∞∑
i=0

(
A

σ

)i
1

and state that (
A+ δσ11∗

)
wσ = σwσ,

which implies
Awσ = σwσ − δσ‖wσ‖11 < σwσ.

Thus, as w
(k)
σ → wσ when k →∞, for some k we must have

Aw(k)
σ ≤ σw(k)

σ .

The previous theorem suggests the following procedure. Under the given hypothe-
ses, start with w(0) = 1, and iterate

z = Aw(t)

w(t+1) = z/σ + 1.

Note that this is just a Jacobi iteration for the problem (I − A/σ)x = 1, which is
natural, as wσ is just its solution. The iteration stops as soon as

max
i

zi

w
(t)
i

≤ σ, (4)

and at that point w(t) is by definition σ-suitable for A, so we can apply Theorem 1.

In practice, it is useful to keep the current vector w(t) normalized: just set s(0) = 1
at the start, and then iterate

z = Aw(t)

u = z/σ + s(t)1

s(t+1) = s(t)/‖u‖∞
w(t+1) = u/‖u‖∞.

We remark that, albeit used for clarity in the statement of Theorem 2, the (exact)
knowledge of ρ(A) is not strictly necessary to apply the technique above: indeed, if
the procedure terminates σ ≥ ρ(A) by Proposition 1.

There are a few useful observations about the behavior of the normalized version
of the procedure. First, if σ < ρ(A) necessarily s(t) → 0 as t → ∞. Second, by
Collatz’s classical bound [Col42], the maximum in (4) is an upper bound to ρ(A).
This happens without additional hypotheses5 on A because whenever Ax ≤ γx
with x > 0 we have

ρ(A) ≤ ‖A‖x∞ = ‖Ax‖x∞ ≤ ‖γx‖x∞ = γ.

5We report the following two easy proofs as in most of the literature Collatz’s bounds are
proved for irreducible matrices using Perron–Frobenius theory.
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If, moreover, we compute also the minimum ratio

min
i

zi

w
(t)
i

, (5)

this is a lower bound to ρ(A), again without additional hypotheses on A. Indeed,
note that whenever βx ≤ Ax with x ≥ 0, for every δ > 0 if w is a positive
eigenvector of A+ δ11∗ we have

βx ≤ Ax ≤ (A+ δ11∗)x ≤ (A+ δ11∗)‖x‖w∞w = ρ(A+ δ11∗)‖x‖w∞w.

The last inequality implies β ≤ ρ(A + δ11∗) by Proposition 1.6, and since the
inequality is true for every δ it is true by continuity also for δ = 0.

These properties suggest that in practice iteration should be stopped if s(t) goes
below the minimum representable floating-point number: in this case, either σ <
ρ(A), or the finite precision at our disposal is not sufficient to compute a suitable
vector because we cannot represent correctly a transient behavior of the powers of
A.

If instead the minimum (5) becomes larger than σ, we can safely stop: unfortu-
nately, the latter event cannot be guaranteed to happen when σ < ρ(A) without
additional hypotheses on A (e.g., irreducibility): for instance, if A has a null row
the minimum (5) will always be equal to zero.

Of course, there ain’t no such thing as a free lunch. The termination of the process
above is guaranteed if σ > ρ(A), but we have no indication of how many step will
be required. Moreover, in principle some of the coordinates of the suitable vector
could be so small to make Theorem 1 unusable. For σ close to ρ(A) convergence
can be very slow, as it is related to the convergence of Collatz’s lower and upper
bounds for the dominant eigenvalue.

Nonetheless, albeit all of the above must happen in pathological cases, we show on
a few examples that, actually, in real-world cases computing a σ-suitable vector is
not difficult.

We remark that in principle any dyadic product uv∗ such that A + uv∗ is irre-
ducible will do the job in the proof of Theorem 2. There might be choices (possibly
depending on A) for which the computation above terminates more quickly.

6 Examples

6.1 Bounding the error of (I − A)x = b

If A is nonnegative matrix with ρ(A) < 1, then I −A is invertible and the problem
(I−A)x = b has a unique solution, and in the limit we have convergence geometric
in ρ(A). However, if we choose a 1 > σ > ρ(A) (say, σ = (1 + ρ(A))/2) and a
σ-suitable vector w, the bounds of Theorem 1 will be valid, so we will be able to
control the error in w-norm.
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6.2 Katz’s index

Let M be a nonnegative matrix (in the standard formulation, the adjacency matrix
of a graph). Then, given α < 1/ρ(M) Katz’s index is defined by

k∗ = v∗
(
1− αM

)−1
= v∗

∑
k≥0

αkMk,

where v is a preference vector, which is just 1 in Katz’s original definition [Kat53].6.

If we want to apply Theorem 1, we must choose a σ > ρ(A) and a σ-suitable vector
w for A. The vector can then be used to accurately estimate the computation of
Katz’s index for all α < 1/σ. This property is particularly useful, as it is common
to estimate the index for different values of α, and to that purpose it is sufficient
to compute once for all a σ-suitable vector for a σ chosen sufficiently close to ρ(A).

6.3 PageRank

The case of PageRank is similar to Katz’s index. We have

r∗ = (1− α)v∗(1− αP )−1 = (1− α)v∗
∞∑
k=0

αkP k,

where v is the preference vector, and P = Ḡ+ du∗ is a stochastic matrix; Ḡ is the
adjacency matrix of a graph G, normalized so that each nonnull row adds to one,
d is the characteristic vector of dangling nodes (nodes without outlinks, i.e., null
rows), and u is the dangling-node distribution, used to redistribute the rank lost
through dangling nodes. It is common to use a uniform u, but most often u = v,
and in that case we speak of strongly preferential PageRank [BSV09].

We remark that in the latter case it is well known that the pseudorank

p∗ = (1− α)v∗
∞∑
k=0

αkḠk

satisfies
r =

p

‖p‖1
.

That is, PageRank and the pseudorank are parallel vectors. This is relevant for
the computation of several strongly preferential PageRank vectors: just compute a
σ-suitable vector for Ḡ (rather than one for each Ḡ + dv∗, depending on v), and
compute pseudoranks instead of ranks.

The case of PageRank is however less interesting because, as David Gleich made
the author note, assuming the notation of Section 2 and ω = 1(

1− αPT
)
x(t+1) − (1− α)v =

(
D − L(t) −R(t)

)
x(t+1) − (1− α)v

=
(
D − L(t)

)
x(t+1) −R(t)x(t+1) − (1− α)v

= R(t)x(t) + (1− α)v −R(t)x(t+1) − (1− α)v

= R(t)(x(t) − x(t+1)).

6We must note that actually Katz’s index is v∗(1 − αM
)−1

M . This additional multiplication
by M is somewhat common in the literature; it is probably a case of horror vacui.
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Wikipedia .uk

nodes 4 206 785 105 896 555
arcs 101 355 853 3 738 733 648
avg. degree 24.093 35.306
giant component 89.00% 64.76%
harmonic diameter 5.24 22.78
dominant eigenvalue 191.11 5676.63

Table 1: Basic structural data about our two datasets.

Since
∥∥R(t)

∥∥
1
≤ α, we can `1-bound the residual

∥∥∥(1− αPT )−1∥∥∥
1

=
∥∥∥ ∞∑
k=0

αk
(
PT
)k∥∥∥

1
≤ 1

1− α

we conclude that ∥∥x̄− x(t+1)
∥∥
1
≤ α

1− α
∥∥x(t+1) − x(t)

∥∥
1
.

It is thus possible, albeit wasteful, to bound the supremum norm of the error using
its `1 norm.

7 Experiments

In this section we discuss some computational experiments involving the computa-
tion of PageRank and Katz’s index on real-world graphs. We focus on a snapshot
of the English version of Wikipedia taken in 2013 (about four million nodes and
one hundred million arcs) and a snapshot of the .uk web domain taken in may 2007
(about one hundred million nodes and almost four billion arcs).7 These two graphs
have some structural differences, which we highlight in Table 1.

We applied the procedure described in Section 5 to the system associated with
PageRank and Katz’s index, with σ ∈ { 1/(1 − 2−i) | 1 ≤ i ≤ 10 } for PageRank
and σ ∈ {λ/(1− 2−i) | 1 ≤ i ≤ 10 } for Katz’s index.

In Figure 1 we report the number of iterations that are necessary to compute the i-th
suitable vector. The two datasets show the same behavior in the case of PageRank—
an exponential increase in the number of iterations as we get exponentially closer to
the limit value. The case of Katz is more varied: whereas Wikipedia has a significant
growth in the number of iterations (but clearly slower than the PageRank case),
.uk has a minimal variation across the range (from 2 to 6).

In Figure 2 we draw the (exponentially binned) distribution of values of suitable
vectors for a choice of four equispaced values of i. The vectors are normalized in
`∞ norm, that is, the largest value is one.

The shape of the distribution depends both on the graph and on the type of central-
ity computed, but two features are constant: first, as we approach λ the distribution

7Both datasets are publicly available at the site of the Laboratory for Web Algorithmics
(http://law.di.unimi.it/) under the identifiers enwiki-2013 and uk-2007-05.
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Figure 1: Number of iterations that are necessary to compute a λ/(1−2−i)-suitable
vector.

contains smaller and smaller values; second, the smallest value in the PageRank case
is several orders of magnitude smaller.

Smaller values imply a larger w-norm: indeed, one can think of the elements of
an `∞-normalized suitable vector w as weights that “slow down” the convergence
of problematic nodes by inflating their raw error. The intuition we gather from
the distribution of values is that bounding the convergence of PageRank is more
difficult.

8 Conclusions

We have presented results that make it possible to bound the supremum norm of
the absolute error of SOR iterations an M -matrix sI − A even when estimating∥∥(sI − A)−1

∥∥
∞ is not feasible. Rather than relying on additional hypotheses such

as positive definiteness, irreducibility and so on, our results suggest to compute
first a σ-suitable positive vector w with the property that SOR iterations converge
geometrically in w-norm by a computable factor.

While we cannot bound without additional hypotheses the resources (number of
iterations and precision) that are necessary to compute w, in practice the compu-
tation is not difficult, and given an M -matrix sI − A the associated σ-suitable w
can be used for all s > σ.
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An experimental exploration of Marsaglia’s xorshift generators,
scrambled

Sebastiano Vigna, Università degli Studi di Milano, Italy

Marsaglia proposed recently xorshift generators as a class of very fast, good-quality pseudorandom num-

ber generators. Subsequent analysis by Panneton and L’Ecuyer has lowered the expectations raised by

Marsaglia’s paper, showing several weaknesses of such generators, verified experimentally using the TestU01

suite. Nonetheless, many of the weaknesses of xorshift generators fade away if their result is scrambled

by a non-linear operation (as originally suggested by Marsaglia). In this paper we explore the space of

possible generators obtained by multiplying the result of a xorshift generator by a suitable constant. We

sample generators at 100 equispaced points of their state space and obtain detailed statistics that lead us

to choices of parameters that improve on the current ones. We then explore for the first time the space of

high-dimensional xorshift generators, following another suggestion in Marsaglia’s paper, finding choices of

parameters providing periods of length 21024 − 1 and 24096 − 1. The resulting generators are of extremely

high quality, faster than current similar alternatives, and generate long-period sequences passing strong

statistical tests using only eight logical operations, one addition and one multiplication by a constant.

Categories and Subject Descriptors: G.3 [PROBABILITY AND STATISTICS]: Random number gen-

eration; G.3 [PROBABILITY AND STATISTICS]: Experimental design

General Terms: Algorithms, Experimentation, Measurement

Additional Key Words and Phrases: Pseudorandom number generators

1. INTRODUCTION

xorshift generators are a simple class of pseudorandom number generators introduced
by Marsaglia [2003]. In Marsaglia’s view, their main feature is speed: in particular, a
xorshift generator with a 64-bit state space generates a new 64-bit value using just three
64-bit shifts and three 64-bit xors (i.e., exclusive ors), thus making it possible to generate
hundreds of millions of values per second.

Subsequent analysis by Brent [2004] showed that the bits generated by xorshift gener-
ators are equivalent to certain linear feedback shift registers. Panneton and L’Ecuyer [2005]
analyzed moreover in detail the generators using the TestU01 suite [L’Ecuyer and Simard
2007], finding weaknesses and proposing an increase in the number of shifts, or combination
with another generator, to improve quality.

In the first part of this paper we explore experimentally the space of xorshift generators
with 64-bit state space using statistical test suites. We sample generators at 100 equispaced
points of their state space, to easily identify spurious failures. There are 2200 possible full-
period xorshift generators, due to 275 possible values for its three shift parameters, and
eight possible algorithms (see Figure 1); Marsaglia proposes some choice of parameters,
that, as we will see, and as already reported by Panneton and L’Ecuyer [2005], are not
particularly good. We report results that are actually worse than those of Panneton and
L’Ecuyer as we use the entire 64-bit output of the generators. While we can suggest some
good parameter choices, the result remains poor.

Thus, we turn to the idea of scrambling the result of a xorshift generator using a
multiplication, as it is typical, for instance, in the construction of practical hash function
due to the resulting avalanching behavior (bits of the result depend on several bits of the

This work is supported the EU-FET grant NADINE (GA 288956).
Author’s addresses: Sebastiano Vigna, Dipartimento di Informatica, Università degli Studi di Milano, via
Comelico 39, 20135 Milano MI, Italy.
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2 S. Vigna

C code
A0 x ^= x << a; x ^= x >> b; x ^= x << c; X1

A1 x ^= x >> a; x ^= x << b; x ^= x >> c; X3

A2 x ^= x << c; x ^= x >> b; x ^= x << a; X2

A3 x ^= x >> c; x ^= x << b; x ^= x >> a; X4

A4 x ^= x << a; x ^= x << c; x ^= x >> b; X5

A5 x ^= x >> a; x ^= x >> c; x ^= x << b; X6

A6 x ^= x >> b; x ^= x << a; x ^= x << c; X7

A7 x ^= x << b; x ^= x >> a; x ^= x >> c; X8

Fig. 1. The eight possible xorshift64 algorithms. The list is actually derived from Panneton and L’Ecuyer
[2005], as they correctly remarked that two of the eight algorithms proposed by Marsaglia were redundant,
whereas two (A6 and A7) were missing. On the right side we report the name of the linear transformation
associated to the algorithm as denoted by Panneton and L’Ecuyer [2005]. With our numbering, algorithms
A2i and A2i+1 are conjugate by reversal. Note that contiguous shifts in the same direction can be exchanged
without affecting the resulting algorithm. We normalized such contiguous shifts so that their letters are
lexicographically sorted.

input). This can be seen as the composition of a xorshift generator with a multiplicative
linear congruential generator, and is actually suggested in passing in Marsaglia’s paper. The
third edition of the classic “Numerical Recipes” [Press et al. 2007], indeed, proposes this
construction for a basic, all-purpose generator. Since a lot of knowledge has been gathered
in the last 50 years on multiplicative constants that give have good spectral properties, we
use multipliers taken from [L’Ecuyer 1999].

From the wealth of data so obtained we derive generators with better statistical prop-
erties than those suggested in “Numerical Recipes”. We also investigate several interesting
correlations, such as those between the weight of the characteristic polynomial and failures
in statistical test suites.

In the last part of the paper, we follow the suggestion about high-dimensional generators
contained in Marsaglia’s paper, and compute for the first time several choices of parameters
that provide full-period xorshift generators with a state space of 1024 and 4096 bits. Once
again, we propose generators that use a multiplication to scramble the result.

At the end of the paper, we apply our methodology to a number of popular non-
cryptographic generators, and we discover that our high-dimensional generators are actually
faster and of higher or equivalent statistical quality, as assessed by statistical test suites,
than the alternatives.

The software used to perform the experiments described in this paper is distributed by
the author under the GNU General Public License. Moreover, all files generated during the
experiments are available from the author. They contain a large amount of data that could
be further analyzed (e.g., by studying the distribution of p-values over the seeds). We leave
this issue open for further work.

2. AN INTRODUCTION TO xorshift GENERATORS

The basic idea of xorshift generators is that the state space is modified by applying
repeatedly a shift and an exclusive-or (xor) operation. In this paper we consider 64-bit
shifts and state spaces of 2n bits, with n ≥ 6. We usually append n to the name of a family
of generators when we need to restrict the discussion to a specific state-space size.

For xorshift64 generators Marsaglia suggests a number of possible combination of shifts,
shown in Figure 1. Not all choices of parameters give a full (264 − 1) period: there are 275
suitable choices of a, b and c and eight variants, totalling 2200 generators.

In linear-algebra terms, if L is the 64× 64 matrix on Z/2Z that effects a left shift of one
position on a binary vector (i.e., L is all zeroes except for ones on the principal subdiagonal)
and if R is the right-shift matrix (the transpose of L), each left/right shift/xor can be
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described as a linear multiplication by
(
1 + Ls

)
or
(
1 + Rs

)
, respectively, where s is the

amount of shifting.1 For instance, algorithm A0 of Figure 1 is equivalent to the Z/2Z-linear
transformation

X1 =
(
1 + La

)(
1 +Rb

)(
1 + Lc

)
.

It is useful to associate with a linear transformation M its characteristic polynomial

P (x) = det(M − x).

The associated generator has maximum-length period if and only if P (x) is primitive over
Z/2Z. This happens if P (x) is irreducible and if z has maximum period in the ring of
polynomial over Z/2Z modulo P (x), that is, if the powers z, z2, . . . , z2

n−1 are distinct
modulo P (x). Finally, to check this condition is sufficient to check that

x(2
n−1)/p 6= 1 mod P (x)

for every prime p dividing 2n−1 [Lidl and Niederreiter 1994].
The weight of P (x) is the number of terms in P (x), that is, the number of nonzero

coefficients. It is considered a good property for generators of this kind that the weight is
close to n/2, that is, that the polynomial is neither too sparse nor too dense [Compagner
1991]. For this reason, if a generator has characteristic polynomial P (x) of degree d with
weight W we define the weight score of the generator as

|W − d/2|,
so a low weight score is better.

Note that the family of algorithms of Figure 1 is intended to generate 64-bit values. This
means that the entire output of the algorithm should be used when performing tests. We
will see that this has not always been the case in previous literature.

3. SETTING UP THE EXPERIMENTS

In this paper we want explore experimentally the space of a number of xorshift-based
generators. Our purpose is to identify variants with full period which have particularly
good statistical properties, and test whether claims about good parameters made in the
previous literature are confirmed.

The basic idea is that of sampling the generators by executing a battery of tests starting
with 100 different seeds that are equispaced in the state space. For instance, for a 64-bit state
space we use the seeds 1+ib264/100c, 0 ≤ i < 100. The tests produce a number of statistics,
and we decided to use the number of failed tests as a measure of low quality. Running
multiple tests makes it easy to rule out spurious failures, as suggested also by Rukhin et al.
[2001] in the context of cryptographic applications.

We use two tools to perform our tests. The first and most important is TestU01, a test
suite developed by L’Ecuyer and Simard [2007] that contains several tests oriented towards
the generation of uniform real numbers in [0 . . 1). We also perform tests using Dieharder, a
suite of tests developed by Brown [2013], both as a sanity check and to compare the power
of the two suites. Dieharder contains all original tests from Marsaglia’s Diehard, plus many
more other tests. The suite is more oriented towards the effective values assumed by each
bit (e.g., it computes more statistics on subsequences). We refer frequently to the specific
type of tests failed: the reader can refer to the TestU01 and Dieharder documentation for
more information.

We consider a test failed if its p-value is outside of the interval [0.001 . . 0.999]. This is
the interval outside which TestU01 reports a failure by default. Sometimes a much stricter

1A more detailed study of the linear algebra behind xorshift generators can be found in [Marsaglia 2003;
Panneton and L’Ecuyer 2005].
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threshold is used (For instance, L’Ecuyer and Simard [2007] use [10−10 . . 1 − 10−10] when
applying TestU01 to a variety of generators), but since we are going to repeat the test 100
times we can use relatively weak p-values: spurious failures will appear rarely, and we can
catch borderline cases (e.g., tests failing on 50% of the seeds) that give us useful information.
We call systematic a failure that happens for all seeds.

We remark that our choice (counting the number of failures) is somewhat rough; for
example, we consider the same failure a p-value very close to 0 and a p-value just below
0.001. Indeed, other, more sophisticated methods might be used to aggreate the result of
our samples: combining p-values, for instance, or computing a p-value of p-values [Rukhin
et al. 2001]. However, our choice is very easy to interpret, and multiple samples partially
compensate this problem (spurious failures will appear in few samples).

Of course, the number of experiments is very large—in fact, our experiments were carried
using hundreds of cores in parallel and, overall, they add up to more than a century of
computational time. Our strategy is to apply a very fast test to all generators and seeds, in
the hope of isolating a small group of generators that behave significantly better. Stronger
tests can then be applied to this subset. The same strategy has been followed by Panneton
[2004] in the experimental study of xorshift generators contained in his Ph.D. thesis.

TestU01 offers three different predefined batteries of tests (SmallCrush, Crush and
BigCrush) with increasing computational cost and increased difficulty. Unfortunately,
Dieharder does not provide such a segmentation.

Note that Dieharder has a concept of “weak” success and a concept of “failure”, depending
on the p-value of the test, and we used command-line options to align its behavior with that
of TestU01: a p-value outside of the range [0.001 . . 0.999] is a failure. Moreover, we disabled
the initial timing tests so that exactly the same stream of 64-bit numbers is fed to the two
test suites.

In both cases we implemented our own xorshift generator. Some care is needed in this
phase, as both TestU01 and Dieharder are inherently 32-bit test suites: since we want to
test xorshift as a 64-bit generator, it is important that all bits produced are actually fed
into the test. For this reason, we implemented the generation of a uniform real value in
[0 . . 1) by dividing the output of the generator by 264, but we implemented the generation
of uniform 32-bit integer values by returning first the lower and then the upper 32 bits of
each 64-bit generated value.2

An important consequence of this choice is that some of the bits are actually not used at
all. When analyzing pseudorandom real numbers in the unit interval, there is an unavoid-
able bias towards high bits, as they are more significant. The very lowest bits have lesser
importance and will be in any case perturbed by numerical errors. However, in our case the
lowest eleven bits returned by the generator are not used at all due to the fact that the
mantissa of a 64-bit floating-point number is formbed by 53 bits only. For this reason, we
will consistenly run our tests both on a generator and on its reverse.3

We remark that in this paper we do not pursue the search for equidistribution—the
property that all tuples of consecutive values, seen as vectors in the unit cube, are evenly
distributed, as done, for instance, by Panneton and L’Ecuyer [2005]. Brent [2010] has al-
ready argued in detail that for long-period generators equidistribution is not particularly
desirable, as it is a property of the whole sequence produced by the generator, and in the
case of a long-period generator only a minuscule fraction of the sequence can be actually
used. Moreover, equidistribution is currently impossible to evaluate exactly for long-period
non-linear generators, and it is known to be biased towards the high bits [L’Ecuyer and
Panneton 2005]: for instance, the WELL1024a generator has been designed to be maximally
equidistributed [Panneton et al. 2006], and indeed it has measure of equidistribution ∆1 = 0,

2If a real value is generated when the upper 32 bits of the last value are available, they are simply discarded.
3That is, on the generator obtained by reversing the order of the 64 bits returned.
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Fig. 2. Score-rank plot of the distribution of SmallCrush scores for the 2200 possible full-period xorshift64
generators.

but the generator obtained by reversing its bits has ∆1 = 366: a quite counterintuitive result,
as in general we expect all bits to be equally important.

Another major problem with equidistribution is its “on/off” nature: it provides no mea-
sure of how much a generator is equistributed. This leads to the following pathological
behavior: if we take a maximally equidistributed sequence, no matter how long, and we flip
the most significant bit of a single element of the sequence, the new sequence will have the
worst possible ∆1. For instance, by flipping the most significant bit of a single chosen value
out of the output of WELL1024a we can turn its equidistribution measure to ∆1 = 4143.
But for any statistical or practical purpose the two sequences are indistinguishable—we are
modifying one bit out of 25(21024 − 1).

We note, however, that since multiplication by an invertible constant induces a permu-
tation of the space of 64-bit values (and thus of t-tuples of such values), the choice of
multiplication has the advantage, with respect to other scrambling techniques, of preserv-
ing some of the equidistribution properties of the underlying generator; more details will be
given in the rest of the paper.

4. RESULTS FOR xorshift64 GENERATORS

In this section we report the results obtained for the 2200 possible variants of the
xorshift64 generator with full period.

First of all, all generators fail at all seeds the MatrixRank test from TestU01’s SmallCrush
suite. This is somewhat to be expected, as each new value is obtained by applying a linear
transformation to the previous one. However, Panneton and L’Ecuyer [2005] report that half
of the generators fail this test. Unfortunately, the authors do not detail the conditions (seed,
implementation of the algorithm, etc.) of the experiments they performed, but TestU01 is
available and contains an implementation of the xorshift64 family. A simple analysis of
the code shows that the authors have chosen to use only 32 of the 64 generated bits as
output bits, in practice applying a kind of decimation to the output of the generator. As we
explained in Section 3, we actually feed all bits output by the generator to the test suite,
which explains why we report a significantly worse performance.
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Fig. 3. Scatter plot of the SmallCrush score of conjugate generators.

A score-rank plot of the SmallCrush scores for all generators is shown in Figure 2. The plot
associates with abscissa x the number of generators with x or more failures.4 We observe
immediately that there is a wide range of quality among the generators examined. Indeed,
inspecting more closely we would see that the best generator (A4(14, 13, 17), score 101) fails
MatrixRank systematically and just Collision on one sample. The worst generators (e.g.,
A5(1, 1, 55), score 1500), instead, fails systematically all SmallCrush tests. The “bumps” in
the plot corresponds to new tests failed systematically.

Figure 3 shows instead a scatter plot associating conjugate algorithms, which have just
their bits reversed. While there is some weak correlation, we can see the bias towards high
bits at work. Some generators fail systematically just a few tests while their reverse fail
more than a dozen.

As we already remarked, to avoid high-bits bias we score each conjugate pair jointly,
adding up the number of failures in SmallCrush: Table I reports the best four generators,
which are the only ones failing systematically just the MatrixRank test. Any other choice
fails more than half of the times the BirthdaySpacings test (data not shown here), and all
generators with a rank lower than those shown in Table I fail systematically at least one
test besides MatrixRank.

The table reports also results for the generator A0(13, 7, 17) suggested by Marsaglia in
his original paper, claiming that it “will provide an excellent period 264 − 1 RNG, [. . . ]
but any of the above 2200 choices is likely to do as well”. Clearly, this is not the case:
A0(13, 7, 17)/A1(13, 7, 17) ranks 655 in the combined SmallCrush ranking and fails sys-
tematically several tests. Unfortunately, since this choice of parameters appeared in the
original paper, other researchers have used it as well: this is what happens, for example, in
the comparison table assembled by L’Ecuyer and Simard [2007] using TestU01 .

We remark that the triples suggested in “Numerical Recipes” are just of average quality
when measured using TestU01. The authors suggest as best algorithm A3(4, 35, 21) (with
its conjugate A2(4, 35, 21), as they notice that it is important to check conjugates), which
however with score 389 ranks only 29 in our combined classification. The best result for the
triples suggested at page 347 are those for A2(11, 29, 14)/A3(11, 29, 14) (score 314, rank 9).

4Score-rank plots are the numerosity-based discrete analogous of the complementary cumulative distribution
function of scores. They give a much clearer picture than frequency dot plots when the data points are
scattered and highly variable.
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Fig. 4. Scatter plot of the combined SmallCrush score of conjugate xorshift64 generators versus their
weight score.

Finally, Figure 4 shows a scatter plot associating the combined (standard plus reverse)
score of a generator with its weight score. While there is a very mild correlation (the
very lower left and upper right corners are empty), it is definitely not the case that the
SmallCrush score of a xorshift64 generator is strictly dependent on its weight score.

Sanity check 1. Is the result of our experiments dependent on our seed choice? To
answer this question, we repeated our experiments on xorshift64 generators with Small-
Crush on a different set of seeds, namely the integers in the interval [1 . . 100]. The scatter
plot in Figure 5 and Kendall’s5 τ ≈ 0.98 between the two rankings we obtain make rather
clear that this is not the case. In particular, the four best conjugate pairs in Table I are the
same with both seeds.

To gather more information, we ran the full BigCrush suite and Dieharder on our four
best generators, on Marsaglia’s choice and on the best choice from “Numerical Recipes”: the
results are given in Table II and III. Even the four best generators fail now systematically the
BirthdaySpacings, MatrixRank and LinearComp tests. The first two generators, however,
turn out to perform better than other two. We also notice that BigCrush draws a much
thicker line between our four best generators and the other ones, which now fail several
more tests. Not surprisingly, Dieharder cannot really separate our four best generators from
A2(4, 35, 21)/A3(4, 35, 21).

4.1. Equidistribution

As we already discussed in the introduction, in this paper we do not pursue equidistribution
of a generator. It is nonetheless interesting to compare the ranking provided by equidistri-
bution properties and that provided by statistical tests. Note that a xorshift64 generator
is at least 1-dimensionally equidistributed, that is, every 64-bit value appears exactly once
except for zero. We refer to the already quoted paper by Panneton and L’Ecuyer [2005] for
a detailed description of the equidistribution statistics ∆1, the sum of dimension gaps: a
lower value is better. A maximally distributed generator has ∆1 = 0, and we will refer to ∆1

5We are using the generalization allowing ties and defined in [Kendall 1945], which is often called τb,
reserving τ for the original coefficient [Kendall 1938]. But this distinction is pointless, as in [Kendall 1938]
τ is defined only for rankings with no ties, and the definition given in [Kendall 1945] reduces exactly to the
original definition if there are no ties.
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Fig. 5. Scatter plot of the scores obtained on each xorshift64 generator using the seed 1 + ib264/100c or
the seed 1 + i, 0 ≤ i < 100.

Table I. Best four xorshift64 generators following SmallCrush.

Algorithm Failures Conjugate Failures Overall W

A2(11, 31, 18) 111 A3(11, 31, 18) 120 231 25

A2(8, 29, 19) 155 A3(8, 29, 19) 115 270 35

A0(8, 29, 19) 159 A1(8, 29, 19) 112 271 35

A0(11, 31, 18) 130 A1(11, 31, 18) 150 280 25

A2(4, 35, 21) 209 A3(4, 35, 21) 180 389 25

A0(13, 7, 17) 276 A1(13, 7, 17) 802 1078 25

Note: The only systematic failure is on the MatrixRank test. All other generators have
an overall number of failures greater than 300, and fail systematically at least one test
besides MatrixRank. A0(13, 7, 17) is the generator suggested in Marsaglia’s original paper,
and ranks 655 on 1100 conjugate pairs. A3(4, 35, 21) is suggested as the best generator in
this class in “Numerical Recipes” [Press et al. 2007], and ranks 29.

Table II. The generators of Table I tested with BigCrush.

Algorithm Failures Conjugate Failures Overall Systematic

A2(11, 31, 18) 762 A3(11, 31, 18) 750 1512

A
A2(8, 29, 19) 747 A3(8, 29, 19) 780 1527

A0(8, 29, 19) 749 A1(8, 29, 19) 884 1633

A0(11, 31, 18) 748 A1(11, 31, 18) 926 1674

A2(4, 35, 21) 961 A3(4, 35, 21) 1444 2405 A ∪B
A0(13, 7, 17) 1049 A1(13, 7, 17) 5454 6503 A ∪ C

Note: A = {BirthdaySpacings, LinearComp, MatrixRank}. B = {RandomWalk1C, Close-
PairsmNP, ClosePairsmNP1, ClosePairsmNP2S}. C = {RandomWalk1H, RandomWalk1J,
RandomWalk1M, ClosePairsNJumps, ClosePairsNP, ClosePairsmNP2, ClosePairsmNP2S,
CollisionOver, MaxOft, MaxOftAD, Permutation, Run, SampleMean, SampleProd, Seri-
alOver, SumCollector}. This table should be compared with Table I and with the experi-
mental results by L’Ecuyer and Simard [2007].
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Table III. The generators of Table I tested with Dieharder.

Algorithm Failures Conjugate Failures Overall Systematic

A2(11, 31, 18) 182 A3(11, 31, 18) 162 344

dab monobit2
A2(8, 29, 19) 179 A3(8, 29, 19) 181 360

A0(8, 29, 19) 176 A1(8, 29, 19) 182 358

A0(11, 31, 18) 181 A1(11, 31, 18) 186 367

A2(4, 35, 21) 189 A3(4, 35, 21) 187 376 dab monobit2

A0(13, 7, 17) 183 A1(13, 7, 17) 1352 1535 A

Note: A = {dab filltree, dab monobit2, diehard 2dsphere, diehard 3dsphere,
diehard operm5, diehard parking lot, diehard squeeze, rgb minimum distance,
rgb permutations}. This table should be compared with Table II.
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Fig. 6. Scatter plot of the SmallCrush score versus the equidistribution score of xorshift64 generators.

as to the equidistribution score. We computed the equidistribution score for all generators
using the implementation of Harase’s algorithm [Harase 2011] contained in the MTToolBox
package from Saito [2013].

Sanity check 2. It is very easy to introduce hard-to-detect bugs in this kind of compu-
tations. However, the Ph.D. thesis of Panneton [2004] reports ∆1 (therein called V ) for all
full-period xorshift64 generators, and we checked that the results are the same. We will
use MTToolBox for other computations, which explains the usefulness of recomputing and
checking these values.

Figure 6 shows that there is some correlation between the SmallCrush score and the
equidistribution score of xorshift64 generators. Nonetheless, in the “interesting” region
(the lowest left corner) correlation is not very good—for instance, the generatorA6(10, 7, 33),
which has equidistribution score 2 (the best), fails systematically three types of tests, and
ranks 757 in combination with its conjugate: it’s actually one of the worst generators. Its
combined BigCrush score is 6691—even worse than the generator A0(13, 7, 17) suggested
by Marsaglia.

The explanation is simple: similarly to SmallCrush score, equidistribution has high-bits
bias, and a quite strong one [L’Ecuyer and Panneton 2005]. Indeed, Figure 7 reports a
scatter plot of the equistribution score of conjugate (i.e., reverse) generators, and the bias
towards the high bits is very visibile from the lack of correlation. There are apparently good
generators whose reverse is actually worst: for instance, A2(12, 1, 31) has score 11 but its
conjugate A3(12, 1, 31) has score 153—the highest value in the set, whereas A0(11, 5, 32)
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Fig. 7. Scatter plot of the equidistribution score of conjugate xorshift64 generators.
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Fig. 8. Scatter plot of the combined SmallCrush score of conjugate xorshift64 generators versus the
combined equidistribution score. Notice the improvement in correlation with respect to Figure 6.

has score 3 (the best is 2) whereas its conjugate A1(11, 5, 32) has score 106. It is clearly
necessary to combine the equidistribution score of a generator and of its reverse.

This approach improves somewhat the quality of the result: Figure 8 shows that there
is a better correlation between combined SmallCrush scores and combined equidistribution
scores. Nonetheless, even if equidistribution is able to detect bad generators, is not so
good at detecting the very best generators. We already noticed that only four generators
(Table I) fail systematically a single SmallCrush test. These generators, however, are not
the best ones by equidistribution score: in display order, they rank 4, 11, 3 and 23 (the
other two generators rank 37 and 570, respectively). The first two generators by combined
equidistribution score, A4(8, 29, 19) and A6(8, 29, 19), rank 20 (combined score 361) and 170
(score 596) in the combined SmallCrush test. When analyzed with the more powerful lens
of BigCrush, they have combined scores 3441 and 4082, respectively, and fail systematically
almost twenty additional tests with respect to the set A of Table II. Definitely, choosing
among xorshift64 generators by equidistribution score alone is not a good idea.

As a final interesting observation, in Figure 9 we correlate the equidistribution score and
the weight score of xorshift64 generators, both in combined and non-combined form. It is
somewhat fascinating that two mathematically defined features which are supposed to lead
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Fig. 9. Scatter plots of equidistribution scores versus weight scores for xorshift64 generators.

Table IV. The three multipliers
used in the rest of the paper. The
subscripts recalls the t for which
they have good figures of merit.

M32 2685821657736338717
M8 1181783497276652981
M2 8372773778140471301

to good generators are entirely uncorrelated. Some mild correlation, as usual, appears if we
use a combined equidistribution score.

5. RESULTS FOR xorshift64* GENERATORS

Since a xorshift64 generator exhibits evident linearity artifacts, the next obvious step is to
perturb its output using a nonlinear (in Z/2Z sense) transformation. A natural candidate is
multiplication by a constant, also because such operation is very fast in modern processors.
Note that the current state of the generator is multiplied by a constant before returning it,
but the state itself is not affected by the multiplication: thus, the period is the same.

We call such a generator xorshift*. By choosing a constant invertible modulo 264, we
can guarantee that the generator will output a permutation of the sequence output by the
underlying xorshift generator.

This approach was noted in passing in Marsaglia’s paper, and it is also proposed in a
more systematic way in the third edition of “Numerical Recipes” [Press et al. 2007] to
create a very fast, good-quality pseudorandom number generator. However, in the latter
case the author first computes allegedly good triples for xorshift using DieHard (with
results markedly different from ours, and in strident contrast with TestU01’s results, as
discussed in Section 4) and then chooses a multiplier using a perfectly reasonable criterion
(good spectral quality as a linear congruential generator). There is no reason why the best
triples for a xorshift64 generator (which are computed empirically) should continue to be
such in a xorshift64* generator: and indeed, we will see that this is not the case.

We thus repeated the experiments of the previous section on xorshift64* generators. To
further understand the dependency on the multiplier, we used three different multipliers,
shown in Table IV. The first multiplier, M32, is the one used in “Numerical Recipes”, which
is suggested by L’Ecuyer [1999] as having good spectral properties. The goodness of the
multiplier, however, is established by a figure of merit which is a normalized best distance
between the hyperplanes of families covering tuples of length t given by successive outputs
of the generators. The length t is an additional parameter, and M32 has the best figures of
merit for t = 32. Clearly, if an alternative multiplier provides improvements on both t and
the associated figure of merit, we have a hint that it could be chosen instead of M32.
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Fig. 10. Scatter plot of the SmallCrush score of xorshift64* generators and their reverse.

Lacking that possibility, what if we scramble xorshift64’s output with a multiplier that
has better figures of merit for a lower t? We thus also ran experiment with the multiplier
M8 = 1181783497276652981, which has a better figure of merit for t = 8 [L’Ecuyer 1999],
and the multiplier M2 = 8372773778140471301, which has a better figure of merit for t = 2
and was kindly provided by Richard Simard.

The landscape is now very different. Indeed, the scatter plot in Figure 10 shows that there
is no correlation between the scores assigned by SmallCrush to a generator and its reverse.6

Another interesting observation on Figure 10 is that the lower right half is essentially
empty. So bad generators have a bad reverse, but there are good generators with a very bad
reverse. This suggests that the quality of a xorshift64* generator can vary wildly from
the low to the high bits.

A score-rank plot of the SmallCrush scores for all generators shown in Figure 11 provides
us with further interesting information: almost all generators have no systematic failure,
but only about half of the reverse generators have no systematic failure. Moreover, the
distribution of standard generators degrades smoothly, whereas the distribution of reverse
generators sports again the “bump” phenomenon we observed in Figure 2.

Finally, Figure 12 is the analogous of Figure 4 for xorshift64* generators: the mild corre-
lation between combined SmallCrush score and weight score of the underlying xorshift64
is now completely absent.

Since we need to reduce the number of candidates to apply stronger tests, in the case of
M32 we decided to restrict our choice to generators with 3 overall failed tests or less, which
left us with 152 generators. Similar cutoff were chosen for M8 and M2.

These generators were few enough so that we could apply both Crush and Dieharder.
Once again, we examine the correlation between the score of a generator and its reverse by
means of the scatter plots in Figure 13, which confirm the high-bits bias, albeit less so in
the Dieharder case.

In Figure 14 we compare instead the two scores (Crush and Dieharder) available. The most
remarkable feature is there are no points in the upper left corner: there is no generator that
is considered good by Crush but not by Dieharder. On the contrary, Crush heavily penalizes
(in particular because of the score on the reverse generator) a large number of generators.
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Fig. 11. Score-rank plot of the distribution of SmallCrush scores for the 2200 possible xorshift64* gener-
ators with multiplier M32.
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Fig. 12. Scatter plot of combined SmallCrush score or xorshift64* generators with multiplier M32 versus
weights score of the underlying xorshift64 generators.
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generators using multiplier M32.

The generators we will select in the end all belong to the small cloud in the lower left corner,
where the two test suite agree.

The score-rank plot in Figure 15 shows that our strategy pays off: we started with 152
generators with less than three failures, but analyzing them with the more powerful lens
provided by Crush we get a much more fine-grained analysis: in particular, only 73 of them
give no systematic failure, and they all belong to the “sweet spot” of Figure 14, that is,
they do not give any systematic failure in Dieharder, too.

Finally, we selected for each multiplier the eight best generators with the best Crush
score, and applied the BigCrush suite: we obtained several generators failing systematically
the MatrixRank test only and shown in Table V (which should be compared with Table II).
It is interesting to note that all generators have one additional systematic failure in the
standard version with respect to the reversed version. This behavior is not surprising, as
multiplication tends to make the lower bits more chaotic and of better quality than the

6In general, we report plots only for M32, as the ones for the other multipliers are visually identical.
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Table V. Results of BigCrush on the best eight
xorshift64* generators found by SmallCrush
and Crush in sequence. The generators fail
systematically only MatrixRank.

Algorithm
Failures

W
S R +

M32

A7(11, 5, 45) 226 128 354 23

A7(17, 23, 52) 232 130 362 25

A1(12, 25, 27) 230 133 363 31

A1(17, 23, 29) 229 137 366 21

A5(14, 23, 33) 238 132 370 32

A5(17, 47, 29) 231 141 372 24

A1(16, 25, 43) 238 138 376 31

A7(23, 9, 57) 242 134 376 19

M8

A5(11, 5, 32) 229 122 351 13

A2(8, 31, 17) 229 126 355 21

A5(3, 21, 31) 230 141 371 33

A3(17, 45, 22) 241 133 374 27

A4(8, 37, 21) 239 136 375 33

A3(13, 47, 23) 232 144 376 27

A3(13, 35, 30) 244 136 380 27

A4(9, 37, 31) 243 141 384 27

M2

A7(13, 19, 28) 228 128 356 23

A3(9, 21, 40) 228 132 360 35

A1(14, 23, 33) 234 142 376 29

A7(19, 43, 27) 239 137 376 23

A1(17, 47, 28) 240 137 377 25

A5(16, 11, 27) 234 144 378 25

A4(4, 35, 15) 230 149 379 35

A7(13, 21, 18) 238 144 382 31

upper bits. It also suggests that for these generators it is better to extract the lower bits,
rather than the high bits, when just a subsequence is needed.

5.1. Equidistribution

Multiplication by an invertible element just permutes the elements of Z/264Z leaving zero
fixed, so a xorshift64* generator, like the underlying xorshift64 generator, is at least 1-
dimensionally equidistributed. Since xorshift64* generators are not linear, analyzing more
deeply equistribution scores would require an enormous computing effort, which is not jus-
tified in consideration of our observations on xorshift64 generators. We tried nonetheless
to correlate in Figure 16 the SmallCrush score of xorshift64* generators with the equidis-
tribution score of the the underlying xorshift64 generators. No such correlation appears in
the generators taken in isolation—there are even generators, such as A7(15, 1, 19) ·M32 with
the best SmallCrush combined score (no failure) for which the equidistribution score of the
underlying xorshift64 generator is the worst possible (153). However, once we combine
both the SmallCrush scores and the equidistribution score some correlation appears. Once
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Fig. 16. Scatter plots of SmallCrush scores versus equidistribution scores of the underlying xorshift64
generator for xorshift64* generators using multiplier M32.

again, the combined equidistribution score is more useful to detect bad generators than to
find the best ones, as the left part of the plot is quite chaotic.

6. HIGH DIMENSION

Marsaglia [2003] describes a strategy for xorshift generators in high dimension: the idea
is to use always three low-dimensional shifts, but locating them in the context of a larger
matrix of the form

M =


0 0 0 · · · 0 (1 + La)(1 +Rb)
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 (1 +Rc)


Marsaglia notes that even in this restricted forms there are matrices of full period (he
provides examples for 32-bit shifts up to 160 bits). However, we could found no evidence
in the literature that this route has been explored for high-dimensional (say, more than
1024 bits of state) generators. The only similar approach is that proposed by Brent [2007]
with his xorgens generators, which however uses more shifts. The obvious question is thus:
are these additional shifts really necessary? We are thus going to look for good, full-period
generators with 1024 or 4096 bits of state using 64-bit basic shifts.7

The output of such generators will be given by the last 64 bits of the state space. It is
well known [Niederreiter 1992] that every bit of the state space satisfies a linear recurrence
(defined by the characteristic polynomial) with full period, so a fortiori the last 64 bits
have full period, too.

Since we already know that some deficiencies of low-dimensional xorshift generators
are well corrected by multiplication by a constant, we will follow the same approach, thus
looking for good xorshift* generators of high dimension.8 Note that since multiplication
by an integer invertible in Z/264Z is a permutation of Z/264Z, a high-dimension xorshift*
generator has the same period of the underlying xorshift generator.

7The reason why the number 4096 is relevant here is that we know the factorization of Fermat’s numbers

22
k

+ 1 only up to k = 11. When more Fermat numbers will be factorized, it will be possible to design
xorshift or xorgens generators with larger state space [Brent 2007]. Note that, however, in practice a
period of 21024 − 1 is more than sufficient for any purpose. For example, even if 2100 computers were to
generate sequences of 2100 numbers starting from random seeds using a generator with period 21024, the
chances that two sequences overlap would be less than 2−724.
8As in the xorshift64 case, different choices for the shifts are possible. We will not pursue them here.
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We cannot in principle claim full period if we look at a single bit of the output of a
xorshift* generator; but this property can be easily proved by exquisitely combinatorial
means:

Proposition 6.1. Let x0, x1, . . . , x2n−2 be a list of t-bit values, t ≤ n, such that every
value appears 2n−t times, except for 0, which appears 2n−t − 1 times. Then, for every fixed
bit k the associated sequence has period 2n − 1.

Proof. Suppose that there is a k and a p | 2n − 1 such that the k-th bit of x0, x1,
. . . , x2n−2 has period p (that is, the sequence of bits associated with the k-th bit is made
by (2n−1)/p repetitions of the same sequence of p bits). The k-th bit runs through 2n−1−1
zeroes and 2n−1 ones (as there is a missing zero). This means that (2n−1)/p | 2n−1, too, as
the same number of ones must appear in every repeating subsequence, and since (2n− 1)/p
is odd this implies p = 2n − 1.

Corollary 6.2. Every bit of the output of a full-period xorshift* generator has full
period.

6.1. Finding good shifts

The first step is identifying values of a, b and c for which the generator has maximum
period using the primitivity check on the characteristic polynomial. We performed these
computations using the algebra package Fermat [Lewis 2013], with the restriction that
a + b ≤ 64 and that a is coprime with b (see [Brent 2007] for the rationale behind this
choices, which significantly reduce the search space). The resulting sets of values are those
shown in Table VI and VIII.

For a state space of 1024 bits, we obtain 20 possible parameter choices, which we examined
in combination with our three multipliers both through BigCrush and through Dieharder.
The results, reported in Table VI and VII, are excellent: with the exception of two patho-
logical choices, no test is failed systematically. For 4096-bit state space (Table VIII and IX)
there are 10 possible parameter choices, and no generator fails a test systematically.

Sanity check 3. Very long and complex computations are prone to implementation,
software and hardware errors. In particular, if no verification procedure exists, results of a
search on a large state space like the one we just describe are very difficult to assess. We thus
decided to compute again the same coefficient using an entirely different algorithm: instead
of working on characteristic polynomials, we developed highly optimized Java software that
exploits the particular structure taken by powers of the linear transformation M associated
with a generator to compute such powers explicitly, and store them using space linear in
the size of the state space: as it is known [Marsaglia and Tsay 1985], the generator has full
period if and only if M has the same multiplicative period. It is thus sufficient to show that
M2n−1 = 1 and

M (2n−1)/p 6= 1

for every prime p dividing 2n−1. The computation, in particular for the case of 4096 bits,
turned out to be extremely intensive, requiring almost a month of computing time on a 40-
core workstation and using more than half a terabyte of in-core memory, as each set of
parameters can be checked in parallel, but for each such set we must compute and store the

quadratures M2k , 0 < k < n, so to be able to evaluate the condition above for all p’s. The
results confirmed those obtained by using primitive polynomials.

6.2. Equidistribution

Looking at the shape of the matrix defining high-dimensional xorshift generators it is
clear that if the state space is made of n bits the last n/64 output values, concatenated, are
equal to the current state. This implies that such generators are at least n/64-dimensionally
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Fig. 17. Scatter plots of BigCrush scores versus equidistribution scores for xorshift1024* generators using
multiplier M32.

equidistributed (i.e., every n/64-tuple of consecutive 64-bit values appears exactly once, ex-
cept for a missing tuple of zeroes), so xorshift1024 generators are at least 16-dimensionally
equidistributed and xorshift4096 generators are at least 64-dimensionally equidistributed.
Since multiplication by a constant just permutes the space of tuples, the same is true of the
associated xorshift* generators.

We now repeat the analysis of Section 5.1, always using the MTTollBox package, and show
the results in Figure 17. No correlation between BigCrush scores of xorshift1024* genera-
tors and equidistribution scores of the underlying xorshift1024 appears for the generators
taken in isolation, but once we combine both the BigCrush scores and the equidistribution
scores some correlation appears, as the two pathological generators have indeed a very high
combined equidistribution score. The analogous graphs for xorshift4096* generators are
omitted; they display no correlation at all.

7. COMPARISON

How do our best xorshift* generators score with respect to more complex generators in
the literature? We decided to perform a comparison with the popular Mersenne Twister
MT19937 [Matsumoto and Nishimura 1998],9 with WELL1024a/WELL19937a, two generators
introduced by Panneton et al. [2006] as an improvement over the Mersenne Twister, and
with xorgens4096, a very recent 4096-bit generator introduced by Brent [2007] we men-
tioned in Section 6. All these generators are non-cryptographic and aim at fast, high-quality
generation. As usual, 100 tests are performed at 100 equispaced points of the state space.

We choose generators from the xorshift* family that perform well on both BigCrush
and Dieharder, have a good weight score and enough large parameters (which provide faster
state change spreading): more precisely, the xorshift64* generator A1(12, 25, 27) · M32

(Figure 19), xorshift1024* with parameters 31, 11, 30 and multiplier M8 (Figure 20), and
xorshift4096* with parameters 25, 3, 49 and multiplier M2 (Figure 21).

7.1. Quality

Table X compares the BigCrush scores of the generators we discussed. We report also results
on the Java standard random number generator, as a reality check with respect to stock
generators currently found in computer languages.

The results are quite surprising. A simple 64-bit xorshift* generator has less linear
artifacts than MT19937, WELL1024a or WELL19937a and, thus, a significantly better score.

9More precisely, with its 64-bit version.
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Table X. A comparison of generators using BigCrush.

Algorithm
Failures

W Systematic
S R +

A1(12, 25, 27) ·M32 230 133 363 31 MatrixRank

A3(4, 35, 21) ·M32 240 223 463 25 MatrixRank, BirthdaySpacings

xorshift1024* 29 22 51 363 —

xorshift4096* 33 34 67 441 —

xorgens4096 42 40 82 961 —

MT19937 258 258 516 6750 LinearComp

WELL1024a 441 441 882 407 MatrixRank, LinearComp

WELL19937a 235 233 468 8585 LinearComp

java.util.Random 4078 9486 13564 — Almost all

Table XI. A comparison of generators using
Dieharder.

Algorithm
Failures

S R +

A1(12, 25, 27) ·M32 86 61 147

A3(4, 35, 21) ·M32 76 71 147

xorshift1024* 70 75 135

xorshift4096* 77 71 148

xorgens4096 80 78 158

MT19937 72 79 151

WELL1024a 81 61 142

WELL19937a 86 67 153

java.util.Random 4078 9486 13564

Note: No test is failed systematically, except for java.util.Random , which fails systemat-
ically dab bytedistrib, dab dct, diehard craps, diehard dna, diehard operm5, diehard opso,
diehard oqso, diehard squeeze, rgb kstest test, rgb lagged sum, rgb minimum distance and
rgb permutations.

High-dimension xorgens4096 and xorshift* generators perform significantly better, in
spite of being extremely simpler, and have no systematic failure. The 64-bit xorshift*
generator suggested by “Numerical Recipes” fails systematically the BirthdaySpacings test,
contrarily to our selection. The Java standard generator is, in fact, unusable.10

Additionally, Table XI reports the results of Dieharder: the main observation is that at
this level of quality Dieharder is unable to make any distinction between the generators,
except for the case of the Java generator.

7.2. Escaping zeroland

We show in Figure 18 the speed at which a few of the generators of Table X “escape from
zeroland” [Panneton et al. 2006]: purely linearly recurrent generators with a very large state
space need a very long time to get from an initial state with a small number of ones to a state
in which the ones are approximately half. The figure shows a measure of escape time given
by the ratio of ones in a window of 4 consecutive 64-bit values sliding over the first 100 000

10Note that we report the number of failed tests on our 100 seeds. L’Ecuyer and Simard [L’Ecuyer and
Simard 2007] report the number of types of failed tests (e.g., failing two distinct RandomWalk tests counts
as one) on a single run, so some care must be taken when comparing the results we report and those reported
by them.
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Fig. 18. Convergence to “half of the bits are ones in average” plot.

Table XII. Mean and variance for the data
shown in Figure 18.

Algorithm Mean Variance

xorshift64* 0.5000 0.0039

xorgens4096 0.4999 0.0030

xorshift1024* 0.4999 0.0035

WELL1024a 0.4999 0.0036

xorshift4096* 0.4991 0.0110

WELL19937a 0.4991 0.0184

MT19937 0.3129 0.1689

generated values, averaged over all possible seeds with exactly one bit set (see [Panneton
et al. 2006] for a detailed description).

As it is known, MT19937 needs hundreds of thousands of iterations to start behaving cor-
rectly. xorshift4096* and xorgens4096 need a few thousand (but xorgens4096 oscillates
always around 1/2), WELL19937a and xorshift1024* a few hundreds, whereas WELL1024a
just a few dozens, and xorshift64* is almost unaffected.

Table XII condenses Figure 18 into the mean and variance of the displayed values. Clearly,
the multiplication step helps in reducing the correlation between the number of ones in the
state space and the number of ones in the output values. Also, the slowness in recovering
from states with too many zeroes it directly correlated to the size of the state space—a very
good argument against linear generators with too large state spaces.

7.3. Speed

Finally, we benchmark the generators of Table X. Our tests were run on an Intel R© CoreTM

i7-4770 CPU @3.40GHz (Haswell), and the results are shown in Table XIII (variance is
undetectable, as we generate 1010 values in each test). We also report as a strong baseline
results about SFMT19937, the SIMD-Oriented Fast Mersenne Twister [Saito and Matsumoto
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Table XIII. Time to emit a 64-bit integer on
an Intel R© CoreTM i7-4770 CPU @3.40GHz
(Haswell).

Algorithm Speed (ns/64 bits)

xorshift64* 1.60

xorshift1024* 1.36

xorshift4096* 1.36

xorgens4096 1.68

MT19937 4.09

SFMT19937 1.54

WELL1024a 5.18

WELL19937a 8.01

2008], a 128-bit version of the Mersenne Twister based on the SSE2 extended instruction
set of Intel processors (and thus not usable, in principle, on other processors).

The highest speed is achieved by the high-dimensional xorshift* generators. Note that
the timings in Table XIII include the looping logic, which we approximately benchmarked at
17 ns/iteration. This means that the xorgens4096 generator is actually 27% slower than a
xorshift1024* or xorshift4096* generator. SFMT19937 is a major improvement in speed
over MT19937, albeit slightly slower than a high-dimensional xorshift* generator; it fails
systematically, moreover, the same tests of MT19937.

A xorshift64* generator is actually slower than its high-dimensional counterparts. This
is not surprising, as the three shift/xors in a xorshift64* generator form a dependency
chain and must be executed in sequence, whereas two of the shifts of a higher-dimension
generator are independent and can be internally parallelized by the CPU. WELL1024a and
WELL19937a are heavily penalized by their 32-bit structure.

#include <stdint.h>

uint64_t x;

uint64_t next() {
x ^= x >> 12; // a
x ^= x << 25; // b
x ^= x >> 27; // c
return x * 2685821657736338717LL;

}

Fig. 19. The suggested xorshift64* generator in C99 code. The variable x should be initialized to a nonzero
seed before calling next().

8. CONCLUSIONS

After our careful experimental analysis, we reach the following conclusions:

A xorshift1024* generator is an excellent choice for a general-purpose, high-
speed generator. The statistical quality of the generator is very high (it has, actually,
the best results in BigCrush), and its period is so large that the probability of overlapping
sequences is practically zero, even in the largest parallel simulation. Nonetheless, the state
space is reasonably small, so that seeding it with high-quality bits is not too expensive,
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#include <stdint.h>

uint64_t s[ 16 ];
int p;

uint64_t next(void) {
uint64_t s0 = s[ p ];
uint64_t s1 = s[ p = ( p + 1 ) & 15 ];
s1 ^= s1 << 31; // a
s1 ^= s1 >> 11; // b
s0 ^= s0 >> 30; // c
return ( s[ p ] = s0 ^ s1 ) * 1181783497276652981LL;

}

Fig. 20. The suggested xorshift1024* generator in C99 code. The array s should be initialized to a nonzero
seed before calling next().

#include <stdint.h>

uint64_t s[ 64 ];
int p;

uint64_t next(void) {
uint64_t s0 = s[ p ];
uint64_t s1 = s[ p = ( p + 1 ) & 63 ];
s1 ^= s1 << 25; // a
s1 ^= s1 >> 3; // b
s0 ^= s0 >> 49; // c
return ( s[ p ] = s0 ^ s1 ) * 8372773778140471301LL;

}

Fig. 21. The suggested xorshift4096* generator in C99 code. The array s should be initialized to a nonzero
seed before calling next().

and recovery from states with a large number of zeroes happens quickly. The generator is
also blazingly fast (it is actually the fastest generator we tested), providing a 64-bit value
in slightly more than a nanosecond. The reasonable state space makes also more likely, in
case a large number of generators is used at the same time, that their state can fit the
cache. In any case, with respect to other generators, the state space is accessed is a more
localized way, as read and write operations happen at two consecutive locations, and thus
will generate at most one cache miss.

In case memory is an issue, or array access is expensive, a very good general-
purpose generator is a xorshift64* generator. While the generator A1(12, 25, 27) ·
M32 fails systematically the MatrixRank test, it has less linear artifacts tham MT19937,
WELL1024a or WELL19937a, which fail systematically even more tests. It is a very good
choice if memory footprint is an issue and a very large number of generators is necessary.
A xorshift64* generator can also actually be faster than a xorshift1024* generator if
the underlying language incurs in significant costs when accessing an array: for instance, in
Java a xorshift64* generator emits a value in 1.62 ns, whereas a xorshift1024* generator
needs 2.08 ns.

Linear generators with an excessively long period have a number of problems
that are not compensated by higher statistical quality. Generating 64 bits with
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WELL19937a requires almost ten times the time required by a xorshift1024* generator,
with no detectable improvement in the statistical quality of the output by means of test
suites; moreover, recovery from state spaces with many zeroes, albeit enormously improved
with respect to MT19937, is still very slow, and seeding properly the generator requires
almost twenty thousands random bits. In the end, it is in general difficult to motivate state
spaces larger than 21024. Similar considerations are made, for example, by L’Ecuyer and
Panneton [2005].

Surprisingly simple and fast generators can produce sequences that pass strong
statistical tests. The code in Figure 20 is extremely shorter and simpler than that of
MT19937, WELL1024a or WELL19937a. Yet, it performs significantly better on BigCrush. It is
a tribute to Marsaglia’s cleverness that just eight logical operations, one addition and one
multiplication by a constant can produce sequences of such high quality. xorgens generators
are similar with this respect, but use several more operations due to the additional shift
and to the usage of a Weyl generator to hide linear artifacts [Brent 2007].

The t for which the multiplier has a good figure of merit has no detectable effect
on the quality of the generator. If our tests, we could not find any significant difference
between the behavior of generators based on M32, M8 or M2. It could be interesting to
experiment with multipliers having very bad figures of merit.

Equidistribution is more useful as a design feature than as an evaluation fea-
ture. While designing generators around equidistribution might be a good idea, as it leads
in general to good generators, evaluation by equidistribution is a more delicate matter be-
cause of high-bits bias and of the failure to detect the generators having the best scores in
statistical suites (actually, as we have seen, some of the worst generators could be chosen
instead).

TestU01 has significantly more resolution than Dieharder as a test suite. In
particular in the high-dimension case, TestU01 is able to provide useful information, whereas
Dieharder scores flatten down. However, TestU01 should be applied always to the reverse
generator, too, to account for its high-bits bias.
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Spectrum Sensing Via Reconfigurable Antennas:
Fundamental Limits and Potential Gains
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Abstract—We propose a novel paradigm for spectrum sensing
in cognitive radio networks that provides diversity and capacity
benefits using a single antenna at the Secondary User (SU) re-
ceiver. The proposed scheme is based on areconfigurable antenna:
an antenna that is capable of altering its radiation characteristics
by changing its geometric configuration. Each configurationis
designated as an antennamode or state and corresponds to
a distinct channel realization. Based on an abstract model for
the reconfigurable antenna, we tackle two different settings for
the cognitive radio problem and present fundamental limitson
the achievable diversity and throughput gains. First, we explore
the “ to cooperate or not to cooperate” tradeoff between the
diversity and coding gains in conventional cooperative andnon-
cooperative spectrum sensing schemes, showing that cooperation
is not always beneficial. Based on this analysis, we propose two
sensing schemes based on reconfigurable antennas that we term
as state switchingand state selection. It is shown that each of
these schemes outperform both cooperative and non-cooperative
spectrum sensing under a global energy constraint. Next, we
study the “sensing-throughput” trade-off, and demonstrate that
using reconfigurable antennas, the optimal sensing time is re-
duced allowing for a longer transmission time, and thus better
throughput. Moreover, state selection can be applied to boost the
capacity of SU transmission.

Index Terms—cognitive radio; cooperative spectrum sensing;
diversity; ergodic capacity; reconfigurable antennas; spectrum
sensing

I. I NTRODUCTION

COGNITIVE Radio (CR) is a promising technology of-
fering a significant enhancement in wireless systems

spectrum efficiency via dynamic spectrum access [1]. In a CR
network, unlicensed secondary users (SUs) can opportunis-
tically occupy the unused spectrum allocated to a licensed
primary user (PU). This is achieved by means of PU signal
detection. Detection of PU signal entails sensing the spectrum
occupied by the licensed user in a continuous manner. Thus,
the process ofspectrum sensingis mandatory for a CR
system as it helps preserving the Quality-of-Service (QoS)
experienced by the licensed PU. Energy detection (ED) is
one of the simplest spectrum sensing techniques as it can
be implemented using simple hardware and does not require
Channel State Information (CSI) at the SU receiver [2]–[3].
Generally, the performance of a spectrum sensing technique
severely degrades in slow fading channels. To combat this
effect, Cooperative Spectrum Sensing (CSS) schemes have
been proposed to take advantage of the spatial diversity in
wireless channels [4]–[6]. In CSS, hard or soft decisions from
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different CR users are combined to make a global decision
at a central unit known as theFusion Center(FC). CSS has
been widely accepted in the literature as a realizable technique
for extracting spatial diversity. The other alternative would be
using multiple antennas, which is constrained by the space
limitation in SU recievers [6]–[14].

A. Background and Motivation

Although CSS achieves a diversity gain that is equal to
the number of cooperating users, it encounters a significant
cooperation overhead: several decisions taken at SU terminals
have to be fed back to the FC via a dedicated reporting channel
[5]; global information (including the number of cooperating
SU terminals) must be provided to each SU in order to
calculate the optimal detection threshold [6]; hard decisions
taken locally at each SU cause loss of information, which
degrades the performance at low signal-to-noise ratio (SNR)
[7]; and finally, the existence of multiple SUs is not always
guaranteed. In addition, in this work, we show that there exists
a trade-off between the coding gain and the diversity order
achieved in both cooperative and non-cooperative schemes,
and demonstrate that cooperation is actually not beneficialin
the low SNR regime. Motivated by these disadvantages, we
tackle the following question:can we dispense with secondary
users cooperation and still achieve an arbitrary diversitygain?
To answer this question, we propose a novel spectrum sensing
scheme that can indeed achieve an arbitrary diversity order
for a single SU and still uses a single antenna. The scheme
is based on the usage ofreconfigurable antennas; a class of
antennas capable of changing its geometry, hence changing
the current distribution over the volume of the antenna and
thus altering one of its propagation characteristics: operating
frequency, polarization or radiation pattern. Each geometrical
configuration thus leads to a different mode of operation lead-
ing to different realizations of the perceived wireless channel.
Switching between various antenna modes could be done
using microelectromechanical (MEMS) switches [15], nano-
electromechanical switches (NEMS), or solid state switches
[16].

In [15], the concept of an electrically reconfigurable antenna
was first introduced based on RF MEMS switches. Many
research efforts followed this concept and proposed actualde-
signs for antennas that can alter their geometric configuration
[17]–[21]. The usage of reconfigurable antennas in wireless
communications was studied in various contexts. For example,
based on an abstract conceptual model, diversity benefits of
reconfigurable antennas in MIMO systems were discussed in
[20]. Also, in [22], a new class of space-time codes, termed

http://arxiv.org/abs/1403.0930v1
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asstate-space-timecodes was introduced, where it was shown
that reconfigurable antennas can offer diversity benefits but
has no impact on the achieved degrees of freedom. Moreover,
reconfigurable antennas were employed in the context of inter-
ference alignment in [16], where desirable channel fluctuations
were created by switching the antenna modes over time.

B. Summary of Contributions

In this paper, we propose a single user CR system that
employs a reconfigurable antenna at the SU transceivers. By
switching the antennaradiation statesover time, we can
manipulate the wireless channel thus creating artificial channel
fluctuations that turn a slow fading channel into a fast fading
one. Capitalizing on this property, we show that we can
dispense with the spatial diversity achieved through coop-
eration without encountering any degradation in the sensing
performance. Besides, the proposed scheme has the following
advantages: 1) the full coding and diversity gains are captured
at any SNR, 2) the space limitation problem that inhibits
the usage of multiple antennas is solved by using a single
compact antenna, 3) unlike multiple antenna systems, only
one RF chain is needed, 4) the availability of CSI at the SU
can be used to even boost the achieved coding gain, and 5)
diversity is achieved with no cooperation overhead, which
usually involves setting up a dedicated reporting channel;
feeding back information from the FC to the SU terminals;
and maintaining synchronization between the SU devices.

Another approach for sensing using reconfigurable antennas
is to select the “best” state instead of randomly switching
among various states. When the CSI is available at the SU,
the receiver can select the state that offers the strongest
channel gain. Therefore, in addition to the previously stated
advantages, state selection offers an additional SNR gain,that
we term as theselection gain. Based on a comprehensive
diversity analysis, we obtain the achievable diversity orders
in the conventional and proposed schemes as a function of the
detection threshold based on Neyman-Pearson (NP) and Bayes
tests.

While there exists many antenna switching techniques
with different ranges of switching delays [18], some classes
of switching devices, such as those based on mechanical
switches, may exhibit significant switching delays that may
affect the performance of the proposed schemes. Thus, we
quantify the impact of an arbitrary switching delay on the
performance of the proposed schemes in both the NP and
Bayesian tests.

Moreover, we revisit a well known trade-off in CR systems,
which is the “Sensing-throughput trade-off”. In a frame-
structured CR system, each frame duration is divided into
sensing and transmission periods. An optimal sensing time
that compromises between the detection performance and the
achieved throughput was calculated in [23]–[25]. We show that
using reconfigurable antennas, and given a constraint on the
PU detection probability, the SU throughput is improved as a
longer period of the frame can be dedicated to transmission
rather than sensing, in addition to the reduction of the false
alarm probability, which means better channel utilization.

Finally, we show that reconfigurable antennas are not only
beneficial in the sensing phase, but can also offer signifi-
cant capacity gains in the transmission phase (when the SU
accesses the channel). To that end, we obtain closed-form
expressions for the average transmission capacity using state
selection, and taking into consideration the impact of switching
delay.

The rest of the paper is organized as follows: Section II
presents the signal model adopted in the spectrum sensing
problem and relevant derivations for the false alarm and
missed detection probabilities. In Section III, we discussthe
“to cooperate or not to cooperate” tradeoff, identifying the
drawbacks of the cooperative scheme. Spectrum sensing via
reconfigurable antennas is introduced in Section IV, and the
diversity orders obtained in sensing based on NP and Bayes
criterion are derived. In section V, the impact of reconfig-
urable antennas on the sensing-throughput tradeoff is studied,
showing the achievable throughput gains. In addition, the
gains achieved in SU transmission and the optimal switching
strategy are analyzed. Finally, we draw our conclusions in
Section VI.

II. SPECTRUM SENSING SIGNAL MODEL

A. System Model and Notations

In this section, we formulate the spectrum sensing problem
for the conventional and proposed schemes, and clarify the
notations ofdiversity orderandcoding gain.

The diversity orderd∗ for a performance metricP∗ with an
average SNR ofγ is defined as [6]

d∗ = − lim
γ→∞

logP∗

log γ
.

The performance metricP∗ usually represents either the
probability of error, the false alarm probability or the missed
detection probability. The metricP∗ corresponds to the missed
detection probabilityPmd in the NP optimization problem,
and corresponds to the error probabilityPe if the optimization
problem adopts the Bayesian criterion. As for the coding gain,
it is defined as the multiplication factor of the average SNR in
P∗ asγ tends to infinity. Thus, ifP∗ ≍ 1

(Aγ)d
asγ 7→ ∞, the

coding gain is given byA and the diversity order isd, where
≍ denotes asymptotic equality. The diversity order affects the
slope of theP∗ curve when plotted versus the average SNR
(in dB), while the coding gain shifts theP∗ curve along the
SNR curve. In spectrum sensing using energy detection, the
coding gain is indeed sensitive to the average energy involved
in detection. Hence, the average energy can be used to quantify
the shift of theP∗ curve. Without loss of generality, we are
interested in evaluating the asymptotic missed detection and
error probabilities at high SNR only in order to obtain the
diversity order and coding gain using the previous definitions.
It is important to note, however, that both gains characterize
the performance for all ranges of SNR.

Now, it is required to compare the detection performance
of non-cooperative sensing, cooperative sensing, and recon-
figurable antenna based schemes. Hereunder, we present the
system model for the three schemes under study.
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1) Non-cooperative scheme: A conventional non-
cooperative spectrum sensing scheme involves one SU
that observesM samples for spectrum sensing. According
to the sampling theorem, for a sensing period ofT and a
signal with bandwidthW , the number of samples isM = 2
TW [26]. It is assumed that the instantaneous SNR isγ and
the primary signalith sample isSi ∼ CN (0, 1) [7], where
CN (µ, σ2) denotes the complex Gaussian distribution with
meanµ and varianceσ2. The additive white noise isni ∼
CN (0, 1). Thus, theith sample received at the SU receiver is
a binary hypothesis given by [7]

ri =

{
ni ∼ CN (0, 1), Ho√
γ Si + ni ∼ CN (0, 1 + γ), H1

(1)

whereHo denotes the absence of the PU, whileH1 denotes the
presence of the PU. After applying such signal to an energy
detector, the resulting test statistic isY =

∑M
i=1 |ri|2, which

follows a central chi-squared distribution for bothHo andH1.
The false alarm and detection probabilities are given by [7]

PF (M,λ) = P (Y > λ|Ho) =
Γ(M, λ2 )

Γ(M)
,

and

PD(M,λ, γ) = P (Y ≤ λ|H1, γ) =
Γ
(

M, λ
2(1+γ)

)

Γ(M)
, (2)

where λ is the detection threshold,Γ(., .) is the upper in-
complete gamma function, andΓ(.) is the gamma function.
We assume Rayleigh fading with an average SNR ofγ and
that the instantaneous SNR is constant over theM observed
samples (slow fading). Different observations perceive differ-
ent SNR values. The SNR varies according to the exponential
probability density function (pdf)

fγ(γ) =
1

γ
e−

γ
γ , γ ≥ 0. (3)

Because the detection probability is a function of the
slow fading channel gain, we obtain the average detection
probability as

PD =

∫ ∞

0

Γ
(

M, λ
2(1+γ)

)

Γ (M)

1

γ
e−

γ
γ dγ. (4)

In order to evaluate the average detection probability, we can
rewrite the integrands in (4) in terms of the Meijer-G function
Gm,n

p,q

( a1,...,ap

b1,...,bq

∣
∣z
)

[27, Sec. 7.8] as

Γ

(

M,
λ

2(1 + γ)

)

= G2,0
1,2

(

1
M, 0

∣
∣
∣
∣

λ

2(1 + γ)

)

,

and

e−
γ
γ = G1,0

0,1

(

−
0

∣
∣
∣
∣

γ

γ

)

.

The Meijer-G representation allows us to write the integralin
(4) as

PD =

∫ ∞

0

G1,0
0,1

(

−
0

∣
∣
∣
∣

γ

γ

)

G2,0
1,2

(

1
M, 0

∣
∣
∣
∣

λ

2(1 + γ)

)

dγ. (5)

With the aid of [27, Eq. 7.811.1], the integral is approximated
at high SNR as

PD ≈ λe
1
γ

2γ Γ(M)
G3,0

1,3

(

0
M−1,−1, 0

∣
∣
∣
∣

λ

2γ

)

, (6)

which can be further reduced into the form of [27, Sec. 7.8]

PD =
2 e

1
γ

Γ(M)

(
λ

2γ

)M
2

KM

(√

2λ

γ

)

, (7)

whereKM (.) is theM th order modified bessel function of
the second kind.

2) Cooperative Scheme:A cooperative CR network con-
sists ofN SUs, each senses the PU signal and reports its
decision to an FC. The FC employs ann-out-of-N fusion
rule to take a final global decision. We letl be the test
statistic denoting the number of votes for the presence of a
PU. Hence, the conditional pdfs follow abinomial distribution
[5] whereP (l|Ho) =

(
N
l

)
P l
F (1− PF )

N−l, andP (l|H1) =
(
N
l

)
P

l

D (1 − PD)N−l, where PF is the local false alarm
probability, andPD is the local detection probability averaged
over the pdf of the SNR. Based on the fusion rule mentioned
above, the global false alarm and detection probabilitiesPFG

andPDG
are

PF,G =

N∑

l=n

(
N

l

)

P l
F (1− PF )

N−l
,

PD,G =

N∑

l=n

(
N

l

)

P
l

D

(
1− PD

)N−l
. (8)

3) Single user spectrum sensing using a reconfigurable
antenna: In the proposed scheme, we assume a single SU
that employs a reconfigurable antenna to sense the PU signal.
Establishing the exact mathematical models for the relation
between an antenna mode and the corresponding channel
realization can be a daunting task. We postulate that re-
configurable antennas have an arbitrary number of possible
configurations/modes (i.e., radiation patterns), and thatthe
corresponding induced wireless channels are independent from
one another (all possible radiation patterns are spatiallyuncor-
related). For a reconfigurable antenna withQ radiation modes,
we assume thatEi(Ω) andEj(Ω) are the 3D radiation patterns
corresponding to modesi andj respectively, andΩ is the solid
angle describing the azimuth and elevation planes. Note that
the solid angle ranges from 0 to4π steradian. The spatial
correlation coefficient between the two radiation patternsis
given by [21]

ρi,j =

∫

4π
Ei(Ω)E

∗
j (Ω)dΩ

√∫

4π |Ei(Ω)|2dΩ
∫

4π |Ej(Ω)|2dΩ
.

A reconfigurable antenna is designed such that all radiation
patterns are orthogonal, i.e.ρi,j ≈ 0, ∀i, j ∈ {1, 2, 3, . . . , Q}.
For a rich scattering environment, the equivalent channel
realizations encountered by different antenna states are i.i.d
(independent and identically distributed) and follow a Rayleigh
distribution. Various designs for antennas with pattern diversity
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already exist [17]–[20]. The application of reconfigurablean-
tennas with orthogonal patterns for MIMO systems was inves-
tigated in [22]. Moreover, in [16] and [28], blind interference
alignment was proposed based on reconfigurable antennas
with independent channels for each state. In [29], independent
channel realizations were also exploited while studying the
benefits of applying reconfigurable antennas in the MIMO
Z interference channel. The impact of independent channel
realizations perceived for different states result in a diversity
gain that is similar to the spatial diversity gain attained in
multiple antenna systems [30]. A conceptual model for the
reconfigurable antenna that resembles an antenna selection
scheme is adopted in this paper. The analyses we present
herein are abstract in the sense that they do not consider
a specific antenna design. Fig. 1 depicts the SU receiver
employing a reconfigurable antenna withQ available antenna
modes.

In a slow fading channel, reconfigurable antennas withQ
modes can offerQ different channel realizations. Thus, the
ith sample received at the SU receiver is a binary hypothesis
given by

ri =

{
ni ∼ CN (0, 1), Ho√
γj Si + ni ∼ CN (0, 1 + γj), H1

(9)

whereγj ∈ {γ1, γ2, · · · , γQ} is the channel realization ob-
served by theith sample. The set ofQ channel gains are
independent identically distributed (i.i.d.) Rayleigh random
variables. It is assumed that the antenna states are switched Q
times within the sensing period such that channel realization
j is observed bylj samples where

∑Q
j=1 lj = M . We

designate this scheme asstate switching spectrum sensing.
As an alternative, if the CSI is available at the receiver,
the SU could possibly select the strongest channel for the
entire sensing interval, and we call this schemestate selection
spectrum sensing. Generally, the test statistic resulting at the
output of the energy detector when the PU is active can be
written as

Y =

L∑

j=1

(1 + γj)xj ,

whereL is the number of antenna states involved in sensing
(L ≤ Q), γj is one ofQ independent channel realizations
{γ1, γ2, . . . , γQ} assigned to thelj samples, andxj is a chi-
square distributed random variable with2lj degrees of freedom
(the sum oflj normally distributed random variables). For state
selection,L = 1 andl1 =M as only the highest channel gain
is selected. For state switching,L ≤ Q and

∑L
j=1 lj = M .

Thus, the probability of missed detection is given by

Pmd(γ1, . . . , γQ) = P





L∑

j=1

(1 + γj)xj ≤ λ|H1, γ1, . . . , γQ



 ,

(10)
where the thresholdλ is adjusted such that the false alarm
probability PF = α in the NP test, or adjusted to minimize
the error probability in the Bayesian test. It is obvious that
the probability of missed detection is the cumulative distribu-
tion function (CDF) of the linear combination of chi-square
random variables. An extremely accurate approximation for

the CDF of the sum of weighted chi-square random variables
was proposed in [31]. Based on Eqs. (20)–(23) in [31], the
probability of missed detection will be given by the minimum
of two functionsH(w) andG(w) of an auxiliary parameter
w as follows

Pmd = min{H(w), G(w)},
where

w =
λ

M +
∑Q

j=1 ljγj
,

G(w) =

2M∑

j=1

w
1 + γj
λ

×
Υ
(

λ
2w(1+γj)

, λ
1+γj

)

Γ( λ
2w(1+γj)

)
,

and

H(w) =

Υ

(

M, λ
M
√

∏Q
i=1(1+γj)

lj

)

Γ(M)
.

Thus, the missed detection probability in terms of the chan-
nel realizations is given by (11) whereΥ(·, ·) is the lower
incomplete gamma function. Eq. (11) is general for any
antenna state switching pattern. For state selection, the same
result still applies withlk = M , wherek = maxj γj and
lk′ = 0, k′ 6= k, k′ ∈ {1, 2, · · · , Q}.

B. Equivalence of NP and Bayesian Optimization to Diversity
Order Maximization

The only design parameters in the spectrum sensing
problem are the detection thresholds. Usually, the thresholds
are selected such that the detection performance is optimized
in terms of either the NP or Bayesian criteria. Obtaining the
optimal detection threshold is essential for calculating the
diversity order achieved by the SU receiver. However, the
problem of obtaining the detection thresholds that maximize
the detection or minimize the error probabilities is not
always mathematically tractable, especially in the cooperative
scheme [7]. In this subsection, we formulate an equivalent
problem for obtaining these optimal thresholds and we
show that maximizing (minimizing) a performance metric
P∗ is equivalent to maximizing the diversity orderd∗ at
assymptotically high SNR. Thus, as an alternative approach,
one can obtain closed-form expressions for the diversity order
d∗ in terms of the detection thresholds and get the thresholds
that maximized∗ instead of maximizing (minimizing)P∗,
which is usually a mathematically tractable problem. This is
formulated in the following two lemmas.

Lemma 1: Based on the NP criterion, maximizing the
high SNR asymptotic probability of detection under a false
alarm probability constraint is equivalent to maximizing the
diversity order of the detection probability.

proof See Appendix A.
Lemma 2: Based on the Bayes detection criterion, minimiz-

ing the high SNR asymptotic probability of error is equivalent
to maximizing the diversity order of the error probability.
Proof See Appendix B.
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Pmd(γ1, . . . , γQ) = min







Υ

(

M, λ
M
√

∏Q
i=1(1+γi)li

)

Γ(M)
,

2M∑

i=1

w
1 + γi
λ

×
Υ
(

λ
2w(1+γi)

, λ
1+γi

)

Γ
(

λ
2w(1+γi)

)







. (11)

In the next section, we utilize these equivalent problems
to compare the performance of the cooperative and non-
cooperative schemes.

III. T O COOPERATE ORNOT TO COOPERATE

Although cooperation is widely adopted as a means of
improving the performance of spectrum sensing via diversity
gain, it can actually be shown that cooperative spectrum
sensing does not outperform the non-cooperative scheme for
the whole SNR range. Deciding whether to cooperate or not
to cooperate should then depend on the operating average
SNR. Specifically, for a fixed total energy constraint, the non-
cooperative scheme offers a better detection performance at
low SNR. This is because, at low SNR, the impact of SNR loss
in the cooperative scheme due to hard decisions taken locally
at each SU is higher than the gain offered by cooperation1. On
the other hand, a large diversity gain is observed at high SNR
making cooperation favorable. Therefore, cooperation would
not be beneficial at low SNR ranges where it is required to
improve the detection performance. In addition to that, the
knowledge of the number of cooperating users at each SU is
essential to achieve full diversity order. Thus, even at high
SNR, cooperative schemes may fail to capture full diversity
gain if global network information are not provided to local
SUs. In the following two subsections, we compare the two
schemes and evaluate their performance in terms of diversity
and coding gains, both for NP and Bayes tests.

A. Non-cooperative scheme analysis

Considering the NP test, the asymptotic expansion of
KM (x), which appears in thePd expression in (7), asx 7→ 0
is given by [14]

KM (x) ≍ x−M
(

2M−1Γ(M)− 2M−3Γ(M)x2

M − 1

+
2M−6Γ(M)x4

(M − 1)(M − 2)
+ . . .

)

.

Note that
√

2λ
γ 7→ 0 ande

1
γ 7→ 1 asγ 7→ ∞. The asymptotic

expansion of the detection probability is consequently given
by

PD ≍ 1− λ

2γ (M − 1)
+

λ2

8γ2 (M − 1)(M − 2)
+ . . . .

Thus, at large average SNR, the first two terms dominate and
PD = 1 − λ

2 γ (M−1) + O(γ−2). Hence, the average missed

detection probability isPmd = 1 − PD ≈ λ
2 γ (M−1) . As

1No SNR degradation would be encountered if SUs send soft decisions to
the FC. However, this is not practically feasible as the reporting channel is
usually limited [5].

defined in Section II, the diversity orderd and coding gain
A are, respectively, given by

dmd = − lim
γ→∞

log
(

λ
2 γ (M−1)

)

log γ
= 1,

and
A =

M − 1

λ
. (12)

Eq. (12) shows the diversity order and coding gain in terms
of the thresholdλ. It is clear that for the non-cooperative
NP test, any choice of the local threshold does not affect the
diversity order and the optimal threshold is selected such that
it satisfies the constraint onPF . The coding gain, on the other
hand, depends on the number of samples involved in energy
detection as well as the local thresholdλ. The more samples
involved in detection, the higher coding gain is achieved. On
the other hand, large thresholds corresponding to strict false
alarm constraints result in small coding gains. Note that for
anα-level NP test, the local threshold is decided by the value
of α when settingPF = α.

Now considering the Bayes optimization problem, the op-
timal threshold is given by the following lemma.Lemma 3:
The optimal threshold that minimizes the average probability
of error in non-cooperative spectrum sensing is given by

λopt = µ
1

M−1 exp

(

−W−1

(

−µ 1
M−1

2(M − 1)

))

,

at high SNR, whereµ = P (H1)
P (Ho)

× 2M−2Γ(M−1)
γ andW−1(.)

is theLambert Wfunction [33].
Proof See Appendix C.

In order to investigate the impact of the threshold on the
diversity order, we calculate the diversity order achievedwith
a non-optimal threshold in the following Lemma:Lemma 4:
For conventional spectrum sensing with a detection threshold
of λ = θλopt where θ ∈ R and λopt is the optimal Bayes
threshold given by Lemma 3, the achieved diversity order
for the Bayes optimization problem isde = min{θ, 1}. The
corresponding false alarm and missed detection probabilities
are given by Eq. (13).
Proof See Appendix D.

As stated in Lemma 4, for any threshold withθ > 1
(or equivalentlyλ > λopt), the maximum diversity order is
achieved. However, given the expression ofPmd in Eq. (13),

the coding gain isAmd = 1
θ if θ ≥ 1, andAF =

(
1
θ

) 1
θ if

θ ≤ 1. Thus, it is clear that thecoding gaindecreases with
the increase ofθ. Thus, the optimum Bayesian threshold corre-
sponds to theminimumλ that achieves the maximum diversity
order demax

= dmd. BecausedF is an increasing function of
θ, we can obtain the optimum threshold by equatingdF to
dmd instead of minimizingPe, which is not mathematically
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PF ≍ 1

Γ(M)

(

θ(M − 1) log

(

M − 1

Γ(M − 1)
1

M−1

γ
1

M−1

))M−1(

Γ(M − 1)
1

M−1

(M − 1)γ
1

M−1

)θ(M−1)

,

and

Pmd ≍ θ

γ
log

(
M − 1

Γ(M − 1)
1

M−1

γ
1

M−1

)

. (13)
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Fig. 1. Diversity orders (dF , dmd andde) versus the drift factorθ for the
conventional spectrum sensing scheme.

tractable. The behavior of the achieved diversity order versus
the factorθ, that we denote as thedrift factor, is depicted in
Fig. 2. It is shown that the optimal threshold correspondingto
θ = 1 represents the intersection ofdF anddmd. This implies
the following proposition.

Proposition 1. The optimal Bayesian threshold can be
obtained by solving the transcendental equation

dF (λ) = dmd(λ).

B. Cooperative scheme analysis: the good, the bad, and the
ugly

In cooperative sensing, local thresholds are employed by
individual SU receivers to take local hard decisions, whilea
global threshold (an integer number) is used by the fusion
center to take the final decision. In this subsection, we relate
the local and global thresholds,λ andn, to the coding gain
and diversity order. Next, we select the thresholds so that
the global false alarm probabilityPF,G = α and the diversity
order is maximized, which corresponds to the NP test. Then,
we select the thresholds that maximize the error probability
diversity order, which corresponds to the Bayesian test. We
characterize the performance of energy constrained CSS as
being multifaceted with three basic aspects: a “good” aspect,
which is achieving diversity order ofN at assymptotically
high SNR; a “bad” aspect, which is the poor coding gain
causing performance degradation at low SNR; and an “ugly”
aspect, which is the inability to achieve the full diversityorder

when the SUs do not know the number of cooperating SUs
N . In this case, cooperation does not reach the maximum
possible diversity gain in addition to having a poor coding
gain, questioning its usefulness. Hereunder, we present a
comprehensive study for the performance of the cooperative
scheme.

Based on (8), the global missed detection probability is
given by

Pmd,G(n, λ) =
n−1∑

l=0

(
N

l

)

P
N−l

md (λ) (1− Pmd(λ))
l. (14)

It is obvious thatPmd 7→ 0 asγ 7→ ∞. The last term in the
series in (14) dominates and the asymptotic value ofPmd,G

becomes

Pmd,G(n, λ) ≍
(

N

n− 1

) (
λ

2γ (M − 1)

)N−n+1

. (15)

Thus, by rearranging (15) in the form of(Aγ)−d, the diversity
order dmd and coding gainAmd in terms of the local and
global thresholds are given by

dmd,G = N − n+ 1,

Amd,G ∝
(

N

n− 1

) −1
N−n+1 M − 1

λ
.

Clearly, the global threshold that maximizes the diversityorder
is n = 1, which is known as the OR rule [5]. Hence, if only
one SU votes for the presence of a primary user, the fusion
center adopts its decision. The local thresholdλ is chosen such
thatPF,G = α.

Based on the above analysis, it can be concluded that
cooperative spectrum sensing withN SU receivers can offer a
diversity order ofN . The largerN is, the higher the diversity
order is, but the more information is lost due to hard decisions
taken locally at each SU. This is demonstrated by the fact that
the coding gainAmd,G ∝M at n = 1, which is as low as1N
of the total number of samples (NM ) involved in detection,
but the diversity gain will be maximized anddmd,G = N .
In the low SNR region, information loss due to poor coding
gain is more critical and we do not benefit from multiuser
diversity. Thus, for a fixed total energy constraint, it is better
not to cooperate when the SNR is low as assigning the total
energy to a single SU leads to a better detection performance.

To demonstrate the tradeoff between coding and diversity
gains, we compare a cooperative network withN SU terminals
andM samples per terminal with a non-cooperative network
with a single SU andNM samples. Note that the total sensed
energy is constant in both cases to ensure a fair comparison.
Let the local thresholds in the multiple and single-user cases
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beλN,M andλ1,NM , respectively. Based on the above results,
the coding gain would beM−1

λN,M
in the cooperative scheme and

NM−1
λ1,NM

in the non-cooperative scheme. Thus, the coding gain
of the non-cooperative scheme is boosted by a factor ofN .
This factor is reduced asλN,M andλ1,NM are not generally
equal.

Fig. 3 depicts the tradeoff under study. Simulations were
carried out for cooperative and non-cooperative schemes and
the missed detection probability is plotted versus the average
SNR. TheNM product is fixed for both schemes and is set
to 4, 25 and 100. This product represents the total energy
constraint involved in detection. For each value ofNM , the
cooperative scheme employs

√
NM SU terminals and

√
NM

samples per terminal2. On the other hand, the non-cooperative
scheme employs 1 SU usingNM samples. By applying the
NP test and settingα = 0.01, it is found that atNM = 100, the
non-cooperative scheme outperforms the cooperative scheme
by 3 dB at low SNR. Thus, it is better not to cooperate if the
operating SNR is less than−5 dB, which is the SNR value
corresponding to the intersection of thePmd curves for both
schemes. The SNR gain is reduced in theNM = 25 scenario
and nearly vanishes whenNM = 4. On the other hand, the
cooperative scheme offers large gains in the high SNR region.
For instance, atPmd = 0.03 andNM = 100, cooperation
outperforms non-cooperative sensing by an SNR gain of 7 dB
due to the multiuser diversity. The largerN is, the more gain
one gets at high SNR, but at the expense of the coding gain
for a fixed energy constraint.

For the Bayesian optimization problem, we obtain the global
false alarm probability by taking the dominant term of the
binomial expansion in (8)

PF,G(n, λ) ≍
(
N

n

) (

Γ(M, λ2 )

Γ(M)

)n

,

2Any combination of the number of SU terminals and the number of
samples that keeps theNM product constant can be used in the analysis.

Based on the series expansionΓ(M,λ2 )

Γ(M) =
∑M−1

i=0
λi

2iΓ(i+1)e
−λ
2

[6], we can approximate the false alarm probability as

PF,G(n, λ) ≈
(
N

n

) (
λM−1

2M−1Γ(M)

)n

e
−λ
2 n. (16)

We substituteλ in (14) and (16) with the locally optimal
threshold multiplied by the factorθ. Our objective is to obtain
the value of θ that maximizes the diversity order of the
global error probability. The global false alarm and detection
probabilities in terms ofθ are given in (17).

From (17), it is obvious thatdmd,G = N − n + 1, while
dF,G = nθ. Thus, the diversity order of the error probability
is

de,G = min{N − n+ 1, nθ}.
We investigate the achievable diversity order in two different
scenarios as follows:

• The number of cooperating usersN is unknown at
SU receivers:In this case, we aim at selecting the global
thresholdn and the local thresholdθλopt, such thatθ is
not a function ofN . The optimal thresholds are obtained
based on the following optimization problem

max
n,θ

min{nθ,N − n+ 1}

s.t. nθ = N − n+ 1.

Because the number of SUs is unknown at each SU,
we select a locally optimal threshold for each SU by
setting θ = 1. Combining this fact withProposition 1,
we obtain the optimal global threshold by solving the
equationn = N −n+1, which yields a global threshold
of n = ⌊N+1

2 ⌋ 3. Thus, the corresponding diversity order
is

de = min

{

⌊N + 1

2
⌋, ⌈N + 1

2
⌉
}

= ⌊N + 1

2
⌋.

Thus, the “ugly” face of CSS appears when global
information are not provided to local SUs. Note that for
N = 2, cooperation without global knowledge ofN yields
no diversity gain at all.

• The number of cooperating usersN is known at
SU receivers:It is obvious thatdmd,G is maximized by
settingn = 1. Applying Proposition 1, the optimal value
of θ is N . The corresponding diversity orderde,G = N ,
thus the full diversity order is achieved in this case.

It is worth mentioning that global knowledge ofN is also
needed in the NP test. However, the lack of knowledge ofN in
the NP problem has no effect on the diversity order. Instead,it
turns the problem into adiscrete hypothesis detection problem
[32], where only discrete values ofPF,G = α are realizable.
As mentioned earlier, tolerating a largerα comes at the
expense of the coding gain and not the diversity order.

To sum up, whether to cooperate or not to cooperate depends
on several factors. If the operating SNR is low, it is better
not to cooperate as the coding gain is severely degraded in
the cooperative systems impacting performance at low SNR.

3Throughout this paper, the operator⌊.⌋ is the flooring operator, while⌈.⌉
is the ceiling operator.
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PF,G ≍
(
N

n

)








(

2(M − 1)θ log

(

M−1

Γ(M−1)
1

M−1
γ

1
M−1

))M−1

2M−1Γ(M)








n

(

Γ(M − 1)
1

M−1

M − 1

)θn(M−1)
1

γθn
,

Pmd,G ≍
(

N

n− 1

)







θ log

(

M−1

Γ(M−1)
1

M−1
γ

1
M−1

)

γ







N−n+1

. (17)

Moreover, if the number of SUs is not known, we can not
achieve the full diversity order in the Bayesian test. For
small number of cooperating users (e.g.,N = 2), the system
will not offer significant diversity gain and cooperation may
not be worth it. Stemming from this analysis, we study the
performance of the proposed single reconfigurable antenna
schemes in the next section. Such schemes are capable of
overcoming all the drawbacks of cooperation and achieving
the full diversity and coding gains thus offering a superior
performance compared to the conventional schemes for the
entire SNR range.

IV. SPECTRUM SENSING V IA RECONFIGURABLE

ANTENNAS

As stated earlier, reconfigurable antennas can artificially
induce fluctuations in the slow fading channel. This would
create temporal diversity for a single SU network, which
can offer a gain similar to the spatial diversity gain in the
cooperative scheme. We investigate two basic schemes for
spectrum sensing using a reconfigurable antenna: astate
switching scheme (when the CSI is unknown) and astate
selectionscheme (when the CSI is available). Based on the
signal model presented in Section II, we derive the optimal
test statistic for spectrum sensing with an arbitrary selection
of antenna modes over time, where each modej is selected
for lj sensing samples.

Lemma 5: For spectrum sensing using reconfigurable an-
tennas with arbitrary antenna state selection over time, let
Zj =

∑lj−1+lj
i=lj−1+1 |ri|2, j ∈ {1, 2, · · · , Q}, lo = 0, L is the

number of antenna states invoked within the sensing period
(L ≤ Q), and η is an arbitrary detection threshold. The
Likelihood Ratio Test (LRT) reduces to

L∑

j=1

γj
1 + γj

Zj

H1

R
H0

η

proof See Appendix E.
Note that the LRT described in Lemma 5 requires the

knowledge of the channel realizations corresponding to dif-
ferent antenna states, and involves a test statistic that is
calculated viaweighted energy detectionrather than simple
energy detection. If the CSI is not available at the SU (i.e.,the
set of channel realizations{γ1, γ2, · · · , γQ} is unknown), the
test in Lemma 5 denotes ahypothesis detection problem with
unknown parameters[32]. Because the test statistic depends on

the unknown parameters, no Uniformly Most Powerful (UMP)
test exists, and we adopt a suboptimal test that involves simple
energy detection without assigning weights to energy samples.
In the state switching scheme, we blindly select an arbitrary
number of channels over the sensing period such thatL ≤ Q
and

∑L
j=1 lj =M . On the other hand, if the CSI is available at

the SU, we adopt the state selection scheme instead, where the
strongest channel realization is selected for the entire sensing
period (i.e.L = 1, lk =M, andk = maxj γj).

A. Optimal sensing based on NP Criterion

1) Spectrum Sensing via State Switching:The missed de-
tection probability for an arbitrary antenna mode switching
pattern is given by (11). Given thatΥ(M,x) ≍ xM

M as γ
→ ∞ [27], the asymptotic values ofH(w) and G(w) are

λM

Γ(M+1)
∏Q

j=1(1+γj)
lj

and
∑2M

j=1 w
1+γj

λ , respectively, which

implies thatmin{G(w), H(w)} = H(w) at high SNR. Thus,
one can calculate the diversity order based onPmd = H(w).
The asymptotic missed detection probability will then be given
by

Pmd(γ1, . . . , γQ) ≍
λM

Γ(M + 1)
∏Q

j=1(1 + γj)lj
. (18)

By averaging the missed detection probability in (18) over the
pdf of Q independent Rayleigh channel realizations we get

Pmd =
λM

Γ(M + 1)

∫ ∞

γ1=0

∫ ∞

γ2=0

. . .

∫ ∞

γQ=0

1
∏Q

j=1(1 + γj)lj
×

1

γQ
e

−
∑Q

j=1
γj

γ dγ1dγ2 . . . dγQ,

which can be reduced to

Pmd =
λM

Γ(M + 1)

Q
∏

j=1

∫ ∞

γj=0

1

(1 + γj)lj
1

γ
e

−γj
γ dγj . (19)

It can be easily shown that the integral in (19) is given by

Pmd =
λM

Γ(M + 1)

Q
∏

j=1

γ−lje
1
γ Γ

(

1− lj ,
1

γ

)

.

At large SNR,e
1
γ → 1 andΓ(1− lj ,

1
γ ) ≍

γlj−1

lj−1 yielding

Pmd ≍ λM

Γ(M + 1)
× 1

γQ
∏Q

j=1(lj − 1)
. (20)
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Optimizing the coding gain depends on the choice of the
number of samplesli associated to an antenna realizationγi.
It is obvious from (20) that minimizing the missed detection
probability is achieved by maximizing the quantity

∏Q
i=1(li−

1). We can obtain the optimum values of theli’s via a simple
Lagrange optimization problemas

max

Q
∏

i=1

(li − 1)

s.t.
Q
∑

i=1

li =M.

By constructing the auxiliary functionΘ(l1, l2, . . . , lQ,Λ) =
∏Q

i=1(li − 1) + Λ (
∑Q

i=1 li −M) (whereΛ is the lagrange
multiplier) and solving for▽(l1,l2,...,lQ)Θ(l1, l2, . . . , lQ,Λ) =
0 (where▽ is the gradient operator), we obtain the optimum
solution as

l1 = l2 = . . . = lQ = ⌊M
Q

⌋.

Thus, the optimum antenna switching pattern is to change the
antenna radiation mode every⌊M

Q ⌋ samples. Note that this
result is intuitive as all channel realizations are independent
and identically distributed, which means that the optimal
antenna mode switching pattern is obtained when employing
every mode for an equal time interval during the sensing
period.

From (20), the achieved diversity order is

dmd = − lim
γ→∞

logPmd

log γ
= Q.

Note that if the number of samples is less than the number of
antenna states, onlyM channel realizations can be employed
during the sensing period. Thus, the diversity order is generally
given by

dmd = min{M,Q}.

The thresholdλ is selected such thatPF = α, where
it has no impact on the diversity order. The average PU
signal energy input to the energy detection is given by
V ar

{
∑L

j=1

∑lj−1+lj
i=lj−1+1

√
γjSi

}

=
∑L

j=1

∑lj−1+lj
i=lj−1+1 γ =

Mγ. Thus, the coding gain is proportional to the total number
of samples involved in detection, and the full coding gain is
achieved.

2) Spectrum Sensing via State Selection:In the non-
cooperative scheme, knowledge of the CSI at the SU can
provide neither coding nor diversity gain to the detection
performance. In the proposed scheme, the CSI is utilized to
selectthe “best” antenna mode (the mode with largest channel
gain) rather thanswitch the antenna modes over time. This
resemblesselection combiningin multiple antenna systems.
Thus, an SNR gain is obtained that is termed as aselection
gain. The pdf of the maximum ofQ Rayleigh distributed
channel gains is given by [34]

fγmax
(γmax) =

Q

γ
e

−γmax
γ (1− e

−γmax
γ )Q−1.

In order to simplify the analysis, we focus on the dominant
fading density at assymptotically largeγ, which can be written
as [16]

fγmax
(γmax) ≈

Q

γQ
e

−γmax
γ γQ−1

max ,

and the probability of missed detection as a function of the
instantaneous channel gain is obtained from (11) by setting
lk = M , wherek = maxj γj , and γk is the corresponding
channel realization

Pmd =
Υ
(

M, λ
2(1+γk)

)

Γ(M)
.

The average missed detection probability is thus given by

Pmd =
Q

γQ

∫ ∞

γk=0

Υ
(

M, λ
2(1+γk)

)

Γ(M)
e

−γk
γ γQ−1

k dγk. (21)

For simplicity, assume that1 + γk ≈ γk. The integrands in
(21) can be represented in terms of the Meijer-G function as

Pmd =
Q

Γ(M)γQ

∫ ∞

0

γQ−1
k e−

γk
γ G1,1

1,2

(

1
M, 0

∣
∣
∣
∣

λ

2γk

)

dγk.

Using the property Gm,n
p,q

( a1,...,ap

b1,...,bq

∣
∣z
)

=

Gn,m
q,p

(
1−b1,...,1−bq
1−a1,...,1−ap

∣
∣
∣z−1

)

, the average missed detection
probability will be given by the following integral

Pmd =
Q

Γ(M)γQ

∫ ∞

0

γQ−1
k e−

γk
γ G1,1

2,1

(

1−M, 1
0

∣
∣
∣
∣

2γk
λ

)

dγk.

Using [27, Eq. (7.813)], the average missed detection proba-
bility is

Pmd =
Q

Γ(M)
G1,2

3,1

(

1−Q,1−M, 1
0

∣
∣
∣
∣

2γ

λ

)

,

which can be represented as

Pmd =
K1

γQ
1F2(Q;Q+ 1,−M +Q+ 1;

λ

2γ
)

+
K2

γM
1F2(M ;M + 1,−M +Q+ 1;

λ

2γ
), (22)

whereK1 and K2 are constants,pFq(a1, ..., ap; b1, ..., bq; z)
is the generalized hypergeometric function, and
pFq(a1, ..., ap; b1, ..., bq; z) → 1 as z → 0. Thus, it can
be easily concluded that the diversity order of the state
selection scheme will be given by

d = min{M,Q}.
Note that this is the same diversity order of the state switching
scheme. Thus, availability of the CSI at the SU in state
selection sensing offers no diversity gain compared to state
switching. Selecting the best channel state every sensing
period, on the other hand, offers an SNR gain (coding gain)
that we define as theselection gain. The ratio between the
average SNR in the state selection scheme relative to the state
switching scheme is given by

Selection gain=
E{γk}
E{γ} = HQ, (23)
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whereHQ is the Qth harmonic number defined asHQ =
1+ 1

2 +
1
3 + ...+ 1

Q [34]. For large number of antenna states,
the selection gain tends to

Selection gain≈ log(Q)− ψ(1),

where ψ(.) is the digamma functionand −ψ(1) is the
Euler-Mascheroniconstant. Thus, the coding gain obtained
from state selection grows logarithmically with the number
of antenna states.

B. Optimal sensing based on Bayes Criterion

1) Spectrum Sensing via State Switching:The achieved
diversity order in this case will be obtained according to the
following lemma:
Lemma 6: The achieved diversity order for the pro-
posed scheme using a threshold ofθλopt is de =
min {θmin{M,Q},min{M,Q}}, whereθ ∈ R.
Proof See Appendix F.

As stated in Lemma 6, spectrum sensing using a reconfig-
urable antenna withQ modes can achieve a diversity order of
Q. This is equivalent to the diversity order of a cooperative
scheme withQ SUs. Even if the SU is using a suboptimal
threshold ofθλopt, the achieved diversity order isθQ which
is Q times larger than the diversity order achieved by the
conventional scheme that employs a threshold ofθλopt.

2) Spectrum Sensing via State Selection:By observing
Eq. (17), the missed detection diversity order is given by
min{Q,M}. The same diversity analysis applied for the state
switching scheme in Lemma 6 can be carried out for the
state selection scheme. In fact, both schemes have the same
diversity order and the same optimal threshold at high SNR.
Similar to the NP problem, the state selection scheme offers
an extra coding gain as the average SNR is boosted by a factor
of HQ.

C. Impact of Switching Delay

In this subsection, we quantify the impact of switching
delay on the detection performance of state switching and state
selection schemes. LetD be the equivalent number of samples
that a particular switching device needs to change from one
antenna state to the other. We assume that throughout those
D samples, the old channel realization is perceived by the SU
receiver. A new channel realization appears afterD samples,
which means that the maximum achievable switching rate is
1

DTs
, whereTs is the system sampling period.4

1) Impact on state switching scheme:In the state switching
scheme withD delay samples, the achieved diversity order is

d = min{Q, M
D

}.

The SU tries to rapidly switch the antenna modes such that
maximum number of channel realizations is utilized in sensing.
The limited switching speed affects the achieved diversity

4Various switching devices experience different ranges of time delay. For
instance, a MEMS switch may have a switching time of10−20 µs [18]. Other
electronic switching devices, such as PIN diodes or field-effect transistors
(FETs), can offer a much faster switching speed [21].

order negatively. The number of sampleslj assigned to a
channel realizationj must be greater thanD. The maximum
number of channel realizations that can appear withinM
sensing samples is thusMD . If Q > M

D , we can not achieve
the maximum diversity order. In fact, if the sensing period
is limited compared to the switching delay, the diversity gain
offered by reconfigurable antennas becomes less significant.
If M = D, the system behaves like the conventional non-
cooperative scheme.

2) Impact on state selection scheme:If the SU requires
D samples to select the maximum channel realization, the
achieved SNR gain is perceived forM −D samples only. In
this case, the selection gain tends to

Selection gain=
D

M
+
M −D

M
HQ.

Moreover, the diversity order is also impacted as the effective
sensing period that is subject to the selected channel isM−D
samples only. Hence, the diversity order becomes

d = max{1,min{M −D,Q}}.
Again, atM = D, the system acts in an identical way to the
legacy single antenna non-cooperative scheme as all samples
experience an arbitrary channel without selection. Thus the
dominating diversity order is either 1, whenM = D, or
min{M − D,Q} otherwise. The switching delay degrades
the diversity order of the state switching scheme, and both
the diversity order and selection gain of the state switching
scheme. The design of the reconfigurable antenna should
take into account the possible values of the sensing period.
It is essential to employ high speed switching devices with
switching times that are significantly smaller than the sensing
period. If the switching speed is inevitably low, one has to
extend the sensing period such that diversity and coding gain
benefits of the reconfigurable antenna are attained. However,
this will be at the expense of the system throughput.

D. Performance Evaluation

In this subsection, we evaluate the performance of the
proposed schemes and compare them with the conventional
cooperative and non-cooperative schemes. It is important to
note that all the parameter settings used in the simulations
discussed in this section are selected arbitrarily for numerical
and simulation convenience. However, the analyses and expla-
nations presented in the paper are generic and suit any practical
values for the system parameters. For all curves, Monte Carlo
simulations are carried out with 1,000,000 runs. In Fig. 4, we
plot the error probability curves for the non-cooperative,the
cooperative (withN being known and unknown), the state
switching as well as the state selection (withQ = 15 antenna
states) schemes. An overall energy constraint is imposed by
fixing the total number of samples to 30. It is shown that the
cooperative scheme with 15 cooperating SUs outperforms the
non-cooperative scheme at high SNR as it achieves a diversity
order of 15. However, cooperation performs worse at SNR
values below−5 dB due to the poor coding gain. When the
number of SUs is unknown, a diversity order of⌊ 15+1

2 ⌋ = 8
is only achieved. Thus the offered diversity gain at high SNR
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is generally less than that offered whenN is known. State
switching and selection are shown to outperform cooperative
and non-cooperative schemes at any SNR. For state switching,
a diversity order ofmin{15, 30} = 15 is achieved, which is the
same diversity order of the cooperative scheme, leading both
curves to have the same slope. However, the state switching
scheme uses 30 samples for sensing, which maintains the
same coding gain of the non-cooperative scheme. It is shown
that state switching acts like a non-cooperative scheme at low
SNR, and provides a diversity gain at high SNR. As for the
state selection scheme, it attains the same diversity orderof
min{15, 30} = 15, and in addition, offers a coding gain of
H15 = 1 + 1

2 + . . . + 1
15 ≈ 5 dB. Thus, an SNR gain

of about 5 dB compared to state switching is obtained via
antenna state selection. Similar simulations are carried out for
the NP test with 100 samples, false alarm probability of 0.05,
and 10 antenna states. Fig. 5 shows that state switching and
selection act in a similar manner to that depicted by Fig. 4.
Again, state selection scheme outperforms all other schemes,
while state switching still offers a better performance than
cooperative and non-cooperative schemes. Although achieving
the selection gain requires channel estimation and appropriate
reconfigurable antenna design (with large number of inde-
pendent states), it is still less complex than the cooperation
scenario.

Fig. 6 demonstrates the impact of switching delay on
the sensing performance based on the NP test forQ = 10
states. For the state switching scheme, switching delay has
no impact on the coding gain. However, the diversity order
is reduced when the delay is introduced. For a total number
of sensing samplesM = 100, we study the effect of the
switching delay with valuesD = {30, 50, 95, 100} samples.
For those delay values, the delay-free diversity order of 10is
reduced to bedmd = min{10, 10030 } ≈ 3, min{10, 10050 } = 2,
min{10, 10095 } ≈ 1, andmin{10, 100100} = 1, respectively. This
is demonstrated by the degradation of the slope of the solid
curves in Fig. 6 as delay increases. When the delay samples
are equal to the sensing samples, state switching performs
like the non-cooperative scheme with legacy antenna. When
a very large delay of95 samples is encountered, the SU
does not achieve any diversity gain (it will be shown later
that state selection is less sensitive to large delay scenar-
ios). At low SNR, all curves coincide as switching delay
has no impact on the coding gain. Contrarily, the diversity
order of the state switching scheme is less sensitive to delay
and its coding gain degrades with increasing delay. For a
delay of 30 samples, the full diversity order is achieved as
max{1,min{100 − 30, 10}} = 10. However, the selection
gain drops fromH10 = 4.667 dB to 7

10H10 + 3
10 = 3.711

dB. Similarly, a delay of 50 samples degrades the coding gain
but preserves the diversity order. This is depicted in Fig. 6
by the three dashed curves corresponding to delays ofD =
0, 30, and 50 samples. The three curves have the same slope
(same diversity order) but different coding gains. When the
delay becomes as large as 95 samples, the diversity order
drops tomax{1,min{100− 95, 10}} = 5, which is reflected
in Fig. 6 by a significant change in the slope ofPmd. It is
worth mentioning that for 95 delay samples, state switching
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Fig. 4. Performance of various schemes based on NP test withα = 0.05

.

does not achieve any diversity gain, which is not the case in
state selection. Thus, state selection loses its diversitygain
advantages only for significantly large switching delays, but
at the expense of the CSI estimation complexity. Fig. 7 shows
the impact of delay on the error probability in the Bayesian
test, and it is easy to interpret the results in a similar manner.

V. SENSING-THROUGHPUT TRADE-OFF: THROUGHPUT

GAIN IN RECONFIGURABLE ANTENNA SCHEMES

In this section, we revisit the fundamental tradeoff between
sensing capability and achievable throughput of the secondary
networks. We will show that there exists an optimal sensing
time for which the highest throughput for the secondary
network is achieved with sufficient protection for the PU. Next,
we will show that by adopting state selection spectrum sensing,
this optimal sensing time is reduced, thus allowing for an even
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higher throughput given the same PU protection constraints.
Furthermore, we show that the SU transmitter and receiver
can utilize reconfigurable antennas to maximize the secondary
channel capacity by selecting the “best” antenna states at both
secondary parties. Thus, not only do reconfigurable antennas
improve the performance in the detection phase, but they
can also be utilized to enhance the channel capacity in the
transmission phase as well. Finally, we investigate the effect
of switching delay on the achievable capacity and quantify the
possible degradation caused by such delay.

The sensing-throughput tradeoff was studied thoroughly
in [23]–[25]. We are concerned here with the impact of
reconfigurable antenna spectrum sensing on throughput given a
constraint on the detection probability. In the next subsections,
we compare the reconfigurable antenna state selection scheme
with the conventional one. We omit CSS from our discussion

Fig. 7. Sensing and transmission stages in a CR system.

for fair comparison, as the throughput achieved by CSS is
divided among the cooperating users. Besides, we only con-
sider state selection and not state switching, as the constraints
on detection probability are usually given at low SNR [23],
which takes away any advantage of state switching. In addition
to that, it is obvious that state switching can not improve the
ergodic capacity as it has no CSI.

A. Problem Formulation

As depicted by fig. 8, we assume a frame structured
secondary network consisting of an SU transmitter and an SU
receiver. The frame is divided into a sensing period of length τ
and a transmission period ofT −τ . The SU transmitter senses
the PU signal for a period ofτ and if the PU is absent, the
SU transmitter sends data to the SU receiver in a period of
T − τ . For a sampling period ofTs, we haveτ = MTs and
T = KTs, whereM is the number of samples used in sensing
andK is the total number of samples in the frame. We assume
that the SU transmitter employs a reconfigurable antenna with
QT states, while the SU receiver has a reconfigurable antenna
with QR states. The SU transmitter is engaged in two phases:

• Sensing phase:where the SU transmitter senses the
PU signal after applying state selection and selects the
strongest channel out of theQT channel realizations
{γP1 , γP2 , . . . , γPQT

} between the SU transmitter and the
PU.

• Transmission phase:where the SU transmitter and re-
ceiver apply state selection jointly and select the strongest
channel out ofQTQR possible channel realizations
{γS1 , γS2 , . . . , γSQTQR

}.

Thus, the SU transmitter selects the best antenna state for
sensing and then switches to the best state for transmission.
We assume the availability of full CSI at the SU parties. If
switching delay is considered, thenD samples are wasted to
switch between the different modes.
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B. Normalized throughput maximization

The average throughput for the secondary network as a
function of the sensing period is given by [23]

R(τ) =
(

1− τ

T

){

CoP (Ho)(1−PF (τ))+C1P (H1)Pmd(τ)
}

.

(24)
If γp is the channel between SU receiver and the PU, andγs
is the secondary transmission channel, thenCo = log(1+ γs)
andC1 = log(1+ γs

1+γp
). BecauseP (H1) is usually less than

P (Ho) andC1 < Co, a reasonable approximation forR(τ) is
adopted in [23]–[24] as

R(τ) ≈ CoP (Ho)
(

1− τ

T

)

(1− PF (τ)). (25)

From (25), we note that two factors affect the average sec-
ondary throughput. First, as the sensing time increases, the
throughput decreases as less time is dedicated to transmission
within a frame. Second, a high value for the false alarm
probability degrades the throughput as it implies that we waste
opportunities to access the channel. The average normalized
throughput is defined as̃R(τ) = R(τ)

CoP (Ho)
, which can be

expressed as

R̃(τ) =
T − τ

T
(1 − PF (τ)).

The optimal sensing time is obtained by maximizing̃R(τ)
while keepingPD(τ) above a certain threshold

max R̃(τ)

s.t. PD(τ) ≥ pd. (26)

It is easy to prove that̃R(τ) has a unique maximum by proving
its unimodality. The derivative of̃R(τ) with respect toτ is
given by

∂R̃(τ)

∂τ
=

−1

T
(1− PF (τ))

︸ ︷︷ ︸

A1

+(1− τ

T
)

(

−dPF (τ)

dτ

)

︸ ︷︷ ︸

A2

. (27)

Notice that the termA1 is always negative asPF (τ) is always
less than 1. Also, asPF (τ) decreases with increasingτ , then
A1 is a monotonically decreasing function ofτ . As for the term
A2, it is always positive becausePF (τ) is a monotonically
decreasing function inτ , which means that− dPF (τ)

dτ is always
positive. Moreover, asτ < T , then (1 − τ

T ) is also positive
and A2 is positive for all τ . Finally, it can be shown that
− dPF (τ)

dτ is a monotonically decreasing function ofτ , thusA2

is also monotonically decreasing inτ . Now, the sum of the
two monotonic functionsA1 andA2 is positive if |A2| > |A1|
and negative otherwise. ThereforẽR(τ) is unimodal and has
an extremum point at|A2| = |A1|.

It is shown in [23] that the optimal solution to (26) is
achieved with equality constraint. Assume that for the conven-
tional spectrum sensing scheme, the optimal number of sensing
samples isMopt. For this number of samples, the detection
probability satisfies the equality constraintPD(τ) = pd. For
state selection spectrum sensing withQT antenna states, we
have shown that a coding gain of10 log(HQT

) dB is obtained.

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sensing samples (M )

N
or

m
al

iz
ed

th
ro

u
gh

p
u
t

R̃
(τ

)

 

 

Conventional sensing

State selection with Q = 2

State selection with Q = 2 and D = 2

State selection with Q = 2 and D = 4

Fig. 8. Optimal sensing time in conventional and state selection schemes
(SNR = 0 dB andPD = 0.9).

Thus, to satisfy the constraint ofPD(τ) = pd with state
selection at low SNR, we only needMHQT

samples for sensing.
If the optimal sensing time for the conventional scheme is
Mopt and the corresponding false alarm probability isPF,c,
and if the false alarm probability of the state selection scheme
with Mopt

HQT
sensing samples isPF,s, then the normalized

throughput gain is

Normalized througput gain=
1− Mopt

KHQT

1− Mopt

K

× 1− PF,s

1− PF,c
.

Note thatPF,s is always less thanPF,c for a constant detection
probability. The reason for this is that, for a fixed threshold λ,

we haveΓ(Mopt,
λ
2 )

Γ(Mopt)
>

Γ(
Mopt
HQT

,λ2 )

Γ

(

Mopt
HQT

) as the false alarm probability

is a monotoically decreasing function of the number of sensing
samples. In addition to that, the state selection scheme offers a
diversity gain, which means that even when the sensing sam-
ples are onlyMopt

HQT
, the state selection scheme still outperforms

the conventional scheme withMopt samples at any SNR.
Thus, for a fixed detection probability, the optimal threshold
in the state selection scheme is greater than that used in the
conventional scheme. Therefore, the false alarm probability is
reduced by state selection even if the detection probability
is kept constant. This means that by using reconfigurable
antennas, a multifaceted throughput gain is achieved. For a
fixed detection probability, the optimal sensing time is reduced
allowing for longer transmission period, and the false alarm
probability is reduced, which in turn, means a better utilization
of the channel when the PU is absent.

Fig. 9 depicts the normalized throughput gain obtained
by deploying state selection withQ = 2. Assuming that the
detection probability is set to 0.9 at an average SNR of 0 dB,
the normalized throughput curves for conventional and state
selection schemes are plotted versus the number of samples
M . It is shown that the optimal sensing time for the conven-
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tional scheme isM= 6, which is reduced to 4 in the state
selection scheme as the required number of samples to attain
the same detection probability becomes6H2

= 4. Besides,
the false alarm improvement in the state selection scheme
contributes to the total throughput gain. It can be deduced from
the peak values that the maximum normalized throughput is
boosted from 0.2 to 0.325 when state selection is applied. This
gain degrades when switching delay is considered, which is
depicted in Fig. 9 forD = 2 and 4. ForD = 2, the maximum
normalized throughput drops from 0.325 to 0.3, while a delay
of D = 4 results in a maximum normalized throughput of 0.25
only.

C. Transmission Channel Capacity

In the previous subsection, we demonstrated the normalized
throughput gain achieved by using a reconfigurable antenna
in the sensing phase. It is worth mentioning that the SU
transmitter can select different antenna states for sensing
and transmission to achieve diversity in PU signal detection
and SU-to-SU signal transmission. The maximum achievable
average throughput is approximated as

R = sup
1≤i≤QT ,1≤j≤QR

(

1− M

K

)

PFP (Ho)E
{
log(1+ γSi,j)

}
,

where γSi,j is the SU transmitter and receiver channel that
corresponds to transmitter and receiver antenna statesi
and j, where 1 ≤ i ≤ QT and 1 ≤ j ≤ QR. We drop
the term (1 − M

K )PFP (Ho) as it depends on the selected
antenna state in the sensing phase. We assume that all
possibleQTQR channel realizations are independent and
identically distributed (which matches with the conceptual
model in Section II), and that the average SNR of the
SU link is γS . The average (ergodic) transmission
channel capacityE

{
log(1 + γSi,j)

}
depends on the pdf

of the selected antenna state. By selecting the maximum
channel out ofQTQR channel realizations, the pdf ofγ =
max1≤i≤QT ,1≤j≤QR

{γS1,1, γS1,2, . . . , γS1,QR
, γS2,1, . . . , γ

S
QT ,QR

}
is given by [34]

fγ(γ) =
QTQR

γS
e

−γ
γS (1− e

−γ
γS )QT QR−1,

which can be rewritten using the binomial theorem as

fγ(γ) = QTQR

QTQR−1
∑

i=0

(
QTQR

i

)
(−1)i

γS
e
− γ(i+1)

γS . (28)

Thus, the ergodic capacityCs of the state selection transmis-
sion is given by averaging shannon capacity over the pdf in
(28)

Cs=QTQR

QTQR−1
∑

i=0

(
QTQR

i

)
(−1)i

i+ 1

∫ ∞

γ=0

log(1 + γ)
e
− γ(i+1)

γS

γS/(i+ 1)
dγ.

(29)

The ergodic capacity of the conventional single antenna

scheme is given byC = e
1

γS Ei

(

1
γS

)

[35], whereEi(x) =
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−
∫∞

−x
e−t

t dt is the exponential integral function. Thus, the
ergodic capacity of the state selection scheme is given by

Cs = QTQR

QTQR−1
∑

i=0

(
QTQR

i

)
(−1)i

i+ 1
e

i+1
γS Ei

(
i+ 1

γS

)

.

(30)
Assuming that the SU transmitter applies equal power allo-

cation for simplicity, Fig. 10 shows the ergodic capacity gain
achieved by state selection for various number of combinations
of antenna states. The capacity gain becomes more significant
at high SNR. For instance, at an SNR of 10 dB, the capacity
of state selection with 4 antenna states is 1.75 times the
conventional scheme capacity. This gain can be transformed
into an SNR gain of 7.5 dB. In other words, the transmission
rate of the conventional scheme at an SNR of 10 dB can be
achieved by state selection at an SNR of only 2.5 dB.

For a switching delay ofD, the SU transmits on two parallel
channels: the channel utilized for sensing is still effective
for the first D samples of the transmission period, and the
best transmission channel becomes effective for the remaining
K −M − D samples. The effective average capacity in this
case is given by (30) on top of the next page. Note that
when the SU transmits on the previously selected sensing
channel for the firstD samples, it attains the same capacity
of the conventional scheme. Fig. 11 demonstrates the impact
of switching delay on the average capacity of state selection
with 4 antenna states. When the proportion of switching delay
to the total transmission time is 0.2, the capacity gain at
SNR = 10 dB reduces from 1.75 to 1.625. Moreover, if
the switching delay reaches half of the transmission time,
the capacity gain reduces to 1.375. We infer from Fig. 11
that as long as the proportion of the switching delay to the
total transmission time is less than 0.2, the SNR loss is less
than 1 dB. The effect of switching delay on the achieved
capacity depends on the transmission period and the switching
technology. An electronic switching device should be adopted
if the transmission period is comparable to the switching delay
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of MEMS switches.

VI. CONCLUSIONS

In this paper, we discussed a tradeoff between the diver-
sity and coding gains achieved in various spectrum sensing
schemes. By obtaining the diversity and coding gains in
terms of the detection thresholds, we proved that cooperative
schemes are not always beneficial as hard decisions taken at
local SUs cause loss of coding gain, which can be significant
at low SNR. Based on this analysis, we proposed a novel spec-
trum sensing scheme that utilizes a reconfigurable antenna at
the SU to exploit the diversity of its radiation states, achieving
full diversity and coding gains without SU cooperation. The
proposed scheme can outperform cooperative sensing, which
involves significant overhead, at all SNR ranges. Two schemes
based on reconfigurable antennas were presented: state switch-
ing and state selection. Based on a conceptual model for the
reconfigurable antenna, we obtained the fundamental limitson
the achievable diversity order, throughput, and transmission
capacity for the proposed schemes. Furthermore, the impact
of the state switching delay on the detection performance
and the achievable capacity was quantified. It was shown that
even with significant switching delay, detection and throughput
gains are still attainable.

APPENDIX A
PROOF OFLEMMA 1

The NP optimization problem is formulated as

max
λ

P d(λ) ≡ min
λ

Pmd(λ)

s.t.PF ≤ α,

wherePmd(λ) is the missed detection probability as a func-
tion of the detection threshold. It follows from the def-
inition of the diversity order in Section II thatdmd =

− limγ→∞
log(Pmd(λ))

log γ . Note that there is a one-to-one map-
ping betweenf(x) and log(f(x)), and that thelog(·) func-
tion preserves monotonicity. Thus, maximizingPmd(λ) is
equivalent to maximizinglog(Pmd(λ)). Dividing the objective
function by the constantlog γ yields the equivalent problem

max
λ

− log(Pmd(λ))

log γ

s.t.PF ≤ α. (A.31)

It is clear that asγ → ∞, the optimization problem tends to
maximizing the diversity order. This concludes the proof of
the lemma.

APPENDIX B
PROOF OFLEMMA 2

The Bayesian optimization problem is equivalent to mini-
mizing the average probability of error, viz.,

min
λ

P e(λ) = P (H1)Pmd + P (Ho)PF .

Recall that the receiver operating characteristics (ROC) (the
plot of PF versusPD) is a strictly concave and monotonically
increasing function [32], which implies the following

dPF (λ)

dPD(λ)
> 0, and

dPF (λ)/dλ

dPD(λ)/dλ
> 0. (B.32)

Because dPF (λ)/dλ

dPD(λ)/dλ
is always positive, we deduce that

dPF (λ)/dλ

dPmd(λ)/dλ
is always negative. Thus, the derivatives

dPF (λ)/dλ and dPmd(λ)/dλ have opposite signs, i.e., op-
posite monotonic behaviors. Therefore, we conclude that the
average error probabilityPe(λ) = P (H1)Pmd+P (Ho)PF is
a unimodal function and the optimal threshold can be obtained
by solving the equation

dPe(λ)

dλ
= 0. (B.33)

Considering the derivative oflog(Pe) instead ofPe yields

d log(Pe(λ))

dλ
=

1

Pe(λ)

dPe(λ)

dλ
= 0,

which is equivalent to (B.33), thus the Bayesian optimization
problem at high SNR reduces to trying to find the threshold
λ∗ such that

λ∗ = max
λ

de, (B.34)

which concludes the proof of the lemma.

APPENDIX C
PROOF OFLEMMA 3

The average probability of error at high SNR is given by

Pe(λ) ≍ P (Ho)
Γ(M, λ2 )

Γ(M)
+ P (H1)

λ

2γ(M − 1)
. (C.35)

Through the second derivative test, it can be easily shown that
Pe(λ) is concave forλ < 2M and convex elsewhere. Thus,
Pe(λ) has one maximum atλmax and one minimum atλmin.
The optimum threshold isλmin and is greater thanλmax. The
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Cs,D =
D

K −M
e

1
γS Ei

(
1

γS

)

+
K −M −D

K −M
QTQR

QT QR−1
∑

i=0

(
QTQR

i

)
(−1)i

i+ 1
e

i+1
γS Ei

(
i+ 1

γS

)

. (30)

maximum and minimum ofPe are obtained by equatingdPe

dλ
to zero

P (Ho)
−e−λ

2 λM−1

2M−1Γ(M)
+ P (H1)

1

2γ(M − 1)
= 0. (C.36)

The solutions of the transcendental Eq. in (C.36) are given by
the principal and lower branches of the Lambert W function
as [33]

λ1 = µ
1

M−1 exp

(

−W−1

(

−µ 1
M−1

2(M − 1)

))

,

λ2 = µ
1

M−1 exp

(

−Wo

(

−µ 1
M−1

2(M − 1)

))

,

where µ = P (H1)
P (Ho)

2M−2Γ(M−1)
γ . Given that −W−1(x) is

always greater than−Wo(x) for x < 0, the optimal threshold
is simply λopt = λ1, which concludes the proof.

APPENDIX D
PROOF OFLEMMA 4

The series expansion of the Lambert W function is given
by [33]

W−1(x) = L1 − L2 +

∞∑

ℓ=0

∞∑

m=1

(−1)ℓ
[
ℓ+m
ℓ+ 1

]

m!
L−ℓ−m
1 Lm

2 ,

whereL1 = log(−x) and L2 = log(− log(−x)). As x →
0−, the first two terms dominate andW−1(x) ≈ log(−x) −
log(− log(−x)). Thus, from Lemma 3, the optimal threshold
can be written as

λopt = µ
1

M−1 exp(−L1 + L2),

which can be expanded as

λopt ≈ µ
1

M−1 exp

(

− log

(

µ
1

M−1

2(M − 1)

)

+

log

(

− log

(

µ
1

M−1

2(M − 1)

)))

= 2(M − 1) log

(

2(M − 1)

µ
1

M−1

)

. (D.37)

Thus, asγ → ∞, and assuming thatP (Ho) = P (H1), the
optimal threshold can be approximated as

λopt ≈ 2(M − 1) log

(
M − 1

Γ(M − 1)
1

M−1

γ
1

M−1

)

.

The false alarm probability in (2) can be expressed in the
series form asPF =

∑M−1
i=0

λi

2iΓ(i+1)e
−λ
2 [6]. At high SNR,

the last term in the series representation dominates andPF ≈

λM−1

2M−1Γ(M)
e

−λ
2 . By settingλ = θλopt, the asymptotic false

alarm probability is given by

PF ≍ 1

Γ(M)

(

θ(M − 1) log

(

M − 1

Γ(M − 1)
1

M−1

γ
1

M−1

))M−1

×
(

Γ(M − 1)
1

M−1

(M − 1)γ
1

M−1

)θ(M−1)

and

Pmd ≍ θ

γ
log

(

M − 1

Γ(M − 1)
1

M−1

γ
1

M−1

)

. (D.38)

Recalling the definitions in Section II, it is straightforward to
see thatdF = θ and dmd = 1. Thus, the achieved diversity
order is given by

de = min{θ, 1}.

APPENDIX E
PROOF OFLEMMA 5

The likelihood function is given by

Λ(r1, r2, . . . , rM ) =
f(r1, r2, . . . , rM |H1)

f(r1, r2, . . . , rM |Ho)
.

Based on the signal model presented in Section II, the joint
pdf of the sensed samples under hypothesesH1 andHo are

f(r1, r2, . . . , rM |H1) =
M∏

i=1

f(ri|H1)

=

M∏

i=1

1
√
2π(1 + γi,j)

e
−

r2i
2(1+γi,j ) , (E.39)

and

f(r1, r2, . . . , rM |Ho) =
M∏

i=1

1√
2π
e−

r2i
2 . (E.40)

By combining (E.39) and (E.40), the Log Likelihood Ratio
(LLR) test reduces to

M∑

i=1

γi,j
1 + γi,j

|ri|2
H1

R
H0

η. (E.41)

Because the factor γi,j

1+γi,j
is constant over everylj samples

andj varies from 1 toQ, we can rewrite the LLR test as

Q
∑

j=1

γj
1 + γj

Zi

H1

R
H0

η, (E.42)

whereZj =
∑lj−1+lj

i=lj−1+1 |ri|2 and lo = 0. This concludes the
proof of the lemma.
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APPENDIX F
PROOF OFLEMMA 6

As stated in Proposition 1, the optimum threshold can be
obtained by solving the equationdF (λ) = dmd(λ) for λ. Un-
like the NP test, we do not know howλopt affects the diversity
order as the functional form ofλopt in terms ofγ is unknown.
Thus, applying the definition of diversity order in Section II to
Eq. (22), we havedmd = −M log(λ)

log(γ) +min{Q,M}, where the
factor min{Q,M} results from the fact that ifQ > M , we
can switch the antenna modesM times only. The diversity
order at large SNR is given by− log(PF )

log(γ) . Hence, the error
probability diversity order is

de = min

{− log(PF )

log(γ)
, −M log(λ)

log(γ)
+ min{Q,M}

}

.

(F.43)
From Proposition 1, we need to findλopt that satisfies
dmd(λ) = dF (λ), which can be reduced to λM−1

2M−1Γ(M)e
−λ

2 =

λMγmin{M,Q}. Thus, similar to the solution of the transcen-
dental equation in Appendix D, the optimum threshold is given
by the Lambert W function as

λopt = 2Wo

(
1

2ζ

)

,

whereζ = γ−min{M,Q}2M−1Γ(M). By replacing the Lam-
bert W function with its asymptotic series expansion and
considering the dominant terms as shown in Appendix E, the
optimum threshold at large SNR is

λopt ≈ 2 log




γmin{M,Q}

2MΓ(M) log
(

γmin{M,Q}

2MΓ(M)

)



 . (F.44)

By substitutingλ with θλopt in the asymptotic expression
of PF , it is easy to show thatdF = θmin{Q,M}. Be-
sides, it is obvious from (F.44) thatlimγ→∞

log(λopt)
log(γ) =

0. Combining this result with (F.43), we havede =
min{θmin{M,Q},min{M,Q}}, which concludes the proof.
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Abstract
Wikipedia is a huge global repository of human knowledge that can be leveraged to investi-

gate interwinements between cultures. With this aim, we apply methods of Markov chains

and Google matrix for the analysis of the hyperlink networks of 24 Wikipedia language edi-

tions, and rank all their articles by PageRank, 2DRank and CheiRank algorithms. Using au-

tomatic extraction of people names, we obtain the top 100 historical figures, for each edition

and for each algorithm. We investigate their spatial, temporal, and gender distributions in

dependence of their cultural origins. Our study demonstrates not only the existence of skew-

ness with local figures, mainly recognized only in their own cultures, but also the existence

of global historical figures appearing in a large number of editions. By determining the birth

time and place of these persons, we perform an analysis of the evolution of such figures

through 35 centuries of human history for each language, thus recovering interactions and

entanglement of cultures over time. We also obtain the distributions of historical figures over

world countries, highlighting geographical aspects of cross-cultural links. Considering his-

torical figures who appear in multiple editions as interactions between cultures, we construct

a network of cultures and identify the most influential cultures according to this network.

Introduction
The influence of digital media on collective opinions, social relationships, and information dy-
namics is growing significantly with the advances of information technology. On the other
hand, understanding how collective opinions are reflected in digital media has crucial impor-
tance. Among such a medium, Wikipedia, the open, free, and online encyclopedia, has crucial
importance since it is not only the largest global knowledge repository but also the biggest col-
laborative knowledge platform on the Web. Thanks to its huge size, broad coverage and ease of
use, Wikipedia is currently one of the most widely used knowledge references. However, since
its beginning, there have been constant concerns about the reliability of Wikipedia because of
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its openness. Although professional scholars may not be affected by a possible skewness or bias
of Wikipedia, students and the public can be affected significantly [1, 2]. Extensive studies have
examined the reliability of contents [1–3], topic coverage [4], vandalism [5], and conflict [6–8]
in Wikipedia.

Wikipedia is available in different language editions; 287 language editions are currently ac-
tive. This indicates that the same topic can be described in hundreds of articles written by dif-
ferent language user groups. Since language is one of the primary elements of culture [9],
collective cultural biases may be reflected on the contents and organization of each Wikipedia
edition. Although Wikipedia adopts a “neutral point of view” policy for the description of con-
tents, aiming to provide unbiased information to the public [10], it is natural that each lan-
guage edition presents reality from a different angle. To investigate differences and
relationships among different language editions, we develop mathematical and statistical meth-
ods which treat the huge amount of information in Wikipedia, excluding cultural preferences
of the investigators.

Cultural bias or differences across Wikipedia editions have been investigated in previous re-
search [11–17]. A special emphasis was devoted to persons described in Wikipedia articles [12]
and their ranking [18, 19]. Indeed, human knowledge, as well as Wikipedia itself, was created
by people who are the main actors of its development. Thus it is rather natural to analyze a
ranking of people according to the Wikipedia hyper-link network of citations between articles
(see network data description below). A cross-cultural study of biographical articles was pre-
sented in [20], by building a network of interlinked biographies. Another approach was pro-
posed recently in [21]: the difference in importance of historical figures across Wikipedia
language editions is assessed on the basis of the global ranking of Wikipedia articles about per-
sons. This study, motivated by the question “Is an important person in a given culture also im-
portant in other cultures?”, showed that there are strong entanglements and local biases of
historical figures in Wikipedia. Indeed, the results of the study show that each Wikipedia edi-
tion favors persons belonging to the same culture (language), but also that there are cross-
Wikipedia top ranked persons, who can be signs of entanglement between cultures. These
cross-language historical figures can be used to generate inter-culture networks demonstrating
interactions between cultures [21]. Such an approach provides us novel insights on cross-cul-
tural differences across Wikipedia editions. However, in [21] only 9 Wikipedia editions, mainly
languages spoken in European, have been considered. Thus a broader set of language editions
is needed to offer a more complete view on a global scale.

We note that the analysis of persons’ importance via Wikipedia becomes more and more
popular. This is well visible from the appearance of new recent studies for the English Wikipe-
dia [22] and for multiple languages [23]. The analysis of coverage of researchers and academics
via Wikipedia is reported in [24].

Here we investigate interactions and skewness of cultures with a broader perspective, using
global ranking of articles about persons in 24 Wikipedia language editions. According to Wiki-
pedia [25] these 24 languages cover 59 percent of world population. Moreover, according to
Wikipedia [26], our selection of 24 language editions covers the 68 percent of the total number
of 30.9 millions of Wikipedia articles in all 287 languages. These 24 editions also cover lan-
guages which played an important role in human history including Western, Asian and
Arabic cultures.

On the basis of this data set we analyze spatial, temporal, and gender skewness in Wikipedia
by analyzing birth place, birth date, and gender of the top ranked historical figures in Wikipe-
dia. We identified overall Western, modern, and male skewness of important historical figures
across Wikipedia editions, a tendency towards local preference (i.e. each Wikipedia edition fa-
vors historical figures born in countries speaking that edition’s language), and the existence of
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global historical figures who are highly ranked in most of Wikipedia editions. We also con-
structed networks of cultures based on cross-cultural historical figures to represent interactions
between cultures according to Wikipedia.

To obtain a unified ranking of historical figures for all 24 Wikipedia editions, we introduce
an average ranking which gives us the top 100 persons of human history. To assess the align-
ment of our ranking with previous work by historians, we compare it with the Hart’s list of the
top 100 people who, according to him, most influenced human history [27]. We note that Hart
“ranked these 100 persons in order of importance: that is, according to the total amount of in-
fluence that each of them had on human history and on the everyday lives of other human
beings”.

Methods
In this research, we consider each Wikipedia edition as a network of articles. Each article corre-
sponds to a node of the network and hyperlinks between articles correspond to links of the net-
work. For a given network, we can define an adjacency matrix Aij. If there is a link (one or
more) from node (article) j to node (article) i then Aij = 1, otherwise, Aij = 0. The out-degree
kout(j) is the number of links from node j to other nodes and the in-degree kin(j) is the number
of links to node j from other nodes. The links between articles are considered only inside a
given Wikipedia edition, there are no links counted between editions. Thus each language edi-
tion is analyzed independently from others by the Google matrix methods described below.
The transcriptions of names from English to the other 23 selected languages are harvested
fromWikiData (http://dumps.wikimedia.org/wikidatawiki) and not directly from the text
of articles.

To rank the articles of a Wikipedia edition, we use two ranking algorithms based on the arti-
cles network structure. Detailed descriptions of these algorithms and their use for Wikipedia
editions are given in [18, 19, 28, 29]. The methods used here are described in [21]; we keep the
same notations.

Google matrix
First we construct the matrix Sij of Markov transitions by normalizing the sum of the elements
in each column of A to unity (Sij = Aij/∑i Aij, ∑i Sij = 1) and replacing columns with zero elements
by elements 1/N withN being the matrix size. Then the Google matrix is given by the relation
Gij = αSij + (1 − α)/N, where α is the damping factor [30]. As in [21] we use the conventional
value α = 0.85. It is known that the variation of α in a range 0.5� α< 0.95 does not significantly
affect the probability distribution of ranks discussed below (see e.g. [18, 19, 30]).

PageRank algorithm
PageRank is a widely used algorithm to rank nodes in a directed network. It was originally in-
troduced for Google web search engine to rank web pages of the World Wide Web based on
the idea of academic citations [31]. Currently PageRank is used to rank nodes of network sys-
tems from scientific papers [32] to social network services [33], world trade [34] and biological
systems [35]. Here we briefly outline the iteration method of PageRank computation. The
PageRank vector P(i, t) of a node i at iteration t in a network with N nodes is given by

Pði; tÞ ¼
X

j

GijPðj; t � 1Þ ¼ ð1� aÞ=N þ a
X

j

AijPðj; t � 1Þ=koutðjÞ: ð1Þ
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The stationary state P(i) of P(i, t) is the PageRank of node i. More detailed information
about the PageRank algorithm is described in [30]. Ordering all nodes by their decreasing
probability P(i), we obtain the PageRank ranking index K(i). In qualitative terms, the PageRank
probability of a node is proportional to the number of incoming links weighted according to
their own probability. A random network surfer spends on a given node a time given on aver-
age by the PageRank probability.

CheiRank algorithm
In a directed network, outgoing links can be as important as ingoing links. In this sense, as a
complementary to PageRank, the CheiRank algorithm is defined and used in [18, 28, 36]. The
CheiRank vector P�(i, t) of a node at iteration time t is given by

P�ðiÞ ¼ ð1� aÞ=N þ a
X

j

AjiP
�ðjÞ=kinðjÞ ð2Þ

Same as the case of PageRank, we consider the stationary state P�(i) of P�(i, t) as the CheiR-
ank probability of node i with α = 0.85. High CheiRank nodes in the network have large out-
degree. Ordering all nodes by their decreasing probability P�(i), we obtain the CheiRank rank-
ing index K�(i). The PageRank probability of an article is proportional to the number of in-
coming links, while the CheiRank probability of an article is proportional to the number of
outgoing links. Thus a top PageRank article is important since other articles refer to it, while a
top CheiRank article is highly connected because it refers to other articles.

2DRank algorithm
PageRank and CheiRank algorithms focus only on in-degree and out-degree of nodes, respec-
tively. The 2DRank algorithm considers both types of information simultaneously to rank
nodes with a balanced point of view in a directed network. Briefly speaking, nodes with both
high PageRank and CheiRank get high 2DRank ranking. Consider a node i which is Ki-th
ranked by PageRank and K�i ranked by CheiRank. Then we can assign a secondary ranking
K 0

i ¼ maxfKi;K
�
ig to the node. If K 0

i < K 0
j , then node j has lower 2DRank and vice versa. A de-

tailed illustration and description of this algorithm is given in [18].
We note that the studies reported in [21] show that the overlap between top CheiRank per-

sons of different editions is rather small and due to that the statistical accuracy of this data is
not sufficient for determining interactions between different cultures for the CheiRank list.
Moreover, CheiRank, based on outgoing links only, selects mainly persons from such activity
fields like sports and arts where the historical trace is not so important. Due to these reasons
we restrict our study to PageRank and 2DRank. It can be also interesting to use other algo-
rithms of ranking, e.g. LeaderRank [37], but here we restrict ourselves to the methods which
we already tested, leaving investigation of other raking methods for further studies.

Data preparation
We consider 24 different language editions of Wikipedia: English (EN), Dutch (NL), German
(DE), French (FR), Spanish (ES), Italian (IT), Portuguese (PT), Greek (EL), Danish (DA),
Swedish (SV), Polish (PL), Hungarian (HU), Russian (RU), Hebrew (HE), Turkish (TR), Ara-
bic (AR), Persian (FA), Hindi (HI), Malaysian (MS), Thai (TH), Vietnamese (VI), Chinese
(ZH), Korean (KO), and Japanese (JA). The Wikipedia data were collected in middle February
2013. The overview summary of each Wikipedia is represented in Table 1.

We understand that our selection of Wikipedia editions does not represent a complete view
of all the 287 languages of Wikipedia editions. However, this selection covers most of the
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largest language editions and allows us to perform quantitative and statistical analysis of im-
portant historical figures. Among the 20 largest editions (counted by their size, taken at the
middle of 2014) we have not considered the following editions: Waray-Waray, Cebuano,
Ukrainian, Catalan, Bokmal-Riksmal, and Finish.

First we ranked all the articles in a given Wikipedia edition by PageRank and 2DRank algo-
rithms, and selected biographical articles about historical figures. To identify biographical arti-
cles, we considered all articles belonging to “Category:living people”, or to “Category:Deaths by
year” or “Category:Birth by year” or their subcategories in the English Wikipedia. In this way,
we obtained a list of about 1.1 million biographical articles. We identified birth place, birth
date, and gender of each selected historical figure based on DBpedia [38] or a manual inspec-
tion of the corresponding Wikipedia biographical article, when for the considered historical
figure no DBpedia data were available. We then started from the list of persons with their bio-
graphical article’s title on the English Wikipedia, and found the corresponding titles in other
language editions using the inter-language links provided by WikiData. Using the correspond-
ing articles, identified by the inter-languages links in different language editions, we extracted
the top 100 persons from the rankings of all Wikipedia articles of each edition. At the end, for
each Wikipedia edition and for each ranking algorithm, we have information about the top 100
historical figures with their corresponding name in the English Wikipedia, their birth place
and date, and their gender. All 48 lists of the top 100 historical figures in PageRank and
2DRank for the 24 Wikipedia editions and for the two ranking algorithms are represented in
[39] and Supporting Information (SI). The original network data for each edition are available
at [39]. The automatic extraction of persons from PageRank and 2DRank listings of articles of
each edition is performed by using the above whole list of person names in all 24 editions. This
method implies a significantly higher recall compared to the manual selection of persons from
the ranking list of articles for each edition used in [21].

We attribute each of the 100 historical figures to a birth place at the country level (actual
country borders), to a birth date in year, to a gender, and to a cultural group. Historical figures
are assigned to the countries currently at the locations where they were born. The cultural
group of historical figures is assigned by the most spoken language of their birth place at the
current country level. For example, if someone was born in “Constantinople” in the ancient
Roman era, since the place is now Istanbul, Turkey, we assign her/his birth place as “Turkey”
and since Turkish is the most spoken language in Turkey, we assign this person to the Turkish

Table 1. Wikipedia hyperlink networks from the 24 considered language editions. Here Na is the number of articles. Wikipedia data were collected in
middle February 2013.

Edition Language Na Edition Language Na

EN English 4212493 RU Russian 966284

NL Dutch 1144615 HE Hebrew 144959

DE German 1532978 TR Turkish 206311

FR French 1352825 AR Arabic 203328

ES Spanish 974025 FA Persian 295696

IT Italian 1017953 HI Hindi 96869

PT Portuguese 758227 MS Malaysian 180886

EL Greek 82563 TH Thai 78953

DA Danish 175228 VI Vietnamese 594089

SV Swedish 780872 ZH Chinese 663485

PL Polish 949153 KO Korean 231959

HU Hungarian 235212 JA Japanese 852087

doi:10.1371/journal.pone.0114825.t001
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cultural group. If the birth country does not belong to any of the 24 cultures (languages) which
we consider, we assign WR (world) as the culture of this person. We would like to point out
that although a culture can not be defined only by language, we think that language is a suitable
first-approximation of culture. All lists of top 100 historical figures with their birth place, birth
date, gender, and cultural group for each Wikipedia edition and for each ranking algorithm are
represented in [39]. A part of this information is also reported in SI.

To apply PageRank and 2DRank methods, we consider each edition as the network of arti-
cles of the given edition connected by hyper-links among the articles (see the details of ranking
algorithms in Section Methods). The full list of considered Wikipedia language editions is
given in Table 1. Table 2 represents the top 10 historical figures by PageRank and 2DRank in
the English Wikipedia. Roughly speaking, top PageRank articles imply highly cited articles in
Wikipedia and top 2DRank articles imply articles which are both highly cited and highly citing
in Wikipedia. In total, we identified 2400 top historical figures for each ranking algorithm.
However, since some historical figures such as Jesus, Aristotle, or Napoleon appear in multiple
Wikipedia editions, we have 1045 unique top PageRank historical figures and 1616 unique top
2Drank historical figures.

We should note that the extraction of persons and their information from aWikipedia edi-
tion is not an easy task even for the English edition, and much more complicated for certain
other language editions. Therefore, the above automatic method based on 1.1 million English
names and their corresponding names seems to us to be the most adequate approach. Of
course, it will miss people who do not have a biographical article on the English Wikipedia.
Cross-checking investigation is done for Korean and Russian Wikipedia, which are native lan-
guages for two authors, by manually selecting top 100 persons from top lists of all articles or-
dered by PageRank and 2DRank in both Wikipedia editions. We find that our automatic
search misses on average only 2 persons from 100 top persons for these two editions (the
missed names are given in SI). The errors appear due to transcription changes of names or
missing cases in our name-database based on English Wikipedia. For Western languages the
number of errors is presumably reduced since transcription remains close to English. Based on
the manual inspection for the Korean and the Russian Wikipedia, we expect that the errors of
our automatic recovery of the top people from the whole articles ordered by PageRank and
2DRank are on a level of two percent.

We also note that our study is in compliance with Wikipedia’s Terms and Conditions.

Table 2. List of top persons by PageRank and 2DRank for the English Wikipedia. All names are
represented by article titles in the English Wikipedia.

Rank PageRank persons 2DRank persons

1st Napoleon Frank Sinatra

2nd Barack Obama Michael Jackson

3rd Carl Linnaeus Pope Pius XII

4th Elizabeth II Elton John

5th George W. Bush Elizabeth II

6th Jesus Pope John Paul II

7th Aristotle Beyoncé Knowles

8th William Shakespeare Jorge Luis Borges

9th Adolf Hitler Mariah Carey

10th Franklin D. Roosevelt Vladimir Putin

doi:10.1371/journal.pone.0114825.t002
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Results
Above we described the methods used for the extraction of the top 100 persons in the ranking
list of each edition. Below we present the obtained results describing the spatial, temporal and
gender distributions of top ranked historical figures. We also determine the global and local
persons and obtain the network of cultures based on the ranking of persons from a given lan-
guage by other language editions of Wikipedia.

Spatial distribution
The birth places of historical figures are attributed to the country containing their geographical
location of birth according to the present geographical territories of all world countries. The
list of countries appeared for the top 100 persons in all editions is given in Table 3. We also

Table 3. List of country code (CC), countries as birth places of historical figures, and language code (LC) for each country. LC is determined by
the most spoken language in the given country. Country codes are based on country codes of Internet top-level domains and language codes are based
on language edition codes of Wikipedia; WR represents all languages other than the considered 24 languages.

CC Country LC CC Country LC CC Country LC

AE United Arab Emirates AR AF Afghanistan FA AL Albania WR

AR Argentina ES AT Austria DE AU Australia EN

AZ Azerbaijan TR BE Belgium NL BG Bulgaria WR

BR Brazil PT BS Bahamas EN BY Belarus RU

CA Canada EN CH Switzerland DE CL Chile ES

CN China ZH CO Colombia ES CU Cuba ES

CY Cyprus EL CZ Czech Rep. WR DE Germany DE

DK Denmark DA DZ Algeria AR EG Egypt AR

ES Spain ES FI Finland WR FR France FR

GE Georgia WR GR Greece EL HK Hong Kong ZH

HR Croatia WR HU Hungary HU ID Indonesia WR

IE Ireland EN IL Israel HE IN India HI

IQ Iraq AR IR Iran FA IS Iceland WR

IT Italy IT JP Japan JA KE Kenya EN

KG Kyrgyzstan WR KH Cambodia WR KO S. Korea KO

KP N. Korea KO KW Kuwait AR KZ Kazakhstan WR

LB Lebanon AR LT Lithuania WR LV Latvia WR

LY Libya AR MK Macedonia WR MM Myanmar WR

MN Mongolia WR MX Mexico ES MY Malaysia MS

NL Netherlands NL NO Norway WR NP Nepal WR

NZ New Zealand EN OM Oman AR PA Panama ES

PE Peru ES PK Pakistan HI PL Poland PL

PS State of Palestine AR PT Portugal PT RO Romania WR

RS Serbia WR RU Russia RU SA Saudi Arabia AR

SD Sudan AR SE Sweden SV SG Singapore ZH

SI Slovenia WR SK Slovakia WR SR Suriname NL

SY Syria AR TH Thailand TH TJ Tajikistan WR

TN Tunisia AR TR Turkey TR TW Taiwan ZH

TZ Tanzania WR UA Ukraine WR UK United Kingdom EN

US United States EN UZ Uzbekistan WR VE Venezuela ES

VN Vietnam VI XX Unknown WR YE Yemen AR

ZA South Africa WR

doi:10.1371/journal.pone.0114825.t003
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attribute each country to one of the 24 languages of the considered editions. This attribution is
done according to the language spoken by the largest part of population in the given country.
Thus e.g. Belgium is attributed to Dutch (NL) since the majority of the population speaks
Dutch. If the main language of a country is not among our 24 languages, then this country is at-
tributed to an additional section WR corresponding to the remaining world (e.g. Ukraine, Nor-
way are attributed to WR). If the birth place of a person is not known, then it is also attributed
to WR. The choice of attribution of a person to a given country in its current geographic terri-
tory, and as a result to a certain language, may have some fluctuations due to historical varia-
tions of country borders (e.g. Immanuel Kant was born in the current territory of Russia and
hence is attributed to Russian language). However, the number of such cases is small, being on
a level of 3.5 percent (see Section “Network of cultures” below). We think that the way in
which a link between person, language and country is fixed by the birth place avoids much larg-
er ambiguity of attribution of a person according to the native language which is not so easy to
fix in an automatic manner.

The obtained spatial distribution of historical figures of Wikipedia over countries is shown
in Fig. 1. This averaged distribution gives the average number of top 100 persons born in a spe-
cific country as birth place, with averaging done over our 24 Wikipedia editions. Thus an aver-
age over the 24 editions gives for Germany (DE) approximately 9.7 persons in the top 100 of
PageRank, being at the first position, followed by USA with approximately 9.5 persons. For

Fig 1. Birth place distribution of top historical figures averaged over 24Wikipedia edition for (A) PageRank historical figures (71 countries) and (B)
2DRank historical figures (91 countries). Two letter country codes are represented in Table 3.

doi:10.1371/journal.pone.0114825.g001
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2DRank we have USA at the first position with an average of 9.8 persons and Germany at the
second with an average of 8.0 persons.

Western (Europe and USA) skewed patterns are observed in both top PageRank historical
figures (Fig. 1. (A)) and top 2DRank historical figures (Fig. 1. (B)). This Western skewed pat-
tern is remarkable since 11 Wikipedia editions of the 24 considered editions are not European
language editions. Germany, USA, Italy, UK and France are the top five birth places of top
PageRank historical figures among 71 countries. On the other hand, USA, Germany, UK, Italy
and Japan are top five birth places of the top 2DRank historical figures among 91 countries.

In Fig. 2 we show the world map of countries, where color indicates the number of persons
from a given country among the 24 × 100 top persons for PageRank and 2DRank. Additional
figures showing these distributions for different centuries are available at [39].

We also observed local skewness in the spatial distribution of the top historical figures for
the PageRank (2DRank) ranking algorithm as shown in Fig. 3A (in Fig. 3B). For example, 47
percent of the top PageRank historical figures in the English Wikipedia were born in USA (25
percent) and UK (22 percent) and 56 percent of the top historical figures in the Hindi Wikipe-
dia were born in India. A similar strong locality pattern of the top historical figures was ob-
served in our previous research [21]. However it should be noted that in the previous study we
considered the native language of the top historical figure as a criterion of locality, while in the
current study we considered ‘birth place’ as criterion of locality.

Regional skewness, the preferences of Wikipedia editions for historical figures who were
born in geographically or culturally related countries, is also observed. For example, 18 (5) of
the top 100 PageRank historical figures in the Korean (Japanese) Wikipedia were born in
China. Also 9 of the top 100 PageRank historical figures in the Persian Wikipedia were born in
Saudi Arabia. The distribution of top persons from each Wikipedia edition over world coun-
tries is shown in Fig. 3A and Fig. 3B. The countries on a horizontal axis are grouped by clusters
of corresponding language so that the links inside a given culture (or language) become
well visible.

To observe patterns in a better way at low numbers of historical figures, we normalized each
column of Fig. 3A and Fig. 3B corresponding to a given country. In this way we obtain a re-
scaled distribution with better visibility for each birth country level as shown in Fig. 3C and
Fig. 3D, respectively. We can observe a clear birth pattern of top PageRank historical figures
born in Lebanon, Libya, Oman, and Tunisia in the case of the Arabic Wikipedia, and historical
figures born in N. Korea appearing not only in the Korean but also in the Japanese Wikipedia.

In the case of the top 2DRank historical figures shown in Fig. 3B and Fig. 3D, we observe
overall patterns of locality and regions being similar to the case of PageRank, but the locality
is stronger.

In short, we observed that most of the top historical figures inWikipedia were born in West-
ern countries, but also that each edition shows its own preference to the historical figures born
in countries which are closely related to the corresponding language edition.

Temporal distribution
The analysis of the temporal distribution of top historical figures is done based on their birth
dates. As shown in Fig. 4A for PageRank, most of historical figures were born after the 17th
century on average, which shows similar pattern with world population growth [40]. However,
there are some distinctive peaks around BC 5th century and BC 1st century for the case of
PageRank because of Greek scholars (Socrates, Plato, andHerodotus), Roman politicians (Julius
Caesar, Augustus) and Christianity leaders (Jesus, Paul the Apostle, andMary (mother of
Jesus)). We also observe that the Arabic and the Persian Wikipedia have more historical figures
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than Western language Wikipedia editions from AD 6th century to AD 12th century. For the
case of 2DRank in Fig. 4B, there is only one small peak around BC 1C, which is also smaller
than the peak in the case of PageRank, and all the distribution is dominated by a strong growth
on the 20th century.

The distributions of the top PageRank historical figures over the 24 Wikipedia editions for
each century are shown in Fig. 4C. The same distribution, but normalized to unity over all

Fig 2. Sum of appearances of historical figures from a given country in the 24 lists of top 100 persons for PageRank (top panel) and 2DRank
(bottom panel).Color changes from zero (white) to maximum (black). Maximal values are 233 appearances for Germany (top) and 236 for USA (bottom).
Values are proportional to the averages per country shown in Fig. 1.

doi:10.1371/journal.pone.0114825.g002
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Fig 3. Birth place distributions over countries of top historical figures from eachWikipedia edition; two letter country codes are represented in
Table 3. Panels: (A) distributions of PageRank historical figures over 71 countries for eachWikipedia edition; (B) distributions of 2DRank historical figures
over 91 countries for eachWikipedia edition; (C) column normalized birth place distributions of PageRank historical figures of panel (A); (D) column
normalized birth place distributions of 2DRank historical figures of panel (B).

doi:10.1371/journal.pone.0114825.g003
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editions for each century, is shown in Fig. 4E. The Persian (FA) and the Arabic (AR) Wikipedia
have more historical figures than other language editions (in particular European language edi-
tions) from the 6th to the 12th century due to Islamic leaders and scholars. On the other hand,
the Greek Wikipedia has more historical figures in BC 5th century because of Greek philoso-
phers. Also most of western-southern European language editions, including English, Dutch,
German, French, Spanish, Italian, Portuguese, and Greek, have more top historical figures be-
cause they have Augustine the Hippo and Justinian I in common. Similar distributions obtained
from 2DRank are shown in Fig. 4D and Fig. 4F respectively.

The data of Figs. 4E, F clearly show well pronounced patterns, corresponding to strong in-
teractions between cultures: from BC 5th century to AD 15th century for JA, KO, ZH, VI; from

Fig 4. Birth date distributions of top historical figures. (A) Birth date distribution of PageRank historical figures averaged over 24Wikipedia editions (B)
Birth date distribution of 2DRank historical figures averaged over 24Wikipedia editions (C) Birth date distributions of PageRank historical figures for each
Wikipedia edition. (D) Birth date distributions of 2DRank historical figures for eachWikipedia edition. (E) Column normalized birth date distributions of
PageRank historical figures for eachWikipedia edition. (F) Column normalized birth date distributions of 2DRank historical figures for eachWikipedia edition.

doi:10.1371/journal.pone.0114825.g004
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AD 6th century to AD 12th century for FA, AR; and a common birth pattern in EN, EL, PT,
IT, ES, DE, NL (Western European languages) from BC 5th century to AD 6th century. In sup-
porting Figure S1 we show distributions of historical figures over languages according to their
birth place. In this case the above patterns become even more pronounced.

At a first glance from Figs. 4E, F we observe for persons born in AD 20th century a signifi-
cantly more homogeneous distribution over cultures compared to early centuries. However, as
noted in [21], each Wikipedia edition favors historical figures speaking the corresponding lan-
guage. We investigate how this preference to same-language historical figures changes in time.
For this analysis, we define two variablesML, C and NL, C for a given language edition L and a
given century C. HereML, C is the number of historical figures born in all countries being at-
tributed to a given language L, and NL, C is the total number of historical figures for a given cen-
tury C and a given language edition L. For example, among the 21 top PageRank historical
figures from the English Wikipedia, who were born in AD 20th century, two historical figures
(Pope John Paul II and Pope Benedict XVI) were not born in English speaking countries. Thus
in this case NEN, 20 = 21 andMEN, 20 = 19. Fig. 5 represents the ratio rL, C =ML, C/NL, C for each
edition and each century. In ancient times (i.e. before AD 5th century), most historical figures
for each Wikipedia edition are not born in the same language region except for the Greek, Ital-
ian, Hebrew, and Chinese Wikipedia. However, after AD 5th century, the ratio of same lan-
guage historical figures is rising. Thus, in AD 20th century, most Wikipedia editions have
significant numbers of historical figures born in countries speaking the corresponding lan-
guage. For PageRank persons and AD 20th century, we find that the English edition has the
largest fraction of its own language, followed by Arabic and Persian editions while other edi-
tions have significantly large connections with other cultures. For the English edition this is re-
lated to a significant number of USA presidents appearing in the top 100 list (see [18, 19]). For
2DRank persons the largest fractions were found for Greek, Arabic, Chinese and Japanese cul-
tures. These data show that even in age of globalization there is a significant dominance of
local historical figures for certain cultures.

Gender distribution
From the gender distributions of historical figures, we observe a strong male-skewed pattern
across many Wikipedia editions regardless of the ranking algorithm. On average, 5.2(10.1) fe-
male historical figures are observed among the 100 top PageRank (2DRank) persons for each
Wikipedia edition. Fig. 6 shows the number of top female historical figures for eachWikipedia
edition. Thai, Hindi, Swedish, and Hebrew have more female historical figures than the average
over our 24 editions in the case of PageRank. On the other hand, the Greek and the Korean ver-
sions have a lower number of females than the average. In the case of 2DRank, English, Hindi,
Thai, and HungarianWikipedia have more females than the average while German, Chinese,
Korean, and Persian Wikipedia have less females than the average. In short, the top historical
figures in Wikipedia are quite male-skewed. This is not surprising since females had little
chance to be historical figures for most of human history. We compare the gender skewness to
other cases such as the number of female editors in Wikipedia (9 percent) in 2011 [41] and the
share of women in parliaments, which was 18.7 percent in 2012 by UN Statistics and indicators
on women and men [42], the male skewness for the PageRank list is stronger in the contents of
Wikipedia [43]. However, the ratio of females among the top historical figures is growing by
time as shown in Fig. 6 C. It is notable that the peak in Fig. 6C at BC 1st is due to “Mary (mother
of Jesus)”. In the 20th century 2DRank gives a larger percentage of women compared to PageR-
ank. This is due to the fact that 2DRank has a larger fraction of singers and artists comparing to
PageRank (see [18, 19]) and that the fraction of women in these fields of activity is larger.

Interactions of Cultures and Top People of Wikipedia

PLOS ONE | DOI:10.1371/journal.pone.0114825 March 4, 2015 13 / 27



Fig 5. The locality property of cultures represented by the ratio rL, C =ML, C/NL, C for each edition L and each centuryC. HereML, C is the number of
historical figures born in countries attributed to a given language edition L at century C andNL, C is the total number of historical figures in a given edition at a
given century, regardless of language of their birth countries. Black color (-0.2 in the color bars) shows that there is no historical figure at all for a given edition
and century; blue (0 in the color bars) shows there there are some historical figures but no same language historical figures. Here (A) panel shows PageRank
historical figures, and (B) panel shows 2DRank historical figures.

doi:10.1371/journal.pone.0114825.g005
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Global historical figures
Above we analyzed how top historical figures in Wikipedia are distributed in terms of space,
time, and gender. Now we identify how these top historical figures are distributed in each
Wikipedia edition and which are global historical figures. According to previous research [21],
there are some global historical figures who are recognized as important historical figures
across Wikipedia editions. We identify global historical figures based on the ranking score for a

Fig 6. Number of females of top historical figures from eachWikipedia edition (A) Top PageRank historical figures (B) Top 2DRank historical
figures. (C) The average female ratio of historical figures in given centuries across 24Wikipedia editions.

doi:10.1371/journal.pone.0114825.g006

Interactions of Cultures and Top People of Wikipedia

PLOS ONE | DOI:10.1371/journal.pone.0114825 March 4, 2015 15 / 27



given person determined by her number of appearances and ranking index over our 24
Wikipedia editions.

Following [21], the ranking scoreYP, A of a historical figure P is given by

YP;A ¼
X

E

ð101� RP;E;AÞ ð3Þ

Here RP, E, A is the ranking of a historical figure P in Wikipedia edition E by ranking algo-
rithm A. According to this definition, a historical figure who appears more often in the lists of
top historical figures for the given 24 Wikipedia editions or has higher ranking in the lists gets
a higher ranking score. Table 4 represents the top 10 global historical figures for PageRank and
2DRank. Carl Linnaeus is the 1st global historical figure by PageRank followed by Jesus, Aris-
totle. Adolf Hitler is the 1st global historical figure by 2DRank followed byMichael Jackson,
Madonna (entertainer). On the other hand, the lists of the top 10 local historical figures or-
dered by our ranking score for each language are represented in supporting Tables S1–S25
and [39].

The reason for a somewhat unexpected PageRank leader Carl Linnaeus is related to the fact
that he laid the foundations for the modern biological naming scheme so that plenty of articles
about animals, insects and plants point to the Wikipedia article about him, which strongly in-
creases the PageRank probability. This happens for all 24 languages where Carl Linnaeus al-
ways appears on high positions since articles about animals and plants are an important
fraction of Wikipedia. Even if in a given language the top persons are often politicians (e.g. Na-
poleon, Barak Obama at K = 1, 2 in EN), these politicians have mainly local importance and
are not highly ranked in other languages (e.g. in ZH Carl Linnaeus is at K = 1, Napoleon at K =
3 and Barak Obama is at K = 24). As a result when the global contribution is counted over all
24 languages Carl Linnaeus appears on the top PageRank position.

Our analysis suggests that there might be three groups of historical figures. Fig. 7 shows
these three groups of top PageRank historical figures in Wikipedia: (i) global historical figures
who appear in most of Wikipedia editions (NA � 18) and are highly ranked (hKi � 50) for
each Wikipedia such as Carl Linnaeus, Plato, Jesus, and Napoleon (Right-Top of the Fig. 7A);
(ii) local-highly ranked historical figures who appear in a fewWikipedia editions (NA< 18)
but are highly ranked (hKi � 50) in the Wikipedia editions in which they appear, such as
Tycho Brahe, Sejong the Great, and Sun Yat-sen (Left-Top of the Fig. 7A); (iii) locally-low

Table 4. List of global historical figures by PageRank and 2DRank for all 24 Wikipedia editions. All names are represented by the corresponding
article titles in the English Wikipedia. Here, ΘA is the ranking score of algorithm A (3); NA is the number of appearances of a given person in the top 100
rank for all editions.

Rank PageRank global figures ΘPR NA 2DRank global figures Θ2D NA

1st Carl Linnaeus 2284 24 Adolf Hitler 1557 20

2nd Jesus 2282 24 Michael Jackson 1315 17

3rd Aristotle 2237 24 Madonna (entertainer) 991 14

4th Napoleon 2208 24 Jesus 943 14

5th Adolf Hitler 2112 24 Ludwig van Beethoven 872 14

6th Julius Caesar 1952 23 Wolfgang Amadeus Mozart 853 11

7th Plato 1949 24 Pope Benedict XVI 840 12

8th William Shakespeare 1861 24 Alexander the Great 789 11

9th Albert Eistein 1847 24 Charles Darwin 773 12

10th Elizabeth II 1789 24 Barack Obama 754 16

doi:10.1371/journal.pone.0114825.t004

Interactions of Cultures and Top People of Wikipedia

PLOS ONE | DOI:10.1371/journal.pone.0114825 March 4, 2015 16 / 27



Fig 7. The distribution of 1045 top PageRank persons (A) and 1616 top 2DRank persons (B) as a
function of number of appearances NA of a given person and the rank hKi of this person averaged
overWikipedia editions where this person appeared.

doi:10.1371/journal.pone.0114825.g007
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ranked historical figures who appear in a few Wikipedia editions (NA < 18) and who are not
highly ranked (hKi> 50). Here NA is the number of appearances in different Wikipedia edi-
tions for a given person and hKi is the average ranking of the given persons across Wikipedia
editions for each ranking algorithm. In the case of 2DRank historical figures, due to the absence
of global historical figures, most of them belong to two types of local historical figures (i.e.
local-highly ranked or local-lowly ranked).

Following ranking of persons viaYP, A we determine also the top global female historical
figures, presented in Table 5 for PageRank and 2DRank persons. The full lists of global female
figures are available at [39] (63 and 165 names for PageRank and 2DRank).

The comparison of our 100 global historical figures with the top 100 from Hart’s list [27]
gives an overlap of 43 persons for PageRank and 26 persons for 2DRank. We note that for the
top 100 from the English Wikipedia we obtain a lower overlap of 37 (PageRank) and 4
(2DRank) persons. Among all editions the highest overlaps with the Hart list are 42 (VI), 37
(EN, ES, PT, TR) and 33 (IT), 32 (DE), 31 (FR) for PageRank; while for 2DRank we find 18 (EL)
and 17 (VI). We give the overlap numbers for all editions at [39]. This shows that the consider-
ation of 24 editions provides us the global list of the top 100 persons with a more balanced selec-
tion of top historical figures. Our overlap of the top 100 global historical figures by PageRank
with the top 100 people from Pantheon MIT ranking list [23] is 44 percent, while the overlap of
this Pantheon list with Hart’s list is 43 percent. We note that the Pantheon method is signifi-
cantly based on a number of page views while our approach is based on the network structure of
the whole Wikipedia network. The top 100 persons from [22] are not publicly available but nev-
ertheless we present the overlaps between the top 100 persons from the lists of Hart, Pantheon,

Table 5. List of the top 10 global female historical figures by PageRank and 2DRank for all the 24 Wikipedia editions. All names are represented
by article titles in the English Wikipedia. Here, ΘA is the ranking score of the algorithm A (Eq.3); NA is the number of appearances of a given person in the
top 100 rank for all editions. Here CC is the birth country code and LC is the language code of the given historical figure.

Rank ΘPR NA PageRank female figures CC Century LC

1 1789 24 Elizabeth II UK 20 EN

2 1094 17 Mary (mother of Jesus) IL -1 HE

3 404 12 Queen Victoria UK 19 EN

4 234 6 Elizabeth I of England UK 16 EN

5 128 2 Maria Theresa AT 18 DE

6 100 1 Benazir Bhutto PK 20 HI

7 94 1 Catherine the Great PL 18 PL

8 91 1 Anne Frank DE 20 DE

9 87 1 Indira Gandhi IN 20 HI

10 86 1 Margrethe II of Denmark DK 20 DA

Rank Θ2D NA 2DRank female figures CC Century LC

1 991 14 Madonna (entertainer) US 20 EN

2 664 9 Elizabeth II UK 20 EN

3 580 8 Mary (mother of Jesus) IL -1 HE

4 550 9 Queen Victoria UK 19 EN

5 225 5 Agatha Christie UK 19 EN

6 211 4 Mariah Carey US 20 EN

7 206 7 Britney Spears US 20 EN

8 200 3 Margaret Thatcher UK 20 EN

9 191 2 Martina Navratilova CZ 20 WR

10 175 2 Elizabeth I of England UK 16 EN

doi:10.1371/journal.pone.0114825.t005

Interactions of Cultures and Top People of Wikipedia

PLOS ONE | DOI:10.1371/journal.pone.0114825 March 4, 2015 18 / 27



Stony-Brook and our global PageRank and 2DRank lists in Figures S2, S3 (we received the
Stony-Brook list as a private message from the authors of [22]). We have an average overlap be-
tween the 4 methods on a level of 40 percent (2DRank is on average lower by a few percent), we
find a larger overlap between our PageRank list and the Stony-Brook list since the Stony-Brook
method, applied only for the English Wikipedia, is significantly based on PageRank.

We also compared the distributions of our global top 100 persons of PageRank and 2DRank
with the distribution of Hart’s top 100 over centuries and over 24 languages with the additional
WR category (see Figure S4). We find that these 3 distributions have very similar shapes. Thus
the largest number of persons appears in centuries AD 18th, 19th, 20th for the 3 distributions.
Among languages, the main peaks for the 3 distributions appear for EN, DE, IT, EL, AR, ZH.
The deviations from Hart’s distribution are larger for the 2DRank list. Thus the comparison of
distributions over centuries and languages shows that the PageRank list has not only a strong
overlap with the Hart list in the number of persons but that they also have very similar statisti-
cal distributions of the top 100 persons over centuries and languages.

The overlap of the top 100 global persons found here with the previous study [21] gives 54
and 47 percent for PageRank and 2DRank lists, respectively. However, we note that the global
list in [21] was obtained from the top 30 persons in each edition while here we use the top
100 persons.

It is interesting to note that for the top 100 PageRank universities from the English Wikipe-
dia edition the overlap with Shanghai top 100 list of universities is on a even higher level of 75
percent [18].

Finally, we note that the ranking of historical figures using the whole PageRank (or
2DRank) list of all Wikipedia articles of a given edition provides a more stable approach com-
pared to the network of biographical articles used in [20]. Indeed, the number of nodes and
links in such a biographical network is significantly smaller compared to the whole network of
Wikipedia articles and thus the fluctuations become rather large. For example, from the bio-
graphical network of the Russian edition one finds as the top person Napoleon III (and even
not Napoleon I) [20], who has a rather low importance for Russia. In contrast to that the pres-
ent study gives us the top PageRank historical figure of the Russian edition to be Peter the
Great, that has much more historical grounds. In a similar way for FR the results of [20] give at
the first position Adolf Hitler, that is rather strange for the French culture, while we find a natu-
ral result Napoleon.

Network of cultures
We consider the selected top persons from each Wikipedia edition as important historical fig-
ures recognized by people who speak the language of that Wikipedia edition. Therefore, if a top
person from a language edition A appears in another edition B, then we can consider this as a
‘cultural’ influence from culture A to B. Here we consider each language as a proxy for a cultur-
al group and assign each historical figure to one of these cultural groups based on the most spo-
ken language of her/his birth place at the country level. For example, Adolf Hitler was born in
modern Austria and since German language is the most spoken language in Austria, he is con-
sidered as a German historical figure in our analysis. This method may lead to some misguid-
ing results due to discrepancy between territories of country and cultures, e.g. Jesus was born in
the modern State of Palestine (Bethlehem), which is an Arabic speaking country. Thus Jesus is
from the Arabic culture in our analysis while usually one would say that he belongs to the He-
brew culture. Other similar examples we find are: Charlemagne (Belgium—Dutch), Immanuel
Kant (Russia—Russian, while usually he is attributed to DE),Moses (Egypt—Arabic), Cather-
ine the Great (Poland—Polish, while usually she would be attributed to DE or RU).
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In total there are such 36 cases from the global PageRank list of 1045 names (these 36 names
are given in SI). However, in our knowledge, the birth place is the best way to assign a given his-
torical figure to a certain cultural background computationally and systematically and with the
data we have available. In total we have only about 3.4 percent of cases which can be discussed
and where a native speaking language can be a better indicator of belonging to a given culture.
For the global 2DRank list of 1616 names we identified 53 similar cases where an attribution to
a culture via a native language or a birth place could be discussed (about 3.3 percent). These 53
names are given in SI. About half of such cases are linked with birth places in ancient Russian
Empire where people from Belarus, Litvania and Ukraine moved to RU, IL, PL, WR. However,
the percentage of such cases is small and the corresponding errors also remain small.

Based on the above assumption and following the approach developed in [21], we construct
two weighted networks of cultures (or language groups) based on the top PageRank historical
figures and top 2DRank historical figures respectively. Each culture (i.e. language) is repre-
sented as a node of the network, and the weight of a directed link from culture A to culture B is
given by the number of historical figures belonging to culture B (e.g. French) appearing in the
list of top 100 historical figures for a given culture A (e.g. English). The persons in a given edi-
tion, belonging to the language of the edition, are not taken into account since they do not cre-
ate links between cultures. In Table 6 we give the number of such persons for each language.
This table also gives the number of persons of a given language among the top 100 persons of
the global PageRank and 2DRank listings.

For example, there are 5 French historical figures among the top 100 PageRank historical
figures of the English Wikipedia, so we can assign weight 5 to the link from English to French.
Fig. 8A and Fig. 8B represent the constructed networks of cultures defined by appearances of
the top PageRank historical figures and top 2DRank historical figures, respectively. In total we
have two networks with 25 nodes which include our 24 editions and an additional node WR
for all the other world cultures.

The Google matrix Gij for each network is constructed following the standard rules de-
scribed in [21] and in the Methods Section. In a standard way we determine the PageRank
index K and the CheiRank index K� that order all cultures according to decreasing PageRank

Table 6. Numbers of certain historical figures for top 100 list of each language: N1 is the number of historical figures of a given language
among the top 100 PageRank global historical figures; N2 is the number of historical figures of a given language among the top 100 PageRank
historical figures for the given language edition; N3 is the number of historical figures of a given language among the top 100 2DRank global
historical figures; N4 is the number of historical figures of a given language among the top 100 2DRank historical figures for the given language
edition.

Language N1 N2 N3 N4 Language N1 N2 N3 N4

EN 22 47 27 64 RU 2 29 3 27

NL 2 10 4 38 HE 2 17 2 22

DE 20 41 16 55 TR 2 27 2 54

FR 8 33 3 32 AR 8 42 5 69

ES 2 20 5 39 FA 0 46 1 64

IT 11 31 9 43 HI 1 65 0 76

PT 0 19 0 35 MS 0 15 0 40

EL 5 28 2 55 TH 0 46 0 53

DA 0 31 1 48 VI 0 7 0 30

SV 1 26 1 39 ZH 5 43 6 79

PL 1 20 2 26 KO 0 34 0 59

HU 0 18 0 18 JA 0 41 4 80

WR 8 - 7 -

doi:10.1371/journal.pone.0114825.t006
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and CheiRank probabilities (see Methods and Figure S5). The structure of matrix elements
GKK0 is shown in Fig. 9.

To identify which cultures (or language groups) are more influential than others, we calcu-
lated PageRank and CheiRank of the constructed networks of cultures by considering link
weights. Briefly speaking, a culture has high PageRank (CheiRank) if it has many ingoing

Fig 8. Network of cultures obtained from 24Wikipedia languages and the remaining world (WR) consider (A) top PageRank historical figures and
(B) 2DRank historical figures. The link width and darkness are proportional to a number of foreign historical figures quoted in top 100 of a given culture, the
link direction goes from a given culture to cultures of quoted foreign historical figures, links inside cultures are not considered. The size of nodes is
proportional to their PageRank.

doi:10.1371/journal.pone.0114825.g008
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Fig 9. Google matrix of network of cultures shown in Fig. 8 respectively. The matrix elementsGij are
shown by color with damping factor α = 0.85.

doi:10.1371/journal.pone.0114825.g009
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(outgoing) links from (to) other cultures (see Methods). The distribution of cultures on a
PageRank-CheiRank plane is shown in Fig. 10. In both cases of PageRank and 2DRank histori-
cal figures, historical figures of English culture (i.e. born in English language spoken countries)
are the most influential (highest PageRank) and German culture is the second one (Fig. 10A,
B). Here we consider the historical figures for the whole range of centuries. Fig. 10 represents
the detailed features of how each culture is located on the plane of PageRank ranking K and
CheiRank ranking K� based on the top PageRank historical figures (Fig. 10A) and top 2DRank
historical figures (Fig. 10B). Here K indicates the ranking of a given culture ordered by how
many of its own top historical figures appear in other Wikipedia editions, and K� indicates the
ranking of a given culture according to how many of the top historical figures in the considered
culture are from other cultures. As described above, English is on (K = 1, K� = 19) and German
is on (K = 2, K� = 21) in the case of PageRank historical figures (Fig. 10A). In the case of
2DRank historical figures, English is on (K = 1, K� = 14) and German is on (K = 2, K� = 9).

It is important to note that there is a significant difference compared to the previous study
[21]: there, only 9 editions had been considered and the top positions were attributed to the
world node WR which captured a significant fraction of the top persons. This indicated that 9
editions are not sufficient to cover the whole world. Now for 24 editions we see that the impor-
tance of the world node WR is much lower (it moves from K = 1 for 9 editions [21] to K = 4
and 3 in Fig. 10A and Fig. 10B). Thus our 24 editions cover the majority the world. Still it

Fig 10. PageRank ranking versus CheiRank ranking plane of cultures with corresponding indexesK
andK* obtained from the network of cultures based on (A) all PageRank historical figures, (B) all
2DRank historical figures, (C) PageRank historical figure born before AD 19th century, and (D)
2DRank historical figure born before AD 19th century, respectively.

doi:10.1371/journal.pone.0114825.g010
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would be desirable to add a few additional editions (e.g. Ukraine, Baltic Republics, Serbia etc.)
to fill certain gaps.

It is interesting to note that the ranking plane of cultures (K, K�) changes significantly in
time. Indeed, if we take into account only persons born before the 19th century then the rank-
ing is modified with EN going to 4th (Fig. 10C for PageRank figures) and 6th position
(Fig. 10C for 2DRank figures) while the top positions are taken by IT, DE, FR and DE, IT,
AR, respectively.

At the same time, we may also argue that for cultures it is important not only to be cited but
also to be communicative with other cultures. To characterize communicative properties of
nodes on the network of cultures shown in Fig. 8 we use again the concepts of PageRank,
CheiRank and 2DRank for these networks as described in Methods and [21]. Thus, for the net-
work of cultures of Fig. 8, the 2DRank index of cultures highlights their influence in a more bal-
anced way taking into account their importance (incoming links) and communicative
(outgoing links) properties in a balanced manner.

Thus we find for all centuries at the top positions Greek, Turkish and Arabic (for PageRank
persons) and French, Russian and Arabic (for 2DRank persons). For historical figures before
the 19th century, we find respectively Arabic, Turkish and Greek (for PageRank) and Arabic,
Greek and Hebrew (for 2DRank). The high position of Turkish is due to its close links both
with Greek culture in ancient times and with Arabic culture in more recent times. We see also
that with time the positions of Greek in 2DRank improves due to a global improved ranking of
Western cultures closely connected with Greece.

Discussion
By investigating birth place, birth date, and gender of important historical figures determined
by the network structure of Wikipedia, we identified spatial, temporal, and gender skewness in
Wikipedia. Our analysis shows that the most important historical figures across Wikipedia lan-
guage editions were born in Western countries after the 17th century, and are male. Also, each
Wikipedia edition highlights local figures so that most of its own historical figures are born in
the countries which use the language of the edition. The emergence of such pronounced accent
to local figures seems to be natural since there are more links and interactions within one cul-
ture. This is also visible from to the fact that in many editions the main country for the given
language is at the first PageRank position among all articles (e.g. Russia in RU edition) [21].
Despite such a locality feature, there are also global historical figures who appear in most of the
considered Wikipedia editions with very high rankings. Based on the cross-cultural historical
figures, who appear in multiple editions, we can construct a network of cultures which de-
scribes interactions and entanglement between cultures.

It is very difficult to describe history in an objective way and due to that it was argued that
history is “an unending dialogue between the past and present” [44]. In a similar way we can
say that history is an unending dialogue between different cultural groups.

We use a computational and data mining approach, based on rank vectors of the Google
matrix of Wikipedia, to perform a statistical analysis of interactions and entanglement of cul-
tures. We find that this approach can be used for selecting the most influential historical figures
through an analysis of collectively generated links between articles on Wikipedia. Our results
are coherent with studies conducted by historians [27], with an overlap of 43% of important
historical figures. Thus, such a mathematical analysis of local and global historical figures can
be a useful step towards the understanding of local and global history and interactions of world
cultures. Our approach has some limitations, mainly caused by the data source and by the diffi-
culty of defining culture boundaries across centuries. The ongoing improvement of structured
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content in Wikipedia through the WikiData project, eventually in conjunction with additional
manual annotation, should allow to deal with these limitations. Furthermore, it would be useful
to perform comparisons with other approaches to measure the interactions of cultures, such as
the analysis of language crossings of multilingual users [45].

Influence of digital media on information dissemination and social collective opinions
among the public is growing fast. Our research across Wikipedia language editions suggests a
rigorous mathematical way, based on Markov chains and Google matrix, for the identification
of important historical figures and for the analysis of interactions of cultures at different histor-
ical periods and in different world regions. We think that a further extension of this approach
to a larger number of Wikipedia editions will provide a more detailed and balanced analysis of
interactions of world cultures.

Supporting Information
S1 File. Supporting Information file S1 presents Figures S1–S5 with additional information
discussed above in the main part of the paper, lists of top 100 global PageRank and
2DRank names; Tables S1–S25 of top 10 names of given language and remained world
from the global PageRank and 2DRank ranking lists of persons ordered by the scoreYP, A

of Eq.(3). For a reader convenience the lists of all 100 ranked names for all 24 Wikipedia edi-
tions and corresponding network link data for each edition are also given at [39] in addition to
Supporting Information file. All used computational data are publicly available at http://
dumps.wikimedia.org/. All the raw data necessary to replicate the findings and conclusion of
this study are within the paper, supporting information files and this Wikimedia web site.
(PDF)
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1 Additional data

Here we present additional figures and tables for the main part of the paper.
Figure S1 is analogous to Figures 4(C,D,E,F), however, now on the vertical axis we plot

not the edition to which a given historical figure is attributed from top 100 figures of a given
edition but the language, to which this historical figure from the global PageRank (1045 persons)
or 2DRank (1616 persons) lists is attributed according to our procedure according to her/his
country of birth and then to the major language of this country, if a person does not belong
to any of 24 languages then he/she is attributed to the remaining world (WR). The data show
that the separation between language (or culture) groups becomes now more distinct. Indeed,
attribution to a language related to a birth place is more definite compared to the option where
a person appears in one of 24 editions since some global historical figures appear in a few editions
while each person is attributed only one language according to our procedure.

Figure S2 shows overlap between the global list of top 100 global PageRank persons and
list of Hart [23], PageRank list of English Wikipedia from [15], list of Stony-Brook [19], list of
Pantheon MIT project [20].

Figure S3 shows the overlap matrix (in percent) between 5 methods of ranking of top 100
historical figures including Hart, Pantheon, Stony-Brook results and our global PageRank and
2DRank lists. We see that our PageRank has most high correlation with Stony-Brook since the
method of Stony-Brook uses significantly the PageRank method.

Figure S4 shows the number of persons from top 100 lists of Hart and our global PageRank
and 2DRank lists. The panel (A) shows the number of persons at a given century corresponding
to the time dependence and the panel (B) shows distribution of such persons over the language
they are attributed according to our method based on the birth place and dominant language of
a country of birth. We see that the pattern of Hart ranking is well reproduced from our global
ranking, especially for the case of PageRank list.

Figure S5 shows PageRank and CheiRank probabilities for the networks of cultures shown
in Figure 8.

The names of persons from top 100 missed by automatic recovery of persons are: Homer,
Charles Darwin (RU PageRank); Philipp Kirkorov (RU 2DRank); Alexander the Great, Emperor
Gaozu of Han, Homer (KO PageRank); Jinpyeong of Silla, Hyeonjong of Goryeo (KO 2DRank).
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Unfortunately, the name of Homer has been missed in the 1.1 million list of English names,
other names are missed due to incompleteness and modifications of inter-language translations.

Below we give the list of global top 100 PageRank names from 24 Wikipedia editions. The
names are ordered by the ranking score ΘP,A of Eq.(1). In brackets we give country of birth,
century of birth, gender, and language of birth. In the same manner we also give th list of top
100 2DRank names from 24 Wikipedia editions.

We also give 24 names from global 1045 PageRank names and 40 names from 1616 global
2DRank names where a birth place language attribution differs from native language.

We also give the tables of top 10 persons in each language and also world names (tables S1
- S25) extracted from the global PageRank and 2DRank ranking lists of persons ordered by the
score ΘP,A of Eq.(1).

Top 100 of global PageRank names: 1. Carl Linnaeus (SE, 18, M, SV) 2. Jesus (PS, -1, M,
AR) 3. Aristotle (GR, -4, M, EL) 4. Napoleon (FR, 18, M, FR) 5. Adolf Hitler (AT, 19, M,
DE) 6. Julius Caesar (IT, -1, M, IT) 7. Plato (GR, -5, M, EL) 8. William Shakespeare (UK, 16,
M, EN) 9. Albert Einstein (DE, 19, M, DE) 10. Elizabeth II (UK, 20, F, EN) 11. Alexander
the Great (GR, -4, M, EL) 12. Isaac Newton (UK, 17, M, EN) 13. Muhammad (SA, 6, M, AR)
14. Karl Marx (DE, 19, M, DE) 15. Joseph Stalin (GE, 19, M, WR) 16. Augustus (IT, -1, M,
IT) 17. Christopher Columbus (IT, 15, M, IT) 18. Charlemagne (BE, 8, M, NL) 19. Louis XIV
of France (FR, 17, M, FR) 20. George W. Bush (US, 20, M, EN) 21. Immanuel Kant (RU, 18,
M, RU) 22. Barack Obama (US, 20, M, EN) 23. Mary (mother of Jesus) (IL, -1, F, HE) 24.
Vladimir Lenin (RU, 19, M, RU) 25. Wolfgang Amadeus Mozart (AT, 18, M, DE) 26. Paul the
Apostle (TR, 1, M, TR) 27. Charles Darwin (UK, 19, M, EN) 28. Martin Luther (DE, 15, M,
DE) 29. Herodotus (TR, -5, M, TR) 30. Franklin D. Roosevelt (US, 19, M, EN) 31. Galileo
Galilei (IT, 16, M, IT) 32. Pope John Paul II (PL, 20, M, PL) 33. Constantine the Great (RS,
3, M, WR) 34. Benito Mussolini (IT, 19, M, IT) 35. Cicero (IT, -2, M, IT) 36. Ren Descartes
(FR, 16, M, FR) 37. Saint Peter (IL, 1, M, HE) 38. Ludwig van Beethoven (DE, 18, M, DE)
39. George Washington (US, 18, M, EN) 40. Moses (EG, -14, M, AR) 41. Johann Sebastian
Bach (DE, 17, M, DE) 42. Bill Clinton (US, 20, M, EN) 43. Leonardo da Vinci (IT, 15, M, IT)
44. Johann Wolfgang von Goethe (DE, 18, M, DE) 45. Gautama Buddha (NP, -6, M, WR) 46.
Winston Churchill (UK, 19, M, EN) 47. John F. Kennedy (US, 20, M, EN) 48. Charles V, Holy
Roman Emperor (BE, 15, M, NL) 49. Pope Benedict XVI (DE, 20, M, DE) 50. Richard Nixon
(US, 20, M, EN) 51. Sigmund Freud (CZ, 19, M, WR) 52. Ronald Reagan (US, 20, M, EN)
53. Abraham Lincoln (US, 19, M, EN) 54. Saddam Hussein (IQ, 20, M, AR) 55. Ptolemy (EG,
1, M, AR) 56. Richard Wagner (DE, 19, M, DE) 57. Diocletian (HR, 3, M, WR) 58. Queen
Victoria (UK, 19, F, EN) 59. Napoleon III (FR, 19, M, FR) 60. Charles de Gaulle (FR, 19,
M, FR) 61. Mao Zedong (CN, 19, M, ZH) 62. William Herschel (DE, 18, M, DE) 63. Michael
Jackson (US, 20, M, EN) 64. Justinian I (MK, 5, M, WR) 65. Augustine of Hippo (DZ, 4, M,
AR) 66. Ali (SA, 7, M, AR) 67. Jean-Jacques Rousseau (CH, 18, M, DE) 68. Ernst Haeckel
(DE, 19, M, DE) 69. Pliny the Elder (IT, 1, M, IT) 70. Pope Gregory XIII (IT, 16, M, IT) 71.
Confucius (CN, -6, M, ZH) 72. Henry VIII of England (UK, 15, M, EN) 73. Thomas Jefferson
(US, 18, M, EN) 74. Francisco Franco (ES, 19, M, ES) 75. Georg Wilhelm Friedrich Hegel (DE,
18, M, DE) 76. Pierre Andr Latreille (FR, 18, M, FR) 77. Pope Paul VI (IT, 19, M, IT) 78.
Gottfried Wilhelm Leibniz (DE, 17, M, DE) 79. Chiang Kai-shek (CN, 19, M, ZH) 80. John
Herschel (UK, 18, M, EN) 81. Elizabeth I of England (UK, 16, F, EN) 82. J. R. R. Tolkien
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(ZA, 19, M, WR) 83. Socrates (GR, -5, M, EL) 84. Genghis Khan (MN, 12, M, WR) 85. Qin
Shi Huang (CN, -3, M, ZH) 86. Umar (SA, 6, M, AR) 87. Philip II of Spain (ES, 16, M, ES)
88. Frederick the Great (DE, 18, M, DE) 89. Johannes Kepler (DE, 16, M, DE) 90. Emperor
Wu of Han (CN, -2, M, ZH) 91. Friedrich Nietzsche (DE, 19, M, DE) 92. Plutarch (GR, 1, M,
EL) 93. Thomas Edison (US, 19, M, EN) 94. Max Weber (DE, 19, M, DE) 95. Dante Alighieri
(IT, 13, M, IT) 96. Ashoka (IN, -4, M, HI) 97. Tacitus (FR, 1, M, FR) 98. Ernst Mayr (DE,
20, M, DE) 99. Jean-Baptiste Lamarck (FR, 18, M, FR) 100. Elvis Presley (US, 20, M, EN).

Top 100 of global 2DRank names: 1. Adolf Hitler (AT, 19, M, DE) 2. Michael Jackson (US,
20, M, EN) 3. Madonna (entertainer) (US, 20, F, EN) 4. Jesus (PS, -1, M, AR) 5. Ludwig van
Beethoven (DE, 18, M, DE) 6. Wolfgang Amadeus Mozart (AT, 18, M, DE) 7. Pope Benedict
XVI (DE, 20, M, DE) 8. Alexander the Great (GR, -4, M, EL) 9. Charles Darwin (UK, 19,
M, EN) 10. Barack Obama (US, 20, M, EN) 11. Johann Sebastian Bach (DE, 17, M, DE) 12.
Napoleon (FR, 18, M, FR) 13. Pope John Paul II (PL, 20, M, PL) 14. Julius Caesar (IT, -1, M,
IT) 15. Elizabeth II (UK, 20, F, EN) 16. Albert Einstein (DE, 19, M, DE) 17. Augustus (IT,
-1, M, IT) 18. Bob Dylan (US, 20, M, EN) 19. Leonardo da Vinci (IT, 15, M, IT) 20. Mary
(mother of Jesus) (IL, -1, F, HE) 21. Charlemagne (BE, 8, M, NL) 22. William Shakespeare
(UK, 16, M, EN) 23. Elvis Presley (US, 20, M, EN) 24. Queen Victoria (UK, 19, F, EN) 25.
John Lennon (UK, 20, M, EN) 26. George Frideric Handel (DE, 17, M, DE) 27. J. R. R. Tolkien
(ZA, 19, M, WR) 28. Muhammad (SA, 6, M, AR) 29. Joseph Stalin (GE, 19, M, WR) 30. Karl
Marx (DE, 19, M, DE) 31. Benito Mussolini (IT, 19, M, IT) 32. Franklin D. Roosevelt (US,
19, M, EN) 33. Michael Schumacher (DE, 20, M, DE) 34. Paul McCartney (UK, 20, M, EN)
35. Stephen King (US, 20, M, EN) 36. Henry VIII of England (UK, 15, M, EN) 37. Tokugawa
Ieyasu (JP, 16, M, JA) 38. Edgar Allan Poe (US, 19, M, EN) 39. Martin Luther (DE, 15, M,
DE) 40. David Bowie (UK, 20, M, EN) 41. Pope Pius XII (IT, 19, M, IT) 42. Alfred Hitchcock
(UK, 19, M, EN) 43. Friedrich Nietzsche (DE, 19, M, DE) 44. Vladimir Putin (RU, 20, M, RU)
45. Christopher Columbus (IT, 15, M, IT) 46. Elton John (UK, 20, M, EN) 47. Carl Linnaeus
(SE, 18, M, SV) 48. Michelangelo (IT, 15, M, IT) 49. Raphael (IT, 15, M, IT) 50. Roger
Federer (CH, 20, M, DE) 51. Cao Cao (CN, 2, M, ZH) 52. Vincent van Gogh (NL, 19, M, NL)
53. Frdric Chopin (PL, 19, M, PL) 54. Steven Spielberg (US, 20, M, EN) 55. Rembrandt (NL,
17, M, NL) 56. Ali (SA, 7, M, AR) 57. Richard Wagner (DE, 19, M, DE) 58. Che Guevara
(AR, 20, M, ES) 59. Nelson Mandela (ZA, 20, M, WR) 60. Isaac Asimov (RU, 20, M, RU) 61.
Jules Verne (FR, 19, M, FR) 62. Toyotomi Hideyoshi (JP, 16, M, JA) 63. Winston Churchill
(UK, 19, M, EN) 64. Paul the Apostle (TR, 1, M, TR) 65. Hirohito (JP, 20, M, JA) 66. 14th
Dalai Lama (CN, 20, M, ZH) 67. Franz Liszt (AT, 19, M, DE) 68. Genghis Khan (MN, 12,
M, WR) 69. Otto von Bismarck (DE, 19, M, DE) 70. Saint Peter (IL, 1, M, HE) 71. Charlie
Chaplin (UK, 19, M, EN) 72. Liu Bei (CN, 2, M, ZH) 73. Oda Nobunaga (JP, 16, M, JA) 74.
Suleiman the Magnificent (TR, 15, M, TR) 75. Cyrus the Great (IR, -6, M, FA) 76. George W.
Bush (US, 20, M, EN) 77. Agatha Christie (UK, 19, F, EN) 78. Carl Friedrich Gauss (DE, 18,
M, DE) 79. Louis XIV of France (FR, 17, M, FR) 80. Saddam Hussein (IQ, 20, M, AR) 81.
Pablo Picasso (ES, 19, M, ES) 82. Mariah Carey (US, 20, F, EN) 83. Hans Christian Andersen
(DK, 19, M, DA) 84. Plato (GR, -5, M, EL) 85. Britney Spears (US, 20, F, EN) 86. Rafael
Nadal (ES, 20, M, ES) 87. George Harrison (UK, 20, M, EN) 88. Margaret Thatcher (UK, 20,
F, EN) 89. Jorge Luis Borges (AR, 19, M, ES) 90. Salvador Dal (ES, 20, M, ES) 91. Peter the
Great (RU, 17, M, RU) 92. Giuseppe Verdi (IT, 19, M, IT) 93. Sigmund Freud (CZ, 19, M,
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WR) 94. Qin Shi Huang (CN, -3, M, ZH) 95. Kangxi Emperor (CN, 17, M, ZH) 96. Martina
Navratilova (CZ, 20, F, WR) 97. Charles V, Holy Roman Emperor (BE, 15, M, NL) 98. Zhuge
Liang (CN, 2, M, ZH) 99. Constantine the Great (RS, 3, M, WR) 100. Muammar Gaddafi (LY,
20, M, AR)

List of 36 names from the global PageRank list of 1045 names where the birth place in modern
geography of countries differs from native language: Jesus (PS AR), Charlemagne (Belgium NL),
Immanuel Kant (Russia RU), Moses (Egypt AR), Catherine the Great (Poland PL), Mustafa
Kemal Atatürk (Greece EL), Bhumibol Adulyadej (USA EN), Christian V of Denmark (Ger-
many DE), Józef Pilsudski (Litvania WR), Christian IX of Denmark (Germany DE), Philip V of
Spain (France FR), Giuseppe Garibaldi (France FR), Muhammad al-Idrisi (Spain ES), Charles
XIV John of Sweden (France FR), Leonid Brezhnev (Ukraine WR), George I of Greece (Den-
mark DA), Juan Carlos I of Spain (Italy IT), Leon Trotsky (Ukraine WR), Golda Meir (Ukraine
WR), Valéry Giscard d’Estaing (Germany DE), Magnus IV of Sweden (Noroway WR), Christian
I of Denmark (Germany DE), Yitzhak Ben-Zvi (Ukraine WR), Mikhail Bulgakov (Ukraine WR);
Kim Jong-il (Russia RU). Lee Myung-bak (Japan JA), Jangsu of Goguryeo (China ZH); Galyani
Vadhana (UK EN), Abhisit Vejjajiva (UK EN); Matthias Corvinus (Romania WR), Ferenc Kaz-
inczy (Romania WR), György Kulin (Romania WR), Gabriel Bethlen (Romania WR), Endre
Ady (Romania WR), János Arany (Romania WR), Béla Bartók (Romania WR).

List of 53 names from the global 2DRank list of 1616 names where the birth place in modern
geography of countries differs from native language: Jesus (PS AR), Charlemagne (BE NL),
Isaac Asimov (RU RU), Paul the Apostle (TR TR), Peter Paul Rubens (DE DE), Catherine the
Great (PL PL), Julian (emperor) (TR TR), Józef Pilsudski (LT WR), Muhammad Ali of Egypt
(GR EL), Juan Carlos I of Spain (IT IT), Shmuel Yosef Agnon (UA WR), Saint Joseph (PS
AR), Golda Meir (UA WR), Baibars (UA WR), Levi Eshkol (UA WR), Augustine of Hippo (DZ
AR), Yitzhak Ben-Zvi ( UA WR), Natan Yonatan (UA WR), Edward Rydz-migy (UA WR),
Immanuel Kant (RU RU), Pyotr Stolypin (DE DE), Czeslaw Niemen (BY RU), Moses (EG
AR), Albert Camus (DZ AR), Leonid Brezhnev ( UA WR), Aharon Barak (LT WR), George
Orwell (IN HI), Sergei Korolev (UA WR), Garry Kasparov (AZ TR), Ibn ’Abd al-Barr (ES ES),
Georges Simenon (BE NL), Ryszard Kapuściński (BY RU), Mihly Munkácsy ( UA WR), Juliusz
Slowacki (UA WR), Tadeusz Kościuszko ( BY RU), John McCain ( PA ES), Maurice, Prince
of Orange ( DE DE), Zbigniew Herbert (UA WR), Leon Trotsky (UA WR), Charles XIV John
of Sweden ( FR FR). Lee Myung-bak (JA JA), Jangsu of Goguryeo (CN ZH), Gwanggaeto the
Great (CN ZH); Galyani Vadhana (UK EN), Abhisit Vejjajiva (UK EN); Matthias Corvinus
(RO WR), Károly Kós (RO WR), László Németh (RO WR), Sándor Körösi Csoma (RO WR),
János Bolyai (RO WR), György Kulin (RO WR), Ferenc Kazinczy (RO WR), Béla Bartók (RO
WR).
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Figure S1. Birth date distribution of historical figures from the global PageRank list (A,C,

1045 persons) and 2DRank list (B,D, 1616 persons). Each historical figure is attributed to

her/his own language according to her/his birth place as described in the paper (if the birth

place is not among our 24 languages then a person is attributed to the remaining world

(WR)). Color in panels (A,B) shows the total number of persons for a given century, while in

panels (C,D) color shows a percent for a given century (normalized to unity in each column).

This figure give a more distinct separation of cultures (languages) compared to a similar Fig.4

where the distribution over Wikipedia editions is shown on the vertical axis.
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Figure S2. Dependence of fraction η of overlaped persons on rank index of person j. (A)

Comparison is done of present study (“our”), PageRank list of English Wikipedia of [15]
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Table S1. List of local historical figures for EN category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1861 William Shakespeare 1315 Michael Jackson
2 1789 Elizabeth II 991 Madonna (entertainer)
3 1756 Isaac Newton 773 Charles Darwin
4 1173 George W. Bush 754 Barack Obama
5 1101 Barack Obama 664 Elizabeth II
6 932 Charles Darwin 624 Bob Dylan
7 910 Franklin D. Roosevelt 556 William Shakespeare
8 656 George Washington 555 Elvis Presley
9 596 Bill Clinton 550 Queen Victoria
10 564 Winston Churchill 541 John Lennon

Table S2. List of local historical figures for NL category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1476 Charlemagne 569 Charlemagne
2 556 Charles V, Holy Roman Emperor 297 Vincent van Gogh
3 83 Maurice Maeterlinck 294 Rembrandt
4 81 William I of the Netherlands 190 Charles V, Holy Roman Emperor
5 78 Beatrix of the Netherlands 138 Beatrix of the Netherlands
6 61 Baruch Spinoza 98 Baruch Spinoza
7 61 Rembrandt 94 Hugo Claus
8 51 Wilhelmina of the Netherlands 91 Johan Cruyff
9 47 Juliana of the Netherlands 76 Louis Couperus
10 39 Christiaan Huygens 75 Pierre Cuypers
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Table S3. List of local historical figures for DE category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1)

ΘA PageRank local figures ΘA 2DRank local figures

1 2112 Adolf Hitler 1557 Adolf Hitler
2 1847 Albert Einstein 872 Ludwig van Beethoven
3 1730 Karl Marx 853 Wolfgang Amadeus Mozart
4 996 Wolfgang Amadeus Mozart 840 Pope Benedict XVI
5 925 Martin Luther 733 Johann Sebastian Bach
6 700 Ludwig van Beethoven 651 Albert Einstein
7 610 Johann Sebastian Bach 540 George Frideric Handel
8 570 Johann Wolfgang von Goethe 465 Karl Marx
9 528 Pope Benedict XVI 446 Michael Schumacher
10 417 Richard Wagner 344 Martin Luther

Table S4. List of local historical figures for FR category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 2208 Napoleon 720 Napoleon
2 1207 Louis XIV of France 268 Jules Verne
3 724 René Descartes 221 Louis XIV of France
4 397 Napoleon III 168 Giuseppe Garibaldi
5 385 Charles de Gaulle 146 Denis Diderot
6 260 Pierre André Latreille 144 Franois Mitterrand
7 167 Tacitus 127 Napoleon III
8 165 Jean-Baptiste Lamarck 121 Nicolas Sarkozy
9 157 Molière 113 Claudius
10 112 Francis I of France 112 Henry IV of France
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Table S5. List of local historical figures for ES category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 276 Francisco Franco 285 Che Guevara
2 195 Philip II of Spain 216 Pablo Picasso
3 119 Pablo Picasso 206 Rafael Nadal
4 82 Lionel Messi 199 Jorge Luis Borges
5 74 Charles III of Spain 198 Salvador Daĺı

6 72 Teresa of Ávila 178 Hadrian
7 71 Miguel de Cervantes 105 Shakira
8 70 Ferdinand VII of Spain 100 Francisco Goya
9 66 Alfonso X of Castile 95 Juan Perón
10 65 Ferdinand I, Holy Roman Emperor 94 Augusto Pinochet

Table S6. List of local historical figures for IT category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1952 Julius Caesar 689 Julius Caesar
2 1662 Augustus 647 Augustus
3 1476 Christopher Columbus 616 Leonardo da Vinci
4 893 Galileo Galilei 464 Benito Mussolini
5 758 Benito Mussolini 339 Pope Pius XII
6 753 Cicero 330 Christopher Columbus
7 594 Leonardo da Vinci 326 Michelangelo
8 292 Pliny the Elder 322 Raphael
9 288 Pope Gregory XIII 197 Giuseppe Verdi
10 250 Pope Paul VI 172 Galileo Galilei
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Table S7. List of local historical figures for PT category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 91 Getúlio Vargas 109 Ronaldo
2 83 Cristiano Ronaldo 100 Getúlio Vargas
3 74 John VI of Portugal 92 Juscelino Kubitschek
4 71 Luiz Inácio Lula da Silva 91 Rubens Barrichello
5 70 Pedro I of Brazil 90 Joaquim Maria Machado de Assis
6 67 Ferdinand Magellan 89 Fernando Henrique Cardoso
7 66 Maria I of Portugal 82 Lúıs de Camões
8 64 John I of Portugal 80 José Saramago
9 63 Pedro II of Brazil 79 John VI of Portugal
10 62 Juscelino Kubitschek 77 Oscar Niemeyer

Table S8. List of local historical figures for EL category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 2237 Aristotle 789 Alexander the Great
2 1949 Plato 207 Plato
3 1771 Alexander the Great 167 Aristotle
4 213 Socrates 108 Pericles
5 178 Plutarch 100 Mustafa Kemal Atatürk
6 153 Mustafa Kemal Atatürk 98 Eleftherios Venizelos
7 123 Sophocles 95 Andreas Papandreou
8 93 Aeschylus 94 Muhammad Ali of Egypt
9 86 Euripides 94 Ioannis Kapodistrias
10 84 Ioannis Kapodistrias 93 Plutarch
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Table S9. List of local historical figures for DA category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 99 Tycho Brahe 210 Hans Christian Andersen
2 94 Ole Rømer 98 Margrethe II of Denmark
3 93 Christian IV of Denmark 95 N. F. S. Grundtvig
4 86 Margrethe II of Denmark 92 Sren Kierkegaard
5 85 Hans Christian Andersen 89 Christian IV of Denmark
6 84 Frederick IV of Denmark 88 Hans Christian Ørsted
7 80 Frederick II of Denmark 86 Anders Fogh Rasmussen
8 78 John Louis Emil Dreyer 84 Carl Nielsen
9 77 Christian VII of Denmark 83 Christian X of Denmark
10 76 Frederick III of Denmark 82 Niels Bohr

Table S10. List of local historical figures for SV category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 2284 Carl Linnaeus 326 Carl Linnaeus
2 125 August Strindberg 151 Ingmar Bergman
3 98 Alfred Nobel 146 Charles XII of Sweden
4 94 Gustav I of Sweden 116 Astrid Lindgren
5 93 Gustav III of Sweden 100 August Strindberg
6 86 Charles XII of Sweden 98 Carl XVI Gustaf of Sweden
7 82 Gustavus Adolphus of Sweden 92 Evert Taube
8 72 Carl XVI Gustaf of Sweden 89 Jan Myrdal
9 71 Charles XI of Sweden 88 Carl Jonas Love Almqvist
10 67 Charles IX of Sweden 83 Gustav I of Sweden
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Table S11. List of local historical figures for PL category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 864 Pope John Paul II 693 Pope John Paul II
2 94 Catherine the Great 296 Frédéric Chopin
3 88 David Ben-Gurion 135 Catherine the Great
4 80 Casimir III the Great 98 David Ben-Gurion
5 72 Nathan Alterman 95 Bolesaw III Wrymouth
6 69 Lech Walesa 94 Andrzej Wajda
7 66 Lech Kaczyński 93 Nathan Alterman
8 63 Frédéric Chopin 91 Gerhart Hauptmann
9 60 Henryk Sienkiewicz 88 Anton Denikin
10 58 Sigismund I the Old 83 Lech Kaczyński

Table S12. List of local historical figures for HU category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 93 János Szentágothai 100 Stephen I of Hungary
2 91 Stephen I of Hungary 99 Sándor Petöfi
3 87 Lajos Kossuth 94 Kati Kovács
4 86 Miklós Réthelyi 93 Miklós Horthy
5 80 Béla IV of Hungary 92 Attila József
6 79 Louis I of Hungary 89 Sándor Weöres
7 75 Sándor Petöfi 86 Theodor Herzl
8 67 Miklós Horthy 83 Lajos Kossuth
9 56 Theodor Herzl 81 Miklós Radnóti
10 53 Andrew II of Hungary 77 János Kodolányi
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Table S13. List of local historical figures for RU category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1123 Immanuel Kant 334 Vladimir Putin
2 1022 Vladimir Lenin 274 Isaac Asimov
3 156 Peter the Great 198 Peter the Great
4 130 Mikhail Gorbachev 171 Vladimir Lenin
5 101 Pyotr Ilyich Tchaikovsky 127 Yuri Gagarin
6 97 Yuri Gagarin 109 Igor Stravinsky
7 97 Alexander Pushkin 100 Menachem Begin
8 91 Vladimir Putin 99 Dmitri Mendeleev
9 89 Nikita Khrushchev 96 Aleksander Griboyedov
10 88 Alexander II of Russia 95 Shimon Peres

Table S14. List of local historical figures for HE category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1094 Mary (mother of Jesus) 580 Mary (mother of Jesus)
2 724 Saint Peter 240 Saint Peter
3 138 John the Baptist 171 John the Baptist
4 99 Yitzhak Rabin 99 Saint George
5 95 Yigal Amir 99 Yitzhak Rabin
6 84 Josephus 96 Ariel Sharon
7 81 Tom Segev 92 Benjamin Netanyahu
8 75 Ariel Sharon 85 Ehud Barak
9 65 Benjamin Netanyahu 82 Roni Dalumi
10 54 Herod the Great 79 Moshe Dayan
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Table S15. List of local historical figures for TR category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 973 Paul the Apostle 252 Paul the Apostle
2 925 Herodotus 231 Suleiman the Magnificent
3 133 Strabo 172 Mehmed the Conqueror
4 117 Mehmed the Conqueror 169 Selim I
5 106 Suleiman the Magnificent 142 Abdul Hamid II
6 96 Abdul Hamid II 111 Julian (emperor)
7 93 Pausanias (geographer) 90 Recep Tayyip Erdoğan

8 83 İsmet İnönü 87 Adnan Menderes
9 79 Selim I 85 Lucian
10 79 Hesiod 84 Blent Ecevit

Table S16. List of local historical figures for AR category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 2282 Jesus 943 Jesus
2 1735 Muhammad 499 Muhammad
3 629 Moses 291 Ali
4 426 Saddam Hussein 219 Saddam Hussein
5 424 Ptolemy 181 Muammar Gaddafi
6 329 Augustine of Hippo 143 Hannibal
7 328 Ali 128 Saladin
8 196 Umar 128 Anwar Sadat
9 147 Anwar Sadat 117 Hosni Mubarak
10 134 Euclid 108 Yasser Arafat
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Table S17. List of local historical figures for FA category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 110 Zoroaster 229 Cyrus the Great
2 101 Darius I 99 Zoroaster
3 100 Mahmoud Ahmadinejad 98 Mohammad Reza Pahlavi
4 97 Mohammad Reza Pahlavi 97 Mohammad Khatami
5 96 Rez Shh 96 Mir-Hossein Mousavi
6 94 Cyrus the Great 95 Ruhollah Khomeini
7 92 Ferdowsi 94 Naser al-Din Shah Qajar
8 90 Ruhollah Khomeini 93 Ali Khamenei
9 89 Naser al-Din Shah Qajar 92 Mohammad Mosaddegh
10 86 Mohammad Khatami 91 Ardashir I

Table S18. List of local historical figures for HI category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 168 Ashoka 126 Ashoka
2 106 Mahatma Gandhi 108 Akbar
3 100 Benazir Bhutto 99 Indira Gandhi
4 91 Vikramditya 98 Mahadevi Varma
5 90 Shivaji 96 Sanjeev Kumar
6 89 Jawaharlal Nehru 93 Amitabh Bachchan
7 88 Akbar 91 Premchand
8 87 Indira Gandhi 90 Dayananda Saraswati
9 86 Adi Shankara 89 Jaishankar Prasad
10 85 Vishnu Prabhakar 86 Adi Shankara
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Table S19. List of local historical figures for MS category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 96 Mahathir Mohamad 100 Mahathir Mohamad
2 85 Najib Razak 99 Najib Razak
3 84 P. Ramlee 98 Anwar Ibrahim
4 81 Tunku Abdul Rahman 93 Mizan Zainal Abidin of Terengganu
5 79 Abdullah Ahmad Badawi 92 Sudirman Arshad
6 77 Muhyiddin Yassin 91 Tunku Abdul Rahman
7 74 Abdul Razak Hussein 90 Siti Nurhaliza
8 62 Anwar Ibrahim 89 Abdullah Ahmad Badawi
9 58 Hussein Onn 88 Abdul Taib Mahmud
10 37 Mizan Zainal Abidin of Terengganu 84 P. Ramlee

Table S20. List of local historical figures for TH category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 100 Chulalongkorn 100 Sirindhorn
2 97 Vajiravudh 98 Sirikit
3 96 Mongkut 97 Thaksin Shinawatra
4 94 Buddha Yodfa Chulaloke 94 Taksin
5 92 Nangklao 91 Pridi Banomyong
6 91 Thaksin Shinawatra 90 Yingluck Shinawatra
7 90 Damrong Rajanubhab 88 Srinagarindra
8 89 Taksin 86 Samak Sundaravej
9 88 Plaek Phibunsongkhram 82 Vajiralongkorn
10 87 Prajadhipok 80 Chao Keo Naovarat
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Table S21. List of local historical figures for VI category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 91 Ho Chi Minh 98 Ho Chi Minh
2 71 Ngo Dinh Diem 97 Gia Long
3 62 Minh Mng 96 Minh Mng
4 46 Gia Long 94 Nguyen Hue
5 44 Bo i 86 Le Loi
6 22 Le Loi 84 Tran Hung Dao
7 15 Nhat Linh 83 Vo Nguyen Giap
8 N/A N/A 82 Tu Duc
9 N/A N/A 81 Le Thánh Tông
10 N/A N/A 80 Trung Sisters

Table S22. List of local historical figures for ZH category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 375 Mao Zedong 306 Cao Cao
2 285 Confucius 243 14th Dalai Lama
3 244 Chiang Kai-shek 234 Liu Bei
4 197 Qin Shi Huang 192 Qin Shi Huang
5 186 Emperor Wu of Han 191 Kangxi Emperor
6 135 Cao Cao 188 Zhuge Liang
7 129 Hongwu Emperor 179 Qianlong Emperor
8 119 Qianlong Emperor 154 Mao Zedong
9 119 Kangxi Emperor 147 Hongwu Emperor
10 94 Sun Yat-sen 146 Sun Yat-sen
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Table S23. List of local historical figures for KO category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 100 Gojong of the Korean Empire 114 Gojong of the Korean Empire
2 98 Kim Il-sung 106 Kim Il-sung
3 95 Sejong the Great 100 Park Chung-hee
4 94 Park Chung-hee 99 Kim Dae-jung
5 93 Taejong of Joseon 97 Roh Moo-hyun
6 92 Syngman Rhee 95 Sejong the Great
7 91 Yeongjo of Joseon 94 Taejo of Goryeo
8 90 Kim Dae-jung 93 Kim Young-sam
9 89 Seonjo of Joseon 92 Jeongjo of Joseon
10 86 Taejo of Joseon 90 Syngman Rhee

Table S24. List of local historical figures for JA category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 154 Toyotomi Hideyoshi 346 Tokugawa Ieyasu
2 153 Tokugawa Ieyasu 266 Toyotomi Hideyoshi
3 108 Hirohito 252 Hirohito
4 97 Oda Nobunaga 233 Oda Nobunaga
5 86 Emperor Meiji 140 Junichiro Koizumi
6 81 Minamoto no Yoritomo 131 Shinzō Abe
7 76 Junichiro Koizumi 112 Tsunku
8 73 Emperor Tenmu 106 Emperor Meiji
9 70 Natsume Sōseki 100 Koxinga
10 69 Akihito 97 Osamu Tezuka



20

Table S25. List of local historical figures for WR category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1686 Joseph Stalin 529 J. R. R. Tolkien
2 842 Constantine the Great 477 Joseph Stalin
3 564 Gautama Buddha 276 Nelson Mandela
4 506 Sigmund Freud 241 Genghis Khan
5 405 Diocletian 195 Sigmund Freud
6 351 Justinian I 191 Martina Navratilova
7 219 J. R. R. Tolkien 186 Constantine the Great
8 203 Genghis Khan 173 Justinian I
9 138 Avicenna 127 Nikola Tesla
10 129 Rumi 123 Kublai Khan
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Abstract

Understanding the correlation between two different scores for the same set of items is a common problem in
information retrieval, and the most commonly used statistics that quantifies this correlation is Kendall’s τ . However,
the standard definition fails to capture that discordances between items with high rank are more important than those
between items with low rank. Recently, a new measure of correlation based on average precision has been proposed to
solve this problem, but like many alternative proposals in the literature it assumes that there are no ties in the scores.
This is a major deficiency in a number of contexts, and in particular while comparing centrality scores on large graphs,
as the obvious baseline, indegree, has a very large number of ties in web and social graphs. We propose to extend
Kendall’s definition in a natural way to take into account weights in the presence of ties. We prove a number of
interesting mathematical properties of our generalization and describe an O(n logn) algorithm for its computation.
We also validate the usefulness of our weighted measure of correlation using experimental data.

1 Introduction
In information retrieval, one is often faced with different scores1 for the same set of items. This includes the lists of
documents returned by different search engines and their associated relevance scores, the lists of query recommendation
returned by different algorithms, and also the score associated to each node of a graph by different centrality measures
(e.g., indegree and Bavelas’s closeness [1]).

In most of the literature, the scores are assumed to be without ties, thus inducing a ranking of the elements. At
that point, correlation statistics such as Spearman’s rank correlation coefficient [24] and Kendall’s τ [12] can be used
to evaluate the similarity of the rankings. Spearman’s correlation coefficient is equivalent to the traditional linear
correlation coefficient computed on ranks of items. Kendall’s τ , instead, is proportional to the number of pairwise
adjacent swaps needed to convert one ranking into the other.

For a number of reasons, Kendall’s τ has become a standard statistic to compare the correlation between two ranked
lists. Such reasons include fast computation (O(n log n), where n is the length of the list, using Knight’s algorithm [14]),
and the existence of a variant that takes care of ties [13].

The explicit treatment of ties is of great importance when comparing global exogenous relevance scores in large
collections of web documents. The baseline of such scores is indegree—the number of documents containing hypertex-
tual link to a given document. More sophisticated approaches include Katz’s index [10], PageRank [21], and countless
variants. Due to the highly skewed indegree distribution, a very large number of documents share the same indegree,
and the same happens of many other scores: it is thus of uttermost importance that the evaluation of correlation takes
into account ties as first-class citizens.

On the other hand, Kendall’s τ has some known problems that motivated the introduction of several weighted
variants. In particular, a striking difference often emerges between the anecdotal evidence of the top elements by
different scores being almost identical, and the τ value being quite low. This is due to a known phenomenon: the scores
of important items tend to be highly correlated in all reasonable rankings, whereas most of the remaining items are
ranked in slightly different ways, introducing a large amount of noise, yielding a low τ value.

∗Sebastiano Vigna has been supported by the EU-FET grant NADINE (GA 288956).
1We purposely and consistently use “score” to denote real numbers associated to items, and “rank” to denote ordinal positions. The two terms

are used somewhat interchangeably in the literature, but in this paper the distinction is important as we assume that scores of different items can be
identical.
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This problem motivates the definition of correlation statistics that consider more important correlation between
highly ranked items. In particular, recently Yilmaz, Aslam and Robertson introduced a statistics, named AP (average
precision) correlation [27], which aims at considering more important swaps between highly ranked items. The need
for such a measure is very well motivated in the introduction of their paper, and we will not repeat here their detailed
discussion.

In this paper, we aim at providing a measure of correlation in the same spirit of the definition oh Yilmaz, Aslam and
Robertson, but taking smoothly ties into account. We will actually define a general notion of weighting for Kendall’s τ ,
and develop its mathematical properties. Since it is important that such a statistics is computable on very large data sets,
we will provide a generalization of Knight’s algorithm that can be applied whenever the weighting depends additively
or multiplicatively on a weight assigned to each item. The same algorithm can be used to compute AP correlation in
time O(n log n).

All data and software used in this paper are available as part of the LAW software library under the GNU General
Public License.2

2 Related work
Shieh [23] wrote the one of the first papers proposing a generic weighting of Kendall’s τ . She assumes from the very
start that there are no ties, and assign to the exchange between i and j a weight wij . Her motivation is the fidelity
evaluation of software packages for structural engineering, in which a set of variables is ranked in two different ways,
and one would like to emphasize agreement on the most important ones. In particular, she concentrates on weights
given by the product of two weights associated with the elements participating in the exchange. Our work can be seen
as a generalization of her approach, albeit we combine weights differently.

Kumar and Vassilvitskii [16] study a definition that extends Shieh’s taking into account position weights and sim-
ilarity between elements. Again, they assume that ties are broken arbitrarily, which is an unacceptable assumption if
large sets of elements have the same score. Fagin, Kumar and Sivakumar [6] use instead penalty weights to apply
Kendall’s τ just to the top k elements of two ranked lists (with no ties). Exchanges partially or completely outside the
top k elements obtain different weights.

Finally, the recent quoted work of Yilmaz, Aslam and Robertson [27] on AP correlation is the closest to ours in
motivation and methodology, albeit targeted at ranked lists with no ties.

We remark that analogous research exists in association with Spearman’s correlation: Iman and Conover [9], for
example, study the usage of Savage scores [22] instead of ranks when comparing ranked lists. Savage scores for a
ranked list of n elements are given by

∑n
j=i 1/j, where i is the rank (starting at one) of an element. Spearman’s

correlation applied to Savage scores considers more important elements at the top of a ranked list.
Recently, Webber, Moffat and Zobel [26] have described a similarity measure for indefinite rankings—rankings

that might have different lengths and contain different elements. Their work has some superficial resemblance with
the approach of [16, 27] and our work, as it give preminence to differences at the top of ranked lists, but it is not
technically a correlation index, as it is based on measuring overlaps of infinite lists, rather than on exchanges. Thus, the
basic condition for a correlation index (i.e., that inverting the list one obtains the minimum possible correlation, usually
standardized to−1), is not even expressible in their framework. Moreover, their measure, being defined on infinite lists,
needs the fundamental assumption that the weight function applied to overlaps must be summable; in particular, they
make importance decrease exponentially. As we will discuss in Section 4.2, and verify experimentally in Section 6,
such a choice is a reasonable framework for very short lists, or when only very first elements are relevant (e.g., because
one is modelling user behavior), but it would completely flatten the results of our correlation index on large examples,
depriving it from its discriminatory power, even if the weight function would decrease just quadratically.

A fascinating proposal, entirely orthogonal to the ones we discussed, is the idea of weighting Kemeny’s distance
between permutations proposed by Farnoud and Milenkovic [7]. In this proposal, Kemeny’s distance between two
permutations π and σ is characterized as the minimum number of adjacent transpositions (i.e., transpositions of the
form (i i+1)) that turn π into σ. At this point, one can define a weight associated to each adjacent transposition, and by
assigning larger weights to adjacent transpositions with smaller indices one can make differences in the top part of the
permutations more important than differences in the bottom part. The right notion of weighted distance turns out to be
the minimum sum of weights of a sequence of adjacent transposition that turn π into σ. The interesting property of this
approach is that avoids the need for a ground truth (an intrinsic notion of importance of an element), which is necessary,

2http://law.di.unimi.it/
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implicitly or explicitly, to weigh an exchange in the approaches of [23, 27] and in the one discussed in this paper. The
main drawback, presently, is that even in the presence of weighting functions that are monotonically decreasing in i the
time necessary to compute the distance is O(n2) instead of O(n log n). It is also necessary more tuning to extend the
distance to the case of ties, and to turn in this case the distance into a proper correlation index with range in [−1 . . 1].

3 Motivation
The need for weighted correlation measures in the case of ranked list has been articulated in detail in previous work.
Here we will focus on the case of centrality measures for graphs. Consider the graph of English Wikipedia3, which
has about four million nodes and one hundred million arcs. In this graph, 99.95% of the nodes have the same indegree
of some other node—for example, more than a half million node has indegree one. It is clearly mandatory, when
computing the correlation of other scores with indegree, that ties are taken into consideration in a systematic way (e.g.,
not broken arbitrarily).

We will consider four other commonly used scores based on the adjacency matrix A of the Wikipedia graph. One is
PageRank [21], which is defined by

1/n
∑
k≥0

(αĀ)k,

where α ∈ [0 . . 1) is a damping factor and Ā is a stochasticization of A: every row not entirely made of zeroes is
divided by its sum, so to have `1 norm one.

The other index we consider is Katz’s [10], which is defined by

1
∑
k≥0

(αA)k,

where α ∈ [0 . . 1/λ) is an attenuation factor depending on λ, the dominant eigenvalue of A [19]. In both cases, we take
α in the middle of the allowed interval (using different values does not change the essence of what follows, unless they
are extreme).

A different kind of score is provided by Bavelas’s closeness. The closeness of x is defined by

1∑
d(y,x)<∞ d(y, x)

,

where d(−,−) denotes the usual graph distance. Note that we have to eliminate nodes at infinite distance to avoid
zeroing all scores. By definition the closeness of a node with indegree zero is zero. Finally, we consider harmonic
centrality [2], a modified version of Bavelas’s closeness designed for directed graphs that are not strongly connected;
the harmonic centrality of x is defined by ∑

y 6=x

1

d(y, x)
.

These scores provide an interesting mix: indegree is an obvious baseline, and entirely local. PageRank and Katz
are similar in their definition, but the normalization applied to A makes the scores quite different (at least in theory).
Finally, closeness and harmonic centrality are of a completely different nature, having no connection with dominant
eigenvectors or Markov chains.

Our first empirical observation is that, looking just at the very top pages of Wikipedia (Table 1; entries in boldface
are unique to the list they belong to, here and in the following), we perceive these scores as almost identical, except for
closeness, which displays almost random values. The latter behavior is a known phenomenon: nodes that are almost
isolated obtain a very high closeness score (this is why harmonic centrality was devised). We note also that harmonic
centrality has a slightly different slant, as it is the only ranking including Latin, Europe, Russia and the Catholic Church
in the top 20.

The problem is that these facts are not reflected in any way in the values of Kendall’s τ shown in Table 3. If we
exclude closeness, with the exception of the correlation between indegree and Katz, all other correlation value fail to
surpass the 0.9 threshold, usually considered the threshold for considering two rankings equivalent [25]. Actually, they

3More precisely, a specific snapshot of Wikipedia that will be made public by the author. The graph does not contain template pages.
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Indegree PageRank Katz Harmonic Closeness
United States United States United States United States Kharqan Rural District
List of sovereign states Animal List of sovereign states United Kingdom Talageh-ye Sofla
Animal List of sovereign states United Kingdom World War II Talageh-ye Olya
England France France France Greatest Remix Hits (Whigfield album)
France Germany Animal Germany Suzhou HSR New Town
Association football Association football World War II Association football Suzhou Lakeside New City
United Kingdom England England English language Mepirodipine
Germany India Association football China List of MPs . . . M–N
Canada United Kingdom Germany Canada List of MPs . . . O–R
World War II Canada Canada India List of MPs . . . S–T
India Arthropod India Latin List of MPs . . . U–Z
Australia Insect Australia World War I List of MPs . . . J–L
London World War II London England List of MPs . . . C
Japan Japan Italy Italy List of MPs . . . F–I
Italy Australia Japan Russia List of MPs . . . A–B
Arthropod Village New York City Europe List of MPs . . . D–E
Insect Italy English language Australia Esmaili-ye Sofla
New York City Poland China European Union Esmaili-ye Olya
English language English language Poland Catholic Church Levels of organization (ecology)
Village Nationa Reg. of Hist. Places World War I London Jacques Moeschal (architect)

Table 1: Top 20 pages of the English version of Wikipedia following five different centrality measures.

are below the threshold 0.8, under which we are supposed to see considerable changes. The correlation of closeness
with harmonic centrality, moreover, is even more pathological: it is the largest correlation.

An obvious observation is that, maybe, the score is lowered by a large discordance in the rest of the rankings.
Table 2 tries to verify this intuition by listing the top pages that are associated with the Wordnet category “scientist” in
the Yago2 ontology data [8]. These pages have considerably lower score (their rank is below 300), yet the first three
rankings are almost identical. Harmonic centrality is still slightly different (Linnaeus is absent, and actually ranks 21),
which tells us that the Kendall’s τ is not giving completely unreasonable data. Nonetheless, closeness continues to
provide apparently random results.

We have actually to delve deep into Wikipedia, beyond rank 100 000 using the category “cocktail” to see that, finally,
things settle down (Table 5). While closeness still displays a few quirks, the rankings start to stabilize.

To understand what happens in the very low-rank region, in Table 4 we provide Kendall’s τ as in Table 3, but
restricting the computation to nodes of indegree 1 and 2. As it is immediately evident, after stabilization the low-rank
region is fraught with noise and all correlation values drop significantly.

The very high correlation between closeness and harmonic centrality is, actually, not strange: on the nodes reachable
from giant connected component of our Wikipedia snapshot (89% of the nodes) they agree almost exactly, as closeness
is the reciprocal of a denormalized arithmetic mean, whereas harmonic centrality is the reciprocal of a denormalized
harmonic mean [2]. Even if the remaining 11% of the nodes is completely out of place, making closeness useless,
Kendall’s τ tells us that it should be interchangeable with harmonic centrality. At the same time, Kendall’s τ tells us
that indegree is very different from PageRank, which again goes completely against our empirical evidence.

In the rest of the paper, we will try to approach in a systematic manner these problems by defining a new weighted
correlation index for scores with ties.

4 Definitions and Tools
In his 1945 paper about ranking with ties [13], Kendall, starting from an observation of Daniels [4], reformulates his
correlation index using a definition similar in spirit to that of an inner product, which will be the starting point of our
proposal: we consider two real-valued vectors r and s (to be thought as scores) with indices in [n]; then, let us define

〈r, s〉 :=
∑
i<j

sgn(ri − rj) sgn(si − sj),
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Indegree PageRank Katz Harmonic Closeness
Carl Linnaeus Carl Linnaeus Carl Linnaeus Aristotle Noël Bernard (botanist)
Aristotle Aristotle Aristotle Albert Einstein Charles Coquelin
Thomas Jefferson Thomas Jefferson Thomas Jefferson Thomas Jefferson Markku Kivinen
Margaret Thatcher Charles Darwin Albert Einstein Charles Darwin Angiolo Maria Colomboni
Plato Plato Charles Darwin Thomas Edison Om Prakash (historian)
Charles Darwin Albert Einstein Karl Marx Alexander Graham Bell Michel Mandjes
Karl Marx Karl Marx Plato Nikola Tesla Kees Posthumus
Albert Einstein Pliny the Elder Margaret Thatcher William James F. Wolfgang Schnell
Vladimir Lenin Vladimir Lenin Vladimir Lenin Isaac Newton Christof Ebert
Sigmund Freud Johann Wolfgang von Goethe Isaac Newton Karl Marx Reese Prosser
J. R. R. Tolkien Margaret Thatcher Ptolemy Charles Sanders Peirce David Tulloch
Johann Wolfgang von Goethe Ptolemy Johann Wolfgang von Goethe Noam Chomsky Kim Hawtrey
Spider-Man Sigmund Freud Pliny the Elder Enrico Fermi Patrick J. Miller
Pliny the Elder Isaac Newton Benjamin Franklin Ptolemy Mikel King
Benjamin Franklin Benjamin Franklin J. R. R. Tolkien John Dewey Albert Perry Brigham
Leonardo da Vinci J. R. R. Tolkien Thomas Edison Johann Wolfgang von Goethe Gordon Wagner (economist)
Isaac Newton Immanuel Kant Sigmund Freud Bertrand Russell George Henry Chase
Ptolemy Leonardo da Vinci Immanuel Kant Plato Charles C. Horn
Immanuel Kant Pierre André Latreille Leonardo da Vinci John von Neumann Paul Goldstene
George Bernard Shaw Thomas Edison Noam Chomsky Vladimir Lenin Robert Stanton Avery

Table 2: Top 20 pages of Wikipedia following five different centrality measures and restricting pages to Yago2 Wordnet
category “scientist”. The global rank of these items is beyond 300.

Ind. PR Katz Harm. Cl.
Indegree 1 0.75 0.90 0.62 0.55
PageRank 0.75 1 0.75 0.61 0.56
Katz 0.90 0.75 1 0.70 0.62
Harmonic 0.62 0.61 0.70 1 0.92
Closeness 0.55 0.56 0.62 0.92 1

Table 3: Kendall’s τ between Wikipedia centrality measures.

where

sgn(x) :=


1 if x > 0;
0 if x = 0;
−1 if x < 0.

Indices of score vectors in summations belong to [n] throughout the paper. Note that

〈r, αs〉 = 〈αr, s〉 = sgn(α)〈r, s〉,

which reminds of the analogous property for inner products, and that 〈r,−〉 = 〈−, r〉 = 0 if r is constant. Following
the analogy, we can define

‖r‖ :=
√
〈r, r〉,

so
‖αr‖ = | sgn(α)| · ‖r‖.

The norm thus defined measures the “untieness” of r: it is zero if and only if r is a constant vector, and it has maximum
value

√
n(n− 1)/2 when all components of r are distinct.

We can now define Kendall’s τ between two vectors r and s with nonnull norm as a normalized inner product, in a
way formally identical to cosine similarity:

τ(r, s) :=
〈r, s〉
‖r‖ · ‖s‖

. (1)

We recall that if r and s have no ties, the definition reduces to the classical “normalized difference of concordances and
discordances”, as the denominator is exactly n(n−1)/2. The definition above is exactly that proposed by Kendall [13],
albeit we use a different formalism.

The form of (1) suggests that to obtain a weighted correlation index it would be natural to define a weighted inner
product

〈r, s〉w :=
∑
i<j

sgn(ri − rj) sgn(si − sj)w(i, j),
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Ind. PR Katz Harm. Cl.
Indegree 1 0.31 0.63 0.24 0.06
PageRank 0.31 1 0.27 0.10 0.10
Katz 0.63 0.27 1 0.50 0.20
Harmonic 0.24 0.10 0.50 1 0.65
Closeness 0.06 0.10 0.20 0.65 1

Table 4: Kendall’s τ between Wikipedia centrality measures, restricted to nodes of indegree 1 and 2.

where w(−,−) : [n] × [n] → R≥0 is some nonnegative weight function. We would have then a new norm ‖r‖w =√
〈r, r〉w and a new correlation index

τw(r, s) :=
〈r, s〉w

‖r‖w · ‖s‖w
.

Note that still 〈r,−〉w = 〈−, r〉w = 0 if r is constant.
We say that two score vectors r and s are equivalent if sgn(ri − rj) = sgn(si − sj), opposite if sgn(ri − rj) =

− sgn(si − sj) for all i and j.

Lemma 1 We have ∑
i<j

| sgn(ri − rj) sgn(si − sj)|w(i, j) ≤ ‖r‖w‖s‖w. (2)

A sufficient condition for equality to hold is that the two vectors are equivalent or opposite.

Proof. Let Rij = | sgn(ri − rj)| and Sij = | sgn(si − sj)|. Then,(∑
i<j

RijSijw(i, j)
)2

=
(∑
i<j

R2
ijS

2
ijw(i, j)2

)
+
( ∑

i<j,k<`
i6=k∨j 6=`

RijSijRk`Sk`w(i, j)w(k, `)
)

≤
(∑
i<j

R2
ijS

2
ijw(i, j)2

)
+
( ∑

i<j,k<`
i6=k∨j 6=`

R2
ijS

2
k`w(i, j)w(k, `)

)
=
(∑
i<j

R2
ijw(i, j)

)(∑
i<j

S2
ijw(i, j)

)
= ‖r‖2w‖s‖2w.

Note that if the vectors are equivalent or opposite then

RijSijRk`Sk` = R2
ijS

2
k`

for all i, j, k and `, so we obtain equality.

We now prove a fundamental Cauchy–Schwartz-like inequality:

Theorem 1 |〈r, s〉w| ≤ ‖r‖w‖s‖w. A sufficient condition for equality to hold is that the two vectors are equivalent or
opposite. The condition is necessary if w is strictly positive and |〈r, s〉w| 6= 0.

Proof. The first two statements are immediate from Lemma 1, as

|〈r, s〉w| ≤
∑
i<j

| sgn(ri − rj) sgn(si − sj)|w(i, j)

and in the case of equivalent or opposite vectors we have equality. On the other hand, if we let Rij = sgn(ri − rj) and
Sij = sgn(si − sj) the chain of equalities and inequalities at the beginning of the proof of Lemma 1 continues to be
true. To have equality, however, assuming that w is strictly positive we must have

RijSijRk`Sk`w(i, j)w(k, `) = R2
ijS

2
k`w(i, j)w(k, `)

6



for all i, j, k and `, that is,
RijSijRk`Sk` = R2

ijS
2
k`.

Now, since |〈r, s〉w| 6= 0 there must be a pair ı̄, ̄ such that Rı̄̄ 6= 0 and Sı̄̄ 6= 0. Letting σ = Rı̄̄Sı̄̄ we have

Rk`Sk` = σS2
k`

and
RijSij = σR2

ij

for all i, j, k and `. In particular, ifRk` = 0 we have necessarily Sk` = 0, and vice versa. IfRk` 6= 0, then Sk` = σRk`,
which completes the proof.

Another application of Lemma 1 gives the triangular inequality:

Theorem 2 ‖r + s‖w ≤ ‖r‖w + ‖s‖w.

Proof.

‖r + s‖2w = 〈r + s, r + s〉w
=
∑
i<j

sgn(ri + si − rj − sj)2w(i, j)

=
∑
i<j

| sgn(ri + si − rj − sj)|2w(i, j)

≤
∑
i<j

(| sgn(ri − rj)|+ | sgn(si − sj)|)2w(i, j)

= 〈r, r〉w + 〈s, s〉w + 2
∑
i<j

| sgn(ri − rj) sgn(si − sj)|w(i, j)

≤ ‖r‖2w + ‖s‖2w + 2‖r‖w‖s‖w
= (‖r‖w + ‖s‖w)2.

The triangular inequality has a nice combinatorial interpretation: adding score vectors can only decrease the amount of
“untieness”. There is no way to induce in a sum vector more untieness than the amount present in the summands.

Finally, an easy application of Theorem 1 shows that τw is sensible and works as expected:

Theorem 3 Let w : [n] × [n] → R be a nonnegative weight function. The following properties hold for every score
vector t and for every r, s with nonnull norm:

• if t is constant, ‖t‖w = 0;

• −1 ≤ τw(r, s) ≤ 1;

• if r and s are equivalent, τw(r, s) = 1;

• if r and s are opposite, τw(r, s) = −1;

Moreover, if w is strictly positive:

• if ‖t‖w = 0, t is constant;

• if τw(r, s) = 1, r and s are equivalent;

• if τw(r, s) = −1, r and s are opposite.

As a result, if w is strictly positive and we obtain correlation ±1 the equivalence classes formed by tied scores are
necessarily in a size-preserving bijection that is monotone decreasing on the scores.
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Indegree PageRank Katz Harmonic Closeness
Martini (cocktail) Martini (cocktail) Irish coffee Irish coffee Magie Noir
Piña colada Caipirinha Caipirinha Caipirinha Batini (drink)
Mojito Mojito Martini (cocktail) Kir (cocktail) Scorpion bowl
Caipirinha Piña colada Piña colada Martini (cocktail) Poinsettia (cocktail)
Cuba Libre Irish coffee Kir (cocktail) Piña colada Irish coffee
Irish coffee Kir (cocktail) Mojito Mojito Caipirinha
Singapore Sling Cosmopolitan (cocktail) Mai Tai Beer cocktail Kir (cocktail)
Manhattan (cocktail) Manhattan (cocktail) Cuba Libre Shaken, not stirred Martini (cocktail)
Windle (sidecar) IBA Official Cocktail Singapore Sling Pisco Sour Piña colada
Cosmopolitan (cocktail) Beer cocktail Long Island Iced Tea Mai Tai Mojito
Mai Tai Mai Tai Shaken, not stirred Spritz (alcoholic beverage) Beer cocktail
IBA Official Cocktail Singapore Sling Beer cocktail Long Island Iced Tea Shaken, not stirred
Kir (cocktail) Cuba Libre Manhattan (cocktail) Sazerac Mai Tai
Shaken, not stirred Tom Collins Cosmopolitan (cocktail) Fizz (cocktail) Spritz (alcoholic beverage)
Beer cocktail Long Island Iced Tea Windle (sidecar) Flaming beverage Pisco Sour
Pisco Sour Sour (cocktail) Pisco Sour Cuba Libre Long Island Iced Tea
Long Island Iced Tea Shaken, not stirred White Russian (cocktail) Wine cocktail Sazerac
Sour (cocktail) Negroni IBA Official Cocktail Singapore Sling Flaming beverage
White Russian (cocktail) Flaming beverage Moscow mule Moscow mule Fizz (cocktail)
Vesper (cocktail) Lillet Vesper (cocktail) White Russian (cocktail) Wine cocktail

Table 5: Top 20 pages of Wikipedia following five different centrality measures and restricting pages to Yago2 Wordnet
category “cocktail”. The global rank of these items is beyond 100 000.

4.1 Decoupling rank and weight
The reader has probably already noticed that the dependence on the weight on the indices associated to the elements has
no meaning: a trivial request (see, for instance [11]) on a correlation measure is that, like Kendall’s τ , it is invariant by
isomorphism, that is, it does not change if we permute the indices of the vector. This currently doesn’t happen because
we are using the numbering of the element as ground truth to weigh the correlation between r and s. While there is
nothing bad in principle (we can stipulate that elements are indexed in order of importance using some external source
of information), we think that a more flexible approach decouples the problem of the ground truth from the problem of
weighting. We thus define the ranked-weight product

〈r, s〉ρ,w :=
∑
i<j

sgn(ri − rj) sgn(si − sj)w(ρ(i), ρ(j)),

where ρ : [n] → [n] ∪ {∞} is a ranking function associating with each index a rank, the highest rank being zero. We
admit the possibility of rank∞, given that the weight function provides a meaningful value in such a case, to include
also the case of partial ground truths. The definition of the ranked-weighted product induces, as in (1), a correlation
index τρ,w, and the machinery we developed applies immediately, as w(ρ(−), ρ(−)) is just a different weight function.

What if there is no ground truth to rely on? Our best bet is to use the rankings induced by the vectors r and s. Let
us denote by ρr,s the ranking defined by ordering elements lexicographically with respect to r and then s in case of a
tie (in descending order), and analogously for ρs,r (if two elements are at a tie in both vectors, their can be placed in
any order, as their rank does not influence the value of τρ,w). We define

τw,•(r, s) :=
τρr,s,w(r, s) + τρs,r,w(r, s)

2
. (3)

The same approach has been used in [27] to make AP correlation symmetric. This is the definition used in the rest of
the paper.

4.2 Choosing a weighting scheme
There are of course many ways to choose w. For computational reasons, we will see that it is a good idea to restrict
to a class of weighting schemes in which w is obtained by combining additively or multiplicatively a one-argument
weighting function f : [n]→ R≥0 applied to each element of a pair.

Shieh [23], for instance, combines weights multiplicatively, without giving a motivation. We have, however, two
important motivations for adding weights. First and foremost, unless weights are scaled in some way that depends on n
(which we would like to avoid), the largest weight will be some constant, and then weight will decrease monotonically
with importance. As a result, an exchange between the first and the last element would be assigned an extremely low
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weight. Second, adding weights paves the way to a natural measure for top k correlation [6] by assigning rank∞ to
elements after the first k. The definition of such a measure in the multiplicative case is quite contrived and ends up
being case-by-case.

For what matters f , we are particularly interested in the hyperbolic weight function.

f(r) :=
1

r + 1
.

This function gives more importance to elements of high rank, and weights zero only pairs in which both index have
infinite rank. Using a hyperbolic weight has a number of useful features. First, it reminds the well-motivated weight
given to exchanges by AP correlation. Second, it guarantees that as n grows the mass of weight grows indefinitely.
Using a function with quadratic decay, for instance, might end up in making the influence of low-rank element vanish
too quickly, as it is summable. For the opposite reason, a logarithmic decay might fail to be enough discriminative to
provide additional information with respect to the standard τ .

We try to make this intuition more concrete in Figure 1, where we display a number of scatter plots showing the
correlation between Kendall’s τ and the additive weighted τ defined by (3) under different weighting schemes. The left
half of the plots correlates all permutations on 12 elements with the identity permutation. The right half correlates all
score vectors made of 15 values with skewed distribution (there are t+ 1 elements with score 0 ≤ t ≤ 4) with the same
vector in descending order. A visual examination of the plots suggests, indeed, that logarithmic weighting restricts too
much the possible divergence from Kendall’s τ , whereas quadratic weighting ends up in providing answers that are too
uncorrelated. We will return to these consideration in Section 6.

5 Computing τρ,w

Our motivations come from the study of web and social graphs. It is thus essential that our new correlation measure
can be evaluated efficiently. We now describe a generalization of Knight’s algorithm [14] that makes it is possible to
compute τρ,w in timeO(n log n) under some assumptions onw. Our first observation is that, similarly to the unweighted
case, each pair of indices i, j with i < j belongs to one of five subsets; it can be

• a joint tie, if ri = rj and si = sj ;

• a left tie, if ri = rj and si 6= sj ;

• a right tie, if ri 6= rj and si = sj ;

• a concordance, if sgn(ri − rj) sgn(si − sj) = 1;

• a discordance, if sgn(ri − rj) sgn(si − sj) = −1.

Let J , L, R, C and D be the overall weight of joint ties, left ties, right ties, concordances and discordances,
respectively. Clearly,

J + L+R+ C +D =
∑
i<j

w(ρ(i), ρ(j)) = T.

The first requirement for our technique to work is that T can be computed easily. This is possible if weights are
computed additively or multiplicatively from some single-argument function f . In the additive case,

T =
∑
i<j

(
f(ρ(i)) + f(ρ(j))

)
= (n− 1)

∑
i

f(ρ(i)). (4)

Also the multiplicative case is easy, as

2T = 2
∑
i<j

f(ρ(i))f(ρ(j)) =

(∑
i

f(ρ(i))

)2

−
∑
i

f(ρ(i))2. (5)

The same observation leads to a simple O(n log n) algorithm to compute L: sort the indices in [n] by r, and for each
block of consecutive k > 1 elements with the same score apply (4) or (5) restricting the indices to the subset. In the
same way one can compute R and J .
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Figure 1: Scatter plots between Kendall’s τ and the additive weighted τ . The rows, from top to bottom, represent
logarithmic, hyperbolic and quadratic weighting. The plots are generated correlating a permutation of 12 elements
versus the identity permutation (left), or a permuted set of scores with skewed distribution w.r.t. the same scores in
descending order (right).
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We now observe that, as in the unweighted case,

〈r, s〉ρ,w = C −D = T − (L+R− J)− 2D.

This can be easily seen from the fact that C is given by the total weight T , minus the weight of discordances D, minus
the number of ties, joint or not, which is L + R − J (we must avoid to count twice the weight of joint ties, hence the
−J term). In particular,

〈r, r〉ρ,w = T − L 〈s, s〉ρ,w = T −R,

as in this case there are just concordances and all ties are joint.
We are left with the computation of D. The core of Knight’s algorithm is an exchange counter: an O(n log n)

algorithm that given a list of elements and an order� on the elements of the list computes the number of exchanges that
are necessary to �-sort the list. The algorithm is a modified MergeSort [15]4: during the merging phase, whenever an
element is moved from the second list to the temporary result list the current number of elements of the first list is added
to the number of exchanges. The number of discordances is then equal to the number of exchanges (as we evaluate
whether there is a discordance on i and j only for i < j).

Our goal is to make this computation weighted: for this to happen, it must be possible to keep track incrementally
of a residual weight r associated with the first list, and obtain in constant time the weight of the exchanges generated
by the movement of an element from the second list.

If weights are computed multiplicatively or additively starting from a single-argument function f this is not difficult:
it is sufficient to let r be the sum of the values of f applied to the elements currently in the first list. In the additive case,
moving an element i from the second list increases the weight of exchanges by the residual r plus the weight f(ρ(i))
multiplied by the length of the first list. In the multiplicative case, we must instead use the weight f(ρ(i)) multiplied
by the residual r. When we move an element from the first list we update the residual by subtracting its weight.

The resulting recursive procedure (for the additive case) is Algorithm 1. The final layout of the computation of τρ,w
is thus as follows:

• Consider a list L initially filled with the integers [0 . . n).

• Sort stably L using r as primary key and s as secondary key.

• Compute T and L using L to enumerate elements in the order defined by r and s.

• Apply Algorithm 1 to L using s to define the order �, thus computing D and sorting L by s.

• Compute R using L to enumerate elements in the order defined by s.

• Compute T and put everything together.

The running time of the computation is dominated by the sorting phases, and it is thus O(n log n).

5.1 The asymmetric case and AP Correlation
It is easy to adapt Algorithm 1 for the case in which w(i, j) is given by a combination of two different one-argument
functions, one, f , for the left index and one, g, for the right index. The only modification of Algorithm 1 is the
replacement of f with g at line 14, so that we combine the residual computed with f with a weight computed with g.

The formulae for computing T can be updated easily for the additive case:

T =
∑
i<j

(
f(ρ(i)) + g(ρ(j))

)
=
∑
i 6=0

i(f(ρ(n− 1− i)) + g(ρ(i)))

and for the multiplicative case:

T =
∑
i<j

f(ρ(i))g(ρ(j)) =
∑
i

f(ρ(i))
∑
i<j

g(ρ(j)).

4In principle, any stable algorithm that sorts by comparison could be used. This is particularly interesting as entirely on-disk algorithms, such as
polyphase merge [15], could be used to count exchanges using constant core memory.
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Algorithm 1 A generalization of Knight’s algorithm for weighing exchanges.

Input: A list L , a comparison function � for the elements of L , a rank function ρ, and a single-argument weight
function f that will be combined additively. e is a global variable initialized to 0 that will contain the weight of
exchanges after the call weigh(0, |L |). The procedure works on a sublist specified by its starting index 0 ≤ s < |L |
and its length `. T is a temporary list.
Output: the sum of f(ρ(−)) on the specified sublist.

0 function weigh(s : integer, ` : integer)
1 if ` = 1 then return f(ρ(L [s])) fi
2 `0 ← b`/2c
3 `1 ← `− `0
4 m← s+ `0
5 r ← weigh(s, `0)
6 w ← weigh(m, `1) + r
7 i, j, k ← 0
8 while j < `0 and k < `1 do
9 if L [s+ j] � L [m+ k] then
10 T [i] = L [s+ j++]
11 r ← r − f(ρ(T [i]))
12 else
13 T [i] = L [m+ k++]
14 e← e+ f(ρ(T [i])) · (`0 − j) + r
15 fi
16 i++
17 od
18 for k = `0 − j − 1, . . . , 0 do
19 L [s+ i+ k]← L [s+ j + k]
20 od
21 for k = 0, . . . , i− 1 do L [s+ k]← T [k] od
22 return w
23 end

Both formulae can be computed in linear time using a suitable loop.
Given this setup, it is easy to compute AP correlation: as it can be easily checked from the very definition [27], the

AP correlation of r w.r.t. s, where both vectors have no ties, is simply τw,ρs(r, s), where ρs is the ranking induced by
s and the weight function w is computed additively from two weight functions f(r) = 0, g(r) = 1/r. In this case,
T = n− 1, J = L = R = 0 (we are under the assumption that there are no ties) and Algorithm 1 can be considerably
simplified, as the residual r is always zero.5

Algorithm 2 makes explicit the change to the selection statement of Algorithm 1 that is sufficient to compute AP
correlation. Since keeping track of the residual is no longer necessary, the recursive function can be further simplified
to a recursive procedure that does not return a value. The value e computed by the modified algorithm is all we need to
compute AP correlation using the formula (T − 2e)/T .

5Of course, it is possible to forget that we are computing AP correlation and use the weight matrix just described combined with the machinery
of Section 4 to define an “AP correlation with ties”. In this case, J , L and R should be computed using the formulae for the asymmetric case, and
the probabilistic interpretation would be lost. Such an index would probably give a notion of correlation very similar to τh, but we find more natural
and more in line with Kendall’s original definition to introduce the weighted τ as a symmetric index in which both ends of an exchange are relevant
in computing the exchange weight.
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Algorithm 2 The replacement for lines 9–15 of Algorithm 1 to compute AP correlation.
9 if L [s+ j] � L [m+ k] then
10 T [i] = L [s+ j++]
11 else
12 T [i] = L [m+ k++]
13 e← e+ (`0 − j)/ρ(T [i])
14 fi

Ind. PR Katz Harm. Cl.
Indegree 1 0.95 0.98 0.90 0.27
PageRank 0.95 1 0.96 0.92 0.65
Katz 0.98 0.96 1 0.93 0.26
Harmonic 0.90 0.92 0.93 1 0.28
Closeness 0.27 0.65 0.26 0.28 1

Table 6: τh on Wikipedia.

6 Experiments
We now return to our main motivation—understanding the correlation between centralities on large graph. In this
section, we gather the results of a number of computational experiment that help to corroborate our intuition that τh, the
additive hyperbolic weighted τ , works as expected. We will find also an interesting surprise along the way.

Note that judging whether a new measure is useful for such a purpose is a difficult task: to be interesting, a new mea-
sure must highlight features that were previously undetectable or badly evaluated, but those are exactly those features
on which a systematic assessment is problematic.

Table 6 reports the value of τh on the Wikipedia graph. We finally see data corresponding to the empirical evidence
discussed in Section 3: indegree, Katz and PageRank are almost identical, harmonic centrality is highly correlated but
definitely less than the previous triple, which matches our empirical observations. Closeness is not close to any ranking
(and in particular, not to harmonic centrality) due to its pathological behavior.

There is of course a value that immediately stands out: the suspiciously high correlation (0.65) between closeness
and PageRank. We reserve discussing this value for later.

In Table 7 we show the same data for logarithmic and quadratic weights. The intuition we gathered from Figure 1 is
fully confirmed: logarithmic weights provides results almost indistinguishable from Kendall’s τ (compare with Table 3),
and quadratic weighs make the influence of the tail so low that all non-pathological scores collapse.

To gather a better understanding of the behavior of τh we extended our experiments to two very different datasets:
the Hollywood co-starship graph, an undirected graph (2 million nodes, 229 million edges) with an edge between two
persons appearing in the Internet Movie Data Base if they ever worked together, and a host graph (100 million nodes,
2 billion arcs) obtained from a large-scale crawl gathered by the Common Crawl Foundation6 in the first half of 2012.7

As (unavoidably anecdotal) empirical evidence we report the top 20 nodes for both graphs.
Table 8 should be compared with Table 10. PageRank and harmonic centrality turns to be less correlated to indegree

than Katz in Table 8, and indeed we find many quirk choices in the very top PageRank actors (Ron Jeremy is a famous
porn star; Lloyd Kaufman is an independent horror/splatter filmmaker and Debbie Rochon an actress working with
him). Harmonic centrality provides unique names such as Malcolm McDowell, Robert De Niro, Anthony Hopkins and
Sylvester Stallone, and drops all USA presidents altogether. Kendall’s τ values, instead, suggest that PageRank and
harmonic centrality are entirely uncorrelated (whereas we find several common items), and that harmonic and closeness
centrality should be extremely similar.

We see analogous results comparing Table 9 with Table 11. Here τh separates in a very strong way harmonic
centrality from the first three, and indeed we see a significant difference in the lists, with numerous sites that have
a high indegree and appear in at least two of the three lists because of technical or political reasons (gmpg.org,

6http://commoncrawl.org/
7The crawl contains 3.53 billion web documents; we are using the associated host graph, which has a node for each host and an arc between two

hosts x and y if some page in x points to some page in y. More information about the graph can be found in [18], and the complete host ranking can
be accessed at http://wwwranking.webdatacommons.org/.
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Ind. PR Katz Harm. Cl.
Indegree 1 0.76 0.90 0.63 0.55
PageRank 0.76 1 0.76 0.62 0.56
Katz 0.90 0.76 1 0.70 0.62
Harmonic 0.63 0.62 0.70 1 0.91
Closeness 0.55 0.56 0.62 0.91 1

Ind. PR Katz Harm. Cl.
Indegree 1 1.00 1.00 1.00 0.22
PageRank 1.00 1 1.00 1.00 0.85
Katz 1.00 1.00 1 1.00 0.18
Harmonic 1.00 1.00 1.00 1 0.07
Closeness 0.22 0.85 0.18 0.07 1

Table 7: The logarithmic (top) and quadratic (bottom) additive τ on Wikipedia.

Ind. PR Katz Harm. Cl.
Indegree 1 0.42 0.93 0.55 0.43
PageRank 0.42 1 0.36 0.10 0.18
Katz 0.93 0.36 1 0.61 0.49
Harmonic 0.55 0.10 0.61 1 0.86
Closeness 0.43 0.18 0.49 0.86 1

Ind. PR Katz Harm. Cl.
Indegree 1 0.90 0.98 0.91 0.10
PageRank 0.90 1 0.88 0.81 0.64
Katz 0.98 0.88 1 0.92 0.11
Harmonic 0.91 0.81 0.92 1 0.18
Closeness 0.10 0.64 0.11 0.18 1

Table 8: Kendall’s τ (top) and τh (bottom) on the Hollywood co-starship graph.

rtalabel.org, staff.tumblr.com, miibeian.gov.cn, phpbb.com) disappearing altogether in favor of sites such as
apple.com, amazon.com, myspace.com, microsoft.com, bbc.co.uk, nytimes.com and guardian.co.uk, which do not
appear in any other list. If we look at Kendall’s τ , we should expect PageRank and Katz to give very different rankings,
whereas more than half of their top 20 elements are in common.

6.1 PageRank and closeness
It is now time to examine the mysteriously high τh between PageRank and closeness we found in all our graphs. When
we first computed our correlation tables, we were puzzled by its value. The phenomenon is interesting for three reasons:
first, it has never been reported—using standard, unweighted indices this correlation is simply undetectable; second, it
was known for techniques based on singular vectors [17]; third, we know exactly the cause of this correlation, because
the only real difference between harmonic and closeness centrality is the score assigned to nodes unreachable from the
giant component. We thus expect to discover an unsuspected correlation between the way PageRank and closeness rank
these nodes.

To have a visual understanding of what is happening, we created Figure 2, 3 and 4 in the following way: first, we
isolated the nodes that are unreachable from the giant component (in the case of Hollywood, which is undirected, these
nodes form separate components), omitting nodes which have indegree zero, modulo loops (as all measures give the
lowest score to such nodes); then, we sorted the nodes in order of decreasing closeness rank, and plotted for each node
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Ind. PR Katz Harm. Cl.
Indegree 1 0.71 0.89 0.61 0.54
PageRank 0.71 1 0.66 0.50 0.50
Katz 0.89 0.66 1 0.69 0.59
Harmonic 0.61 0.50 0.69 1 0.86
Closeness 0.54 0.50 0.59 0.86 1

Ind. PR Katz Harm. Cl.
Indegree 1 0.91 0.96 0.72 0.20
PageRank 0.91 1 0.90 0.81 0.69
Katz 0.96 0.90 1 0.78 0.15
Harmonic 0.72 0.81 0.78 1 0.35
Closeness 0.20 0.69 0.15 0.35 1

Table 9: Kendall’s τ (top) and τh (bottom) on the on the Common Crawl host graph.

Indegree PageRank Katz Harmonic Closeness
Shatner, William Jeremy, Ron Shatner, William Sheen, Martin Östlund, Claes Göran
Flowers, Bess Hitler, Adolf Sheen, Martin Clooney, George Östlund, Catarina
Sheen, Martin Kaufman, Lloyd Hanks, Tom Jackson, Samuel L. von Preußen, Oskar Prinz
Reagan, Ronald (I) Bush, George W. Williams, Robin (I) Hopper, Dennis von Preußen, Georg Friedrich
Clooney, George Reagan, Ronald (I) Clooney, George Hanks, Tom von Mannstein, Robert Grund
Jackson, Samuel L. Clinton, Bill (I) Reagan, Ronald (I) Stone, Sharon (I) von Mannstein, Concha
Williams, Robin (I) Sheen, Martin Willis, Bruce Brosnan, Pierce von der Busken, Mart
Hanks, Tom Rochon, Debbie Jackson, Samuel L. Hitler, Adolf van der Putten, Thea
Jeremy, Ron Kennedy, John F. Stone, Sharon (I) McDowell, Malcolm de la Bruheze, Joel Albert
Hitler, Adolf Hopper, Dennis Freeman, Morgan (I) Williams, Robin (I) de la Bruheze, Emile
Willis, Bruce Nixon, Richard Flowers, Bess De Niro, Robert te Riele, Marloes
Clinton, Bill (I) Estevez, Joe Brosnan, Pierce Willis, Bruce de Reijer, Eric
Freeman, Morgan (I) Shatner, William Douglas, Michael (I) Hopkins, Anthony des Bouvrie, Jan
Hopper, Dennis Jackson, Samuel L. Madonna (I) Madonna (I) de Klijn, Judith
Stone, Sharon (I) Stewart, Jon (I) Travolta, John Lee, Christopher (I) de Freitas, Luís (II)
Madonna (I) Carradine, David (I) Hopper, Dennis Douglas, Michael (I) de Freitas, Luís (I)
Bush, George W. Asner, Edward Ford, Harrison (I) Sutherland, Donald (I) Zuu, Winnie Otondi
Harris, Sam (II) Zirnkilton, Steven Asner, Edward Freeman, Morgan (I) Zuu, Emmanuel Dahngbay
Brosnan, Pierce Colbert, Stephen MacLaine, Shirley Stallone, Sylvester Zilbersmith, Carla
Travolta, John Madsen, Michael (I) Clinton, Bill (I) Ford, Harrison (I) Zilber, Mac

Table 10: Top 20 pages of the Hollywood co-starship graph.

its rank following the other measures (we average ranks on block of nodes so to contain the number of points in the
plots). A point of high abscissa in the figures implies a high rank.

All three pictures show clearly that PageRank assigns a preposterously high rank to to nodes belonging to compo-
nents that are unreachable from the giant component. This behavior is actually related to PageRank’s insensitivity to
size: for instance, in a graph made of two components, one of which is a 3-clique and the other a k-clique, the PageRank
score of all nodes is 1/(3 + k), independently of k. This explains why small dense components end up being so highly
ranked. The same phenomenon is at work when the community around Lloyd Kaufman’s production company (very
small and very dense) is attributed such a great importance that its elements make their way to the very top ranks (even
if Kaufman himself has indegree rank 219 and Debbie Rochon 1790).

We remark that the gap in rank is lower in the case of Wikipedia, but this is fully in concordance with the higher
baseline value of Kendall’s τ .

7 Conclusions
In this paper, motivated by the need to understand similarity between score vectors, such as those generated by centrality
measures on large graphs, we have defined a weighted version of Kendall’s τ starting from its 1945 definition for scores
with ties. We have developed the mathematical properties of our generalization following a mathematical similarity
with internal products, and showing that for a wide range of weighting schemes our new measure behaves as expected,
providing a correlation index between -1 and 1, and hitting boundaries only for opposite or equivalent scores.
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Indegree PageRank Katz Harmonic Closeness
wordpress.org gmpg.org wordpress.org youtube.com 0–p.com
youtube.com wordpress.org youtube.com en.wikipedia.org 0-0-0-0-0-0-0.indahiphop.ru
gmpg.org youtube.com gmpg.org twitter.com 0-0-1.i.tiexue.net
en.wikipedia.org livejournal.com en.wikipedia.org google.com 0-00cigarettes.info
tumblr.com tumblr.com tumblr.com wordpress.org 0-0mos00.hi5.com
twitter.com en.wikipedia.org twitter.com flickr.com 0-0new0-0.hi5.com
google.com twitter.com google.com facebook.com 0-0sunny0-0.hi5.com
flickr.com networkadvertising.org flickr.com apple.com 0-1.i.tiexue.net
rtalabel.org promodj.com rtalabel.org vimeo.com 0-1.sxsy.co
wordpress.com skriptmail.de wordpress.com creativecommons.org 0-2.paparazziwannabe.com
mp3shake.com parallels.com mp3shake.com amazon.com 0-311.cn
w3schools.com tistory.com w3schools.com adobe.com 0-360.rukazan.ru
domains.lycos.com google.com creativecommons.org myspace.com 0-5days.com
staff.tumblr.com miibeian.gov.cn staff.tumblr.com w3.org 0-5days.net
club.tripod.com phpbb.com domains.lycos.com bbc.co.uk 0-5kalibr.pdj.ru
creativecommons.org blog.fc2.com club.tripod.com nytimes.com 0-9-0-4-4-9.promoradio.ru
vimeo.com tw.yahoo.com vimeo.com yahoo.com 0-9-0-9.dbass.ru
miibeian.gov.cn w3schools.com miibeian.gov.cn microsoft.com 0-9-0-9.promodj.ru
facebook.com wordpress.com facebook.com guardian.co.uk 0-9-1125.i.tiexue.net
phpbb.com domains.lycos.com phpbb.com imdb.com 0-9-7-16.software.informer.com

Table 11: Top 20 hosts of the Common Crawl host graph.
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Figure 2: Ranks of components unreachable from the giant component of the Wikipedia graph.

We have then proposed families of weighting schemes that are intuitively appealing, and showed that they can be
computed in time O(n log n) using a generalization of Knight’s algorithm, which makes them suitable for large-scale
applications. The fact that the main cost of the algorithm is a modified stable sort makes it possible to apply standard
techniques to run the algorithm exploiting multicore parallelism, or in distributed environment such as MapReduce [5].
The algorithm can be also used to compute AP correlation [27].

In search for a confirmation of our mathematical intuition, we have then applied our measure of choice τh (which
uses additive hyperbolic weights) to diverse graph such as Wikipedia, the Hollywood co-starship graph and a large host
graph, finding that, contrarily to Kendall’s τ , τh provides results that are consistent with an anecdotal examination of
lists of top elements.

Our measure was also able to discover a previously unnoticed correlation between PageRank and closeness on
small components that are unreachable from the giant component, providing a quantifiable account of the strong bias
of PageRank towards small-sized dense communities. This bias might well be the cause of the repeatedly assessed
better performance of indegree w.r.t. PageRank in ranking documents [20, 3], as in all our experiments the τh between
PageRank and indegree is above 0.9.

A generalization similar to the one described in this paper can be also applied to Goodman–Kruskal’s γ, which in
the notation of Section 5 is just (C −D)/(C +D). The problem with γ is that the ranking of ties is only implicit (they
are simply not counted). Thus, the value of w on tied pairs does not appear at all in the above formula. This “forgetful”
behavior can lead to unnatural results, and suggests the Kendall’s τ is a better candidate for this approach.
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Figure 3: Ranks of components unreachable from the giant component of the Hollywood.
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Figure 4: Ranks of components unreachable from the giant component of the Common Crawl host graph.

We remark that an interesting application of additive hyperbolic weighting is that of measuring the correlation
between top k lists. By assuming that the rank function ρ returns ∞ after rank k, we obtain a correlation index that
weighs zero pairs outside the top k, weights only “by one side” pairs with just one element outside the top k, and
weights fully pairs whose elements are within the top k. Formula (3) could provide then in principle a finer assessment
than, for instance, the modified Kendall’s τ proposed in [6], as the position of each element inside the list, beside the
fact that it appears in the top k or not, would be a source of weight. We leave the analysis of such a correlation measure
for future work.
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ABSTRACT
The “Local Ranking Problem” (LRP) is related to the com-
putation of a centrality-like rank on a local graph, where the
scores of the nodes could significantly differ from the ones
computed on the global graph. Previous work has studied
LRP on the hyperlink graph but never on the BrowseGra-
ph, namely a graph where nodes are webpages and edges
are browsing transitions. Recently, this graph has received
more and more attention in many different tasks such as
ranking, prediction and recommendation. However, a web-
server has only the browsing traffic performed on its pages
(local BrowseGraph) and, as a consequence, the local com-
putation can lead to estimation errors, which hinders the
increasing number of applications in the state of the art.
Also, although the divergence between the local and global
ranks has been measured, the possibility of estimating such
divergence using only local knowledge has been mainly over-
looked. These aspects are of great interest for online service
providers who want to gauge their ability to correctly assess
the importance of their resources only based on their local
knowledge, and by taking into account real user browsing
fluxes that better capture the actual user interest than the
static hyperlink network. We study the LRP problem on a
BrowseGraph from a large news provider, considering as su-
bgraphs the aggregations of browsing traces of users coming
from different domains. We show that the distance between
rankings can be accurately predicted based only on structu-
ral information of the local graph, being able to achieve an
average rank correlation as high as 0.8.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
E.1 [Data Structures]: Graphs and Networks

Keywords
Local Ranking Problem, BrowseGraph, PageRank, Centra-
lity Algorithms, Domain-specific Browsing Graphs
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1. INTRODUCTION
The ability to identify the online resources that are percei-

ved as important by the users of a website is crucial for online
service providers. Metrics to estimate the importance of the
page from the structure of online links between them are
widely used: algorithms that compute the centrality of the
nodes in a network, such as PageRank [24], HITS [17] and
SALSA [19], have been employed extensively in the last two
decades in a vast variety of applications. Born and spread
in conjunction with the growth of the Web, they can de-
termine a value of importance of a page from the complex
network of links that surrounds it. More recently, centrality
metrics have been applied to browsing graphs, (also referred
to as BrowseGraphs [22, 28, 27]) where nodes are webpa-
ges and edges represent the transitions made by the users
who navigate the links between them. Differently from the
hyperlink networks, this data source provides the analyst a
way of studying directly the dynamics of the navigational
patterns of users who consume online content. Also, unlike
hyperlinks, browsing traces account for the variation of con-
sumption patterns in time, for instance in the case of online
news were articles tend to become rapidly stale. Compa-
rative studies have shown that centrality-based algorithms
applied over BrowseGraphs provide higher-quality rankings
compared to standard hyperlink graphs [23, 22].

Most centrality measures aim at estimating the impor-
tance of a node, using information coming from the global
knowledge of the graph topology—potentially the addition
of new nodes and edges, can have a cascade effect on the
centrality values of all other nodes in the network. This
fact entails high computational and storage cost for big ne-
tworks. More critically, there are some situations in which
a global computation on the entire graph is unfeasible, for
example when the information about the entire network is
unavailable or if only an estimation for specific web pages
is required. This is an important limitation in many real-
world scenarios, where the graphs at hand are often very
large (Web scale) and, most importantly, their topology is
not fully known. This practical issue raises the problem of
how well one can estimate the actual centrality value of a
node by knowing only a local portion of the graph. This is
known as the Local Ranking Problem (LRP) [10].

One of the questions behind LRP is whether it is possi-
ble to estimate efficiently the PageRank score of a web page
using only a small subgraph of the entire Web [9]. In other
words, if one starts from a small graph around a page of
interest and extends it with external nodes and arcs (i.e.,
those belonging to the whole graph), how fast will one ob-



serve the computed scores converging to the real values of
PageRank?

We extend this line of work in the context of browsing
graphs. For the first time we study the LRP on the Brow-
seGraph and shed some light on the bias that PageRank
incurs, when estimating the centrality score of nodes in a
BrowseGraph, when only partial information about the gra-
ph is available. To achieve that, we monitor the browsing
traffic of the news portal and we extract different browsing
subgraphs induced by the browsing traces of users coming
from different domains, such as search engines (e.g., Google,
Yahoo, Bing) and social networks (e.g., Facebook, Twitter,
Reddit). In this setting, the local BrowseGraphs are the
subgraphs induced by the different domains, and the glo-
bal BrowseGraph is the one built using indistinctly all the
navigation logs of the news portal. We describe and eval-
uate models that tell apart a subgraph from the others just
by looking at the behavior of a random surfer that naviga-
tes through their links. The results show how it is possible
to recognize the graph using only the very first few nodes
visited by the users, because the graphs are very different
among them (even if they are extracted from the same big
log of the news portal). The implication of this experiment
is two-fold: first it highlights how navigation patters of the
users differ among these subgraphs. Second, we learn that
it is possible to infer the user domain of origin from the very
first browsing steps. This capability enables several types
of services, including user profiling [12], web site optimiza-
tion [31], user engagement estimation [18], and cold-start
recommendation [27], even when the referrer URL is not
available (e.g.when the user comes from mobile social media
applications or URL shortening services).

Once we show that the subgraphs are different enough, we
proceed to perform more involved experiments that we call
“Growing Balls”. We examine the behavior of the PageRank
computed on the local and the global graphs. In order to
study how the local PageRank converges to the global one,
we apply some strategies of incremental addition (“growing”)
of external nodes to these subgraphs (“balls”).

Finally, we build on these findings by setting up a predic-
tion experiment that, for the first time, tackles the task of
estimating the reliability of the PageRank computed locally.
We measure how much the local PageRank diverges from the
global one using only structural features of the local graph,
usually available to the local service provider.
To sum up, the main contributions of this work are the
following:

• We study the LRP on a large-scale BrowseGraph built
from a very popular news website. To the best of our
knowledge we are the first to tackle this problem on the
increasingly popular BrowseGraph [27, 28, 12, 22]. We
present an analysis of the convergence of the PageRank
on the local graph to the global one, by incrementally
expanding the local graph in a snowball fashion.

• We tackle the problem of discovering the referrer do-
main of a user session, when this information is mis-
sing or hidden. We show that this is possible using
a random surfer model, that is able to tell the refer-
rer domain with high accuracy, just after the very first
browsing transitions.

• We show that an accurate estimation of the distance
between the local and global PageRank can be obtai-

ned looking at the structural properties of the local
graph, such as degree distribution or assortativity.

The remainder of the paper is organized as follows. In
§2, we overview relevant prior work in the area and in §3
we describe our dataset and the extraction of the browsing
graphs. In §4 we analyze the (sub-)graphs and we highli-
ght their differences. In §5 we study the LRP problem on
the BrowseGraph and compare the approximation accura-
cy of different graph expansion strategies. In §6 we present
the prediction experiment of the PageRank errors of the lo-
cal graph. Last, in §7 we wrap up and highlight possible
extensions to the work.

2. RELATED WORK
This work encompasses two main different research areas

that we introduce shortly. Our focus is the Local Ranking
Problem but our contribution relates also to previous work
on browsing log data, especially the ones that investigate or
make use of centrality-based algorithms.

Local Ranking Problem
The Local Ranking Problem (LRP) was first introduced by
Chen et al. [10] in 2004, who addressed the problem to ap-
proximate/update the PageRank of individual nodes, wi-
thout performing a large-scale computation on the entire
graph. They proposed an approach that can tackle this pro-
blem by including a moderate number of nodes in the local
neighborhood of the original nodes. Furthermore, Davis and
Dhillon [14] estimated the global PageRank values of a local
network using a method that scales linearly with the size of
the local domain. Their goal was to rank webpages in order
to optimize their crawling order, something similar to what
was done by Cho et al. [13] who instead selected the top-
ranked pages first. However, this latter strategy results to
be in contrast with Boldi et al. [6], as they found that craw-
ling first the pages with highest global PageRank actually
perform worse, if the purpose is fast convergence to the real
(global) rank values. In this work, we partial expand the
local graph with the neighboring nodes with highest (local)
PageRank showing an initial improvement on the conver-
gence speed. In 2008 the problem was reconsidered by Bar-
Yossef and Mashiach [3], where they simplified the problem
calculating a local Reverse PageRank proving that it is more
feasible and computationally cheaper, as the reverse natural
graphs tend to have low in-degree maintaining a fast Page-
Rank convergence. Bressan and Pretto [9] proved that, in
the general case, an efficient local ranking algorithm does not
exist, and in order to compute a correct ranking it is necessa-
ry to visit at least a number of nodes linear in the size of the
input graph. They also raised some of the research questions
tackled in our paper that we discuss in Section 6.1. They
reinforce their findings in later work [8], where they summa-
rized two key factors necessary for efficient local PageRank
computations: exploring the graph non-locally and accepting
a small probability error. These two constraints are also con-
sidered in this paper in order to perform our experiments on
the browsing graphs. When one wants to estimate PageRa-
nk in a local graph, the problem of the missing information
is tackled in various ways. In [3, 9] for example, the authors
make use of a model called link server (also known as remote
connectivity server [5]), that responds to any query about a
given node with all the in-coming and out-going edges and



relative nodes. This approach, with the knowledge about
the LRP, allows to estimate the PageRank ranking, or even
the score, with the relative costs. A similar problem was stu-
died by Andersen et al. [2], where their goal was to compute
the PageRank contributions in a local graph motivated by
the problem of detecting link-spam: given a page, its Page-
Rank contributors are the pages that contribute most to its
rank; contributors are used for spam detection since you can
quickly identify the set of pages that contribute significantly
to the PageRank of a suspicious page.

The problem we consider here is different and largely une-
xplored, because we are studying the PageRank of the dif-
ferent subgraphs based on user browsing patterns.

BrowseGraph
In recent years a large number of studies of user browsing
traces have been conducted. Specifically, in the last years
there was a surge of interest in the BrowseGraph, a graph
where the nodes are web pages and the edges represent the
transitions from one page to another made by the navigation
of the users. Characterizing the browsing behavior of users
is a valuable source of information for a number of different
tasks, ranging from understanding how people’s search be-
haviors differ [32], ranking webpages through search trails [1,
33] or recommending content items using past history [29].
A comparison between the standard hyperlink graph, based
on the structure of the network, with the browse graph built
by the users’ navigation patterns, has been made by Liu et
al. [22, 23]. They compared centrality-based algorithms like
PageRank [24], TrustRank [15], and BrowseRank [22], on
both types of graphs. The results agree on the higher qua-
lity of ranking based on the browse graph, because it is a
more reliable source; they also tried out a combination of
the two graphs with very interesting outcomes. The user
browsing graph and related PageRank-like algorithms ha-
ve been exploited to rank different types of items including
images [28, 12], photostreams [11], and predicting users de-
mographic [16] or optimizing web crawling [21]. Trevisiol
et al. [28] made a comparison between different ranking te-
chniques applied to the Flickr BrowseGraph. Chiarandini
et al. [12] found strong correlations between the type of
user’s navigation and the type of external Referrer URL.
Hu et al. [16] have shown that demographic information of
the users (e.g., age and gender) can be identified from their
browsing traces with good accuracy. The BrowseGraph has
been used also for recommending sequences of photos that
users often like to navigate in sequence, following a colla-
borative filtering approach [11]. In order to implement an
efficient news recommender the user’s taste have to be con-
sidered as they might change over time. Indeed, studying
the users browsing patterns, Liu et al. [20] showed that mo-
re recent clicks have a considerably higher value to predict
future actions than the historical browsing record. Finally,
Trevisiol et al. [27] exploited the BrowseGraph in order to
build some user models in the news domain, and recommend
the next article the user is going to visit. They introduced
the concept of ReferrerGraph, that is a BrowseGraph built
with sessions that are generated by the same referrer do-
main. Even if the purposes of our work are very different,
we construct the ReferrerGraphs in the same way in order
to be in-line with their investigation.

To the best of our knowledge there is no work in the sta-
te of the art that tackles the Local Ranking Problem on a

browsing graphs with the prediction task that we perform
and describe in this paper.

3. DATASET
For the purpose of this study, we took a sample of Ya-

hoo News network’s1 user-anonymized log data collected in
2013. In this section we summarize how we built the dataset
and the graphs, but the reader may refer to the aforemen-
tioned paper for further details. The data is comprised by
a large number of pageviews, which are represented as plain
text files that contain a line for each HTTP request satisfied
by the Web server. For each pageview in the dataset, we
gathered the following fields:

〈BCookie, T ime,ReferrerURL,CurrentURL,UserAgent〉

The BCookie is an anonymized identifier computed from the
browser cookie. This information allowed us to re-construct
the navigation session of the different users. CurrentURL
and ReferrerURL represent, respectively, the current page
the user is visiting and the page the user visited before
arriving at the destination page. Note that the Referrer
URL could belong to any domain, e.g., it may be exter-
nal to the Yahoo News network. The User-Agent identifies
the user’s browser, an information that we used to filter
out Web crawlers, and Timestamp indicates when the page
was visited. All the data were anonymized and aggregated
prior to building the browsing graphs. After applying the
filtering steps described above, our sample contains appro-
ximately 3.8 million unique pageviews and 1.88 billion user
transitions.

3.1 Session Identification and Characteristics
The BrowseGraph is a graph whose nodes are web pages,

and whose edges are the browsing transitions made by the
users. To build it we extract the transitions of users from
page to page, and in order to preserve the user behavior (that
could vary over time), we group pageviews into sessions. We
split the activity of a single user, taking the BCookie as an
identifier, into different sessions when either of these two
conditions holds:

• Timeout: the inactivity between two pageviews is
longer than 25 minutes.

• External URL: if a user leaves the news platform and
returns from an external domain, the current session
ends even if previous visits are within the 25 minute
threshold.

Moreover, each news article of the dataset is annotated with
a high-level category manually assigned by the editors.

3.2 Subgraphs Based on Session Referrer URL
We aim to compare the PageRank scores of the nodes be-

tween the full BrowseGraph, computed with all the Yahoo
News logs, and a subgraph that represents the local graph.
This is a way to simulate a real-world scenario in which a
service provider knowns only the users navigation logs in-
side its network (subgraph) while the external navigations
are unknown (full BrowseGraph). Since it is not possible
to use the full Web browsing log, we perform a simulation

1We considered a number of different subdomains like Yahoo
news, finance, sports, movies, travel, celebrity, etc.



Subgraphs Nodes Edges Density %GCC

Google 142, 646 779, 185 3.8 · 10−5 0.93
Yahoo 101, 116 404, 378 3.9 · 10−5 0.95
Bing 61, 531 255, 464 6.7 · 10−5 0.91
Homepage 60, 287 335, 836 9.2 · 10−5 0.99
Facebook 21, 060 70, 266 1.5 · 10−4 0.95
Twitter 4, 206 7, 080 4.0 · 10−4 0.87
Reddit 2, 445 4, 868 8.1 · 10−4 0.95

Table 1: Size of the extracted subgraphs. Note that there
is not a strict relation between the size of the subgraph and
the amount of browsing traffic generated in it.

using different subgraphs extracted from the same Browse-
Graph that represent the local graphs of different providers.
In order to do that, we extract from the BrowseGraph of
the Yahoo News dataset various subgraphs built with ses-
sions of users generated by the same Referrer URL. It has
been shown [27] that a BrowseGraphs constructed in this
way contain very different users sessions in terms of content
consumed (nodes visited). In particular we consider users
accessing the news portal directly from the homepage, that
is the main entry point for regular news consumption, and in
addition, from a number of domains that fall outside the Ya-
hoo News network: search engines (Google, Yahoo, Bing),
and social networks (Facebook, Twitter, Reddit). For each
source domain we extract a subgraph from the overall Brow-
seGraph, by considering only the browsing sessions whose
initial Referrer URL matches that domain. For example, if
a user clicks on a link referring to our network that has been
posted on Twitter, her Referrer URL will be the Twitter
page where she found the link. Next, we consider all the fol-
lowing pageviews belonging to the same session of the user,
as being a part of the twitter-subgraph, given that all of them
have been reached through Twitter. We applied the same
procedure for all the sources defined before, and finally, we
obtained a weighted graph for each different external URL,
where the Weight accounts for the number of times a user
has navigated from the source page to the destination page.
On Table 1 a summary with the size of the graphs (in terms
of number of nodes and edges) and with their structure is
shown. It is interesting to see that all the graphs, even pre-
senting very different size, are very well connected (%GCC
between 0.87 and 0.99).

4. REFERRER GRAPHS ANALYSIS
In this section we describe some analysis on these Refer-

rerGraphs, proving that they are consistently different not
only in term of nodes and content but also in term of navi-
gation patterns of the users. We also propose an experiment
to understand how much the graphs are distinguishable.

4.1 Subgraphs comparison
We consider the seven subgraphs extracted from the main

news portal graph with the procedure discussed in §3. Brow-
sing patterns generated by different types of audiences, can
lead to different pieces of news pages to emerge as the most
central ones in the BrowseGraph. To check that, we ran the
PageRank algorithm on each of the (weighted) subgraphs,
and for every pair of subgraphs we compared the scores ob-

tained on their common nodes, using Kendall’s τ distance.
The intersection between the node sets of the networks is
always large enough to allow us to compute the τ on the in-
tersection only (> 1000 nodes in the case with less overlap).
Kendall’s τ will provide a clear measure of how much the
importance of the same set of nodes varies among different
subgraphs. When the ranking between two subgraphs differs
greatly (i.e., low Kendall’s τ), it is an indication that they
either show different content (i.e., webpages) or that the
collective browsing behaviour in the two graphs privileged
different sets of pages.

Table 2 reports on the cross-distance among the subgra-
phs and also with respect to the full graph using Kendall’s
τ . Interestingly, most of the similarity values tend to be
very low (<0.3), confirming the hypothesis that the user’s
interests are tightly related to the domain where they come
from. Some of these similarities, however, are considerably
higher, remarkably the ones between the three subgraphs
that are originated from search engines traffic, i.e., Bing,
Google and Yahoo, which yield the most similar rankings of
pages (>0.5). However, for the purpose of this work we ex-
pect to find a difference among the subgraphs in order to use
them as local BrowseGraph and study the LRP with the full
graph (i.e., BrowseGraph made with the entire news log).

4.2 Random Surfer
In §4.1 we showed how users coming from different sour-

ces (i.e., referrer domains) behave differently in terms of
content discovery and, as a consequence, the importance
of the news articles vary significantly among the different
BrowseGraphs. It has been shown how the referrer domain
might be extremely useful to characterize user sessions [12],
to estimate user engagement [18] or to perform cold-start
recommendation [27]. However, the user’s referrer URL is
not always visible and, in many cases, it is hidden or ma-
sked by services or clients. For instance, any Twitter or mail
client (i.e., third-party application) shows an empty refer-
rer URL in the web logs. A similar situation happens with
the widespread URL-shortening services (e.g., Bitly.com),
that mask the original Web page the user is coming from.
Nonetheless, in all these cases, a provider could make use of
her knowledge of the user’s trail, to identify automatically
the source where the user started her navigation in the local
graph. As we have shown, the referrer URL might be use-
ful to characterize the interest of the users, especially in the
case where the users are unknown (i.e., the user profile is
not available). Thus, being able to identify the referrer URL
when it is not available, is an advantage for the content pro-
vider. In this section we want to understand if it is feasible
to detect the referrer URL of a user while he browses and
how many browsing steps are required to be able to do so
accurately. Moreover, if we find that the user sessions are
easily distinguishable, it means that the subgraphs are dif-
ferent enough to be considered, in our experiment, as local
BrowseGraphs of different service providers.

Therefore, we consider the following scenario: a content
provider is observing a user surfing the pages of its web ser-
vice, but it is unaware of the user’s referrer URL. In terms
of our experimental dataset, this scenario maps into the pro-
blem of observing a browsing trace left by a random surfer
on one of the referrer-based subgraphs, and having to iden-
tify which graph it is. Intuitively, the larger the number of
page visits (or steps) the surfer will make, the more distinc-



Full Facebook Google Bing Yahoo Reddit Homepage Twitter

Full 1.0000 0.1791 0.3931 0.3278 0.3548 0.0656 0.2797 0.0764
Facebook 0.1791 1.0000 0.3146 0.4111 0.3430 0.2616 0.4070 0.3026
Google 0.3931 0.3146 1.0000 0.5815 0.5860 0.1088 0.4217 0.1297
Bing 0.3278 0.4111 0.5815 1.0000 0.6624 0.1469 0.5238 0.1688
Yahoo 0.3548 0.3430 0.5860 0.6624 1.0000 0.1245 0.4632 0.1386
Reddit 0.0656 0.2616 0.1088 0.1469 0.1245 1.0000 0.1534 0.2309
Homepage 0.2797 0.4070 0.4217 0.5238 0.4632 0.1534 1.0000 0.1523
Twitter 0.0764 0.3026 0.1297 0.1688 0.1386 0.2309 0.1523 1.0000

Table 2: Kendall’s τ correlations between PageRank values (α = 0.85) between the common nodes of the subgraphs.

Algorithm 1: RandomSurfer(k, α, steps, G)

logPr ← initialize vector with size Gk.length();
n ← total number of nodes;
xj ← choose (random) starting node ∈ Gk;

/* For each step, compute a random walk in Gk, and
compare the probability to be in all the other G */
for s← 1 to steps do

/* Pick the next node of Gk with random walk */
xk = next node( Gk, xj );

for i← 0 to G.length() do
〈kout〉 ← get_outdegree(np);
if 〈kout〉 == 0 then

logPr[ i ] ← logPr[ i ] + log(1/n);
else

pi(x) = (1− α)/n;
Pdxj ← get_prob_distribution(Gi, xj);

Sxj ← get_successors(Gi, xj);

if xk ∈ Sxj then
pi(x)← pi(x) + α ∗ Pdxj (xk);

logPr[ i ] ← logPr[ i ] + log(pi(x));

return logPr

tive its trace will be, and the easier the identification of the
graph. Algorithm 1 shows the pseudocode that describes
the process to compute the random surfer experiment.

Formally, observing the sequence of the surfer’s visited
nodes x = (x1, x2, . . . , xs) and computing the probability
pi(x) that the surfer has gone through them given that it is
surfing Gi, we need to deduce what is Gi (e.g., by maximum
log-likelihood). With this goal in mind, we sort the indices
of the subgraphs i1, i2, . . . so that pi1(x) ≥ pi2(x) ≥ . . . and
stop as soon as the gap between log pi1(x) and log pi2(x) is
large enough (e.g., log pi1(x) − log pi2(x) ≥ log 2), with a
maximum of 20 steps that we consider as a representation
of a long user session.

In this set of experiments, we considered the seven URL-
referral subgraphs G1, . . . , G7, one at a time. For each
subgraph Gi, we simulated a random surfer moving around
in Gi (i.e., calling the function RandomSurfer(i, α, steps,
G)), computing at each step (i.e., page visited) the probabi-
lity of the surfer to navigate in each subgraph G1, . . .G7: we
expect that the probability corresponding to Gi will increase
at each step, and will eventually dominate all the others.

To estimate the number of steps required to identify cor-
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Figure 1: Random Surfer Experiment. On the y-axis: log-
ratio of the probabilities (as explained in the text). X-axis:
number of browsing steps performed by the surfer.

rectly the graph that the surfer is browsing, we measure the
difference between log-probabilities for the correct graph Gi

and for the graph with the largest log-probability among
the other ones. As with PageRank we introduced a certain
damping factor (α = 0.85); this is necessary to avoid being
stuck in terminal components of the graph. Recall that α is
the balancing parameter that determines the probability of
following in the random walk, instead of teleporting. The
results are shown in Figure 1, averaged over 100 executions.
The values on the y-axis represent the difference between
the log-probabilities (i.e., the logarithm of their ratio): in
general, we can observe that the very first steps are enough
to understand correctly (and with a huge margin) in which
graph the surfer is moving. The inset of Figure 1 displays the
first 20 steps and the relative probability to identify the cor-
rect graph. Almost all the referrer domains are recognizable
at the first step. This translates into a strong advantage for
the service provider as it can identify from where the users
are coming from, even if they use clients or services that
masquerade it. With this information the service provider
can personalize the content of the web pages for any users
with respect to the referrer.



Interestingly, the plot reveals that some surfers are easier
to single out than others; we read this as yet another confir-
mation that the subgraphs have a distinguished structural
difference, or (if you prefer) that users have a markedly dif-
ferent behavior depending on where they come from. This
experiment does not only showed that is possible to detect
from which referrer domain the surfer is coming from, but
that the graphs are quite different and that they can be used
for our study.

5. PAGERANK ON THE BROWSEGRAPH
Next, we study the convergence of the PageRank ranking

between the local BrowseGraphs (ReferrerGraphs) and the
full BrowseGraph. We want to understand how different are
the ranking computed using less or more knowledge about
the full graph. We present an experiment, called “Growing
Balls”, that compute the distance between the rankings ex-
panding at each step the known nodes (and edges) with the
neighbors of the subgraphs.

5.1 “Growing Balls” Experiment
We first focus on the study of the Local Ranking Problem

on browsing graphs. An important question related to this
problem is how much the PageRank node values vary, when
new nodes and edges are added to the local graph. A natural
way to determine this is to expand incrementally the graph
by adding new nodes and edges in a Breadth-First Search
(BFS) fashion, and comparing the PageRank computed on
the expanded graph with the one on the global graph.

More formally, given a graph H which is a subgraph of the
full graph G, we simulate a growth sequence H0, H1 . . . Hn

in the following way:

• H0 ←− H;

• VHk+1 ←− {Γout(VHk ) ∪ VHk}, with Vx being the set
of vertices of a graph, and Γ being the vertex neighbo-
rhood function;

• EHk+1 ←− {(v1, v2)|v1 ∈ VHk+1 ∧ v2 ∈ VHk+1}, with
Ex being the set of edges of a graph.

Using the standard graph terminology, we refer to the va-
rious steps of this expansion as “balls”, where the ball H0

is the initial subgraph and subsequent balls are obtained by
adding all the outgoing arcs that depart from the nodes in
the current ball and end in nodes that are not in the ball.
Observe that, depending on how it is built, H0 may not be an
induced subgraph of G, but H1, · · · , Hn are always induced
subgraphs, by definition of the expansion algorithm.

Using the Kendall’s τ function, we measure the difference
between the local PageRank computed for each ball Hi, and
the global PageRank computed on G. The main objective
is to understand how much the ranking gets close the global
one at each consecutive step, and whether the ranking values
are able to converge even if we just consider a piece of the
information contained in the whole graph.

To check the dependency of results from the initial graph
selected, we consider three different sets of initial subgraphs,
that we will study separately. We describe them next.

• Referrer-based (RB). The seven browsing subgra-
phs built by referrer URL: Facebook, Twitter, Reddit,
Homepage, Yahoo, Google and Bing;

• Same size referrer-based (SRB). To measure how
much the different sizes of the graphs impact on the ob-
served behavior, we fix a number of nodes and extract
a portion of each subgraph in order to obtain exactly
the same size for all networks. The selection is perfor-
med with several attempts of BFS expansion, starting
from a random node in each graph, until the resulting
graphs have very similar size (±9.4%): other ways of
selecting subgraphs would end up with disconnected
samples, which of course would void the purpose of
this experiment. With this procedure instead, we are
able to compare the graphs on equal grounds and at
the same time control for the effect of size (about 3K
nodes and 20K edges).

• Random (R). To check whether the observed beha-
vior has to do with the user behavior underlying the
graph under examination (e.g., the particular struc-
ture of the graph determined by the sessions of users
coming from Twitter), we take a set of seven random
graphs each of them reflecting the size of each of the
referrer-based subgraphs. Thus, we can explore the be-
havior of browsing graphs, that preserve the size of the
graphs originated by specific types of users, but that
are “artificial” in the sense that destroy any connection
with the behavior connected to a particular user class.
To make sure that the size is the same, we start from a
BFS exploration and we prune the last level to match
exactly the size we need.

The results related to the RB case are shown in Figure 2
(left). The convergence happens relatively quickly, as the
value τ approaches 1 in the first 3 iterations. The curves re-
lated to different subgraphs are shifted with respect to each
other, apparently mainly due to their different size, the big-
gest networks starting from higher τ values and converging
faster than the smaller ones. To determine the dependency
on the graph size, we repeat the same experiment for the
SRB case. The results for this case are shown in Figure 2
(center). Even if the curves resulted to be more flattened
(confirming that the initial size has indeed a role in the con-
vergence), we still observe noticeable differences between the
curves for the first two expansion levels. This means that
different subgraphs are substantially different from one ano-
ther in terms of their structure: even after forcing them to
have the same size, the convergence rates observed on the
different graphs varies. At the first iteration, for instance,
all the subgraphs in SRB have Kendall’s τ between 0.3 and
0.5, whereas the ones in RB are between 0.4 and 0.6. Mo-
reover in SRB the biggest networks starting from higher τ
values are not converging faster. This intuition is confirmed
by repeating the experiment on graphs selected with the R
startegy. Results, displayed in Figure 2 (right), show that
convergence in this case is much slower and the difference
between the curves is less prominent.

Summarizing, with the previous experiment, we show that
the Growing Balls on random subgraphs behave differen-
tly, especially when considering the number of iterations
required in order to converge.

5.2 Growing Balls with Selection of Nodes
Besides the selection of the initial graph, the rank conver-

gence depends also on the way the growing balls are built
at each iteration. How does the expansion influence conver-
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Figure 2: Growing Balls experiment on: (left) original subgraphs built based on the referrer URL, (center) seven subsubgraphs
with very similar size, (right) eight subgraphs random selected from the full graph, where each of them has the same size of
one of the original.

gence if only few more representative nodes are selected? To
what extent a higher volume of selected nodes helps a quic-
ker convergence or adds more noise? At a first glance, one
may argue that using all the nodes is equivalent to injecting
all the available information, so the convergence to the val-
ues of PageRank computed on the full graph G should be
faster. On the other hand, instead, one may observe that
we are introducing a huge number of nodes in each iteration
(as the growth is at each step larger), adding also the ones
that are less important and this can induce an incorrect Pa-
geRank for some time, until all the graph becomes known.
In order to shed light on this aspect, we introduce a variant
in the growing-balls expansion algorithm, and we select only
the nodes with highest PageRank.

More formally, consideringHk as the subgraph at iteration
k and VHk its set of nodes, we select all the external nodes in
Y = {VG\VHk}, that are connected through outgoing arcs
from the nodes in VHk . We then compute the PageRank
values on the subgraph Hk extended with the nodes Y , and
obtain a ranked list of nodes. Among all the nodes in Y
we select the top n% with largest PageRank value, and only
those ones will be added to Hk in order to build Hk+1 and
advance to the next iteration.

We conducted experiments with this partial expansion at
different percentages: 5%, 10%, 30%, 50%, and 100%, and
then we computed the average Kendall’s τ value for each
one of the percentages. The results are shown in Figure 3.
Remarkably, the figure highlights how expanding the gra-
ph by adding fewer nodes, although the most representative
ones, leads to PageRank values that are closer to the global
ones in the first iterations. Since we are expanding the lo-
cal graph with a small (highly-central) number of nodes, we
could argue that they initially help to boost the local Pa-
geRank scores. However, given that we keep on expanding
using a few nodes at each iteration, the nodes that have not
been added before exclude a large number of nodes among
which there might also be highly central ones. This might
explain why in the first iteration(s) the convergence rate is

high, but on the limit the final convergence values result in
a low Kendall’s τ . Contrarily, in the long run, expansions
that include the highest number of nodes present convergen-
ce values closer to 1. This is somehow expected, given that
at each iteration any subgraph H closer in size to the full
graph G will include almost every node and arc.

Nonetheless, the main significant outcome of this expe-
riment is that it is possible to obtain a yet satisfactory
PageRank convergence, with few but very representative
nodes. For situations in which including additional pieces
of information, in terms of node/arc insertions, implies a
non-negligible cost, requesting just a little amount of well-
selected information allows to obtain good approximations
while minimizing the costs.

6. PAGERANK PREDICTION
In the previous section we have shown how the approxi-

mation to the global PageRank varies with the expansion
of the initial subgraph. The ranking of the nodes conver-
ges quite fast on all the subgraphs: they differ in terms of
their content, although they are similar in terms of structu-
re in that all of them are built based on users’ navigational
patterns. Building upon the findings about how local and
global PageRank computed on the BrowseGraphs relate to
each other, we designed an experiment to assess how well a
learned model could perform in predicting this relationship.

We address the problem of predicting the Kendall’s τ be-
tween the local and the global PageRank, only considering
information available on the local graph such as topologi-
cal features. This is an extremely common situation given
that, in general, the information pertaining the local gra-
ph is the only one that is readily available, and usually of
a limited size. Computing this distance accurately has a
high value for service providers, since it translates directly
into an estimation of the reliability of the PageRank sco-
res computed on their local subgraphs. As a direct con-
sequence one can apply, with different levels of confiden-
ce, methods for optimizing web sites [31], studying user en-
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Figure 3: Growing Balls using only the nodes with hig-
hest PageRank. The plot shows the average values of the
Kendall-τ at each step computed for all the subgraph.

gagement [18], characterizing user’s session [12] or content
recommendation [27].

6.1 Prediction of Kendall τ Distance
We have seen that the deviation of the local PageRank wi-

th respect to the global one can be relevant, depending on
factors such as the size of the local graph and the different
behavior of the users who browse it (see §5.1 and particularly
Figure 2). Recall that we compute the distance comparing
the rankings with Kendall’s τ , since we are interested in ob-
taining a ranking as close as possible to the one computed on
the entire graph. Although we have previously shown how
to expand the view on the local graphs with nodes residing
at the border, this practice might not always be possible in
a real-world scenario, since service providers often can have
access only to the browsing data within their domain.

Previous work on local ranking on graphs raised several
questions related to this scenario, highlighting practical ap-
plications of the local rank estimation non only for web pa-
ges but also in social networks [9]. Critically, so far it is
not clear whether there are some topological properties of
the local graph that make the local ranking problem easier
or harder, and if these properties can be exploited by lo-
cal algorithms to improve the quality of the local ranking.
We explore this research direction by studying a fundamen-
tal aspect that is at the base of the open questions in this
area, namely the possibility of estimating the deviation of
the local PageRank from the global one, using the structural
information of the local network. The intuition is that, some
structural properties of the graph could be good proxies for
the τ value difference, computed between local and global
ranks. Being able to estimate the Kendall’s τ distance be-
tween the subgraph available to the service provider and the
global graph, implies the ability to estimate the reliability
of the current ranking using only information of the local
subgraph.

To verify this hypothesis we resort to regression analysis.
Starting from the seven subgraphs in the dataset, we build
a training set using the jackknife approach, by removing
nodes in bulks (1%, 5%, 10%, 20%) and computing the τ
value between the full subgraph and their reduced versions.
Then, for each instance in the training set, we compute 62
structural graph metrics [30, 4] belonging to the following
categories:

• Size and connectivity (S). Statistics on the size and
basic wiring properties, such as number of nodes and
edges, graph density, reciprocity, number of connected
components, relative size of the biggest component.

• Assortativity (A). The tendency of node with a cer-
tain degree, to be linked with nodes with similar de-
gree. We computed different combinations that take
into account the in/out/full degree of the target no-
de vs. the in/out/full degree of the nodes that are
connected with it.

• Degree (D). Statistics (average, median, standard
deviation, etc.) on the degree distribution of nodes.

• Weighted degree (W). Same as degree, but con-
sidering the weight on edges, that usually referred as
node strength. As the edges are the transitions made
by the users during the navigation, the weight stand
for the number of times the users have navigated the
transition.

• Local Pagerank (P). Statistics on the distribution
of the PageRank values computed on the local graph.

• Closeness centralization (C). Statistics on the di-
stances (number of hops), that separate a node to
the others in the graph, in the spirit of the closeness
centralization [30].

We employed different regression algorithms, although we
report the performance using random forests [7], which per-
formed better in this scenario than other approaches like
support vector regression [25]. We computed the mean squa-
re error (MSE) across all examples in all sampled subgra-
phs. The random forest regression has been computed over
a five-fold cross validation averaged over 10 iterations. The
mean square residuals that we obtained is very low, around
2.4 · 10−6. Results, computed for the full set of features
and for each category separately, are given in Table 3. The
most predictive feature category is the weighted degree, whi-
ch yields a performance that is better (or comparable) than
the model using all the features, whereas the assortativi-
ty features seem to be the ones that have the less predictive
power on their own. This might be due to the fact the model
with 62 features is too complex for the amount of training
data available. On the other hand, the weighted degree that
is the best performing class of features, contains the stati-
stics of the degree distribution on the weighted edges. In
Figure 4 the features included in weighted degree are ranked
by their discriminative power in predicting the Kendall τ
distance using the permutation test proposed by Strobl et
al. [26]. These features, which are based on the distribution
of the out- and in-degree of the nodes, are straightforward
to compute from the local graph—a very affordable task for
service providers.



Feature Class No. Features MSE

weighted degree 15 2.2 · 10−6

degree 15 2.9 · 10−6

local PageRank 10 3.3 · 10−6

size and connectivity 9 3.4 · 10−6

closeness 5 4.1 · 10−6

assortativity 8 9.3 · 10−6

ALL features 62 2.4 · 10−6

Table 3: MSE of cross validation. Average differences are
statistically significant with respect to weighted degree and
ALL features (t-test, p<0.01).
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Figure 4: The 15 features of weighted degree, the most pre-
dictive class, sorted by importance. Note that some of them
do not have any contribution to the Kendall-τ prediction,
therefore just few features are necessary in order to estimate
the distance.

We then use the learned model to predict the τ values of
the seven subgraphs. When we applied the predictive mo-
dels learned in the subsamples to regressing the full graphs,
the MSE, is less than 0.026 on average, which, even if relati-
vely low, it is higher than the cross-validated performance in
the sub-samples. However, the model was able to rank the
seven different subgraphs by their Kendall’s τ almost perfec-
tly. When using all the features the Spearman’s correlation
coefficient between the true order and the predicted one is
0.85 (high correlation), and when we used the most predicti-
ve features (weighted degree) the correlation was as high as
0.80 (moderate high correlation). Overall, the final rankings
are just one swap away (Kendall’s τ is over 0.70 in this case).
This kind of information can be very helpful when compa-
ring different local sub-domains to determine which one has
pages that better estimate the global PageRank.

7. CONCLUSION
In this paper we tackled the Local Ranking Problem, i.e.,

how to estimate the PageRank values of nodes when a por-
tion of the graph is not available, which arises commonly in

real use cases of PageRank. We investigated this problem
for a novel environment, namely estimating PageRank on a
large user-generated browsing graph from a large news pro-
vider. The peculiar characteristic of this graph is that it
is built from user’s navigation patterns, where nodes repre-
sent web pages and edges are the transitions made by the
users themselves. Moreover, the information about the do-
main of origin of the users (namely the referrer URL of their
sessions), is also available.

We built a set of ReferrerGraphs including the browsing
subgraphs based on different referrer URLs, and then we
studied their difference in terms of user navigation patterns.
We found that all of the browsing patterns initiated from
different domains exhibit remarkable differences in terms of
which pages users visited next. The referrer URL (or do-
main) has been found to be extremely useful for characte-
rizing the user behavior [12] or for recommendation of con-
tent [27]. With this observation in mind and motivated by
the cases where the domain from where the user is coming
is not available, such as Facebook and Twitter clients or
URL shortening services, we performed a series of experi-
ments with the aim of predicting from which referrer URL
the user joined the network, i.e., if a model can predict re-
liably where the user is entering our network. In general,
just a few steps (i.e., visited pages) suffice to recognize the
referrer URL correctly because the surfing behavior is very
distinctive of the domain the user is coming from.

Then, using the ReferrerGraphs, we performed several ex-
periments using a very large network of sites (with almost
two billions of user transitions) to assess to what extent
the browsing patterns information can be generalized, if one
is only provided with information from smaller subgraphs.
First, we computed the PageRank of the subgraphs and on
their step-by-step BFS expansion, measuring the distance in
terms of Kendall’s τ with the PageRank computed on the
full graph. To control for the subgraph size and type, and
to study the impact of the expansion strategy on the Pa-
geRank convergence, we used two flavors of BFS and three
different sets of initial subgraphs. We found that expanding
the local graph with few nodes of largest value of PageRank
leads to a faster (74% at the first expansion step), althou-
gh less accurate convergence in the long run. On the other
hand, adding more nodes lead to a slower converge rate in
the first steps (65%). Therefore, in all the cases where a
strong convergence with the values of the global PageRank
is not required, selecting few specific nodes is enough to si-
gnificantly improve the PageRank values of the local nodes,
without having to request and process a larger amount of
data.

Finally, we considered the case of a service provider that
wants to estimate the reliability of the scores of PageRa-
nk computed on its local BrowseGraph, with respect to the
ones computed on the global graph. Therefore, we perfor-
med another experiment trying to predict the value of the
Kendall’s τ between the local and the global PageRank, on-
ly considering information available on the local graph. We
explored six different sets of topological and structural fea-
tures of the browse graph, namely size and connectivity,
assortativity, degree, weighted degree, local PageRank and
closeness. Then we computed those features on a training
set that we obtained by applying a jackknife sampling of our
subgraphs, and we ran a regression on the Kendall’s τ of the
PageRank of the full subgraph and the various samplings.



We found that a random forest ensemble built on weighted
degree, outperforms all the other in terms of mean square er-
ror. When applying the regression to the task of predicting
the τ value of the global graph with the eight subgraphs at
hand, we were able to reproduce quite well the ranking of
their estimated τ values with their actual ranking, up to a
Spearman’s coefficient of 0.8.

Future Work. We envision different routes worth being
taken into consideration for future work. One line of re-
search we plan to investigate deals with the problem of user
browsing prediction. In other words, what extent it may be
possible to identify what are the most common patterns of
topical behavior in the network and also, to build per-user
browsing models to predict what would be the page to be
visited next. Further, motivated by real use case scenarios,
we considered subgraphs determined by the referrer URL of
user sessions; we believe that interesting analytical results
could be found, when considering other types of subgraphs,
such as networks induced by nodes that belong to the same
topical area.
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