Arc-Community Detection via Triangular Random Walks

Paolo Boldi and Marco Rosa
Dipartimento di Informatica
Università degli Studi di Milano
(partly written @ Yahoo! Labs in Barcelona)

Social networks \& Communities

- Complex networks exhibit a finer-grained internal structure
- Community = densely connected set of nodes
- Community detection = partition that optimizes some quality function
- BUT: rarely a node is part of a single community!
- \Rightarrow Overlapping communities

Plan of the talk

- From node-communities to arc-communities?
- Standard vs. Triangular Random Walks
- Using Triangular Random Walks for clustering, through
- off-the-shelf clustering of the weighted line graph
- direct implicit clustering (ALP)
- Experiments

Overlapping node clustering vs. arc clustering

- Most algorithms: considering overlapping communities think of overlap as a possibly frequent phenomenon, but stick to the idea that most nodes are well inside a community
- In a large number of scenarioes: belonging to more groups is a rule more than an exception
- In a social network, every user has different personas, belonging to different communities...
- ...On the other hand, a friendship relation has usually only one reason!
- \Rightarrow Arc clustering

Arc-clustering: a metaphorical motivation

Arc-clustering: a metaphorical motivation

Related work - Community detection

- Community detection (possibly with overlaps): too many to mention! [Kernighan \& Lin, 1970; Girvan \& Newman, 2002; Baumes et al., 2005; Palla et al., 2005; Mishra et al., 2008; Blondel et al., 2008]
- Good surveys / comparisons / analysis: Lancichinetti \& Fortunato, 2009; Leskovec et al., 2010; Abrahao et al., 2012
- The latter, in particular, concludes essentially that:
- different algorithms discover different communities
- baseline (BFS) performs better than most algorithms (!)

Related work - Link communities

- Lehman, Ahn, Bagrow: Link communities reveal multiscale complexity in networks. Nature, 2010.
- Kim \& Jeong. The map equation for link community. 2011.
- Evans \& Lambiotte. Line graphs, link partitions, and overlapping communities. Phys. Rev. E, 2009.
- The latter uses line graphs (like we do), but in their undirected version

Random walks (RW) on a graph

- Standard random walk: a sequence of r.v.

$$
X_{0}, X_{1}, \ldots
$$

such that
$P\left[X_{t+1}=y \mid X_{t}=x\right]= \begin{cases}1 / d^{+}(x) & \text { if } x \rightarrow y \\ 0 & \text { otherwise }\end{cases}$

- The surfer moves around, choosing every time an arc to follow uniformly at random

Random walks with restart (RWR) on a graph

- Random walk with restart: a sequence of r.v.

$$
X_{0}, X_{1}, \ldots
$$

such that

$$
P\left[X_{t+1}=y \mid X_{t}=x\right]= \begin{cases}\alpha / d^{+}(x)+(1-\alpha) / n & \text { if } x \rightarrow y \\ 1-\alpha / n & \text { otherwise }\end{cases}
$$

- The surfer every time, with probability α follows a random arc...
- ...otherwise, teleports to a random location

A graphic explanation of RWR

Why random walk with restart?

- Teleporting guarantees that there is a unique stationary distribution
- This is not true for standard RW, unless the graph is strongly connected and aperiodic
- Note that the stationary distribution will depend on the damping factor as well
- The stationary distribution of RWR is PageRank

From nodes to arcs

- The stationary distribution of RWR associates a probability v_{x} to every node
- Implicitly, it also associates a probability (frequency) to every arc $x \rightarrow y$:

$$
\begin{array}{r}
P\left[X_{t}=x, X_{t+1}=y\right]= \\
P\left[X_{t+1}=y \mid X_{t}=x\right] P\left[X_{t}=x\right]= \\
v_{x}\left(\alpha / d^{+}(x)+(1-\alpha) / n\right)
\end{array}
$$

Triangular random walks (TRW) on a graph

- A TRW is more easily explained dynamically
- A surfer goes from x to y and then to z

- Was there a way to go directly from x to z ? If so the move $y->z$ is called triangular step (because it closes a triangle)

A graphic explanation of TRW

TRW: interpretation of the parameters

- α tells you how frequently one follows a link (instead of teleporting)
- β tells you how frequently one chooses non-triangles (instead of triangles)
- No-teleportation is obtained when $\alpha \rightarrow 1$
- There is no choice of β that reduces TRW to RWR
- One possibility would be to change the definition of a TRW so that β is the ratio between the probability of non-triangles and the probability of triangles...
- ...then one would recover RWR from TRW when $\beta \rightarrow 1$

The idea behind TRW

- Triangular random walks tend to insist differently on triangles than on nontriangles...
- ...you can decide how much more (or less) using β as a knob
- The idea is to confine the surfer as long as possible within a community
- Note that when β is close to zero, we virtually never choose non-triangular steps...
- ...in such a scenario, the only way out of dense communities is by teleportation

An experiment: Zachary’s Karate Club

TRW \& Markov chains

- A standard random walk is memoryless: your state at time $t+1$ just depends on your state at time t
- A TRW is a Markov chain of order 2: your state at time $t+1$ depends on your state at time t plus your state at time t-1
- Can we turn it into a standard Markov chain?

Line graphs

- Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, let's define its (directed) line graph
- $\mathrm{L}(\mathrm{G})=(\mathrm{E}, \mathrm{L}(\mathrm{E})$) where there is an arc between every node of the form (x, y) and every node of the form (y, z)
- Theorem: A TRW on G is a standard RWR on a (weighted version of) $L(G)$
- Weights depend on the choice of β
- Those weights will be denoted by W_{T}
- " T " is mnemonic for "triangular"

Second-order weights

- One can compute the stationary distribution (=PageRank) on $\mathrm{L}(\mathrm{G})$ using W_{T} as weights...
- This is a distribution on the nodes of $L(G)$ (=arcs of G)
- Recall the Karate Club example
- Also induces (as usual) a distribution on its arcs (=pairs of consecutive arcs of G)
- This can be seen as another form of weight, denoted by W_{S}
- "S" for "Second-order" (or "Stationary")

Triangular Arc Clustering
 (1) Using an off-the-shelf algorithm

- Given G...
- a) compute $L(G)$
- b) weight it (using either \mathcal{U}_{T} or \mathcal{W}_{S})
- c) use any node-clustering algorithm on $L(G)$ that is sensible to weights

Cons and pros of this solution

- CONs: The main limit of this solution is graph size
- $L(G)$ is larger than G
- If G has $\approx C k k^{-\gamma}$ nodes of degree $k .$.
....L(G) has $\approx C^{2} k^{-2 \gamma}$ nodes of degree k
- PROs: You can use any off-the-shelf standard node-clustering algorithm
- Moreover, L(G) turns out to be very easy to compress...
- ...and PageRank converges extremely fast on it

Triangular Arc Clustering (2) A direct approach (ALP)

- There is no real need to compute $L(G)$ explicitly!
- One can take a node-clustering algorithm of her will, and have it manipulate $L(G)$ implicitly
- We did so for Label Propagation [Raghavan et al., 2007]

Triangular Arc Clustering (2) A direct approach (ALP)

- The advantage of LP [Raghavan et al., 2007] with respect to other algorithms is that:
- it provides a good compromise between quality and speed
- efficiently parallelizable and suitable for distributed implementations
- due to its diffusive nature it is very easy to adapt it to run implicitly on the line graph
- Recently shown that naturally clustered graphs are correctly decomposed by LP [Kothapalli et al., 2012]

Quality measure

- Given a measure σ of arc similarity...
- ...and an arc clustering λ
- The PRI (Probabilistic Rand Index) is

$$
P R I(\lambda, \sigma)=\sum_{\lambda(x y)=\lambda\left(x^{\prime} y^{\prime}\right)} \sigma\left(x y, x^{\prime} y^{\prime}\right)-\sum_{\lambda(x y) \neq \lambda\left(x^{\prime} y^{\prime}\right)} \sigma\left(x y, x^{\prime} y^{\prime}\right)
$$

Quality measure

- Computing PRI exactly on large graphs is out of question!
- Instead, we sample arcs according to some distribution Ψ

$$
E_{\Psi}\left[(-1)^{\lambda(x y) \neq \lambda\left(x^{\prime} y^{\prime}\right)} \sigma(x y)\right]
$$

- If Ψ is uniform, the value is an unbiased estimator for PRI
- We experiment with: uniform (u), node-uniform (n), node-degree (d)

A) Parameter tuning

- We tuned the parameters α and β using different networks
- Consistent results
- We present them on DBLP
- edge-similarity: TF-IDF of paper titles

A) Parameter tuning

B) Quality and computation time

DBLP (6,707,236 arcs)

$\boldsymbol{A L P}$	\#clust	PRI u	PRI n	PRI d	time
TRW	613203	$\mathbf{0 . 7 4}$	0.71	0.75	32 s
st. TRW	592562	0.72	$\mathbf{0 . 7 5}$	$\mathbf{0 . 7 5}$	32 s
RWR	48025	0.02	0.16	0.18	24 s
st. RWR	38498	0.02	0.08	0.03	22 s
-	38498	0.02	0.08	0.03	22 s

B) Quality and computation time

DBLP (6,707,236 arcs)

Louvain	\#clust	PRI u	PRI n mel PRId		time
TRW	1493		0.	0.53	494s
st. TRW	2116		0.71	0.53	456s
RWR		0.01	0.44	0.39	1080s
st. RWR	232	0.01	0.43	0.39	1028s
-	250	0.01	0.16	0.15	316s

B) Quality and computation time

DBLP (6,707,236 arcs)

B) Quality and computation time

- ALP offers best compromise between quality and computation time
- Triangular weights outperform all the others
- Stationary triangular weights slightly outperform "normal" ones
- Same behavior on all datasets (not shown here)

Summary

- We introduced a new type of random walk that treats triangles in a preferential way
- We used it to enhance existing community-detection algorithms
- We applied it through off-the-shelf algorithm to the line graph, as well as by implementing an algorithm that never computes the line graph explicitly
- Experiments show that the results obtained have high quality

Future work

- Work out a closed formula for triangular stationary distribution
- Apply the triangular weighting to other problems (e.g., information spread, influence maximization etc.)
- See if triangular weighting can help explaining better the structure of social networks
- See if it is possible to improve existing models of social networks

Thanks!
Questions?

