Arc-Community Detection via Triangular Random Walks

Paolo Boldi and Marco Rosa Dipartimento di Informatica Università degli Studi di Milano

(partly written @ Yahoo! Labs in Barcelona)

Social networks & Communities

- Complex networks exhibit a finer-grained internal structure
- Community = **densely connected** set of nodes
- Community detection = partition that optimizes some **quality function**
- **BUT:** rarely a node is part of a **single community**!
- \Rightarrow Overlapping communities

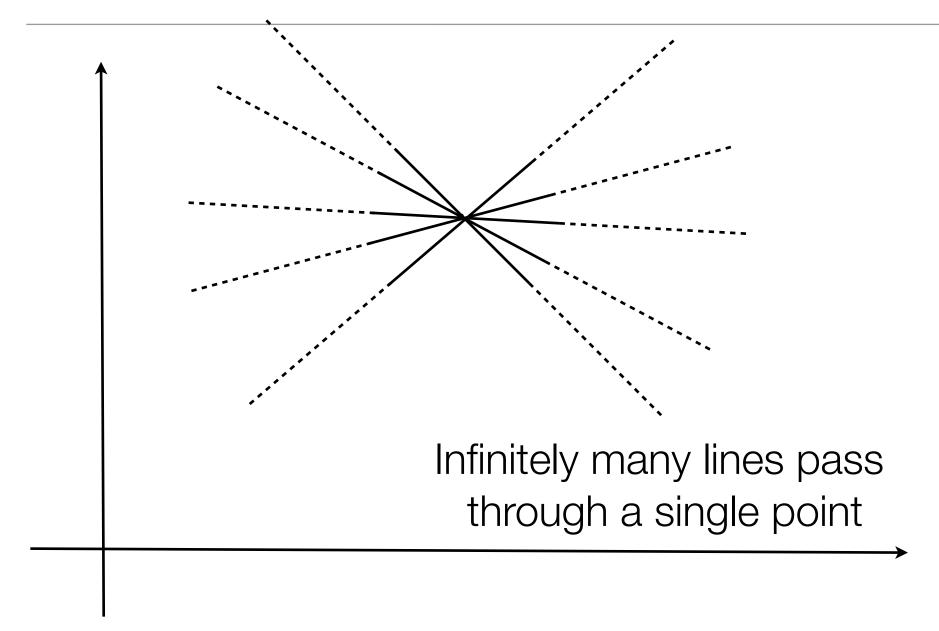
Plan of the talk

- From node-communities to arc-communities?
- Standard vs. Triangular Random Walks
- Using Triangular Random Walks for clustering, through
 - off-the-shelf clustering of the weighted line graph
 - direct implicit clustering (ALP)
- Experiments

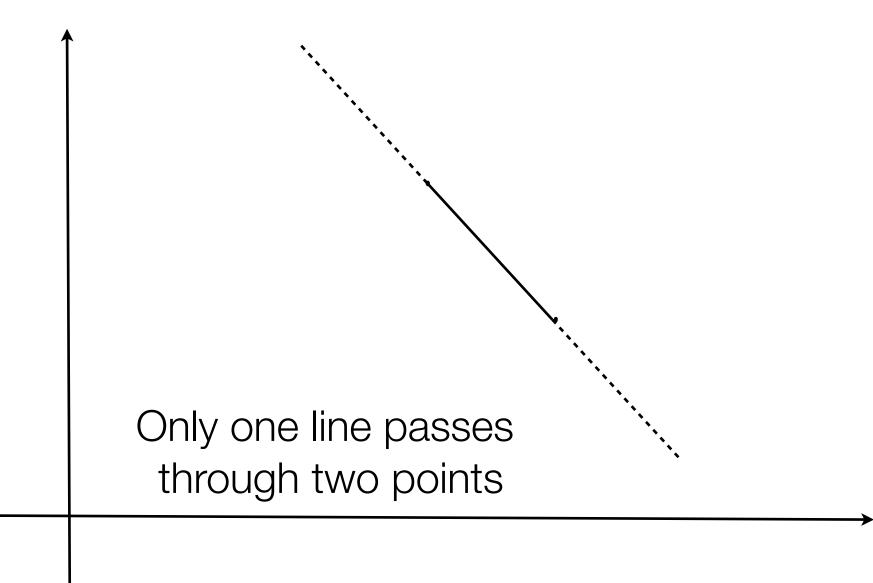
Overlapping node clustering vs. arc clustering

- Most algorithms: considering overlapping communities think of overlap as a possibly frequent phenomenon, but stick to the idea that most nodes are well inside a community
- In a large number of scenarioes: belonging to more groups is a rule more than an exception
- In a social network, every user has different personas, belonging to different communities...
- ...On the other hand, a **friendship relation has usually only one reason**!
- \Rightarrow Arc clustering

Arc-clustering: a metaphorical motivation



Arc-clustering: a metaphorical motivation



Related work - Community detection

- Community detection (possibly with overlaps): too many to mention! [Kernighan & Lin, 1970; Girvan & Newman, 2002; Baumes *et al.*, 2005; Palla *et al.*, 2005; Mishra *et al.*, 2008; Blondel *et al.*, 2008]
- Good surveys / comparisons / analysis: Lancichinetti & Fortunato, 2009; Leskovec et al., 2010; Abrahao et al., 2012
- The latter, in particular, concludes essentially that:
 - different algorithms discover different communities
 - baseline (BFS) performs better than most algorithms (!)

Related work - Link communities

- Lehman, Ahn, Bagrow: *Link communities reveal multiscale complexity in networks*. Nature, 2010.
- Kim & Jeong. *The map equation for link community*. 2011.
- Evans & Lambiotte. *Line graphs, link partitions, and overlapping communities*. Phys. Rev. E, 2009.
- The latter uses *line graphs* (like we do), but in their undirected version

Random walks (RW) on a graph

• Standard random walk: a sequence of r.v.

$$X_0, X_1, \ldots$$

such that

$$P[X_{t+1} = y | X_t = x] = \begin{cases} 1/d^+(x) & \text{if } x \to y \\ 0 & \text{otherwise} \end{cases}$$

 The surfer moves around, choosing every time an arc to follow uniformly at random

Random walks with restart (RWR) on a graph

• Random walk with restart: a sequence of r.v.

$$X_0, X_1, \ldots$$

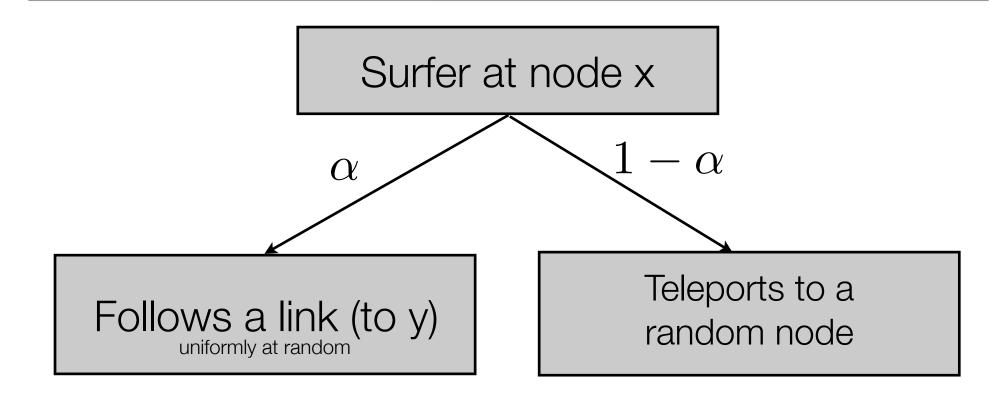
such that

$$P[X_{t+1} = y | X_t = x] = \begin{cases} \alpha/d^+(x) + (1 - \alpha)/n & \text{if } x \to y\\ 1 - \alpha/n & \text{otherwise} \end{cases}$$

• The surfer every time, with probability $\,\,lpha\,$ follows a random arc...

• ...otherwise, teleports to a random location

A graphic explanation of RWR



Why random walk with restart?

- Teleporting guarantees that there is a unique stationary distribution
- This is *not* true for standard RW, unless the graph is strongly connected and aperiodic
- Note that the stationary distribution will depend on the **damping factor** as well
- The stationary distribution of RWR is PageRank

From nodes to arcs

- The stationary distribution of RWR associates a probability $\,v_{m x}$ to every node
- Implicitly, it also associates a probability (frequency) to every arc $\,\, x
 ightarrow y$:

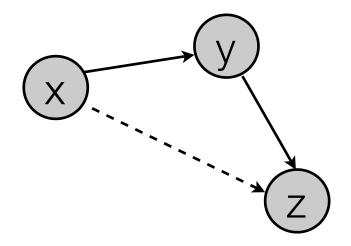
$$P[X_t = x, X_{t+1} = y] =$$

$$P[X_{t+1} = y | X_t = x] P[X_t = x] =$$

$$v_x(\alpha/d^+(x) + (1 - \alpha)/n)$$

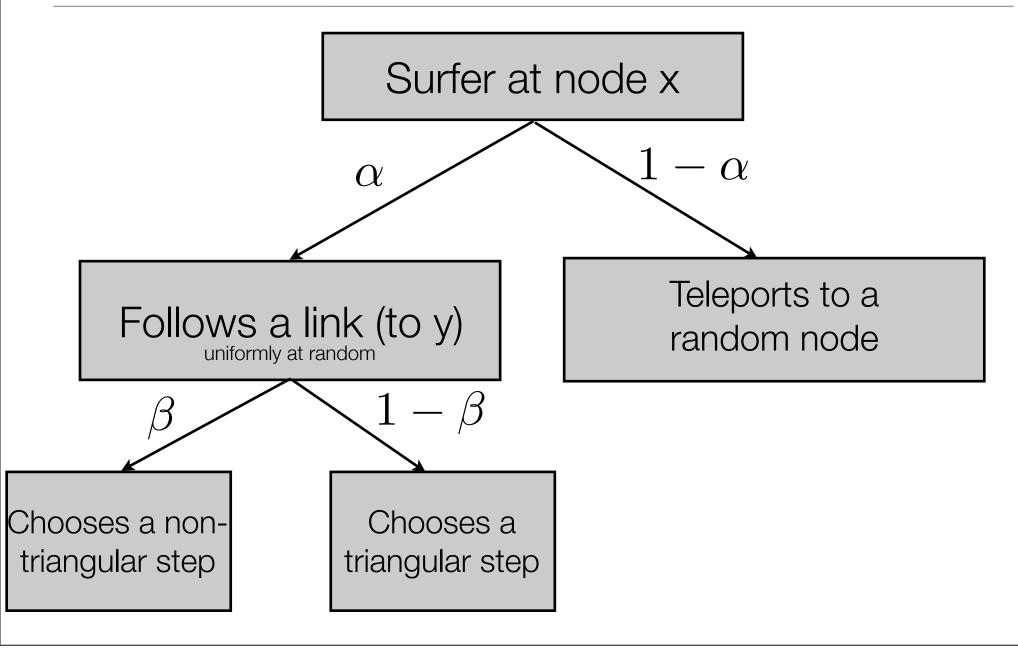
Triangular random walks (TRW) on a graph

- A TRW is more easily explained *dynamically*
- A surfer goes from x to y and then to z



 Was there a way to go *directly* from x to z? If so the move y->z is called triangular step (because it closes a triangle)

A graphic explanation of TRW



Thursday, June 13, 13

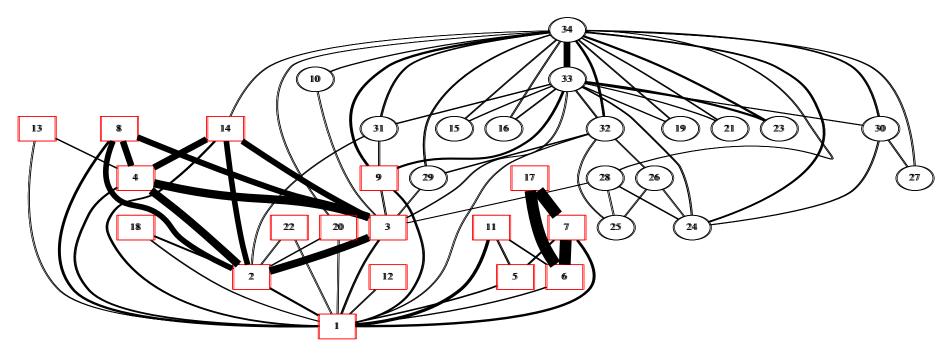
TRW: interpretation of the parameters

- lpha tells you how frequently one follows a link (instead of teleporting)
- eta tells you how frequently one chooses non-triangles (instead of triangles)
- No-teleportation is obtained when $\, lpha
 ightarrow 1$
- There is no choice of $\,\beta\,$ that reduces TRW to RWR
- One possibility would be to change the definition of a TRW so that β is the ratio between the probability of non-triangles and the probability of triangles...
- ...then one would recover RWR from TRW when eta
 ightarrow 1

The idea behind TRW

- Triangular random walks tend to insist differently on **triangles** than on non-triangles...
- ...you can decide how much more (or less) using eta as a knob
- The idea is to **confine the surfer as long as possible** within a community
- Note that when $\,\beta\,$ is close to zero, we virtually never choose non-triangular steps...
- ...in such a scenario, the only way out of dense communities is by teleportation

An experiment: Zachary's Karate Club



TRW, $\beta = 0.01$

TRW & Markov chains

- A standard random walk is memoryless: your state at time t+1 just depends on your state at time t
- A TRW is a Markov chain of order 2: your state at time t+1 depends on your state at time t *plus* your state at time t-1
- Can we turn it into a *standard Markov chain*?

Line graphs

- Given a graph G=(V,E), let's define its (directed) line graph
- L(G)=(E,L(E)) where there is an *arc* between every node of the form (x,y) and every node of the form (y,z)
- *Theorem:* A TRW on G is a standard RWR on a (weighted version of) L(G)
- Weights depend on the choice of eta
- Those weights will be denoted by $\,w_T\,$
- "T" is mnemonic for "triangular"

Second-order weights

- One can compute the stationary distribution (=PageRank) on L(G) using $\, w_T \,$ as weights...
- This is a distribution on the nodes of L(G) (=arcs of G)
- Recall the Karate Club example
- Also induces (as usual) a distribution on its arcs (=pairs of consecutive arcs of G)
- This can be seen as another form of weight, denoted by w_S
- "S" for "Second-order" (or "Stationary")

Triangular Arc Clustering (1) Using an off-the-shelf algorithm

- Given G...
- a) compute L(G)
- b) weight it (using either $w_T\,$ or $w_S\,$)
- c) use any node-clustering algorithm on L(G) that is sensible to weights

Cons and pros of this solution

- CONs: The main limit of this solution is graph size
- L(G) is larger than G
- If G has $pprox Ck^{-\gamma}$ nodes of degree *k...*
- ...L(G) has $\, pprox C^2 k^{-2\gamma} \,$ nodes of degree k
- **PROs:** You can use *any* off-the-shelf standard node-clustering algorithm
- Moreover, L(G) turns out to be very easy to compress...
- ...and PageRank converges extremely fast on it

Triangular Arc Clustering (2) A direct approach (ALP)

- There is no real need to compute L(G) **explicitly!**
- One can take a node-clustering algorithm of her will, and have it manipulate L(G) **implicitly**
- We did so for Label Propagation [Raghavan et al., 2007]

Triangular Arc Clustering (2) A direct approach (ALP)

- The advantage of LP [Raghavan *et al.*, 2007] with respect to other algorithms is that:
 - it provides a good compromise between **quality** and **speed**
 - efficiently parallelizable and suitable for distributed implementations
 - due to its diffusive nature it is very easy to adapt it to run implicitly on the line graph
- Recently shown that *naturally clustered graphs* are correctly decomposed by LP [Kothapalli *et al.*, 2012]

Quality measure

- Given a measure σ of arc similarity...
- ...and an arc clustering λ
- The PRI (Probabilistic Rand Index) is

$$PRI(\lambda,\sigma) = \sum_{\lambda(xy)=\lambda(x'y')} \sigma(xy, x'y') - \sum_{\lambda(xy)\neq\lambda(x'y')} \sigma(xy, x'y')$$

Quality measure

- Computing PRI exactly on large graphs is out of question!
- Instead, we sample arcs according to some distribution $\,\Psi\,$

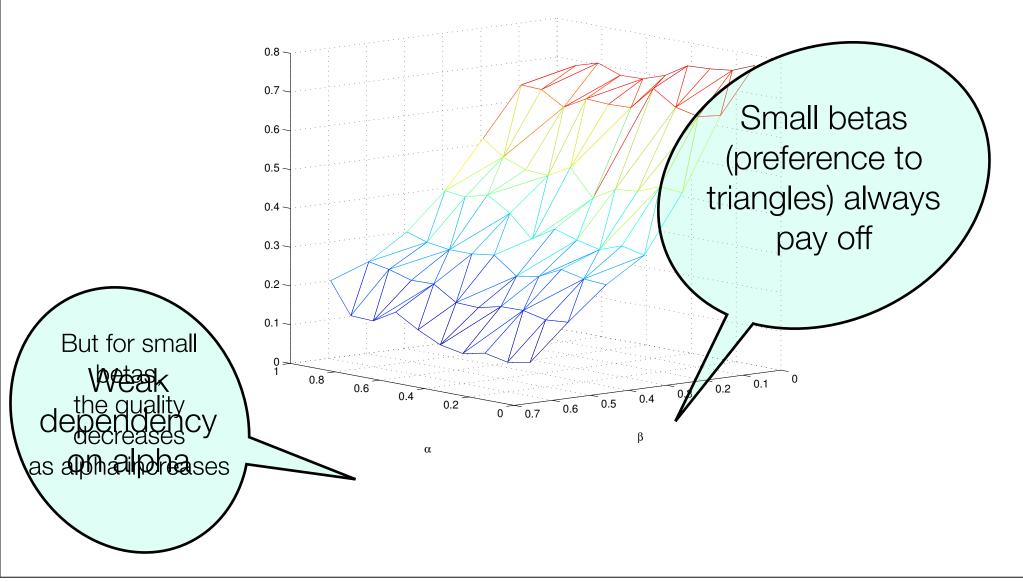
$$E_{\Psi}[(-1)^{\lambda(xy)\neq\lambda(x'y')}\sigma(xy)]$$

- If $\,\Psi\,$ is uniform, the value is an unbiased estimator for PRI
- We experiment with: uniform (u), node-uniform (n), node-degree (d)

A) Parameter tuning

- We tuned the parameters $\,lpha\,$ and $eta\,$ using different networks
- Consistent results
- We present them on DBLP
 - edge-similarity: TF-IDF of paper titles

A) Parameter tuning



Thursday, June 13, 13

DBLP (6,707,236 arcs)

ALP	#clust	PRI u	PRI n	PRI d	time
TRW	613203	0.74	0.71	0.75	32s
st. TRW	592562	0.72	0.75	0.75	32s
RWR	48025	0.02	0.16	0.18	24s
st. RWR	38498	0.02	0.08	0.03	22s
_	38498	0.02	0.08	0.03	22s

C	OBLP (6,707,236 arcs)				tation		
	Louvain	#clust	PRI u	PRIn	PRI d	time	
	TRW	1493	0.01	Ne0.69	0.53	494s	
	st. TRW	2116	st @162	0.71	0.53	456s	
	RWR	SU1#301	0.01	0.44	0.39	1080s	
	st. RWR	232	0.01	0.43	0.39	1028s	
	-	250	0.01	0.16	0.15	316s	

D	BLP (6,707,236 arcs)			0000N)		
		#clust	PRI u	PRInt	PRI d	time
	Evans	200	0.01	0.58	0.44	46min
	LINK	1415245	0.28	0.31	0.51	50h
	Infomap	3est 62680	0.05	0.27	0.29	874s
	Louvain (nodes)	6442	0.01	0.28	0.28	13s

- ALP offers best compromise between quality and computation time
- Triangular weights outperform all the others
- Stationary triangular weights slightly outperform "normal" ones
- Same behavior on all datasets (not shown here)

Summary

- We introduced a new type of random walk that treats triangles in a preferential way
- We used it to enhance existing community-detection algorithms
- We applied it through off-the-shelf algorithm to the line graph, as well as by implementing an algorithm that never computes the line graph explicitly
- Experiments show that the results obtained have high quality

Future work

- Work out a closed formula for triangular stationary distribution
- Apply the triangular weighting to **other problems** (e.g., information spread, influence maximization etc.)
- See if triangular weighting can help explaining better the structure of social networks
- See if it is possible to improve existing **models** of social networks

Thanks! Questions?