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Social networks & Communities

• Complex networks exhibit a finer-grained internal structure

• Community = densely connected set of nodes

• Community detection = partition that optimizes some quality function

• BUT: rarely a node is part of a single community!

• ⇒ Overlapping communities
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Plan of the talk	

• From node-communities to arc-communities?

• Standard vs. Triangular Random Walks

• Using Triangular Random Walks for clustering, through

• off-the-shelf clustering of the weighted line graph

• direct implicit clustering (ALP)

• Experiments
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Overlapping node clustering vs. arc clustering

• Most algorithms: considering overlapping communities think of overlap as a 
possibly frequent phenomenon, but stick to the idea that most nodes are well 
inside a community

• In a large number of scenarioes: belonging to more groups is a rule more than 
an exception

• In a social network, every user has different personas, belonging to different 
communities...

• ...On the other hand, a friendship relation has usually only one reason!

• ⇒ Arc clustering
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Arc-clustering: a metaphorical motivation

Infinitely many lines pass 
 through a single point
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Arc-clustering: a metaphorical motivation

Only one line passes 
 through two points
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Related work - Community detection

• Community detection (possibly with overlaps): too many to mention! 
[Kernighan & Lin, 1970; Girvan & Newman, 2002; Baumes et al., 2005; Palla et 
al., 2005; Mishra et al., 2008; Blondel et al., 2008]

• Good surveys / comparisons / analysis: Lancichinetti & Fortunato, 2009; 
Leskovec et al., 2010; Abrahao et al., 2012

• The latter, in particular, concludes essentially that:

• different algorithms discover different communities

• baseline (BFS) performs better than most algorithms (!)
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Related work - Link communities

• Lehman, Ahn, Bagrow: Link communities reveal multiscale complexity in 
networks. Nature, 2010.

• Kim & Jeong. The map equation for link community. 2011.

• Evans & Lambiotte. Line graphs, link partitions, and overlapping 
communities. Phys. Rev. E, 2009.

• The latter uses line graphs (like we do), but in their undirected version 
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Random walks (RW) on a graph

• Standard random walk: a sequence of r.v. 

such that 

• The surfer moves around, choosing every time an arc to follow uniformly at 
random

X0, X1, . . .

P [Xt+1 = y|Xt = x] =

(
1/d

+
(x) if x ! y

0 otherwise
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Random walks with restart (RWR) on a graph

• Random walk with restart: a sequence of r.v. 

such that 

• The surfer every time, with probability        follows a random arc...

• ...otherwise, teleports to a random location

X0, X1, . . .

↵

P [Xt+1 = y|Xt = x] =

(
↵/d

+
(x) + (1� ↵)/n if x ! y

1� ↵/n otherwise
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1� ↵

A graphic explanation of RWR

Surfer at node x

Follows a link (to y) Teleports to a 
random node

↵

uniformly at random
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Why random walk with restart?

• Teleporting guarantees that there is a unique stationary distribution

• This is not true for standard RW, unless the graph is strongly connected and 
aperiodic

• Note that the stationary distribution will depend on the damping factor as well

• The stationary distribution of RWR is PageRank
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From nodes to arcs

• The stationary distribution of RWR associates a probability         to every node

• Implicitly, it also associates a probability (frequency) to every arc                     : 

v
x

P [X
t

= x,X

t+1 = y] =

P [X
t+1 = y|X

t

= x]P [X
t

= x] =

v

x

(↵/d+(x) + (1� ↵)/n)

x ! y
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Triangular random walks (TRW) on a graph

• A TRW is more easily explained dynamically

• A surfer goes from x to y and then to z

• Was there a way to go directly from x to z? If so the move y->z is called 
triangular step (because it closes a triangle)

x
y

z
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1� ↵

� 1� �

A graphic explanation of TRW

Surfer at node x

Follows a link (to y) Teleports to a 
random node

↵

uniformly at random

Chooses a non-
triangular step

Chooses a 
triangular step
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TRW: interpretation of the parameters

•       tells you how frequently one follows a link (instead of teleporting)

•       tells you how frequently one chooses non-triangles (instead of triangles)

• No-teleportation is obtained when 

• There is no choice of         that reduces TRW to RWR

• One possibility would be to change the definition of a TRW so that       is the 
ratio between the probability of non-triangles and the probability of triangles...

• ...then one would recover RWR from TRW when 

↵

�

↵ ! 1

�

�

� ! 1
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The idea behind TRW

• Triangular random walks tend to insist differently on triangles than on non-
triangles...

• ...you can decide how much more (or less) using       as a knob

• The idea is to confine the surfer as long as possible within a community

• Note that when       is close to zero, we virtually never choose non-triangular 
steps...

• ...in such a scenario, the only way out of dense communities is by 
teleportation

�

�
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TRW, � = 0.2TRW, � = 0.01

An experiment: Zachary’s Karate Club
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TRW & Markov chains

• A standard random walk is memoryless: your state at time t+1 just depends on 
your state at time t

• A TRW is a Markov chain of order 2: your state at time t+1 depends on your 
state at time t plus your state at time t-1

• Can we turn it into a standard Markov chain?
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Line graphs

• Given a graph G=(V,E), let’s define its (directed) line graph

• L(G)=(E,L(E)) where there is an arc between every node of the form (x,y) and 
every node of the form (y,z)

• Theorem: A TRW on G is a standard RWR on a (weighted version of) L(G)

• Weights depend on the choice of      

• Those weights will be denoted by 

• “T” is mnemonic for “triangular”

�

wT
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Second-order weights

• One can compute the stationary distribution (=PageRank) on L(G) using             
as weights...

• This is a distribution on the nodes of L(G) (=arcs of G)

• Recall the Karate Club example

• Also induces (as usual) a distribution on its arcs (=pairs of consecutive arcs of 
G)

• This can be seen as another form of weight, denoted by

• “S” for “Second-order” (or “Stationary”)  

wT

wS
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Triangular Arc Clustering
(1) Using an off-the-shelf algorithm

• Given G...

• a) compute L(G)

• b) weight it (using either             or            )

• c) use any node-clustering algorithm on L(G) that is sensible to weights  

wT wS
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Cons and pros of this solution

• CONs: The main limit of this solution is graph size

• L(G) is larger than G

• If G has                             nodes of degree k...

• ...L(G) has                                    nodes of degree k

•  PROs: You can use any off-the-shelf standard node-clustering algorithm

• Moreover, L(G) turns out to be very easy to compress...

• ...and PageRank converges extremely fast on it

⇡ Ck��

⇡ C2k�2�
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Triangular Arc Clustering
(2) A direct approach (ALP)

• There is no real need to compute L(G) explicitly!

• One can take a node-clustering algorithm of her will, and have it 
manipulate L(G) implicitly

• We did so for Label Propagation [Raghavan et al., 2007]
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Triangular Arc Clustering
(2) A direct approach (ALP)

• The advantage of LP [Raghavan et al., 2007] with respect to other algorithms is 
that:

• it provides a good compromise between quality and speed

• efficiently parallelizable and suitable for distributed implementations

• due to its diffusive nature it is very easy to adapt it to run implicitly on the 
line graph

• Recently shown that naturally clustered graphs are correctly decomposed by 
LP [Kothapalli et al., 2012]
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Quality measure

• Given a measure      of arc similarity...

• ...and an arc clustering        

• The PRI (Probabilistic Rand Index) is 

�

�

PRI(�,�) =
X

�(xy)=�(x0
y

0)

�(xy, x0
y

0)�
X

�(xy) 6=�(x0
y

0)

�(xy, x0
y

0)
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Quality measure

• Computing PRI exactly on large graphs is out of question!

• Instead, we sample arcs according to some distribution 

• If         is uniform, the value is an unbiased estimator for PRI

• We experiment with: uniform (u), node-uniform (n), node-degree (d)

E [(�1)�(xy) 6=�(x0
y

0)
�(xy)]
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A) Parameter tuning

• We tuned the parameters        and       using different networks

• Consistent results

• We present them on DBLP 

• edge-similarity: TF-IDF of paper titles 

↵ �
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A) Parameter tuning
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B) Quality and computation time

ALP #clust PRI u PRI n PRI d time

TRW

st. TRW

RWR

st. RWR

-

613203 0.74 0.71 0.75 32s

592562 0.72 0.75 0.75 32s

48025 0.02 0.16 0.18 24s

38498 0.02 0.08 0.03 22s

38498 0.02 0.08 0.03 22s

DBLP (6,707,236 arcs)
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B) Quality and computation time

Louvain #clust PRI u PRI n PRI d time

TRW

st. TRW

RWR

st. RWR

-

1493 0.01 0.69 0.53 494s

2116 0.02 0.71 0.53 456s

2301 0.01 0.44 0.39 1080s

232 0.01 0.43 0.39 1028s

250 0.01 0.16 0.15 316s

DBLP (6,707,236 arcs)

Suffers o
f excessiv

e fra
gmentation
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B) Quality and computation time

#clust PRI u PRI n PRI d time

Evans 

LINK

Infomap

Louvain 
(nodes)

200 0.01 0.58 0.44 46min

1415245 0.28 0.31 0.51 50h

62680 0.05 0.27 0.29 874s

6442 0.01 0.28 0.28 13s

DBLP (6,707,236 arcs)

Best c
ompetito

r: L
INK (but slo

oooow)
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B) Quality and computation time

• ALP offers best compromise between quality and computation time

• Triangular weights outperform all the others

• Stationary triangular weights slightly outperform “normal” ones

• Same behavior on all datasets (not shown here)
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Summary 

• We introduced a new type of random walk that treats triangles in a preferential 
way

• We used it to enhance existing community-detection algorithms

• We applied it through off-the-shelf algorithm to the line graph, as well as by 
implementing an algorithm that never computes the line graph explicitly

• Experiments show that the results obtained have high quality
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Future work

• Work out a closed formula for triangular stationary distribution

• Apply the triangular weighting to other problems (e.g., information spread, 
influence maximization etc.)

• See if triangular weighting can help explaining better the structure of social 
networks

• See if it is possible to improve existing models of social networks
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Thanks!
Questions?
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