

Spectral analysis of Wikipedia and PhysRev networks

Klaus Frahm

Quantware MIPS Center
Université Paul Sabatier
Laboratoire de Physique Théorique, UMR 5152, IRSAMC, CNRS
supported by EC FET Open project NADINE

FET NADINE Workshop, Directed Networks Days 2013, Milano, 13 Juin 2013

Google matrix for directed

networks

Define the adjacency matrix A by $A_{i j}=1$ if there is a link from the node j to i in the network (of size N) and $A_{i j}=0$ otherwise. Let $S_{i j}=A_{i j} / \sum_{i} A_{i j}$ and $S_{i j}=1 / N$ if $\sum_{i} A_{i j}=0$ (dangling nodes). S is of Perron-Frobenius type but for many networks the eigenvalue $\lambda_{1}=1$ is highly degenerate [\Rightarrow convergence problem to arrive at the stationary limit of $p(t+1)=S p(t)$].
Therefore define the Google matrix:

$$
G(\alpha)=\alpha S+(1-\alpha) \frac{1}{N} e e^{T}
$$

where $e=(1, \ldots, 1)^{T}$ and $\alpha=0.85$ is a typical damping factor. Here there is a unique eigenvector for $\lambda_{1}=1$ called the PageRank P and the convergence goes with α^{t}.
(CheiRank P^{*} by replacing: $A \rightarrow A^{*}=A^{T}$).

Arnoldi method

to (partly) diagonalize large sparse non-symmetric $d \times d$ matrices:

- choose an initial normalized vector ξ_{0} (random or "otherwise")
- determine the Krylov space of dimension n_{A} (typically:
$\left.1 \ll n_{A} \ll d\right)$ spanned by the vectors: $\xi_{0}, G \xi_{0}, \ldots, G^{n_{A}-1} \xi_{0}$
- determine by Gram-Schmidt orthogonalization an orthonormal basis $\left\{\xi_{0}, \ldots, \xi_{n_{A}-1}\right\}$ and the representation of G in this basis:

$$
G \xi_{k}=\sum_{j=0}^{k+1} H_{j k} \xi_{j}
$$

- diagonalize the Arnoldi matrix H which has Hessenberg form:
$H=\left(\begin{array}{ccccc}* & * & \cdots & * & * \\ * & * & \cdots & * & * \\ 0 & * & \cdots & * & * \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & * & * \\ \hline 0 & 0 & \cdots & 0 & *\end{array}\right)$ which provides the Ritz eigenvalues that are
very good aproximations to the "largest" eigenvalues of A.

Invariant subspaces

In realistic WWW or other networks invariant subspaces of nodes create (possibly) large degeneracies of λ_{1} (or λ_{2} if $\alpha<1$) which is very problematic for the Arnoldi method.
Therefore one needs to determine the invariant subspaces defined as subsets of nodes such that for any node in a subspace each outgoing link stays in the subspace. One can efficiently find all subspaces of maximal size (or dimension) N_{c} (with $N_{c}=b N$ a certain fraction of the network size N, e.g. $b=0.1$) and then all subspaces with common members are merged resulting in a decomposition of the network in many separate subspaces with N_{s} nodes and a "big" core space of the remaining $N-N_{s}$ nodes.
Note that dangling nodes are by construction core space nodes.
Possible: core space node \rightarrow subspace node
Impossible: subspace node \rightarrow core space node

The decomposition in subspaces and a core space implies a block structure of the matrix S :

$$
S=\left(\begin{array}{cc}
S_{s s} & S_{s c} \\
0 & S_{c c}
\end{array}\right) \quad, \quad S_{s s}=\left(\begin{array}{ccc}
S_{1} & 0 & \cdots \\
0 & S_{2} & \\
\vdots & & \ddots
\end{array}\right)
$$

where $S_{s s}$ is block diagonal according to the subspaces. The subspace blocks of $S_{s s}$ are all matrices of PF type with at least one eigenvalue $\lambda_{1}=1$ explaining the high degeneracies.
To determine the spectrum of S apply:

- Exact (or Arnoldi) diagonalization on each subspace.
- The Arnoldi method to $S_{c c}$ to determine the largest core space eigenvalues λ_{j} (note: $\left|\lambda_{j}\right|<1$). The largest eigenvalues of $S_{c c}$ are no longer degenerate but other degeneracies are possible (e.g. $\lambda_{j}=0.9$ for Wikipedia).

Spectrum of Wikipedia

L. Ermann, KMF and D.L. Shepelyansky, Eur. Phys. J. B 86, 193 (2013) Wikipedia 2009 : $N=3282257$ nodes, $N_{\ell}=71012307$ network links.

$n_{A}=6000$ for both cases

Some Eigenvectors:

left (right): PageRank (CheiRank)
black: PageRank (CheiRank) at $\alpha=0.85$
grey: PageRank (CheiRank) at $\alpha=1-10^{-8}$
red and green: first two core space eigenvectors
blue and pink: two eigenvectors with large imaginary part in the eigenvalue

Detail study of 200 selected eigenvectors

 with eigenvalues "close" to the unit circle:

Power law decay of eigenvectors:

$$
\begin{gathered}
\left|\psi_{i}\left(K_{i}\right)\right| \sim K_{i}^{b} \quad \text { for } \quad K_{i} \geq 10^{4} \\
\varphi=\arg \left(\lambda_{i}\right)
\end{gathered}
$$

Inverse participation ratio of eigenvectors:

$$
\begin{gathered}
\xi_{\mathrm{IPR}}=\left(\sum_{j}\left|\psi_{i}(j)\right|^{2}\right)^{2} / \sum_{j}\left|\psi_{i}(j)\right|^{4} \\
\varphi=\arg \left(\lambda_{i}\right)
\end{gathered}
$$

"Themes" of certain eigenvectors:

Number of links between or inside sets A and B defined by the index K_{i} ordered by decreasing absolute value of Wikipedia eigenstates:

Physical Review network

(work in progress: KMF, Young-Ho Eom, D. Shepelyansky)
$N=463347$ nodes and $N_{\ell}=4691015$ links.
Coarse-grained matrix structure (500×500 cells):

left: time ordered
right: journal and then time ordered
"11" Journals of Physical Review: (Phys. Rev. Series I), Phys. Rev., Phys. Rev. Lett., (Rev. Mod. Phys.), Phys. Rev. A, B, C, D, E, (Phys. Rev. STAB and Phys. Rev. STPER).
\Rightarrow nearly triangular matrix structure of adjancy matrix: most citations links $t \rightarrow t^{\prime}$ are for $t>t^{\prime}$ ("past citations") but there is small number (12126 $=2.6 \times 10^{-3} N_{\ell}$) of links $t \rightarrow t^{\prime}$ with $t \leq t^{\prime}$ corresponding to future citations.
Spectrum by "double-precision" Arnoldi method with $n_{A}=8000$:

Numerical problem: eigenvalues with $|\lambda|<0.3-0.4$ are not reliable! Reason: large Jordan subspaces associated to the eigenvalue $\lambda=0$.
"very bad" Jordan perturbation theory:
Consider a "perturbed" Jordan block of size D :

$$
\left(\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
\varepsilon & 0 & \cdots & 0 & 0
\end{array}\right)
$$

characteristic polynomial: $\lambda^{D}-(-1)^{D} \varepsilon$
$\varepsilon=0 \quad \Rightarrow \quad \lambda=0$
$\varepsilon \neq 0 \quad \Rightarrow \quad \lambda_{j}=-\varepsilon^{1 / D} \exp (2 \pi i j / D)$
for $D \approx 10^{2}$ and $\varepsilon=10^{-16} \Rightarrow$ "Jordan-cloud" of artifical eigenvalues due to rounding errors in the region $|\lambda|<0.3-0.4$.

Triangular approximation

Remove the small number of links due to "future citations".
Semi-analytical diagonalization is possible:

$$
S=S_{0}+e d^{T} / N
$$

where $e_{n}=1$ for all nodes $n, d_{n}=1$ for dangling nodes n and $d_{n}=0$ otherwise. S_{0} is the pure link matrix which is nil-potent:

$$
S_{0}^{l}=0 \text { with } l=352
$$

Let ψ be an eigenvector of S with eigenvalue λ and $C=d^{T} \psi$.

- If $C=0 \Rightarrow \psi$ eigenvector of $S_{0} \Rightarrow \lambda=0$ since S_{0} nil-potent. These eigenvectors belong to large Jordan blocks and are responsible for the numerical problems.
Note: Similar situation as in network of integer numbers where $l=\left[\log _{2}(N)\right]$ and numerical instability for $|\lambda|<0.01$.
- If $C \neq 0 \Rightarrow \lambda \neq 0$ since the equation $S_{0} \psi=-C e / N$ does not have a solution $\Rightarrow \lambda 1-S_{0}$ invertible.

$$
\begin{gathered}
\Rightarrow \psi=C\left(\lambda \mathbf{1}-S_{0}\right)^{-1} e / N=\frac{C}{\lambda} \sum_{j=0}^{l-1}\left(\frac{S_{0}}{\lambda}\right)^{j} e / N . \\
\text { From } \lambda^{l}=\left(d^{T} \psi / C\right) \lambda^{l} \Rightarrow \mathcal{P}_{r}(\lambda)=0
\end{gathered}
$$

with the reduced polynomial of degree $l=352$:

$$
\mathcal{P}_{r}(\lambda)=\lambda^{l}-\sum_{j=0}^{l-1} \lambda^{l-1-j} c_{j}=0 \quad, \quad c_{j}=d^{T} S_{0}^{j} e / N
$$

\Rightarrow at most $l=352$ eigenvalues $\lambda \neq 0$ which can be numerically determined as the zeros of $\mathcal{P}_{r}(\lambda)$.
However: still numerical problems:

- $c_{l-1} \approx 3.6 \times 10^{-352}$
- alternate sign problem with a strong loss of significance.
- big sensitivity of eigenvalues on c_{j}

Solution:

Using the multi precision library GMP with 256 binary digits the zeros of $\mathcal{P}_{r}(\lambda)$ can be determined with accuracy \sim 10^{-18}.
Furthermore the Arnoldi method can also be implemented with higher precision.
red crosses: zeros of $\mathcal{P}_{r}(\lambda)$ from 256 binary digits calculation
blue squares: eigenvalues from Arnoldi method with $52,256,512,1280$ binary digits. In the last case: \Rightarrow break off at $n_{A}=352$ with vanishing coupling element.

Full Physical Review network

High precision Arnoldi method for full Physical Review network (including the "future citations") for 52, 256, 512, 768 binary digits and $n_{A}=2000$:

Degeneracies

High precision in Arnoldi method is "bad" to count the degeneracy of certain degenerate eigenvalues.

In theory the Arnoldi method cannot find several eigenvectors for degenerate eigenvalues, a shortcoming which is (partly) "repaired" by rounding errors.

Q: How are highly degenerate core space eigenvalues possible?

Semi-analytical argument for the full PR network:

$$
S=S_{0}+e d^{T} / N
$$

There are two groups of eigenvectors ψ with: $S \psi=\lambda \psi$

1. Those with $d^{T} \psi=0 \Rightarrow \psi$ is also an eigenvector of S_{0}. Generically an arbitrary eigenvector of S_{0} is not an eigenvector of S unless the eigenvalue is degenerate with degeneracy $m>1$. Using linear combinations of different eigenvectors for the same eigenvalue one can construct $m-1$ eigenvectors ψ respecting $d^{T} \psi=0$ which are therefore eigenvectors of S.
Pratically: determine degenerate subspace eigenvalues of S_{0} (and also of S_{0}^{T}) which are of the form: $\lambda= \pm 1 / \sqrt{n}$ with $n=1,2,3, \ldots$ due to 2×2-blocks:

$$
\left(\begin{array}{cc}
0 & 1 / n_{1} \\
1 / n_{2} & 0
\end{array}\right) \Rightarrow \lambda= \pm \frac{1}{\sqrt{n_{1} n_{2}}} .
$$

2. Those with $d^{T} \psi \neq 0 \quad \Rightarrow \quad \mathcal{R}(\lambda)=0$ with the rational function:

$$
\mathcal{R}(\lambda)=1-d^{T} \frac{1}{\lambda \mathbf{1}-S_{0}} e / N=1-\sum_{j, q} \frac{C_{j q}}{\left(\lambda-\rho_{j}\right)^{q}}
$$

Here $C_{j q}$ and ρ_{j} are unknown, except for
$\rho_{1}=2 \operatorname{Re}\left[(9+i \sqrt{119})^{1 / 3}\right] /(135)^{1 / 3} \approx 0.9024$ and
$\rho_{2,3}= \pm 1 / \sqrt{2} \approx \pm 0.7071$.
Idea: Expand the geometric matrix series \Rightarrow

$$
\mathcal{R}(\lambda)=1-\sum_{j=0}^{\infty} c_{j} \lambda^{-1-j} \quad, \quad c_{j}=d^{T} S_{0}^{j} e / N
$$

which converges for $|\lambda|>\rho_{1} \approx 0.9024$ since $c_{j} \sim \rho_{1}^{j}$ for $j \rightarrow \infty$.

Problem: How to determine the zeros of $\mathcal{R}(\lambda)$ with $|\lambda|<\rho_{1}$?

Analytic continuation by rational interpolation:

Use the series to evaluate $\mathcal{R}(z)$ at n_{S} support points
$z_{j}=\exp \left(2 \pi i j / n_{S}\right)$ with a given precision of p binary digits and determine the rational function $R_{I}(z)$ which interpolates $\mathcal{R}(z)$ at these support points. Two cases:

$$
\begin{aligned}
& n_{S}=2 n_{R}+1 \quad \Rightarrow \quad R_{I}(z)=\frac{P_{n_{R}}(z)}{Q_{n_{R}}(z)} \\
& n_{S}=2 n_{R}+2 \quad \Rightarrow \quad R_{I}(z)=\frac{P_{n_{R}}(z)}{Q_{n_{R}+1}(z)}
\end{aligned}
$$

The n_{R} zeros of $P_{n_{R}}(z)$ are approximations of the eigenvalues of S (of the 2nd group).
For a given precision, e. g. $p=1024$ binary digits one can obtain a certain number of reliable eigenvalues, e. g. $n_{R}=300$. The method can be pushed up to $p=16384$ and $n_{R}=2500$ which is better than the high precision Arnoldi method with $n_{A}=2000$.

Examples:

Some "artificial zeros" for $n_{R}=340$ and $p=1024$ (left top and middle pane/s) where both variants of the method differ.

For $n_{R}=300$ and $p=1024$ most zeros coincide with HP Arnoldi method (right top and middle panels) and both variants of the method coincide.

Lower panels: comparison for $n_{R}=$ 2000, $p=12288$ (left) or for $n_{R}=$ $2500, p=16384$ with HP Arnoldi method.

Accurate eigenvalue spectrum for the full Physical Review network by the rational interpolation method (left) and the HP Arnoldi method (right):

Conclusion

- Detailed eigenvector study for the Wikipedia network.
- Identification of certain themes or communities with the help of eigenvectors.
- Subtle numerical problems for the eigenvalue problem of the Physical Review network which can be solved by a semi-analytical method and a high precision implementation of the Arnoldi method.
- Understanding of the degeneracies of core space eigenvalues and a decompostion of the core space eigenvalues in two groups. Important role of subspaces of S_{0} (very different from the subspaces of S !).
- New rational interpolation method to determine accurately the eigenvalues of a network matrix. Well suited for nearly triangular matrices but works in principle also for other case (e. g. Wikipedia but less efficient here).
- Drastic effect of the triangular approximation on the eigenvalue spectrum. Strong reduction of non-vanishing eigenvalues, from about $\sim 8000-10000$ to 352 and only very few eigenvalues on the real axis. This implies a very strong effect of the few future citations on the spectrum.
- Very useful applications of the GNU high precision library GMP: http://gmplib.org/ for different numerical methods: determination of zeros of the reduced polynomial, rational interpolation method, Arnoldi method.

Appendix:

The subspace of $\lambda \neq 0$ is represented by the vectors $v^{(j)}=S_{0}^{j-1} e / N$ for $j=1, \ldots, l$

$$
\Rightarrow \quad S v^{(j)}=c_{j-1} v^{(1)}+v^{(j+1)}=\sum_{k=0}^{l-1} \bar{S}_{k, j} v^{(k)}
$$

"Small" $l \times l$-representation matrix :

$$
\bar{S}=\left(\begin{array}{ccccc}
c_{0} & c_{1} & \cdots & c_{l-2} & c_{l-1} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right) \quad, \quad \bar{P}=C\left(\begin{array}{c}
1 \\
1 \\
1 \\
\vdots \\
1
\end{array}\right)
$$

with $P=\sum_{j} \bar{P}_{j} v^{(j)}=C \sum_{j} v^{(j)}$ and due to sum rule: $\sum_{j} c_{j}=1$.

