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Networks

Recent field: study of complex networks

->Tools and models have been created

->Many networks are scale-free with power-law distribution of links

->Difference between directed and non directed networks

->|mportant examples from recent technological developments:
Internet, World Wide Web, social networks...

->Can be applied also to less recent objects

In particular, study of human behavior: languages, friendships...




Networks for games

->Network theory never applied
to games

->Games represent a privileged
approach to human decision-
making

->Can be very difficult to
modelize or simulate

->\While Deep Blue famously
beat the world chess champion
Kasparov in 1997,

no computer program has beaten
a very good go player

even in recent times.




Rules of go

->\White and black stones
alternatively put at
intersections of

19 x19 lines

->Stones without liberties are
removed

->Handicap stones can be
placed

->Aim of the game: construct
protected territories

->total number of legal
positions 10'71, compared to
10%0 for chess




Databases

->\We use databases of expert and amateur games in order to

construct networks from the different sequences of moves,

and study the properties of these networks

->Databases available at

->\Whole available record, from 1941 onwards, of the

most important historical professional Japanese go tournaments:
Kisei (143 games), Meijin (259 games), Honinbo (305 games),

Judan (158 games)

->First stage: to increase statistics and compare with
professional tournaments, 4000 amateur games also used.

->Second stage: the whole database of 135 000

amateur games was used.

->Level of players is known




Vertices of the network |

->"plaquette” : square of 3 x3 intersections

->\We identify plaquettes related by symmetry

->\We identify plaquettes with colors swapped
->1107 nonequivalent plaguettes with empty centers
->vertices of our network
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Vertices of the networks Il

->"plaquette” : square of 3 x3 intersections + atari status of
nearest-neighbors

->\We still identify plaquettes related by symmetry
->2051 legal nonequivalent plaquettes with empty centers




Vertices of the networks lli

->"plaquette” : diamond of 3 x3 +4 intersections
->\We still identify plaquettes related by symmetry
->193995 nonequivalent plaquettes with empty centers




Zipf’'s law

->Zipf's law: empirical law y | | - Ipr——=

observed in many natural V[ S §0?:

distributions (word -1 g g
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->integrated distribution of o8l

1107 moves clearly follows

a Zipf's law, Normalized integrated frequency

with exponent 1.06 distribution of 1107 moves.

Thick dashed line is y=-x.




Links of the network

->we connect vertices corresponding to moves a and b if
b follows a in a game at a distance <d.

->Each choice of d defines a different network. The
choice of d determines the distance beyond which two
moves are considered nonrelated.

->Sequences of moves follow Zipf's law (cf languages)
Exponent decreases as longer sequences reflect
iIndividual strategies

->move sequences are well hierarchized by d=5
->amateur database departs from all professional ones,
playing more often at shorter distances




Links of the network
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for (from top to bottom) two to seven successive moves
plotted against the ranks of the moves.




Links distribution

->Tails of link distributions
very close to power-law
with exponent 1.0 for the
Integrated distribution.
->The results are stable
with respect to the
database considered.
->network displays the
scale-free property
->symmetry between
Ingoing and outgoing links
IS a peculiarity of this
network
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distribution of links for d=5

Thick solid line is y=-x.
Inset:different values of d




Ranking vectors

->PageRank: ingoing links =1 = l '
->CheiRank: outgoing links
->HITS algorithm:Authorities -2
(ingoing links) and Hubs _ PageRanghe
(outgoing links) g -3 = \
->Ranking vectors follow an % N
algebraic law 2 4 .eg
->Symmetry between - \
distributions of ranking s L1
vectors based on ingoing _ 2%(;0 000 '
links and outgoing links. 0 05 1 15 2 25

log 1
->Clustering coefficient detects local connected clusters. Here
depends on the number of games n, included (see inset);for large
n, asymptotic value larger than 0.7 ( WWW 0.11); CC = 0.7 with
atari, CC=0.05 for diamond



Ranking vectors: other networks

->Still symmetry

between distributions
of ranking vectors
based on ingoing links
and outgoing links.
->Power law different
for the largest network
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->Ranking vectors of G. Black is PageRank, Red is CheiRank,
Plain line: size 1107, dashed line: size 2051, dotted line: size
193995.



Ranking vectors: correlations

2000 F

->Strong correlations S|
between PageRank and
CheiRank

->Strong correlation between
moves which open many
possibilities of new moves
and moves that can follow .
many other moves. 75000
->However, the symmetry is
far from exact.
->Correlation less strong for 25000 i
largest network |
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Figure: K* vs K where K (resp. K*) is the rank of a vertex when ordered
according to PageRank vector (resp CheiRank) for the three networks (sizes
1107, 2051, 193995)



Spectrum of the Google matrix |

->For WWW the spectrumis 04f
spread inside the unit circle, 02}
no gap between first 0f-
eigenvalue and the bulk 0.2F
->Here huge gap like in well- -0.4}-
connected networks, with few
iIsolated communities (cf
lexical networks).
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Top left: eigenvalues of G in the complex plane for two databases
Bottom: value such that from top to bottom 99%, 95%, 90%,
80% of eigenvalues are smaller in modulus for amateur games.
Top right: value for 80% of eigenvalues for our 5 databases.



Spectrum of the Google matrix Il

->For second and third networks, still
gap between the first eigenvalue and
next ones

->Radius of the bulk of eigenvalues
changes with size of network

->More structure in the networks with
larger plaquettes which disambiguate
the different game paths and should
make more visible the communities of
moves

Figure: Eigenvalues of G in the
complex plane for the networks with
1107, 2051 and 193995 nodes
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Eigenvectors of the Google matrix |

->Next to leading 0.8 L ' . - |
eigenvalues are important, - 04 = T T T T
may indicate the presence 0.6

of communities of moves ?

with common features. o

->The distribution of the first 2 %4
7 eigenvectors (Left) shows ]
that they are concentrated 0.2
on particular sets of moves :
different for each vector.

->eigenvectors are different i
for different tournaments Moduli squared of the right

and from professional to eigenvectors of the 7 largest
amateur eigenvalues of G (network with 1107
->much less peaked for vertices). Inset: real games (black)

randomized network vs random network (red)



Connection with tactical sequences

->First eigenvector is mainly localized on most frequent moves
->Third one is localized on moves describing captures of the
opponent's stones, and part of it singles out the well-known
situation of ko (" eternity"), where players repeat captures
alternately.

->The 7th eigenvector singles out moves which appear to protect
an isolated stone by connecting it with a chain.
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eigenvectors of G for first eigenvalues (PageRank)(top), third one
(middle) and seventh one (bottom), Network with 1107 vertices.
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Eigenvectors correlations

->Eigenvectors of
network of size 1107
(top) and 2051(down)

->Left (right) One line:
one eigenvector in the
order of PageRank

(CheiRank)

->Correlations
visible, not
necessarily related
to PageRank




Eigenvectors localization

->Inverse participation ratio: measures the spreading of
eigenvectors (Z; |\P.|2/Z. |\P,|*)

->[arge dispersion for G (top)

-> Lower dispersion for G with links inverted (bottom)
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Eigenvectors of the Google matrix |

->More complicated groups
of moves can be seen in
eigenvectors of larger
networks

->Systematic method of
grouping them: by
antecedent, by correlations
between eigenvectors.

Figures: eigenvector for
network of size 2051
(bottom) and 193995 ( rlght)
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Figure 1: PageRank index : 27, 28, 52, 9, 6, 32,  Figure 1: PageRank index : 0, 2, 10726, 1, 3, 35652, 63829, 56615, 45588, 6, 7,
144, 9, 126, 29, 63846, 10, 85819, 75486, 16, 14, 4, 21, 15, 1216, 77223, 1545,
35403, 24208, 22,




Networks for different game phases

->0ne can separate the
games into beginning,

middle, and end

->The three networks are
different, with markedly LB E
different spectra and R -
eigenvectors " g
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Figure: spectrum for all
moves (black), 50 first

moves (red), middle 50
(blue) and last 50 (green), .os-
Network with 193995
vertices. : | |
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Networks for different levels of play

->0ne can separate the
players by their levels

(dans) e
->Differences can be
seen between the moves
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Figure: statistical R T ° T

difference between
nodes outdegrees for
1dan/9dan and several
sets of 6dans/6dans
Network with 193995
vertices.




Conclusion

->we have studied the game of go, one of the most ancient and
complex board games, from a complex network perspective.
->\We have defined a proper categorization of moves taking

Into account the local environment, and shown that in this

Case Zipf's law emerges from data taken from real games
->Differences between professional and amateur games, different
level of amateurs, or phases of the game.

->Certain eigenvectors are localized on specific groups of moves
which correspond to different strategies.

->the point of view developed should allow to better modelize
such games and could also help to design simulators which could
in the future beat good human players.

->Qur approach could be used for other types of games, and in
parallel shed light on the human decision making process.




