UNIVERSITY OF TWENTE.

Quick detection of nodes with large degrees

Nelly Litvak
University of Twente,
Stochastic Operations Research group
NADINE meeting, 14-06-2013

Finding top-k largest degree nodes

with Konstantin Avrachenkov, Marina Sokol, Don Towsley

Finding top-k largest degree nodes

with Konstantin Avrachenkov, Marina Sokol, Don Towsley
What if we would like to find in a network top-k nodes with largest degrees?

Some applications:

- Routing via large degree nodes
- Proxy for various centrality measures
- Node clustering and classification
- Epidemic processes on networks

Top-k largest degree nodes

If the adjacency list of the network is known...
the top-k list of nodes can be found by the HeapSort with complexity $O(n+k \log (n))$, where n is the total number of nodes.

Even this modest complexity can be quite demanding for large networks.

Random walk approach

Let us now try a random walk on the network.
We actually recommend the random walk with jumps with the following transition probabilities:

$$
p_{i j}= \begin{cases}\frac{\alpha / n+1}{d_{i}+\alpha}, & \text { if } i \text { has a link to } j \tag{1}\\ \frac{\alpha / n}{d_{i}+\alpha}, & \text { if } i \text { does not have a link to } j,\end{cases}
$$

where d_{i} is the degree of node i and α is a parameter.

Random walk approach

Let us now try a random walk on the network.
We actually recommend the random walk with jumps with the following transition probabilities:

$$
p_{i j}= \begin{cases}\frac{\alpha / n+1}{d_{i}+\alpha}, & \text { if } i \text { has a link to } j, \tag{1}\\ \frac{\alpha / n}{d_{i}+\alpha}, & \text { if } i \text { does not have a link to } j,\end{cases}
$$

where d_{i} is the degree of node i and α is a parameter.
The introduced random walk is time reversible, its stationary distribution is given by a simple formula

$$
\begin{equation*}
\pi_{i}(\alpha)=\frac{d_{i}+\alpha}{2|E|+n \alpha} \quad \forall i \in V \tag{2}
\end{equation*}
$$

Random walk approach

Example:

If we run a random walk on the web graph of the UK domain (about 18500000 nodes), the random walk spends on average only about 5800 steps to detect the largest degree node.

Three order of magnitude faster than HeapSort!

Random walk approach

We propose the following algorithm for detecting the top k list of largest degree nodes:
(1) Set k, α and m.
(2) Execute a random walk step according to (1). If it is the first step, start from the uniform distribution.
(3) Check if the current node has a larger degree than one of the nodes in the current top k candidate list. If it is the case, insert the new node in the top- k candidate list and remove the worst node out of the list.
(9) If the number of random walk steps is less than m, return to Step 2 of the algorithm. Stop, otherwise.

How to choose α

W_{t} - state of the random walk at time $t=0,1, \ldots$

$$
P_{\pi}\left[W_{t}=i \mid \text { jump }\right]=\frac{1}{n}, \quad P_{\pi}\left[W_{t}=i \mid \text { no jump }\right]=\frac{d_{i}}{2|E|}=\pi_{i}(0)
$$

α is too small: the random walk can gets 'lost' in the network.
α is too large: jumps are too frequent, no useful information

How to choose α

W_{t} - state of the random walk at time $t=0,1, \ldots$

$$
P_{\pi}\left[W_{t}=i \mid \mathrm{jump}\right]=\frac{1}{n}, \quad P_{\pi}\left[W_{t}=i \mid \text { no jump }\right]=\frac{d_{i}}{2|E|}=\pi_{i}(0)
$$

α is too small: the random walk can gets 'lost' in the network.
α is too large: jumps are too frequent, no useful information
Maximize the long-run fraction of independent samples from $\pi(0)$

$$
\frac{1-P_{\pi}[\text { jump }]}{\left(P_{\pi}[\text { jump }]\right)^{-1}}=P_{\pi}[\text { jump }]\left(1-P_{\pi}[\text { jump }]\right) \rightarrow \max
$$

How to choose α

W_{t} - state of the random walk at time $t=0,1, \ldots$

$$
P_{\pi}\left[W_{t}=i \mid \text { jump }\right]=\frac{1}{n}, \quad P_{\pi}\left[W_{t}=i \mid \text { no jump }\right]=\frac{d_{i}}{2|E|}=\pi_{i}(0)
$$

α is too small: the random walk can gets 'lost' in the network.
α is too large: jumps are too frequent, no useful information
Maximize the long-run fraction of independent samples from $\pi(0)$

$$
\begin{gathered}
\frac{1-P_{\pi}[\text { jump }]}{\left(P_{\pi}[\text { jump }]\right)^{-1}}=P_{\pi}[\text { jump }]\left(1-P_{\pi}[\text { jump }]\right) \rightarrow \max . \\
P_{\pi}[\text { jump }]=\frac{n \alpha}{2|E|+n \alpha}=\frac{1}{2} \quad \alpha=2|E| / n=\text { average degree. }
\end{gathered}
$$

Stopping rules

- Objective: on average at least \bar{b} of the top k nodes are identified correctly.
- Let us compute the expected number of top k elements observed in the candidate list up to trial m.

$$
H_{j}= \begin{cases}1, & \text { node } j \text { has been observed at least once, } \\ 0, & \text { node } j \text { has not been observed. }\end{cases}
$$

Assuming we sample in i.i.d. fashion from the distribution (2), we can write

$$
\begin{align*}
& E\left[\sum_{j=1}^{k} H_{j}\right]=\sum_{j=1}^{k} E\left[H_{j}\right]=\sum_{j=1}^{k} P\left[X_{j} \geqslant 1\right]= \\
& \sum_{j=1}^{k}\left(1-P\left[X_{j}=0\right]\right)=\sum_{j=1}^{k}\left(1-\left(1-\pi_{j}\right)^{m}\right) . \tag{3}
\end{align*}
$$

Stopping rules (cont.)

(a) $\alpha=0.001$

(b) $\alpha=28.6$

Figure: Average number of correctly detected elements in top-10 for UK.

Stopping rules (cont.)

Here we can use the Poisson approximation

$$
E\left[\sum_{j=1}^{k} H_{j}\right] \approx \sum_{j=1}^{k}\left(1-e^{-m \pi_{j}}\right)
$$

and propose stopping rule. Denote

$$
b_{m}=\sum_{i=1}^{k}\left(1-e^{-X_{j_{i}}}\right) .
$$

Stopping rule: Stop at $m=m_{0}$, where

$$
m_{0}=\arg \min \left\{m: b_{m} \geqslant \bar{b}\right\}
$$

Example

- UK domain, about 18500000 nodes
- The random walk spends on average only about 5800 steps to detect the largest degree node
- With $\bar{b}=7$ we obtain on average 9.22 correct elements out of top-10 list for an average of 65802 random walk steps for the UK network.

Example

- UK domain, about 18500000 nodes
- The random walk spends on average only about 5800 steps to detect the largest degree node
- With $\bar{b}=7$ we obtain on average 9.22 correct elements out of top-10 list for an average of 65802 random walk steps for the UK network.

Directed networks: Twitter

with Konstantin Avrachenkov and Liudmila Ostroumova

Directed networks: Twitter

with Konstantin Avrachenkov and Liudmila Ostroumova

- Huge network (more than 500M users)

Directed networks: Twitter

with Konstantin Avrachenkov and Liudmila Ostroumova

- Huge network (more than 500M users)
- Network accessed only through Twitter API

Directed networks: Twitter

with Konstantin Avrachenkov and Liudmila Ostroumova

- Huge network (more than 500M users)
- Network accessed only through Twitter API
- The rate of requests is limited
- One request:
- ID's of at most 5000 followers of a node, or
- the number of followers of a node

Random walk?

Random walk quickly arrives to a large node and cannot randomly sample from its followers/followees because it is much more than 5000

Random walk?

Random walk quickly arrives to a large node and cannot randomly sample from its followers/followees because it is much more than 5000

1	Justin Bieber @justinbieber \#BELIEVE is on TUNES and in STORES WORLDWIDEI - SO MUCH LOVE FOR THE	$39,964,138$ followers	$122,694$ following	$22,331$ tweets
2	Lady Gaga @ladygaga When POP sucks the tits of ART.	$37,929,479$ followers	$135,862$ following	$2,661$ tweets
3	Katy Perry @katyperry back to (t)werk	$37,381,974$ followers	123 following	$4,626$ tweets
4	Barack Obama @BarackObama This account is run by Organizing for Action staff. Tweets from the President are signed -bo.	$32,247,402$ followers \qquad	$662,113$ following	$9,182$ tweets

UNIVERSITY OF TWENTE.
[Nelly Litvak, 14-06-2013] 13/27

Algorithm for finding top- k most followed on Twitter

(1) Choose n_{1} nodes at random
(2) Retrieve the id's of at most 5000 users followed by each of the n_{1} nodes
(3) Let S_{j} be the number of followers of node j discovered among the n_{1} nodes
(9) Check the number of followers for n_{2} users with the largest values of S_{j}
(6) Return the identified top- k most followed users

In total, there are $n=n_{1}+n_{2}$ requests to API

Performance prediction

- Heuristic: Let $1,2, \ldots, k$ be the top- k nodes
- Approximate the probability that the node j is discovered by

$$
P\left(S_{j}>\max \left\{S_{n_{2}}, 1\right\}\right)
$$

Then the fraction of correctly identified nodes is

$$
\frac{1}{k} \sum_{j=1}^{k} P\left(S_{j}>\max \left\{S_{n_{2}}, 1\right\}\right)
$$

and S_{j} have approximately $\operatorname{Poisson}\left(n_{1} d_{j} / N\right)$ distribution, where N is the number of users

Extreme value theory

Theorem (Extreme value theory)
$D_{1}, D_{2}, \ldots, D_{n}$ are i.i.d. with $1-F(x)=P(D>x)=C x^{-\alpha+1}$.
Then
$\lim _{n \rightarrow \infty} P\left(\frac{\max \left\{D_{1}, D_{2}, \ldots, D_{n}\right\}-b_{n}}{a_{n}} \leqslant x\right)=\exp \left(-(1+\delta x)^{-1 / \delta}\right)$,
with $\delta=1 /(\alpha-1), a_{n}=\delta C^{\delta} n^{\delta}, b_{n}=C^{\delta} n^{\delta}$.
(Therefore, the maximum is 'of the order' $n^{1 /(\alpha-1)}$)

Prediction based on identified top- $m, m<k$

- We do not know $d_{1}, d_{2}, \ldots, d_{n}$ but we can predict their value using the quantile estimation from the Extreme Value Theory (Dekkers et al, 1989):

$$
\hat{d}_{j}=d_{m}\left(\frac{m}{j-1}\right)^{\hat{\gamma}}, \quad j>1, j \ll N
$$

where

$$
\hat{\gamma}=\frac{1}{m-1} \sum_{i=1}^{m-1} \log \left(d_{i}\right)-\log \left(d_{m}\right)
$$

- If m is small enough then we can be almost sure that we discovered top- m correctly.

Caveats in the prediction based on top- $m, m<k$

- We do not know the top- m degrees either. However, we can find them with high precision.

Caveats in the prediction based on top- $m, m<k$

- We do not know the top- m degrees either. However, we can find them with high precision.

Caveats in the prediction based on top- $m, m<k$

- We do not know the top- m degrees either. However, we can find them with high precision.

- The consistency of the estimator \hat{d}_{j} is proved for $j<m$ but we use it for $j>m$. Can we prove the consistency, and if not: can we encounter some pathological behaviour?

Results

$$
n=1000, n=n_{1}+n_{2}, N=500 M, k=100
$$

Results

$$
n=1000, n=n_{1}+n_{2}, N=500 M, k=100
$$

Fraction of correctly identified top-100 nodes as a function of n_{1}

Predictions of trends in retweet graph

with Marijn ten Thij, TNO

Predictions of trends in retweet graph

with Marijn ten Thij, TNO

- Data: Project X Haren, 21-09-2012

Predictions of trends in retweet graph

 with Marijn ten Thij, TNO- Data: Project X Haren, 21-09-2012
- Retweet graph: a link between two users if one of them retweeted the other

Graph structure

19-9-2012 12:00

Graph structure

19-9-2012 23:00

Graph structure

20-9-2012 00:00

Graph structure

21-9-2012 07:00

Graph structure

22-9-2012 05:00

Ongoing work

- Connection between graph structures and important trends

Ongoing work

- Connection between graph structures and important trends
- Mathematical modelling

Ongoing work

- Connection between graph structures and important trends
- Mathematical modelling
- Possible future topic: trend prediction

Thank you!

