
High–Performance
Crawling: The State Of

BUbiNG
Sebastiano Vigna

(with Paolo Boldi, Andrea Marino and Massimo Santini)

Why a new crawler?

• Not so many open-source crawlers

• Not so configurable

• Not so extensible

• Not distributed

• NIH

Previous work

• Mercator (Najork et al.)

• UbiCrawler (Boldi et al.)

• IRLBot (WWW 2008)

• Heritrix (Internet Archive)

• Nutch (based on Hadoop)

• Bixo (based on Hadoop)

• Surprisingly little performance data

Challenges
• Use massive memory and multiple cores

efficiently (does not work on a mobile
phone)

• Fill bandwidth in spite of politeness (both at
host and IP level)

• Stoppable/restartable

• Completely configurable

• Extensible will little effort (no
recompilation)

Crawler Behaviour

• Simple text key/value file

• By design, all properties must be specified
(code is not responsible for defaults)

• For instance: maxUrls=500M

• Or: urlCacheSize=128Mi

• Time units, SI multipliers, NIST multipliers

Crawling Phases
• Totally generic approach

• Each phase (schedule, fetch, parse, follow,
store) has an associated filter

• Filters can be specified using Boolean
formulae (with short-circuit semantics)

• Atoms are Java classes instantiated by
reflection using a natural syntax

• Atoms can be applied to URLs or
responses (adaptation is automatic)

Crawling Phases

• Many useful ready-made atoms

• From easy ones: HostEndsWith

• To extremely sophisticated ones:
DuplicateSegmentsLessThan finds URLs
with repeated segments like /a/a/a or /a/
b/a/b/a/b using suffix arrays (10x faster
than regular expressions)

• To content-based: IsProbablyBinary()

Typical cases

• Parsing:
(ContentTypeStartsWith(text/) or
PathEndsWithOneOf(.html,.htm,.txt)
) and not IsProbablyBinary()

• Scheduling: (SchemeEquals(http) or
SchemeEquals(https)) and
HostEndsWith(.it) and not
PathEndsWithOneOf(.axd,.xls,.rar,.
...)

The Workbench

• Crawling happens by picking elements from
the workbench

• First, each host (and related state) is stored
in a visit state, which contains a FIFO queue
of URLs to be visited

• Each visit state has a next-fetch time that is
the first instant in time in which it is
possible (by politeness) to fetch a URL
from the host

Entries

• Visit states are grouped by IP address in
workbench entries

• Each entry contains a queue of visit states
prioritized by next-fetch

• Moreover every entry has a next-fetch that
is the first instant in time in which it is
possible (by politeness) to fetch a URL
from the IP address

Priority of entries

• Each entry is stored in the workbench,
which is a queue of entries prioritized by
the maximum between the next-fetch of
the entry and the minimum next-fetch of
associated hosts

• Thus, if there is an entry with a ready visit
state, there is an entry with a ready visit
state at the top of the workbench

High Parallelism

• We use massively multiple (like 1000)
threads

• Every thread handles a request and is I/O
bound

• Parallel threads parse and store pages

• Slow data structures are sandwiched
between wait-free queues

Handling Queues
• The workbench is actually an abstraction

• The FIFO queues of URLs grow
exponentially

• They must be stored partially on disk

• The goal is to maintain wide the front of the
crawl

• We set a required front and increase it
each time a fetching thread waits

The Sieve
• The sieve is the basic data structure behind

the crawl

• Is a FIFO queue partially stored on disk
from which elements are dequeued just
once

• We use an implementation similar to that
of Mercator

• Alternatives such as DRUM do not
preserve the breadth-first visit order

• Common mistake: Bloom filters

Fully Distributed

• We use JGroups to set up a view on a set
of agents

• Hosts are assigned to agent using
consistent hashing

• URLs for which an agent is not responsible
are quickly delivered to the right agent

• We use JAI4J, a thin layer over JGroups that
handles job assignment.

Near-Duplicates
• We detect (presently) near-duplicates using

a MurmurHash3 fingerprint of a stripped
page (stored in a Bloom filter)

• The stripping includes eliminating almost all
tag attributes and numbers from text

• We are going to experiment with more
sophisticated methods like SimHash

• Suggestions for heuristics are welcome

• We would like to have a test collection

Parsing

• You can specify any number of parsers

• Every parsers implements Filter, and the
first parser that accept a response will
parse it

• Fallback binary parser

• Presently the HTML parser just parses text

• In the future: JavaScript partial evaluation

Storing
• You can specify in the configuration file a

Store implementation

• The basic one generates a compressed
Warc file (with parallel compression)

• We plan on having one storing into HBase

• Data can even be just streamed somewhere
else

• The implementation knows whether we
estimate that the page is a duplicate

Future
• Reduce object creation (too much garbage

collection)

• Experiment with HTTP KeepAlive

• Choice between synchronous and
asynchronous Apache HTTP clients

• Do first real-world large crawls

• Distribute the crawler to selected location
for testing before public release

• Write a manual!

