High—Performance
Crawling: The State Of

BUbING

Sebastiano Vigna
(with Paolo Boldi, Andrea Marino and Massimo Santini)

Why a new crawler?

Not so many open-source crawlers
Not so configurable

Not so extensible

Not distributed

NIH

Previous work

Mercator (Najork et al.)

UbiCrawler (Boldi et al.)
IRLBot (WWWV 2008)
Heritrix (Internet Archive)

Nutch (based on Hadoop)
Bixo (based on Hadoop)

Surprisingly little performance data

Challenges

Use massive memory and multiple cores
efficiently (does not work on a mobile
phone)

Fill bandwidth in spite of politeness (both at
host and IP level)

Stoppable/restartable

Completely configurable

Extensible will little effort (no
recompilation)

Crawler Behaviour

® Simple text key/value file

® By design, all properties must be specified
(code is not responsible for defaults)

® For instance: maxUr ls=500M
® Or:urlCacheSize=128M1

® Time units, S| multipliers, NIST multipliers

Crawling Phases

Totally generic approach

Each phase (schedule, fetch, parse, follow,
store) has an associated filter

Filters can be specified using Boolean
formulae (with short-circuit semantics)

Atoms are Java classes instantiated by
reflection using a natural syntax

Atoms can be applied to URLs or
responses (adaptation is automatic)

Crawling Phases

Many useful ready-made atoms
From easy ones: HostEndsWiith

To extremely sophisticated ones:
DuplicateSegmentsLessThan finds URLs

with repeated segments like /a/a/a or /a/
b/a/b/a/b using suffix arrays (10x faster

than regular expressions)

To content-based: IsProbablyBinary ()

Typical cases

® Parsing:
(ContentTypeStartsWith(text/) or

PathEndsWithOneOf (.html, .htm, .txt)
) and not IsProbablyBinary()

® Scheduling: (SchemeEquals(http) or
SchemeEquals(https)) and
HostEndsWith(.1t) and not
PathEndsWithOneOf(.axd, .xls, .rar,.

)

The Workbench

® Crawling happens by picking elements from
the workbench

® First, each host (and related state) is stored
in a visit state, which contains a FIFO queue
of URLs to be visited

® FEach visit state has a next-fetch time that is
the first instant in time in which it is
possible (by politeness) to fetch a URL
from the host

Entries

® Visit states are grouped by IP address in
workbench entries

® Each entry contains a queue of visit states
prioritized by next-fetch

® Moreover every entry has a next-fetch that
is the first instant in time in which it is

possible (by politeness) to fetch a URL
from the IP address

Priority of entries

® Fach entry is stored in the workbench,
which is a queue of entries prioritized by
the maximum between the next-fetch of
the entry and the minimum next-fetch of
associated hosts

Thus, if there is an entry with a ready visit
state, there is an entry with a ready visit
state at the top of the workbench

Righ Parallelism

We use massively multiple (like 1000)
threads

Every thread handles a request and is I/O
bound

Parallel threads parse and store pages

Slow data structures are sandwiched
between wait-free queues

Handling Queues

The workbench is actually an abstraction

The FIFO queues of URLs grow
exponentially

They must be stored partially on disk

The goal is to maintain wide the front of the
crawl

We set a required front and increase it
each time a fetching thread waits

The Sieve

The sieve is the basic data structure behind
the crawl

Is a FIFO queue partially stored on disk
from which elements are dequeued just
once

We use an implementation similar to that
of Mercator

Alternatives such as DRUM do not
preserve the breadth-first visit order

Common mistake: Bloom filters

Fully Distributed

We use |Groups to set up a view on a set
of agents

Hosts are assigned to agent using
consistent hashing

URLs for which an agent is not responsible
are quickly delivered to the right agent

We use JAl4], a thin layer over |Groups that
handles job assignment.

Near-Duplicates

We detect (presently) near-duplicates using
a MurmurHash3 fingerprint of a stripped
page (stored in a Bloom filter)

The stripping includes eliminating almost all

tag attributes and numbers from text

We are going to experiment with more
sophisticated methods like SimHash

Suggestions for heuristics are welcome

We would like to have a test collection

Parsing

You can specify any number of parsers

Every parsers implements Filter,and the
first parser that accept a response will
parse it

Fallback binary parser

Presently the HTML parser just parses text

In the future: JavaScript partial evaluation

Storing

You can specify in the configuration file a
Store implementation

The basic one generates a compressed
Warc file (with parallel compression)

We plan on having one storing into HBase

Data can even be just streamed somewhere
else

The implementation knows whether we
estimate that the page is a duplicate

Future

Reduce object creation (too much garbage
collection)

Experiment with HT TP KeepAlive

Choice between synchronous and
asynchronous Apache HT TP clients

Do first real-world large crawls

Distribute the crawler to selected location
for testing before public release

Write a manual!

