PageRank and recommenders on very large scale A Big Data perspective through Stratosphere

Márton Balassi Data Mining and Search Group¹

¹Computer and Automation Research Institute of the Hungarian Academy of Sciences

May 8, 2014

Table of Contents

Distributing data-intensive algorithms

Stratosphere Input Contracts

PageRank and recommender systems

Reference

Distributing data-intensive algorithms

Table of contents

Distributing data-intensive algorithms

Stratosphere Input Contracts

PageRank and recommender systems

Reference

Distributing data-intensive algorithms

Motivation

Motivation

Let's do a PageRank on this graph...

- The soc-LiveJournal1 provided by Stanford LNDC¹
- ▶ 4.8 · 10⁶ nodes
- ▶ 6.9 · 10⁷ edges
- 250 MB of compressed data
- "Conventional" single machine solution seems sufficient

+日 + 4 個 + 4 国 + 4 国 +

¹Stanford Large Network Dataset Collection

Distributing data-intensive algorithms

Motivation

Motivation

Let's do a PageRank on this graph...

- The soc-LiveJournal1 provided by Stanford LNDC¹
- ▶ 4.8 · 10⁶ nodes
- ▶ 6.9 · 10⁷ edges
- 250 MB of compressed data
- "Conventional" single machine solution seems sufficient

+日 + 4 個 + 4 国 + 4 国 +

¹Stanford Large Network Dataset Collection

Distributing data-intensive algorithms

Motivation

Motivation

Let's do a PageRank on this graph...

- The soc-LiveJournal1 provided by Stanford LNDC¹
- ▶ 4.8 · 10⁶ nodes
- ▶ 6.9 · 10⁷ edges
- 250 MB of compressed data
- "Conventional" single machine solution seems sufficient

・ロト ・ 日 ト ・ モ ト ・ モ ト

э

Distributing data-intensive algorithms

Motivation

Motivation

Let's do a PageRank on this graph...

- The soc-LiveJournal1 provided by Stanford LNDC¹
- ▶ 4.8 · 10⁶ nodes
- ▶ 6.9 · 10⁷ edges
- 250 MB of compressed data
- "Conventional" single machine solution seems sufficient

・ロト ・ 日 ト ・ モ ト ・ モ ト

э

-Distributing data-intensive algorithms

- Motivation

Motivation

Let's do a PageRank on this graph...

- The soc-LiveJournal1 provided by Stanford LNDC¹
- ▶ 4.8 · 10⁶ nodes
- ▶ 6.9 · 10⁷ edges
- 250 MB of compressed data
- "Conventional" single machine solution seems sufficient

Distributing data-intensive algorithms

Motivation

Motivation

Let's do a PageRank on this graph...

- A large Portugese webcrawl¹
- ▶ 3.1 · 10⁹ nodes
- ▶ 1.1 · 10¹¹ edges
- 80 GB of compressed data
- Divide and conquer is almost mandatory

Distributing data-intensive algorithms

Motivation

Motivation

Let's do a PageRank on this graph...

- A large Portugese webcrawl¹
- 3.1 · 10⁹ nodes
- ▶ 1.1 · 10¹¹ edges
- 80 GB of compressed data
- Divide and conquer is almost mandatory

Distributing data-intensive algorithms

Motivation

Motivation

Let's do a PageRank on this graph...

- A large Portugese webcrawl¹
- 3.1 · 10⁹ nodes
- ▶ 1.1 · 10¹¹ edges
- 80 GB of compressed data
- Divide and conquer is almost mandatory

Distributing data-intensive algorithms

- Motivation

Motivation

Let's do a PageRank on this graph...

- A large Portugese webcrawl¹
- 3.1 · 10⁹ nodes
- ▶ 1.1 · 10¹¹ edges
- 80 GB of compressed data
- Divide and conquer is almost mandatory

-Distributing data-intensive algorithms

Motivation

Motivation

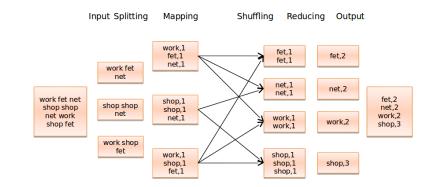
Let's do a PageRank on this graph...

- A large Portugese webcrawl¹
- 3.1 · 10⁹ nodes
- ▶ 1.1 · 10¹¹ edges
- 80 GB of compressed data
- Divide and conquer is almost mandatory

Distributing data-intensive algorithms

MapReduce

MapReduce



ØDMS

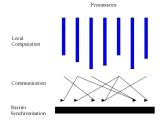
Distributing data-intensive algorithms

Pregel

Pregel

Traits

- Bulk Synchronous Parallel
- "Think like a vertex"
- Graph kept in memory



Scheme of the BSP system Wikipedia, public domain

(日) (四) (日) (日)

3

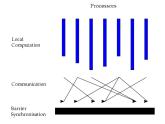
Distributing data-intensive algorithms

Pregel

Pregel

Traits

- Bulk Synchronous Parallel
- "Think like a vertex"
- Graph kept in memory



Scheme of the BSP system Wikipedia, public domain

(日) (四) (日) (日)

3

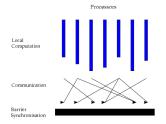
Distributing data-intensive algorithms

Pregel

Pregel

Traits

- Bulk Synchronous Parallel
- "Think like a vertex"
- Graph kept in memory



Scheme of the BSP system Wikipedia, public domain

イロト 不得下 イヨト イヨト

э

Distributing data-intensive algorithms

Counting the number of triangles in a graph

Triangle Counter – Sequential algorithm

Sequential algorithm

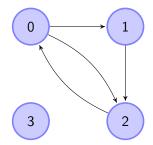
Every vertex executes a search of itself bounded in depth of three. Thus every triangle is counted three times.

Distributing data-intensive algorithms

Counting the number of triangles in a graph

Triangle Counter – MapReduce algorithm

Representation
012
12
20
3



Distributing data-intensive algorithms

Counting the number of triangles in a graph

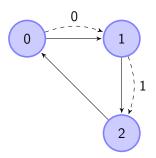
Triangle Counter – MapReduce algorithm

First Map

Let's send our ID to all of our neighbours possessing a higher ID than ours. Let's send our neighbours to ourselves.

First Reduce

Let's write out the information received.



Distributing data-intensive algorithms

Counting the number of triangles in a graph

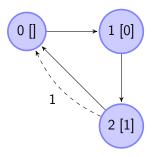
Triangle Counter – MapReduce algorithm

Second Map

If the ID received is smaller then ours let's pass it on to our neighbours. Let's send our neighbours to ourselves.

Second Reduce

If the ID received is our neighbour then let's increment a global counter.



(日) (四) (日) (日) (日)

Distributing data-intensive algorithms

Counting the number of triangles in a graph

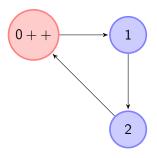
Triangle Counter – MapReduce algorithm

Second Map

If the ID received is smaller then ours let's pass it on to our neighbours. Let's send our neighbours to ourselves.

Second Reduce

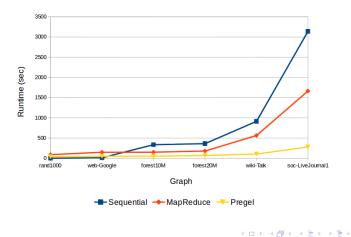
If the ID received is our neighbour then let's increment a global counter.



Distributing data-intensive algorithms

Counting the number of triangles in a graph

Runtime of the three solutions



э

TriangleCounter

PageRank and recommenders on very large scale - Stratosphere Input Contracts

Table of contents

Distributing data-intensive algorithms

Stratosphere Input Contracts

PageRank and recommender systems

Reference

Stratosphere Input Contracts

∟_{Map}

Мар

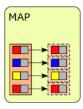
Wordcount Map

For lines of input text emit (word, 1) for each word.

-Stratosphere Input Contracts

└_ Map

Map



public static class TokenizeLine extends MapStub implements Serializable {
 private static final long serialVersionUID = 1L;

```
// initialize reusable mutable objects
private final PactRecord outputRecord = new PactRecord();
private final PactString word = new PactString();
private final PactInteger one = new PactInteger(1);
```

@Override

}

```
public void map(PactRecord record, Collector<PactRecord> collector) {
    // get the first field (as type PactString) from the record
    PactString line = record.getField(0, PactString.class);
```

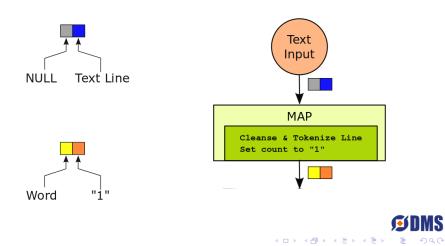
// normalize the line with AsciiUtils ...

```
// tokenize the line
this.tokenizer.setStringToTokenize(line);
while (tokenizer.next(this.word)){
    // emit a (word, 1) pair
    this.outputRecord.setField(0, this.word);
    this.outputRecord.setField(1, this.one);
    collector.collect(this.outputRecord);
  }
}
```

Stratosphere Input Contracts

∟_{Map}

Map



Stratosphere Input Contracts

Reduce

Reduce

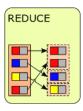
Wordcount Reduce

For multiple instances of (word, 1) count frequency of each word.

-Stratosphere Input Contracts

Reduce

Reduce

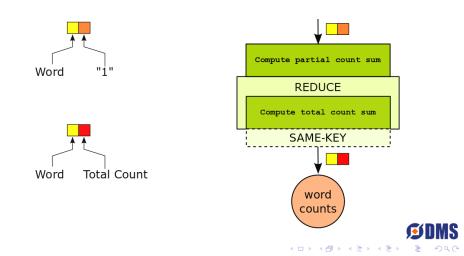


```
public static class CountWords extends ReduceStub implements Serializable {
 private final PactInteger cnt = new PactInteger();
 @Override
 public void reduce(Iterator<PactRecord> records, Collector<PactRecord> out)
        throws Exception {
   PactRecord element = null:
   int sum = 0;
   while (records.hasNext()) {
     element = records.next();
     PactInteger i = element.getField(1, PactInteger.class);
     sum += i.getValue();
   ŀ
   this.cnt.setValue(sum):
   element.setField(1, this.cnt);
   out.collect(element);
 ŀ
 @Override
 public void combine(Iterator<PactRecord> records, Collector<PactRecord> out)
        throws Exception {
 // same logic as reduce so simply a call to it
 this.reduce(records, out);
 }
                                            イロト イポト イヨト イヨト
```

-Stratosphere Input Contracts

Reduce

Reduce



Stratosphere Input Contracts

Cross

Cross

K-Means Cross

Given data points and cluster centers compute the distance between each data point and cluster center.

-Stratosphere Input Contracts

Cross

Cross

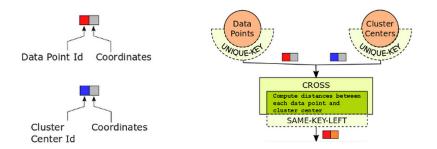

```
public class ComputeDistance extends CrossStub implements Serializable {
 private static final long serialVersionUID = 1L;
 private final PactDouble distance = new PactDouble();
 //Output Format: (pointID, pointVector, clusterID, distance)
 @Override
 public void cross(PactRecord dataPointRecord, PactRecord clusterCenterRecord,
        Collector<PactRecord> out) {
   CoordVector dataPoint = dataPointRecord.getField(1, CoordVector.class);
   PactInteger clusterCenterId = clusterCenterRecord.getField(0,
         PactInteger.class);
   CoordVector clusterPoint = clusterCenterRecord.getField(1.
         CoordVector.class);
   this.distance.setValue(dataPoint.computeEuclidianDistance(clusterPoint));
   // add cluster center id and distance to the data point record
   dataPointRecord.setField(2, clusterCenterId);
   dataPointRecord.setField(3, this.distance);
 out.collect(dataPointRecord):
 }
```

イロト イポト イヨト イヨト

Stratosphere Input Contracts

Cross

Cross



©DMS < --> < => < => < => < <> <<

Stratosphere Input Contracts

└_ Match

Match

Path Match

Given edges (e, f) and (f, g) of a graph construct (e, g) paths.

-Stratosphere Input Contracts

Match

Match

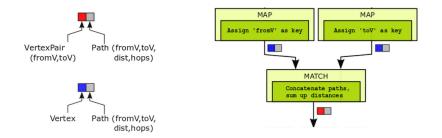
public static class ConcatPaths extends MatchStub implements Serializable { //define outputRecord, length, hopCnt, hopList... @Override public void match(PactRecord rec1, PactRecord rec2, Collector<PactRecord> out) throws Exception { // rec1 has matching start, rec2 matching end final PactString fromNode = rec2.getField(0, PactString.class); final PactString toNode = rec1.getField(1, PactString.class); if (fromNode.equals(toNode)) return: //circle prevention // Create new path outputRecord.setField(0, fromNode); outputRecord.setField(1. toNode); // Compute length of new path & hop count ... // Concatenate hops lists and insert matching node... // Append the whole path in a Stringbuilder... hopList.setValue(sb.toString().trim()): outputRecord.setField(4, hopList); out.collect(outputRecord); } }

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへの

Stratosphere Input Contracts

Match

Match



Stratosphere Input Contracts

CoGroup

CoGroup

Floyd CoGroup

Given shortest paths to inneighbours of a vertex in a directed graph and the edges of the graph compute the shortest path to the vertex.

-Stratosphere Input Contracts

CoGroup

CoGroup

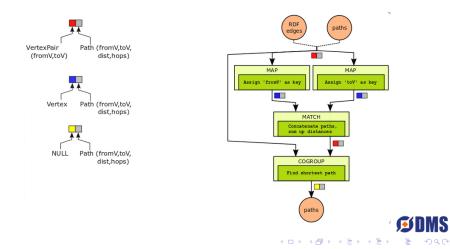

```
public static class FindShortestPath extends CoGroupStub implements
      Serializable {
 // define outputRecord, shortestPaths, hopCnts, minLength ...
 @Override
 public void coGroup(Iterator<PactRecord> inputRecords, Iterator<PactRecord>
        concatRecords, Collector<PactRecord> out) {
   // init minimum length and minimum path ...
   // find shortest path of all input paths...
   // find shortest path of all input and concatenated paths...
   outputRecord.setField(0, fromNode);
   outputRecord.setField(1, toNode);
   outputRecord.setField(2, minLength);
   // emit all shortest paths
   for(PactString shortestPath : shortestPaths) {
     outputRecord.setField(3, hopCnts.get(shortestPath));
     outputRecord.setField(4, shortestPath);
     out.collect(outputRecord);
   3
   hopCnts.clear();
   shortestPaths.clear();
 }
```

イロト イポト イヨト イヨト

-Stratosphere Input Contracts

CoGroup

CoGroup



PageRank and recommender systems

Table of contents

Distributing data-intensive algorithms

Stratosphere Input Contracts

PageRank and recommender systems

Reference

PageRank and recommender systems

Lerations in Stratosphere

Iterations in Stratosphere

- S is a partitioned dataset
- ► *f* is a Stratosphere program
- < is a termination criterion</p>

-PageRank and recommender systems

Lerations in Stratosphere

Iterations in Stratosphere

- S is a partitioned dataset
- f is a Stratosphere program
- < is a termination criterion</p>

-PageRank and recommender systems

Lerations in Stratosphere

Iterations in Stratosphere

- S is a partitioned dataset
- f is a Stratosphere program
- < is a termination criterion</p>

PageRank and recommender systems

Lerations in Stratosphere

Iterations in Stratosphere

- S is a partitioned dataset
- f is a Stratosphere program
- < is a termination criterion</p>
- 1: while S < f(S) do 2: do S := f(S)

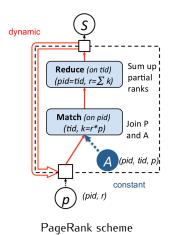
-PageRank and recommender systems

Iterations in Stratosphere

Bulk iterations

Traits

- Each iteration is a synchronization point (superstep)
- Optimizer weighs costs of dynamic data path with iterations
- Caches where data paths meet
- Pushes repeated work to constant data path



イロト 不得下 不良下 不良下

э

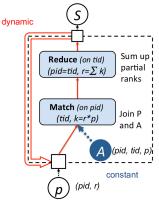
-PageRank and recommender systems

Iterations in Stratosphere

Bulk iterations

Traits

- Each iteration is a synchronization point (superstep)
- Optimizer weighs costs of dynamic data path with iterations
- Caches where data paths meet
- Pushes repeated work to constant data path



イロト 不得下 イヨト イヨト

э

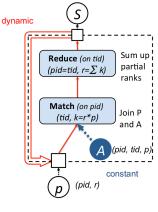
-PageRank and recommender systems

Iterations in Stratosphere

Bulk iterations

Traits

- Each iteration is a synchronization point (superstep)
- Optimizer weighs costs of dynamic data path with iterations
- Caches where data paths meet
- Pushes repeated work to constant data path



PageRank scheme

イロト イポト イヨト イヨト

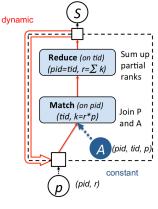
-PageRank and recommender systems

Iterations in Stratosphere

Bulk iterations

Traits

- Each iteration is a synchronization point (superstep)
- Optimizer weighs costs of dynamic data path with iterations
- Caches where data paths meet
- Pushes repeated work to constant data path



PageRank scheme

PageRank and recommender systems

Lerations in Stratosphere

Incremental iterations

Rationale

- New construct: incremental (workset) iteration
- ► *W* contains elements from *S* that may change in the next iteration
- D computed from S, W and efficiently merged with prior S Workset W recomputed from D

PageRank and recommender systems

Lerations in Stratosphere

Incremental iterations

Rationale

- New construct: incremental (workset) iteration
- ► *W* contains elements from *S* that may change in the next iteration
- D computed from S, W and efficiently merged with prior S Workset W recomputed from D

PageRank and recommender systems

Lerations in Stratosphere

Incremental iterations

Rationale

- New construct: incremental (workset) iteration
- ► *W* contains elements from *S* that may change in the next iteration
- D computed from S, W and efficiently merged with prior S Workset W recomputed from D

イロト イポト イヨト イヨト

3

- -PageRank and recommender systems
 - Lerations in Stratosphere

Incremental iterations

Rationale

- New construct: incremental (workset) iteration
- ► *W* contains elements from *S* that may change in the next iteration
- D computed from S, W and efficiently merged with prior S Workset W recomputed from D

イロト 不得下 不良下 不良下

э

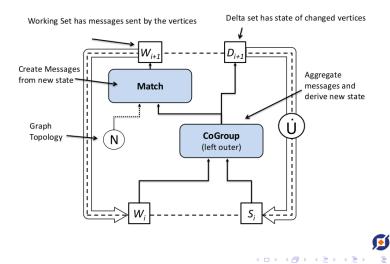
1:
$$S := I, W := S$$

2: while $W \neq \emptyset$ do
3: $D := u(S, W)$
4: $W := \delta(D, S, W)$
5: $S := S \uplus W$

-PageRank and recommender systems

Iterations in Stratosphere

Pregel as a Stratosphere job



- PageRank and recommender systems
 - Recommender systems

Recommender systems

- We have a U user and an I itemset
- The users rating are stored in $\mathbf{R} \in \mathbb{R}^{|\mathcal{U}| imes |I|}$
- But |U| and |I| can easily be at the range of millions...
- Let's find **P** and **Q** such that $PQ \approx R$
- Let $\mathbf{P} \in \mathbb{R}^{|U| \times k}$ and $\mathbf{Q} \in \mathbb{R}^{k \times |I|}$, where k is a small constant
- The algorithm uses least squares to estimate, alternating for P and Q

PageRank and recommender systems

Recommender systems

Recommender systems

- We have a U user and an I itemset
- The users rating are stored in $\mathbf{R} \in \mathbb{R}^{|U| \times |I|}$
- But |U| and |I| can easily be at the range of millions...
- Let's find **P** and **Q** such that $PQ \approx R$
- ▶ Let $\mathbf{P} \in \mathbb{R}^{|U| \times k}$ and $\mathbf{Q} \in \mathbb{R}^{k \times |I|}$, where k is a small constant
- The algorithm uses least squares to estimate, alternating for P and Q

- PageRank and recommender systems
 - Recommender systems

Recommender systems

- We have a U user and an I itemset
- The users rating are stored in $\mathbf{R} \in \mathbb{R}^{|U| \times |I|}$
- But |U| and |I| can easily be at the range of millions...
- Let's find **P** and **Q** such that $PQ \approx R$
- ▶ Let $\mathbf{P} \in \mathbb{R}^{|U| \times k}$ and $\mathbf{Q} \in \mathbb{R}^{k \times |I|}$, where k is a small constant
- The algorithm uses least squares to estimate, alternating for P and Q

- PageRank and recommender systems
 - Recommender systems

Recommender systems

- We have a U user and an I itemset
- The users rating are stored in $\mathbf{R} \in \mathbb{R}^{|U| \times |I|}$
- But |U| and |I| can easily be at the range of millions...
- \blacktriangleright Let's find P and Q such that $PQ \approx R$
- ▶ Let $\mathbf{P} \in \mathbb{R}^{|U| \times k}$ and $\mathbf{Q} \in \mathbb{R}^{k \times |I|}$, where k is a small constant
- The algorithm uses least squares to estimate, alternating for P and Q

- PageRank and recommender systems
 - Recommender systems

Recommender systems

- We have a U user and an I itemset
- The users rating are stored in $\mathbf{R} \in \mathbb{R}^{|U| \times |I|}$
- But |U| and |I| can easily be at the range of millions...
- Let's find **P** and **Q** such that $PQ \approx R$
- Let $\mathbf{P} \in \mathbb{R}^{|U| \times k}$ and $\mathbf{Q} \in \mathbb{R}^{k \times |I|}$, where k is a small constant
- The algorithm uses least squares to estimate, alternating for P and Q

- -PageRank and recommender systems
 - Recommender systems

Recommender systems

Alternating Least Squares (ALS)

- We have a U user and an I itemset
- The users rating are stored in $\mathbf{R} \in \mathbb{R}^{|U| \times |I|}$
- But |U| and |I| can easily be at the range of millions...
- Let's find **P** and **Q** such that $PQ \approx R$
- ▶ Let $\mathbf{P} \in \mathbb{R}^{|U| \times k}$ and $\mathbf{Q} \in \mathbb{R}^{k \times |I|}$, where k is a small constant
- The algorithm uses least squares to estimate, alternating for P and Q

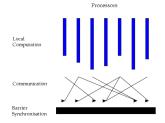
PageRank and recommender systems

Distributing ALS

Limitations of BSP

Challenge

- Algorithmic and physical partitions are different to utilize cpus
- In PageRank its OK to send the same rank multiple times
- In ALS it means duplicating the matrix each time!



Scheme of the BSP system Wikipedia, public domain

・日 ・ 小司 ・ ・ 日 ・ ・ 日 ・

э

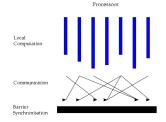
PageRank and recommender systems

Distributing ALS

Limitations of BSP

Challenge

- Algorithmic and physical partitions are different to utilize cpus
- In PageRank its OK to send the same rank multiple times
- In ALS it means duplicating the matrix each time!



Scheme of the BSP system Wikipedia, public domain

イロト イポト イヨト イヨト

э

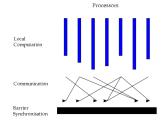
PageRank and recommender systems

Distributing ALS

Limitations of BSP

Challenge

- Algorithmic and physical partitions are different to utilize cpus
- In PageRank its OK to send the same rank multiple times
- In ALS it means duplicating the matrix each time!



Scheme of the BSP system Wikipedia, public domain

イロト イポト イヨト イヨト

-PageRank and recommender systems

Distributing ALS

Possible solution

Proposed new Stratosphere input contract

Given a set of values p_i indexed by i, and a relation R_{ij} over the index set, form the co-group $\forall j$ as:

$j: p_i$ for R_{ij}

-PageRank and recommender systems

Distributing ALS

Possible solution

Proposed new Stratosphere input contract

Given a set of values p_i indexed by i, and a relation R_{ij} over the index set, form the co-group $\forall j$ as:

$j: p_i$ for R_{ij}

In other words, a directed graph defines the values p_i that have to be aggregated at nodes j.

ヘロト ヘヨト ヘヨト ヘヨト

-PageRank and recommender systems

Distributing ALS

Possible solution

Proposed new Stratosphere input contract

Given a set of values p_i indexed by i, and a relation R_{ij} over the index set, form the co-group $\forall j$ as:

 $j: p_i$ for R_{ij}

In other words, a directed graph defines the values p_i that have to be aggregated at nodes j. Both ALS and PageRank (and I guess may more) use this Input Contract.

・日 ・ 小司 ・ ・ 日 ・ ・ 日 ・

PageRank and recommenders on very large scale $\[b]$ Reference

Table of contents

Distributing data-intensive algorithms

Stratosphere Input Contracts

PageRank and recommender systems

Reference

- Reference

Where to look for additional info

Literature

"TriangleCounter"

Englert et al. (2014): Efficiency Issues of Computing Graph Properties of Social Networks, *Presented at The 9th International Conference on Applied Informatics, Eger*, proceedings are under publish.

Stratosphere PACTs

Battré et al. (2010): Nephele/PACTs: a programming model and execution framework for web-scale analytical processing, *Proceedings of the 1st ACM symposium on Cloud computing*, p119-130.

・日 ・ 小司 ・ ・ 日 ・ ・ 日 ・

-Reference

Where to look for additional info

On the web

Data Mining and Search & Big Data BI Groups

Our research groups can be found at dms.sztaki.hu and at bigdatabi.sztaki.hu.

Stratosphere project homepage

The project can be found at stratosphere.eu. The homepage served as a source for all the images and code presented on these slides.