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Motivation

Motivation

Let’s do a PageRank on this graph. . .

I The soc-LiveJournal1 provided by Stanford LNDC1

I 4.8 · 106 nodes
I 6.9 · 107 edges
I 250 MB of compressed data
I „Conventional” single machine solution seems sufficient

1Stanford Large Network Dataset Collection

http://snap.stanford.edu/data/soc-LiveJournal1.html
http://snap.stanford.edu/data/
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I 1.1 · 1011 edges
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I Divide and conquer is almost mandatory

1a large Portuguese crawl of the Portuguese Web Archive obtained from
Daniel Gomes
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Parallel

I „Think like a vertex”
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Scheme of the BSP system
Wikipedia, public domain
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Counting the number of triangles in a graph

Triangle Counter – Sequential algorithm

Sequential algorithm
Every vertex executes a search of itself bounded in depth of three.
Thus every triangle is counted three times.
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Triangle Counter – MapReduce algorithm

Representation
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Counting the number of triangles in a graph

Triangle Counter – MapReduce algorithm

First Map
Let’s send our ID to all of our
neighbours possessing a higher ID
than ours. Let’s send our
neighbours to ourselves.

First Reduce
Let’s write out the information
received.

0 1

2

0

1
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Counting the number of triangles in a graph

Triangle Counter – MapReduce algorithm

Second Map

If the ID received is smaller then
ours let’s pass it on to our
neighbours.
Let’s send our neighbours to
ourselves.

Second Reduce
If the ID received is our neighbour
then let’s increment a global
counter.

0 [] 1 [0]

2 [1]

1
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Counting the number of triangles in a graph

Triangle Counter – MapReduce algorithm

Second Map

If the ID received is smaller then
ours let’s pass it on to our
neighbours.
Let’s send our neighbours to
ourselves.

Second Reduce
If the ID received is our neighbour
then let’s increment a global
counter.

0 ++ 1

2
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Counting the number of triangles in a graph

Runtime of the three solutions



PageRank and recommenders on very large scale
Stratosphere Input Contracts

Table of contents

Distributing data-intensive algorithms

Stratosphere Input Contracts

PageRank and recommender systems

Reference



PageRank and recommenders on very large scale
Stratosphere Input Contracts

Map

Map

Wordcount Map
For lines of input text emit (word , 1) for each word.
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Map

public static class TokenizeLine extends MapStub implements Serializable {
private static final long serialVersionUID = 1L;

// initialize reusable mutable objects
private final PactRecord outputRecord = new PactRecord();
private final PactString word = new PactString();
private final PactInteger one = new PactInteger(1);

@Override
public void map(PactRecord record, Collector<PactRecord> collector) {
// get the first field (as type PactString) from the record
PactString line = record.getField(0, PactString.class);

// normalize the line with AsciiUtils ...

// tokenize the line
this.tokenizer.setStringToTokenize(line);
while (tokenizer.next(this.word)){
// emit a (word, 1) pair
this.outputRecord.setField(0, this.word);
this.outputRecord.setField(1, this.one);
collector.collect(this.outputRecord);

}
}

}
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Reduce

Reduce

Wordcount Reduce
For multiple instances of (word , 1) count frequency of each word.
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Reduce

Reduce

public static class CountWords extends ReduceStub implements Serializable {
private final PactInteger cnt = new PactInteger();

@Override
public void reduce(Iterator<PactRecord> records, Collector<PactRecord> out)

throws Exception {
PactRecord element = null;
int sum = 0;
while (records.hasNext()) {
element = records.next();
PactInteger i = element.getField(1, PactInteger.class);
sum += i.getValue();

}
this.cnt.setValue(sum);
element.setField(1, this.cnt);
out.collect(element);

}

@Override
public void combine(Iterator<PactRecord> records, Collector<PactRecord> out)

throws Exception {
// same logic as reduce so simply a call to it
this.reduce(records, out);
}

}
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Cross

K-Means Cross
Given data points and cluster centers compute the distance
between each data point and cluster center.
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Cross

public class ComputeDistance extends CrossStub implements Serializable {
private static final long serialVersionUID = 1L;
private final PactDouble distance = new PactDouble();

//Output Format: (pointID, pointVector, clusterID, distance)
@Override
public void cross(PactRecord dataPointRecord, PactRecord clusterCenterRecord,

Collector<PactRecord> out) {

CoordVector dataPoint = dataPointRecord.getField(1, CoordVector.class);

PactInteger clusterCenterId = clusterCenterRecord.getField(0,
PactInteger.class);

CoordVector clusterPoint = clusterCenterRecord.getField(1,
CoordVector.class);

this.distance.setValue(dataPoint.computeEuclidianDistance(clusterPoint));

// add cluster center id and distance to the data point record
dataPointRecord.setField(2, clusterCenterId);
dataPointRecord.setField(3, this.distance);

out.collect(dataPointRecord);
}

}
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Match

Path Match
Given edges (e, f ) and (f , g) of a graph construct (e, g) paths.
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Match

public static class ConcatPaths extends MatchStub implements Serializable {

//define outputRecord, length, hopCnt, hopList...

@Override
public void match(PactRecord rec1, PactRecord rec2, Collector<PactRecord>

out) throws Exception {
// rec1 has matching start, rec2 matching end
final PactString fromNode = rec2.getField(0, PactString.class);
final PactString toNode = rec1.getField(1, PactString.class);
if (fromNode.equals(toNode)) return; //circle prevention

// Create new path
outputRecord.setField(0, fromNode);
outputRecord.setField(1, toNode);

// Compute length of new path & hop count ...
// Concatenate hops lists and insert matching node...
// Append the whole path in a Stringbuilder...

hopList.setValue(sb.toString().trim());
outputRecord.setField(4, hopList);
out.collect(outputRecord);

}
}
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CoGroup

Floyd CoGroup
Given shortest paths to inneighbours of a vertex in a directed
graph and the edges of the graph compute the shortest path to
the vertex.
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CoGroup

CoGroup

public static class FindShortestPath extends CoGroupStub implements
Serializable {

// define outputRecord, shortestPaths, hopCnts, minLength ...

@Override
public void coGroup(Iterator<PactRecord> inputRecords, Iterator<PactRecord>

concatRecords, Collector<PactRecord> out) {
// init minimum length and minimum path ...
// find shortest path of all input paths...
// find shortest path of all input and concatenated paths...

outputRecord.setField(0, fromNode);
outputRecord.setField(1, toNode);
outputRecord.setField(2, minLength);

// emit all shortest paths
for(PactString shortestPath : shortestPaths) {
outputRecord.setField(3, hopCnts.get(shortestPath));
outputRecord.setField(4, shortestPath);
out.collect(outputRecord);

}
hopCnts.clear();
shortestPaths.clear();

}
}
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I S is a partitioned dataset
I f is a Stratosphere program
I < is a termination criterion
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Iterations in Stratosphere

Iterations in Stratosphere

Denotation

I S is a partitioned dataset
I f is a Stratosphere program
I < is a termination criterion

1: while S < f (S) do
2: do S := f (S)
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Iterations in Stratosphere

Bulk iterations

Traits

I Each iteration is a
synchronization point
(superstep)

I Optimizer weighs costs of
dynamic data path with
iterations

I Caches where data paths meet
I Pushes repeated work to

constant data path PageRank scheme
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Iterations in Stratosphere

Incremental iterations

Rationale

I New construct: incremental (workset) iteration
I W contains elements from S that may change in the next

iteration
I D computed from S , W and efficiently merged with prior S

Workset W recomputed from D



PageRank and recommenders on very large scale
PageRank and recommender systems

Iterations in Stratosphere

Incremental iterations

Rationale

I New construct: incremental (workset) iteration
I W contains elements from S that may change in the next

iteration
I D computed from S , W and efficiently merged with prior S

Workset W recomputed from D



PageRank and recommenders on very large scale
PageRank and recommender systems

Iterations in Stratosphere

Incremental iterations

Rationale

I New construct: incremental (workset) iteration
I W contains elements from S that may change in the next

iteration
I D computed from S , W and efficiently merged with prior S

Workset W recomputed from D



PageRank and recommenders on very large scale
PageRank and recommender systems

Iterations in Stratosphere

Incremental iterations
Rationale

I New construct: incremental (workset) iteration
I W contains elements from S that may change in the next

iteration
I D computed from S , W and efficiently merged with prior S

Workset W recomputed from D

1: S := I , W := S
2: while W 6= ∅ do
3: D := u(S ,W )
4: W := δ(D, S ,W )
5: S := S ]W
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Iterations in Stratosphere

Pregel as a Stratosphere job
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Recommender systems

Alternating Least Squares (ALS)

I We have a U user and an I itemset
I The users rating are stored in R ∈ R|U|×|I |

I But |U| and |I | can easily be at the range of millions. . .
I Let’s find P and Q such that PQ ≈ R
I Let P ∈ R|U|×k and Q ∈ Rk×|I |, where k is a small constant
I The algorithm uses least squares to estimate, alternating for

P and Q
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Distributing ALS

Limitations of BSP

Challenge

I Algorithmic and
physical partitions are
different to utilize cpus

I In PageRank its OK to
send the same rank
multiple times

I In ALS it means
duplicating the matrix
each time!

Scheme of the BSP system
Wikipedia, public domain
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Possible solution

Proposed new Stratosphere input contract
Given a set of values pi indexed by i , and a relation Rij over the
index set, form the co-group ∀j as:

j : pi for Rij
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In other words, a directed graph defines the values pi that have
to be aggregated at nodes j .
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Distributing ALS

Possible solution

Proposed new Stratosphere input contract
Given a set of values pi indexed by i , and a relation Rij over the
index set, form the co-group ∀j as:

j : pi for Rij

In other words, a directed graph defines the values pi that have
to be aggregated at nodes j .
Both ALS and PageRank (and I guess may more) use this Input
Contract.
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Where to look for additional info

Literature

„TriangleCounter”
Englert et al. (2014): Efficiency Issues of Computing Graph
Properties of Social Networks, Presented at The 9th
International Conference on Applied Informatics, Eger,
proceedings are under publish.

Stratosphere PACTs
Battré et al. (2010): Nephele/PACTs: a programming model and
execution framework for web-scale analytical processing,
Proceedings of the 1st ACM symposium on Cloud computing,
p119-130.
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Where to look for additional info

On the web

Data Mining and Search & Big Data BI Groups
Our research groups can be found at dms.sztaki.hu and at
bigdatabi.sztaki.hu.

Stratosphere project homepage
The project can be found at stratosphere.eu.
The homepage served as a source for all the images and code
presented on these slides.

dms.sztaki.hu
bigdatabi.sztaki.hu
stratosphere.eu

