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Introduction

I Trending topics on Twitter in relation with different real-life
events such as elections, social protest, or sports events

I Can we provide informative measures that characterize the
difference between trends?

I Dynamic dependencies
I Connected components

I Project funded by Google Faculty Research Awards
I Agenda

I Experimental setting, definitions
I Experiments
I Modeling and analysis
I Connected components
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Datasets

I Source
Social network - Twitter

I Method
Collect all tweets which contain particular word for some
periods of time
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Datasets

I Key words
I Maidan (rus)
I Euromaidan (ukr)
I Sochi olympics 2014 (rus)
I Putin (rus)
I Berkin Elvan alive (turk)
I Some other words for short periods
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Datasets

I Time periods
I Maidan

from 16-11-2013 till 02-1-2014
I Euromaidan

from 02-12-2013 till 09-3-2014
I Olympics

from 07-12-2013 till 09-3-2014
I Putin

from 09-11-2013 till 17-3-2014
I Berkin Elvan alive

from 07-03-2014 till 11-3-2014
Some periods have missing days
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Datasets

I Maidan
286.984 tweets, 120.996 retweets, 87.498 users

I Euromaidan
2.433.517 tweets, 1.788.604 retweets, 162.582 users

I Olympics
735.849 tweets, 289.269 retweets, 250.569 users

I Putin
879.711 tweets, 333.250 retweets, 227.320 users

I Berkin Elvan
1.856.387 tweets, 1.261.590 retweets, 582.861 users
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Definitions

I T the total length of the tracking period

I t1, . . . , tm – subsequent subperiods (e.g. length of one day)

I Gi = (Vi ,Ei ) – retweet graph period ti
I Vi – users that tweeted or received a retweet on ti
I Ei = {(u, v) : u retweeted v on ti }

I G = ∪iGi
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Centrality measures

I In-degrees
I Di (v) – in-degree of v in Gi

I Harmonic centrality (Boldi&Vigna, 2013):
I di (w , v) – the length of a directed path from w to v in Gi

I Harmonic centrality H(v) of node v ∈ Vi is defined as a sum
of inverse graph distances from w to v over all w ∈ Vi :

Hi (v) =
∑
w∈Vi

1

di (v ,w)
.

I Centralities are computed for each Gi and for G .
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Dynamic dependencies

I Let |V | = n be the total number of users in a data base.

I We consider vectors of length n that contain degrees or
harmonic centrality scores of each user in a given day or in the
complete retweet graph

I We compute correlations between these vectors
I Between main graph and a graph in each given day
I Between every 2 graphs of the consequent days

I Correlation measures:
I Cosine similarity
I Spearman correlation
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Cosine similarity measure

I V – all users that ever tweeted on the topic
I For two vectors (X (v))v∈V and (Y (v))v∈V , we define the

cosine similarity measure as follows:

cos(X ,Y ) =

∑
v∈V X (v)Y (v)√∑

v∈V X 2(v)
√∑

v∈V Y 2(v)
. (1)

I The cosine similarity measure for non-negative vectors takes
values between 0 (no similarity) and 1 (similarity up to a
factor)

I Elements in (1) also define the Pearson’s correlation
coefficient, and indeed the two measures are closely related
(Lee et al. 1988)
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Spearman’s rho

I Arrange the values of (X (v))v∈V and (Y (v))v∈V in
decreasing order

I Let RX (v) and RY (v) be the rank (position) of, respectively,
X (v) and Y (v).

I Since the data has many ties, we consider two versions of
Spearman’s ρ:

I Average: all tied values receive the same, average, rank.
I Random: each tied value receives a unique rank, the order is

defined at random.

I Two ways of resolving ties is that the average rank remains
(|V |+ 1)/2.
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Spearman’s rho

I Let |V | = n
I The Spearman’s rho:

ρ(X ,Y ) =

∑
v∈V RX (v)RY (v) − (n + 1)2/4

nσ(X )σ(Y )
, (2)

where for Z = X ,Y

σ(Z ) =

√
1

n

∑
v∈V

R2
Z (v) − (n + 1)2/4.

I The difference between average and random way of resolving
ties is only in denominator.

I Randomly resolved ties: σ(X ) = σ(Y ) = (n2 − 1)/12.
I With average resolution of ties, the values of σ become

smaller and this leads to a higher value of ρ. This is
quantified exactly (L&vdHoorn 2014).
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Experiments

Maidan Degree

Maidan Harmonic Centrality

[ Nelly Litvak, Budapest 08-05-2014 ] 13/31



Experiments

Euromaidan Degree

Euromaidan Harmonic Centrality
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Experiments

Sochi Olympics Degree

Sochi Olympics Harmonic Centrality
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Experiments

Putin Degree

Putin Harmonic Centrality
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Experiments

‘Berkin Elvan Alive’ Degree

‘Berkin Elvan Alive’ Harmonic Centrality
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‘Missing’ data

I Important feature of the data is that only a fraction of users
in V is present in Vi

I Many tied values of centralities are simply zero’s

I This explains the large difference between random and
average resolution of ties for Spearman’s rho

I We model this by assuming that a user tweets on period ti
with probability pi
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The model

I Let Xi (v) be a centrality score of user v in graph Gi

I Multiplicative model:

Xi (v) =

{
αi (v)U(v), w.p. pi ;
0 w.p. 1 − pi .

(3)

I U(v) popularity of user v ,
I αi (v) shows how this popularity scales in time period ti with

respect to centrality score X .
I We assume that (αi (v))i>1 are i.i.d.
I (U(v))v∈V i.i.d. random variables with regularly varying

(power law) distribution U:

P(U > x) = L(x)x−γ, x > 0,γ > 1. (4)

Here L(x) is a slowly varying function, that is,
limx→∞ L(tx)/L(x) = 1 for all t > 0.
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Analysis of cosine measure

cos(Xi ,Xi+1) =

∑
v∈Vi∩Vi+1

U2(v)αi (v)αi+1(v)√∑
v∈Vi

U2(v)α2
i (v)

√∑
v∈Vi+1

U2(v)α2
i+1(v)

I U2 is a regularly varying random variable with index γ/2
I Assuming that for some ε > 0 we have E (αγ+ε) <∞
I It follows from Breiman’s theorem (Breiman 1965) that α2

i U
2

and αiαi+1U
2 are also regularly varying with index γ/2.

I According to the law of large numbers, as |V | →∞, we have
|Vi |/|V | → pi a.s., and by the independence assumption of the
time periods, |Vi ∩ Vi+1|/|V | → pipi+1 a.s.
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Stability of cosine measure. Case 1.

I In our model

cos(Xi ,Xi+1) =

∑
v∈Vi∩Vi+1

U2(v)αi (v)αi+1(v)√∑
v∈Vi

U2(v)α2
i (v)

√∑
v∈Vi+1

U2(v)α2
i+1(v)

(5)

I Case 1: Var(U) <∞.
I γ/2 > 1, then E (α2

i U
2) <∞ and E (αiαi+1U

2 <∞.
I Dividing the nominator and denominator in (5) by |V | = n

and letting n →∞ we obtain

lim
n→∞ cos(Xi ,Xi+1) =

E (αiαi+1)
√
pipi+1√

E (α2
i )
√

E (α2
i+1)

, a.s.
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Stability of cosine measure. Case 2.

cos(Xi ,Xi+1) =

∑
v∈Vi∩Vi+1

U2(v)αi (v)αi+1(v)√∑
v∈Vi

U2(v)α2
i (v)

√∑
v∈Vi+1

U2(v)α2
i+1(v)

I Case 2: E (U2) =∞.
I γ/2 < 1, the sums in (5) scale roughly as the number of

summands to the power 2/γ.
I Classical convergence to stable laws (Gnedenko&Kolmogorov

1968). As n →∞:

cos(Xi ,Xi+1)
d→ Z1(pipi+1)

1/γ√
Z ′
1 + Z2

√
Z ′′
1 + Z3

, (6)

I Z1, Z ′
1 and Z ′′

1 are dependent stable γ/2 random variables
I Z2 and Z3 are independent stable γ/2 random variables
I Positive density on [0, 1].
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Stability of Spearman’s rho

I Spearman’s rho converges to a correct population value
I Let pi be a probability that a user tweets or receives a retweet

on time period ti
I If pi is small then, under the assumption that the users tweet

independently, ρ(Xi ,Xi+1) is very close to zero, has
close-to-normal distribution and small variance

I The expectation of ρ(Xi ,Xi+1) increases when pi increases
I ρ(Xi ,Xi+1) shows positive dependency if:

I There is a persistent group of active users, or
I Users are independent, but a high fraction of users is active

each day.

I Work in progress
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Predictions using connected components in retweet
graph

with Marijn ten Thij, TNO

I Connection between graph structures and important trends
I Data: Project X Haren, 21-09-2012
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Retweet graph

19-9-2012 12:00
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Retweet graph

19-9-2012 23:00
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Retweet graph

20-9-2012 00:00
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Retweet graph

21-9-2012 07:00
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Retweet graph

22-9-2012 05:00
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Edge density and largest connected component
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Thank you!
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