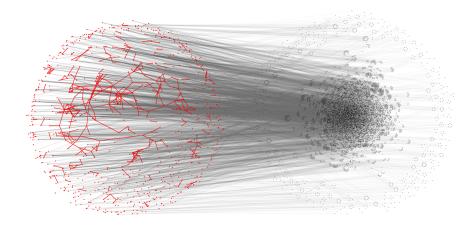
Modeling Community Growth: densifying graphs or sparsifying subgraphs?

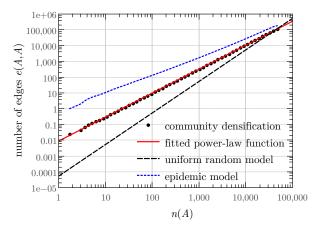
Róbert Pálovics

May 12, 2014

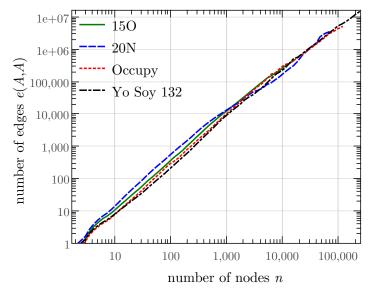
OUTLINE

- 1. Main observation and previous results
 - 1.1 Densifying community subgraphs in Twitter and Last.fm
 - 1.2 Kleinberg et al. results
 - 1.3 Results of Dorogovtsev and Mendes
 - 1.4 Results related to edge sampling
 - 1.5 Summary, conclusions
- 2. New measurements and proposed models
 - 2.1 Explanation of subgraph densification laws
 - 2.2 Non-isolated components and epidemic models





$$\overline{d} = \frac{e}{n}$$
 $\rho = \frac{2e}{n(n-1)} \sim \frac{e}{n^2}$

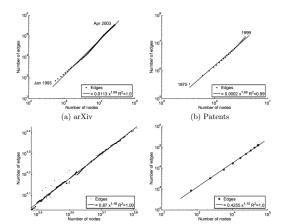


EMPIRICAL OBSERVATIONS IN LARGE NETWORKS

	Unweighted
Static	Power-law degree distribution(Barabasi)
	Triangle Power Law (Tsourakakis)
	Eigenvalue Power Law (Siganos)
	Community structure (Girvan, Newman, Flake)
Dynamic	Densification Power Law (Falutsos, Leskovec, Dorogovtsev)
	Small and Shrinking Diameters (Barabasi, Leskovec)
	Constant Size 2nd and 3rd connected components (McGlohon)
	Principal Eigenvalue Power Law (Akoglu)
	Burstiness
	Weighted
Static	Snapshot Power Law (McGlohon)
Dynamic	Weight Power Law (McGlohon)

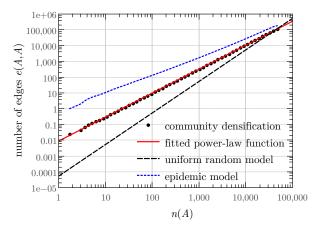
DENSIFICATION LAWS (KLEINBERG, LESKOVEC, FALOUTSOS)

Densification Power Law: the number of nodes *N* and the number of edges *E* should follow a power-law in the form of $E(t) \propto N(t)^{\gamma}$, with $\gamma > 1$, over time.



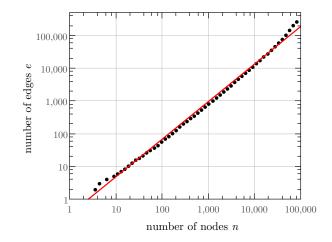
DENSIFICATION LAWS (KLEINBERG, LESKOVEC, FALOUTSOS)

- Graphs over Time: Densication Laws, Shrinking Diameters and Possible Explanations
- ► Densification Power Law: the number of nodes N and the number of edges E should follow a power-law in the form of E(t) ∝ N(t)^γ, with γ > 1, over time.
- ► Graphs densify (!)
- ► Larger exponent, denser graph (!)



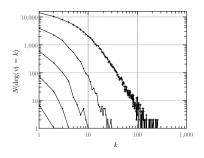
$$\overline{d} = \frac{e}{n}$$
 $\rho = \frac{2e}{n(n-1)} \sim \frac{e}{n^2}$

DENSIFICATION LAWS (KLEINBERG, LESKOVEC, FAOLUTSOS)



RESULTS OF DOROGOVTSEV AND MENDES

- Accelerated growth of networks
- $\overline{k} \propto t^a$
- $\blacktriangleright \ P(k,t) \sim t^{-z} k^{-\gamma}$
- Scaling relations for accelerated growth
- The exponent changes in time in the Last.fm network:(

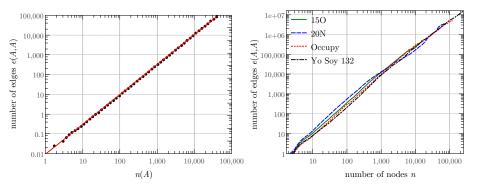


EDGES SAMPLED FROM GRAPHS - PEDARSANI ET AL.

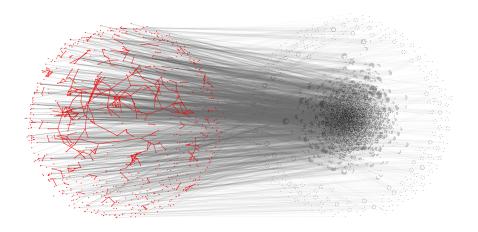
- Densification arising from sampling fixed graphs
- ► Fixed graph with power-law degree distribution
- Uniform sampling from the edges
- Direct relation between the exponent of the degree ditribution and the densification exponent.

REAL-WORLD SYSTEMS WITH BACKGROUND NETWORKS

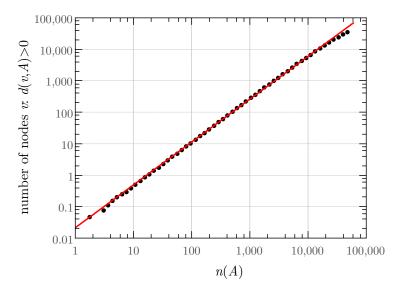
- ► Last.fm users scrobbling a given artist
- Retweeters of a message
- Physical world friendship and contacts appearing on a social network service (LinkedIn, Facebook, etc.)
- Physical world topics appearing on the Web
- Plenty of questions that the previous models can not explain



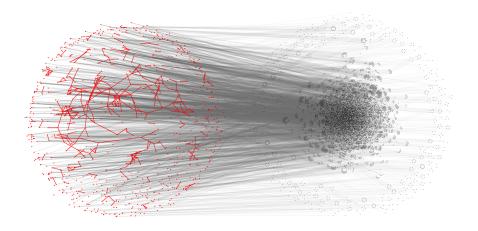
NON-ISOLATED NODES



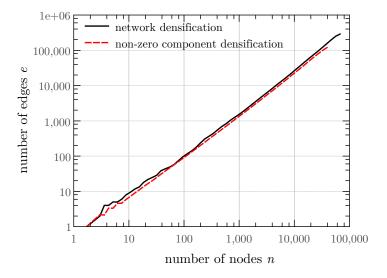
NON-ISOLATED NODES



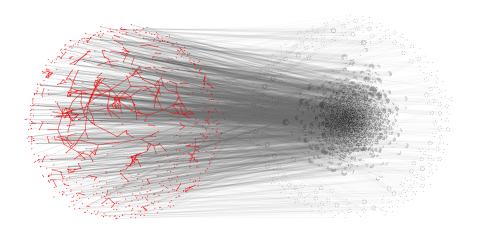
NON-ISOLATED COMPONENT



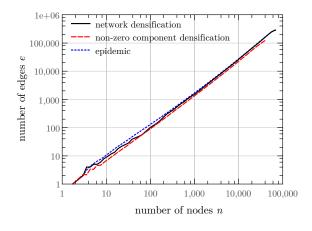
NON-ISOLATED COMPONENT AND KLEINBERG DENSIFICATION



EPIDEMIC MODEL

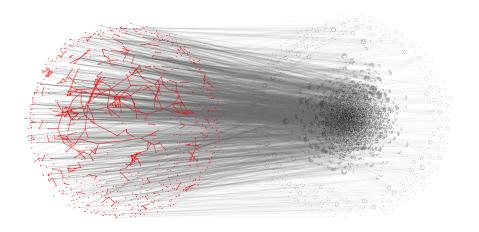


EPIDEMIC MODEL

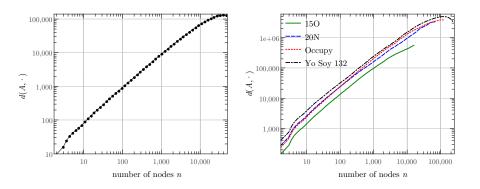


 $\beta \cdot \delta = \gamma$

CONSTANT EXPANSION



CONSTANT EXPANSION



- "Densifying" community subgraphs with edge number following power law of node number
- Smaller subgraphs have higher *relative* density compared to a random subgraph of the same size
- ► This difference however vanishes with the community growth, the subgraph "sparsifies"
- Power law fraction of nodes with at least one edge within the community, with exponent greater than one
- Relation of exponents: $\beta \cdot \delta = \gamma$
- Information spreading over a network and the dynamic growth of the network are similar and closely related processes
- The network itself can be considered as a community in a hidden social network

