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SUBGRAPH DENSIFICATION LAWS
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SUBGRAPH DENSIFICATION LAWS
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SUBGRAPH DENSIFICATION LAWS
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EMPIRICAL OBSERVATIONS IN LARGE NETWORKS

Unweighted

Static

Power-law degree distribution(Barabasi)
Triangle Power Law (Tsourakakis)
Eigenvalue Power Law (Siganos)

Community structure (Girvan, Newman, Flake)

Dynamic

Densification Power Law (Falutsos, Leskovec, Dorogovtsev)
Small and Shrinking Diameters (Barabasi, Leskovec)

Constant Size 2nd and 3rd connected components (McGlohon)
Principal Eigenvalue Power Law (Akoglu)

Burstiness
Weighted

Static Snapshot Power Law (McGlohon)
Dynamic Weight Power Law (McGlohon)
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DENSIFICATION LAWS (KLEINBERG, LESKOVEC,
FALOUTSOS)

Densification Power Law: the number of nodes N and the num-
ber of edges E should follow a power-law in the form of E(t) ∝
N(t)γ , with γ > 1, over time.
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DENSIFICATION LAWS (KLEINBERG, LESKOVEC,
FALOUTSOS)

I Graphs over Time: Densication Laws, Shrinking Diameters
and Possible Explanations

I Densification Power Law: the number of nodes N and the
number of edges E should follow a power-law in the form
of E(t) ∝ N(t)γ , with γ > 1, over time.

I Graphs densify (!)
I Larger exponent, denser graph (!)
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SUBGRAPH DENSIFICATION LAWS
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DENSIFICATION LAWS (KLEINBERG, LESKOVEC,
FAOLUTSOS)
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RESULTS OF DOROGOVTSEV AND MENDES

I Accelerated growth of
networks

I k ∝ ta

I P(k, t) ∼ t−zk−γ

I Scaling relations for
accelerated growth

I The exponent changes in
time in the Last.fm
network:(
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EDGES SAMPLED FROM GRAPHS - PEDARSANI ET AL.

I Densification arising from sampling fixed graphs
I Fixed graph with power-law degree distribution
I Uniform sampling from the edges
I Direct relation between the exponent of the degree

ditribution and the densification exponent.
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REAL-WORLD SYSTEMS WITH BACKGROUND

NETWORKS

I Last.fm users scrobbling a given artist
I Retweeters of a message
I Physical world friendship and contacts appearing on a

social network service (LinkedIn, Facebook, etc.)
I Physical world topics appearing on the Web
I Plenty of questions that the previous models can not

explain
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SUBGRAPH DENSIFICATION LAWS
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NON-ISOLATED NODES
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NON-ISOLATED NODES
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NON-ISOLATED COMPONENT
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NON-ISOLATED COMPONENT AND KLEINBERG

DENSIFICATION
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EPIDEMIC MODEL
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EPIDEMIC MODEL
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β · δ = γ
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CONSTANT EXPANSION
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CONSTANT EXPANSION
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I “Densifying” community subgraphs with edge number
following power law of node number

I Smaller subgraphs have higher relative density compared
to a random subgraph of the same size

I This difference however vanishes with the community
growth, the subgraph “sparsifies”

I Power law fraction of nodes with at least one edge within
the community, with exponent greater than one

I Relation of exponents: β · δ = γ

I Information spreading over a network and the dynamic
growth of the network are similar and closely related
processes

I The network itself can be considered as a community in a
hidden social network
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