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Abstract

In this paper we give a comprehensive overview of features devised for
Web spam detection and investigate how much various classes, some re-
quiring very high computational effort, add to the classification accuracy.

• We collect and handle a large number of features based on recent ad-
vances in Web spam filtering, including temporal ones, in particular
we analyze the strength and sensitivity of linkage change.

• We propose new temporal link similarity based features and show
how to compute them efficiently on large graphs.

• We show that machine learning techniques including ensemble selec-
tion, LogitBoost and Random Forest significantly improve accuracy.

• We conclude that, with appropriate learning techniques, a simple
and computationally inexpensive feature subset outperforms all pre-
vious results published so far on our data set and can only slightly
be further improved by computationally expensive features.

• We test our method on three major publicly available data sets,
the Web Spam Challenge 2008 data set WEBSPAM-UK2007, the
ECML/PKDD Discovery Challenge data set DC2010 and the Wa-
terloo Spam Rankings for ClueWeb09.

∗This work was supported in part by the EC FET Open project “New tools
and algorithms for directed network analysis” (NADINE No 288956), by the EU
FP7 Project LAWA—Longitudinal Analytics of Web Archive Data, OTKA NK 105645
and by the European Union and the European Social Fund through project Fu-
turICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013). The research was car-
ried out as part of the EITKIC 12-1-2012-0001 project, which is supported by the
Hungarian Government, managed by the National Development Agency, financed by
the Research and Technology Innovation Fund and was performed in cooperation
with the EIT ICT Labs Budapest Associate Partner Group. (www.ictlabs.elte.hu)
This paper is a comprehensive comparison of the best performing classification techniques
based on [9, 37, 36, 38] and new experiments.
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Our classifier ensemble sets the strongest classification benchmark as com-
pared to participants of the Web Spam and ECML/PKDD Discovery
Challenges as well as the TREC Web track.

To foster research in the area, we make several feature sets and source
codes public1, including the temporal features of eight .uk crawl snapshots
that include WEBSPAM-UK2007 as well as the Web Spam Challenge
features for the labeled part of ClueWeb09.

1 Introduction

Web classification finds several use, both for content filtering and for building
focused corpora from a large scale Web crawl. As one notable use, Internet
archives actively participate in large scale experiments [8], some of them building
analytics services over their collections [6]. Most of the existing results on Web
classification originate from the area of Web spam filtering that have turned out
to generalize to a wide class of tasks including genre, Open Directory category, as
well as quality classification. Closely related areas include filtering and tagging
in social networks [50].

Web spam filtering, the area of devising methods to identify useless Web
content with the sole purpose of manipulating search engine results, has drawn
much attention in the past years [63, 49, 46]. The first mention of Web spam,
termed spamdexing as a combination of words spam and (search engine) in-
dexing, appears probably in a 1996 news article [27] as part of the early Web
era discussions on the spreading porn content [24]. In the area of the so-called
Adversarial Information Retrieval workshop series ran since 2005 [40] and eval-
uation campaigns including the Web Spam Challenges [18], the ECML/PKDD
Discovery Challenge 2010 [50] and the Spam task of TREC 2010 Web Track [29]
were organized. A recent comprehensive survey on Web spam filtering research
is found in [19].

In this paper we present, to our best knowledge, the most comprehensive
experimentation based on content, link as well as temporal features, both new
and recently published. Our spam filtering baseline classification procedures are
collected by analyzing the results [28, 1, 44] of the Web Spam Challenges and the
ECML/PKDD Discovery Challenge 2010 [45, 2, 58]. Our comparison is based
on AUC values [42] that we believe to be more stable as it does not depend on
the split point; indeed, while Web Spam Challenge 2007 used F-measure and
AUC, Web Spam Challenge 2008 used AUC only as evaluation measure.

Web spam appears in sophisticated forms that manipulate content as well
as linkage [47] with examples such as

• Copied content, “honey pots” that draw attention but link to unrelated,
spam targets;

• Garbage content, stuffed with popular or monetizable query terms and
phrases such as university degrees, online casinos, bad credit status or

1https://datamining.sztaki.hu/en/download/web-spam-resources
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adult content;

• Link farms, a large number of strongly interlinked pages across several
domains.

The Web spammer toolkit consists of a clearly identifiable set of manipulation
techniques that has not changed much recently. The Web Spam Taxonomy of
Gyöngyi et al. [47] distinguishes content (term) and link spamming along with
techniques of hiding, cloaking and removing traces by e.g. obfuscated redirec-
tion. Most of the features designed fight either link or content spamming.

We realize that recent results have ignored the importance of the machine
learning techniques and concentrated only on the definition of new features.
Also the only earlier attempt to unify a large set of features [20] is already
four years old and even there little comparison is given on the relative power
of the feature sets. For classification techniques, a wide selection including
decision trees, random forest, SVM, class-feature-centroid, boosting, bagging
and oversampling in addition to feature selection (Fisher, Wilcoxon, Information
Gain) were used [45, 2, 58] but never compared and combined. In this paper we
address the following questions.

• Do we get the maximum value out of the features we have? Are we
sufficiently sophisticated at applying machine learning?

• Is it worth calculating computationally expensive features, in particular
some related to page-level linkage?

• What is an optimal feature set for a fast spam filter that can quickly react
at crawl time after fetching a small sample of a Web site?

We compare our result with the very strong baselines of the Web Spam
Challenge 2008 and ECML/PKDD 2010 Discovery Challenge data sets. Our
main results are as follows.

• We apply state-of-the-art classification techniques by the lessons learned
from KDD Cup 2009 [57]. Key in our performance is ensemble classifi-
cation applied both over different feature subsets as well as over different
classifiers over the same features. We also apply classifiers yet unexplored
against Web spam, including Random Forest [14] and LogitBoost [43].

• We compile a small yet very efficient feature set that can be computed by
sample pages from the site while completely ignoring linkage information.
By this feature set a filter may quickly react to a recently discovered site
and intercept in time before the crawler would start to follow a large
number of pages from a link farm. This feature set itself reaches AUC
0.893 over WEBSPAM-UK2007.

• Last but not least we gain strong improvements over the Web Spam Chal-
lenge best performance [18]. Our best result in terms of AUC reaches 0.9
and improves on the best Discovery Challenge 2010 results.

Several recent papers propose temporal features [61, 55, 31, 52] to improve
classification accuracy. We extend link-based similarity algorithms by proposing
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metrics to capture the linkage change of Web pages over time. We describe a
method to calculate these metrics efficiently on the Web graph and then measure
their performance when used as features in Web spam classification. We propose
an extension of two link-based similarity measures: XJaccard and PSimRank
[41].

We investigate the combination of temporal and non-temporal, both link-
and content-based features using ensemble selection. We evaluate the perfor-
mance of ensembles built on the latter feature sets and compare our results to
that of state-of-the-art techniques reported on our dataset. Our conclusion is
that temporal and link-based features in general do not significantly increase
Web spam filtering accuracy. However, information about linkage change might
improve the performance of a language independent classifier: the best results
for the French and German classification tasks of the ECML/PKDD Discovery
Challenge [45] were achieved by using host level link features only, outperform-
ing those who used all features [2].

In this paper we address not just the quality but also the computational
efficiency. Earlier lightweight classifiers include Webb et al. [64] describing a
procedure based solely on the HTTP session information. Unfortunately they
only measure precision, recall and F-measure that are hard to compare with
later results on Web spam that use AUC. In fact the F and similar measures
greatly depend on the classification threshold and hence make comparison less
stable and for this reason they are not used starting with the Web Spam Chal-
lenge 2008. Furthermore in [64] the IP address is a key feature that is trivially
incorporated in the DC2010 data set by placing all hosts from the same IP
address into the same training or testing set. The intuition is that if an IP
address contains spam hosts, all hosts from that IP address are likely to be
spam and should be immediately manually checked and excluded from further
consideration.

The rest of this paper is organized as follows. In Section 2 we describe
the data sets used in this paper. We give an overview of temporal features
for spam detection and propose new temporal link similarity based ones in
Section 3. In Section 4 we describe our classification framework. The results of
the experiments to classify WEBSPAM-UK2007, ClueWeb09 and DC2010 can
be found in Section 5. The computational resource needs of various feature sets
are summarized in Section 6.

2 Data Sets

In this paper we use three data sets, WEBSPAM-UK2007 of the Web Spam
Challenge 2008 [18], the Waterloo Spam Rankings for ClueWeb09, and DC2010
created for the ECML/PKDD Discovery Challenge 2010 on Web Quality. We
only give a brief summary of the first data set described well in [18, 22] and the
second in [38], however, we describe the third one in more detail in Section 2.3.
Also we compare the amount of spam in the data sets.
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Figure 1: The number of total and labeled hosts in the 13 UK snapshots. We
indicate the number of positive and negative labels separate for the WEBSPAM-
UK2006 and WEBSPAM-UK2007 label sets.

2.1 Web Spam Challenge 2008: WEBSPAM-UK2007

The Web Spam Challenge was first organized in 2007 over the WEBSPAM-
UK2006 data set. The last Challenge over the WEBSPAM-UK2007 set was
held in conjunction with AIRWeb 2008 [18]. The Web Spam Challenge 2008
best result [44] achieved an AUC of 0.85 by also using ensemble undersampling
[23]. They trained a bagged classifier on the standard content-based and link-
based features published by the organizers of the Web Spam Challenge 2008
and on custom host-graph based features, using the ERUS strategy for class-
inbalance learning. For earlier challenges, best performances were achieved by
a semi-supervised version of SVM [1] and text compression [28]. Best results
either used bag of words vectors or the so-called “public” feature sets of [20].

We extended the WEBSPAM-UK2007 data set with 13 .uk snapshots pro-
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Label Set Instances %Positive

Training 4000 5.95%
Testing 2053 4.68%

Table 1: Summary of label sets for Web Spam Challenge 2008.

vided by the Laboratory for Web Algorithmics of the Università degli studi di
Milano. We use the training and testing labels of the Web Spam Challenge
2008, as summarized in Table 1. In order to prepare a temporal collection, we
extracted maximum 400 pages per site from the original crawls. The last 12
of the above .uk snapshots were analyzed by Bordino et al. [12] who observe
a relative low URL but high host overlap2. The first snapshot (2006-05) that
is identical to WEBSPAM-UK2006 was chosen to be left out from their exper-
iment since it was provided by a different crawl strategy. We observed that
in the last eight snapshots the number of hosts have stabilized in the sample
and these snapshots have roughly the same amount of labeled hosts as seen in
Fig. 1. From now on we restrict attention to the aforementioned subset of the
snapshots and the WEBSPAM-UK2007 labels only.

2.2 The Waterloo Spam Rankings for ClueWeb09

The English part of ClueWeb09 consist of approximately 20M domains and
500M pages. For Web spam labels we used the Waterloo Spam Rankings [29].
While the Waterloo Spam Rankings contain negative training instances as well,
we extended the negative labels with the set of the Open Directory Project
(ODP) hosts. We used 50% split for training and testing.

We labeled hosts in both the .pt crawl and ClueWeb09 by top-level ODP
categories using links extracted from topic subtrees in the directory. Out of
all labeled hosts, 642643 received a unique label. Because certain sites (e.g.,
bbc.co.uk) may belong to even all 14 top-level English categories, we discarded
the labels of 18734 hosts with multiple labels to simplify the multi-label task.
As Bordino et al. [13] indicate, multitopical hosts are often associated to poor
quality sites and spam as another reason why their labels may mislead the
classification process. The resulting distribution of labels is shown in Table 2.

2.3 Discovery Challenge 2010: DC2010

The Discovery Challenge was organized over DC2010, a new data set that we
describe in more detail next. DC2010 is a large collection of annotated Web
hosts labeled by the Hungarian Academy of Sciences (English documents), In-
ternet Memory Foundation (French) and L3S Hannover (German). The base
data is a set of 23M pages in 190K hosts in the .eu domain crawled by the
Internet Memory Foundation in early 2010.

2The dataset can be downloaded from: http://law.di.unimi.it/datasets.php
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Category No. of Hosts % of Labeled Hosts

spam 439 0.07%
Arts 97355 15.1%
Business 193678 30.1%
Computers 66159 10.3%
Recreation 65594 10.2%
Science 43317 6.7%
Society 122084 19%
Sports 54456 8.5%

Table 2: Number of positive ClueWeb09 host labels for spam and the ODP
categories.

UK2006 UK2007 ClueWeb09 DC2010

en de fr all

Hosts 10 660 114 529 500,000 61 703 29 758 7 888 190 000

Spam 19.8% 5.3% unknown 8.5% of valid labels; 5% of
all in large domains.

Table 3: Fraction of Spam in WEBSPAM-UK2006, UK2007, ClueWeb09 and
DC2010. Note that three languages English, German and French were selected
for labeling DC2010, although Polish and Dutch language hosts constitute a
larger fraction than the French. Since to our best knowledge, no systematic
random sample was labeled for ClueWeb09, the number 439 of labeled spam
hosts is not representative for the collection.

The labels extend the scope of previous data sets on Web Spam in that, in
addition to sites labeled spam, we included manual classification for genre into
five categories Editorial, Commercial, Educational, Discussion and Personal as
well as trust, factuality and bias as three aspects of quality. Spam label is
exclusive since no other assessment was made for spam. However other labels
are non-exclusive and hence define nine binary classification problems. We con-
sider no multi-class tasks in this paper. Assessor instructions are for example
summarized in [62], a paper concentrating on quality labels.

In Table 3, we summarize the amount of spam in the DC2010 data set in com-
parison with the Web Spam Challenge data sets. This amount is well-defined
for the latter data sets by the way they were prepared for the Web Spam Chal-
lenge participants. However for DC2010, this figure may be defined in several
ways. First of all, when creating the DC2010 labels, eventually we considered
domains with or without a www. prefix the same such as www.domain.eu vs.
domain.eu. However in our initial sampling procedure we considered them as
two different hosts and merged them after verifying that the labels of the two
versions were identical. Also, several domains consist of a single redirection page
to another domain and we counted these domains, too. Finally, a large fraction
of spam is easy to spot and can be manually removed. As an example of many
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Count IP address Comment

3544 80.67.22.146 spam farm *-palace.eu

3198 78.159.114.140 spam farm *auts.eu

1374 62.58.108.214 blogactiv.eu

1109 91.204.162.15 spam farm x-mp3.eu

1070 91.213.160.26 spam farm a-COUNTRY.eu

936 81.89.48.82 autobazar.eu

430 78.46.101.76 spam farm 77k.eu and 20+ domains
402 89.185.253.73 spam farm mp3-stazeni-zdarma.eu

Table 4: Selection of IP addresses with many subdomains in the DC2010 data
set.

Label Group Yes Maybe No

Spam Spam 423 4 982
News/Editorial Genre 191 4 791
Commercial 2 064 2 918
Educational 1 791 3 191
Discussion 259 4 724
Personal-Leisure 1 118 3 864
Non-Neutrality Quality 19 216 3 778
Bias 62 3 880
Dis-Trustiness 26 201 3 786

Table 5: Distribution of assessor labels in the DC2010 data set.

hosts on same IP, we include a labeled sample from DC2010, that itself contains
over 10,000 spam domains in Table 4. These hosts were identified by manually
looking at the IP addresses that serve the largest number of domain names.
Thus our sample is biased and obtaining an estimate of the spam fraction is
nontrivial, as indicated in Table 3.

The distribution of labels for the nine categories with more than 1% positive
samples (spam, news, commercial, educational, discussion, personal, neutral,
biased, trusted) is given in Table 5. For Neutrality and Trust the strong negative
categories have low frequency and hence we fused them with the intermediate
negative (maybe) category for the training and testing labels.

The Discovery Challenge 2010 best result [58] achieved an AUC of 0.83 for
spam classification while the overall winner [45] was able to classify a number
of quality components at an average AUC of 0.80. As for the technologies,
bag of words representation variants proved to be very strong for the English
collection while only language independent features were used for German and
French. The applicability of dictionaries and cross-lingual technologies remains
open.

New to the construction of the DC2010 training and test set is the handling
of hosts from the same domain and IP address. Since no IP address and do-
main was allowed to be split between training and testing, we might have to
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reconsider the applicability of propagation [48, 66] and graph stacking [54]. The
Web Spam Challenge data sets were labeled by uniform random sampling and
graph stacking appeared to be efficient in several results [22] including our prior
work [30]. The applicability of graph stacking remains however unclear for the
DC2010 data set. Certain teams used some of these methods but reported no
improvement [2].

3 Temporal Features for Spam Detection

Spammers often create bursts in linkage and content: they may add thousands
or even millions of machine generated links to pages that they want to promote
[61] that they again very quickly regenerate for another target or remove if
blacklisted by search engines. Therefore changes in both content and linkage
may characterize spam pages.

Recently the evolution of the Web has attracted interest in defining features,
signals for ranking [34] and spam filtering [61, 55, 31, 52, 37]. The earliest results
investigate the changes of Web content with the primary interest of keeping a
search engine index up-to-date [25, 26]. The decay of Web pages and links and
its consequences on ranking are discussed in [4, 35]. One main goal of Boldi et
al. [11] who collected the .uk crawl snapshots also used in our experiments was
the efficient handling of time-aware graphs. Closest to our temporal features
is the investigation of host overlap, deletion and content dynamics in the same
data set by Bordino et al. [12].

Perhaps the first result on the applicability of temporal features for Web
spam filtering is due to Shen et al. [61] who compare pairs of crawl snapshots and
define features based on the link growth and death rate. However by extending
their ideas to consider multi-step neighborhood, we are able to define a very
strong feature set that can be computed by the Monte Carlo estimation of
Fogaras and Rácz [41]. Another result defines features based on the change of
the content [31] who obtain page history from the Wayback Machine.

For calculating the temporal link-based features we use the host level graph.
As observed in [12], pages are much more unstable over time compared to
hosts. Note that page-level fluctuations may simply result from the sequence the
crawler visited the pages and not necessarily reflect real changes. The inherent
noise of the crawling procedure and problems with URL canonization [5] rule
out the applicability of features based on the change of page-level linkage.

3.1 Linkage Change

In this section we describe link-based temporal features that capture the extent
and nature of linkage change. These features can be extracted from either the
page or the host level graph where the latter has a directed link from host a to
host b if there is a link from a page of a to a page of b.

The starting point of our new features is the observation of [61] that the in-
link growth and death rate and change of clustering coefficient characterize the
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evolution patterns of spam pages. We extend these features for the multi-step
neighborhood in the same way as PageRank extends the in-degree. The ℓ-step
neighborhood of page v is the set of pages reachable from v over a path of length
at most ℓ. The ℓ-step neighborhood of a host can be defined similarly over the
host graph.

We argue that the changes in the multi-step neighborhood of a page should
be more indicative of the spam or honest nature of the page than its single-step
neighborhood because spam pages are mostly referred to by spam pages [21],
and spam pages can be characterized by larger change of linkage when compared
to honest pages [61].

In the following we review the features related to linkage growth and death
from [61] in Section 3.1.1, then we introduce new features based on the similarity
of the multi-step neighborhood of a page or host. We show how the XJaccard
and PSimRank similarity measure can be used for capturing linkage change in
Section 3.1.3 and Section 3.1.4, respectively.

3.1.1 Change Rate of In-links and Out-links

We compute the following features introduced by Shen et al. [61] on the host
level for a node a for graph instances from time t0 and t1. We let G(t) denote the
graph instance at time t and I(t)(a), Γ(t)(a) denote the set of in and out-links
of node a at time t, respectively.

• In-link death (IDR) and growth rate (IGR):

IDR(a) =
|I(t0)(a)| − |I(t0)(a) ∩ I(t1)(a)|

|I(t0)(a)|

IGR(a) =
|I(t1)(a)| − |I(t0)(a) ∩ I(t1)(a)|

|I(t0)(a)|

• Out-link death and growth rates (ODR, OGR): the above features calcu-
lated for out-links;

• Mean and variance of IDR, IGR, ODR and OGR across in-neighbors of a
host (IDRMean, IDRVar, etc.);

• Change rate of the clustering coefficient (CRCC), i.e. the fraction of linked
hosts within those pointed by pairs of edges from the same host:

CC(a, t) =
|{(b, c) ∈ G(t)|b, c ∈ Γ(t)(a)|

|Γ(t)(a)|

CRCC(a) =
CC(a, t1)− CC(a, t0)

CC(a, t0)

• Derivative features such as the ratio and product of the in and out-link
rates, means and variances. We list the in-link derivatives; out-link ones
are defined similarly:
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IGR·IDR, IGR/IDR, IGRMean/IGR, IGRVar/IGR, IDRMean/IDR,
IDRVar/IDR, IGRMean · IDRMean, IGRMean/IDRMean, IGRVar ·
IDRVar, IGRVar/IDRVar.

3.1.2 Self-Similarity Along Time

In the next sections we introduce new linkage change features based on multi-
step graph similarity measures that in some sense generalize the single-step
neighborhood change features of the previous section. We characterize the
change of the multi-step neighborhood of a node by defining the similarity of
a single node across snapshots instead of two nodes within a single graph in-
stance. The basic idea is that, for each node, we measure its similarity to itself
in two identically labeled graphs representing two consecutive points of time.
This enables us to measure the linkage change occurring in the observed time
interval using ordinary graph similarity metrics.

First we describe our new contribution, the extension of two graph similarity
measures, XJaccard and PSimRank [41] to capture temporal change; moreover,
we argue why SimRank [51] is inappropriate for constructing temporal features.

SimRank of a pair of nodes u and v is defined recursively as the average
similarity of the neighbors of u and v:

Simℓ+1(u, v) = 0, if I(u) or I(v) is empty;

Simℓ+1(u, v) = 1, if u = v; (1)

Simℓ+1(u, v) =
c

|I(u)||I(v)|

∑

v′∈I(v)
u′∈I(u)

Simℓ(u
′, v′),

where I(x) denotes the set of vertices linking to x and c ∈ (0, 1) is a decay factor.
In order to apply SimRank for similarity of a node v between two snapshots t0
and t1, we apply (2) so that v

′ and u′ are taken from different snapshots.
Next we describe a known deficiency of SimRank in its original definition

that rules out its applicability for temporal analysis. First we give the example
for the single graph SimRank. Consider a bipartite graph with k nodes pointing
all to another two u and v. In this graph there are no directed paths of length
more than one and hence the Sim values can be computed in a single iteration.
Counter-intuitively, we get Sim(u, v) = c/k, i.e. the larger the cocitation of
u and v, the smaller their SimRank value. The reason is that the more the
number of in-neighbors, the more likely is that a pair of random neighbors will
be different.

While the example of the misbehavior for SimRank is somewhat artificial
in the single-snapshot case, next we show that this phenomenon almost always
happens if we consider the similarity of a single node v across two snapshots.
If there is no change at all in the neighborhood of node v between the two
snapshots, we expect the Sim value to be maximal. However the situation is
identical to the bipartite graph case and Sim will be inversely proportional to
the number of out-links.
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3.1.3 Extended Jaccard Similarity Along Time

Our first definition of similarity is based on the extension of the Jaccard coef-
ficient in a similar way XJaccard is defined in [41]. The Jaccard similarity of
a page or host v across two snapshots t0 and t1 is defined by the overlap of its
neighborhood in the two snapshots, Γ(t0)(v) and Γ(t1)(v) as

Jac
(t0,t1)(v) =

|Γ(t0)(v) ∩ Γ(t1)(v)|

|Γ(t0)(v) ∪ Γ(t1)(v)|

The extended Jaccard coefficient, XJaccard for length ℓ of a page or host is

defined via the notion of the neighborhood Γ
(t)
k (v) at distance exactly k as

XJac
(t0,t1)

ℓ
(v) =

ℓ∑

k=1

|Γ
(t0)
k (v) ∩ Γ

(t1)
k (v)|

|Γ
(t0)
k (v) ∪ Γ

(t1)
k (v)|

· ck(1− c),

where c is a decay factor.
The XJac values can be approximated by the min-hash fingerprinting tech-

nique for Jaccard coefficients [15], as described in Algorithm 3 of [41]. The
fingerprint generation algorithm has to be repeated for each graph snapshot,
with the same set of independent random permutations.

We generate temporal features based on the XJac values for four length
values ℓ = 1 . . . 4. We also repeat the computation on the transposed graph, i.e.
replacing out-links Γ(t)(v) by in-links I(t)(v). As suggested in [41], we set the
decay factor c = 0.1 as this is the value where, in their experiments, XJaccard
yields best average quality for similarity prediction.

Similar to [61], we also calculate the mean and variance XJac(t0,t1)ℓ(w) of the
neighbors w for each node v. The following derived features are also calculated:

• similarity at path length ℓ = 2, 3, 4 divided by similarity at path length
ℓ− 1, and the logarithm of these;

• logarithm of the minimum, maximum, and average of the similarity at
path length ℓ = 2, 3, 4 divided by the similarity at path length ℓ− 1.

3.1.4 PSimRank Along Time

Next we define similarity over time based on PSimRank, a SimRank variant
defined in [41] that can be applied similar to XJaccard in the previous section.
As we saw in Section 3.1.2, SimRank is inappropriate for measuring linkage
change in time. In the terminology of the previous subsection, the reason is
that path fingerprints will be unlikely to meet in a large neighborhood and
SimRank values will be low even if there is completely no change in time.

We solve the deficiency of SimRank by allowing the random walks to meet
with higher probability when they are close to each other: a pair of random
walks at vertices u′, v′ will advance to the same vertex (i.e., meet in one step)

with probability of the Jaccard coefficient |I(u
′)∩I(v′)|

|I(u′)∪I(v′)| of their in-neighborhood

I(u′) and I(v′).
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The random walk procedure corresponding to PSimRank along with a fin-
gerprint generation algorithm is defined in [41].

For the temporal version, we choose independent random permutations σℓ

on the hosts for each step ℓ. In step ℓ if the random walk from vertex u is at
u′, it will step to the in-neighbor with smallest index given by the permutation
σℓ in each graph snapshot.

Temporal features are derived from the PSimRank similarity measure very
much the same way as for XJaccard, for four length values ℓ = 1 . . . 4. We also
repeat the computation on the transposed graph, i.e. replacing out-links Γ(t)(v)
by in-links I(t)(v). As suggested in [41], we set the decay factor c = 0.15 as this
is the value where, in their experiments, PSimRank yields best average quality
for similarity prediction. Additionally, we calculate the mean and variance
PSimRank(w) of the neighbors w for each node v and derived features as for
XJaccard.

3.2 Content and its Change

The content of Web pages can be deployed in content classification either via
statistical features such as entropy [59] or via term weight vectors [67, 31].
Some of the more complex features that we do not consider in this work include
language modeling [3].

In this section we focus on capturing term-level changes over time. For each
target site and crawl snapshot, we collect all the available HTML pages and
represent the site as the bag-of-words union of all of their content. We tokenize
content using the ICU library3, remove stop words4 and stem using Porter’s
method.

We treat the resulting term list as the virtual document for a given site at a
point of time. As our vocabulary we use the most frequent 10,000 terms found
in at least 10% and at most 50% of the virtual documents.

To measure the importance of each term i in a virtual document d at time
snapshot T , we use the BM25 weighting [60]:

t
(T )
i,d = IDF

(T )
i ·

(k1 + 1)tf
(T )
i,d

K + tf
(T )
i,d

where tf
(T )
i,d is the number of occurrences of term i in document d and IDF

(T )
i is

the inverse document frequency (Robertson-Spärck Jones weight) for the term
at time T . The length normalized constant K is specified as

k1((1− b) + b× dl(T )/avdl(T ))

such that dl(T ) and avdl(T ) denote the virtual document length and the average
length over all virtual documents at time T , respectively. Finally

IDF(T ) = log
N − n(T ) + 0.5

n(T ) + 0.5
3http://icu-project.org/
4http://www.lextek.com/manuals/onix/stopwords1.html
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where N denotes the total number of virtual documents and n(T ) is the number
of virtual documents containing term i. Note that we keep N independent of T

and hence if document d does not exist at T , we consider all tf
(T )
i,d = 0.

By using the term vectors as above, we calculate the temporal content fea-
tures described in [31] in the following five groups.

• Ave: Average BM25 score of term i over the Tmax snapshots:

Avei,d =
1

Tmax
·

Tmax∑

T=1

t
(T )
i,d

• AveDiff: Mean difference between temporally successive term weight
scores:

AveDiffi,d =
1

Tmax − 1
·

Tmax−1∑

T=1

|t
(T+1)
i,d − t

(T )
i,d |

• Dev: Variance of term weight vectors at all time points:

Devi,d =
1

Tmax − 1
·

Tmax∑

T=1

(t
(T )
i,d −Avei,d)

2

• DevDiff: Variance of term weight vector differences of temporally suc-
cessive virtual documents:

DevDiffi,d =
1

Tmax − 2
·

Tmax−1∑

T=1

(|t
(T+1)
i,d − t

(T )
i,d | −AveDiffi,d)

2

• Decay: Weighted sum of temporally successive term weight vectors with
exponentially decaying weight. The base of the exponential function, the
decay rate is denoted by λ. Decay is defined as follows:

Decayi,d =

Tmax∑

T=1

λeλ(Tmax−T )t
(T )
i,d

4 Classification Framework

For the purposes of our experiments we computed all the public Web Spam
Challenge content and link features of [20]. We built a classifier ensemble by
splitting features into related sets and for each we use a collection of classifiers
that fit the data type and scale. These classifiers were then combined by ensem-
ble selection. We used the classifier implementations of the machine learning
toolkit Weka [65].

Ensemble selection is an overproduce and choose method allowing to use
large collections of diverse classifiers [17]. Its advantages over previously pub-
lished methods [16] include optimization to any performance metric and refine-
ments to prevent overfitting, the latter being unarguably important when more
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classifiers are available for selection. The motivation for using ensemble selection
is that recently this particular ensemble method gained more attention thanks
to the winners of KDD Cup 2009 [57]. In our experiments [38] ensemble selec-
tion performed significantly better than other classifier combination methods
used for Web spam detection in the literature, such as log-odds based averaging
[56] and bagging.

In the context of combining classifiers for Web classification, to our best
knowledge, ensemble selection has not been applied yet. Previously, only sim-
ple methods that combine the predictions of SVM or decision tree classifiers
through logistic regression or random forest have been used [28]. We believe
that the ability to combine a large number of classifiers while preventing over-
fitting makes ensemble selection an ideal candidate for Web classification, since
it allows us to use a large number of features and learn different aspects of the
training data at the same time. Instead of tuning various parameters of dif-
ferent classifiers, we can concentrate on finding powerful features and selecting
the main classifier models which we believe to be able to capture the differences
between the classes to be distinguished.

We used the ensemble selection implementation of Weka [65] for performing
the experiments. Weka’s implementation supports the proven strategies to avoid
overfitting such as model bagging, sort initialization and selection with replace-
ment. We allow Weka to use all available models in the library for greedy sort
initialization and use 5-fold embedded cross-validation during ensemble train-
ing and building. We set AUC as the target metric to optimize for and run 100
iterations of the hillclimbing algorithm.

We mention that we have to be careful with treating missing feature values.
Since the temporal features are based on at least two snapshots, for a site
that appears only in the last one, all temporal features have missing value.
For classifiers that are unable to treat missing values we define default values
depending on the type of the feature.

4.1 Learning Methods

We use the following models in our ensemble: bagged and boosted decision
trees, logistic regression, naive Bayes and variants of random forests. For most
classes of features we use all classifiers and let selection choose the best ones.
The exception is static and temporal term vector based features where, due to
the very large number of features, we may only use Random Forest and SVM.
We train our models as follows.

Bagged LogitBoost: we do 10 iterations of bagging and vary the number
of iterations from 2 to 64 in multiples of two for LogitBoost.

Decision Trees: we generate J48 decision trees by varying the splitting
criterion, pruning options and use either Laplacian smoothing or no smoothing
at all.

Bagged Cost-sensitive Decision Trees: we generate J48 decision trees
with default parameters but vary the cost sensitivity for false positives in steps
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of 10 from 10 to 300. We do the same number of iterations of bagging as for
LogitBoost models.

Logistic Regression: we use a regularized model varying the ridge param-
eter between 10−8 to 104 by factors of 10. We normalize features to have mean
0 and standard deviation 1.

Random Forests: we use FastRandomForest [39] instead of the native
Weka implementation for faster computation. The forests have 250 trees and,
as suggested in [14], the number of features considered at each split is s/2, s, 2s,
4s and 8s, where s is the square root of the total number of features available.

Naive Bayes: we allow Weka to model continuous features either as a single
normal or with kernel estimation, or we let it discretize them with supervised
discretization.

5 Results and Discussion

In this section we describe the various ensembles we built and measure their
performance5. We compare feature sets by using the same learning methods
described in Section 4 while varying the subset of features available for each
of the classifier instances when training and combining these classifiers using
ensemble selection. We also concentrate on the value of temporal information
for Web spam detection. As our goal is to explore the computational cost
vs. classification performance tradeoff, we will describe the resource needs for
various features in detail in Section 6.

For training and testing we use the official Web Spam Challenge 2008 train-
ing and test sets [20]. As it can be seen in Table 1 these show considerable class
imbalance which makes the classification problem harder. For DC2010 we also
use the official training set as described in Table 5. For ClueWeb09 we used a
50% random split.

To make it easy to compare our results to previous results, we cite the Web
Spam Challenge 2008 and Discovery Challenge 2010 winner’s performance in the
summary tables next. For ClueWeb09 the only previous evaluation is in terms
of TREC retrieval performance [29] that we cannot directly compare here.

5.1 Content-only Ensemble

We build three different ensembles over the content-only features in order to
assess performance by completely eliminating linkage information. The feature
sets available for these ensembles are the following:

• (A) Public content [59, 22] features without any link based information.
Features for the page with maximum PageRank in the host are not used
to save the PageRank computation. Corpus precision, the fraction of
words in a page that is corpuswise frequent and corpus recall, the fraction

5The exact classifier model specification files used for Weka and the data files used for the
experiments are available upon request from the authors.

16



of corpuswise frequent terms in the page are not used either since they
require global information from the corpus.

• (Aa) The tiniest feature set of 24 features from (A): query precision and
query recall defined similar to corpus precision and recall but based on
popular terms from a proprietary query log6 instead of the entire corpus.
A very strong feature set based on the intuition that spammers use terms
that make up popular queries.

• (B) The full public content feature set [22], including features for the
maximum PageRank page of the host.

• Feature set (B) plus a bag of words representation derived from the BM25
[60] term weighting scheme.

Table 6 presents the performance comparison of ensembles built using either
of the above feature sets. The DC2010 and ClueWeb09 detailed results are in
Table 8 and Table 9, respectively. Performance is given in AUC for all data
sets.

Feature Set N
u
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F
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K
20
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20
10
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eb
09

Content (A) 74 0.859 0.757 0.829
Content (Aa) 24 0.841 0.726 0.635
Content (B) 96 0.879 0.799 0.827
BM25 + (B) 10096 0.893 0.891 0.870

Challenge best - 0.852 0.830 -

Table 6: AUC value of spam ensembles built from content based features.

Surprisingly, with the small (Aa) feature set of only 24 features a perfor-
mance only 1% worse than that of the Web Spam Challenge 2008 winner can
be achieved who employed more sophisticated methods to get their result. By
using all the available content based features without linkage information, we
get roughly the same performance as the best which have been reported on our
data set so far. However this achievement can be rather attributed to the better
machine learning techniques used than the feature set itself since the features
used for this particular measurement were already publicly accessible at the
time of the Web Spam Challenge 2008.

As it can be seen in Table 6 relative performance of content based features
over different corpora varies a lot. In case of DC2010 and ClueWeb09 the small
(Aa) feature set achieves much worse result than the largest feature set having
best performance for all data sets. The fact that the content (A, Aa, B) and
link (Table 7) performances are always better for UK2007 might be explained

6A summary is available as part of our data release at https://dms.sztaki.hu/sites/

dms.sztaki.hu/files/download/2013/enpt-queries.txt.gz.

17



by the fact that the UK2007 training and testing sets were produced by random
sampling without considering domain boundaries. Hence in a large domain
with many subdomains, part of the hosts belong to the training and part to
the testing set with very similar distribution. This advantage disappears for the
BM25 features.

5.2 Full Ensemble

Feature Set N
u
m
b
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o
f

F
ea
tu
re
s

U
K
2
0
0
7

D
C
2
0
1
0

C
lu
eW

eb
0
9

Public link-based [7] 177 0.759 0.587 0.806
All combined 10 273 0.902 0.885 0.876

Table 7: Performance of ensembles built on link based and all features.

Results of the ensemble incorporating all the previous classifiers is seen in
Table 7. The DC2010 detailed results are in Table 8. Overall, we observe that
BM25 is a very strong feature set that may even be used itself for a lightweight
classifier. On the other hand, link features add little to quality and the gains
apparently diminish for DC2010, likely due to the fact that the same domain
and IP address is not split between training and testing.

The best Web Spam Challenge 2008 participant [44] reaches an AUC of
0.85 while for DC2010, the best spam classification AUC of [58] is 0.83. We
outperform these results by a large margin.

For DC2010 we also show detailed performance for nine attributes in Table 8,
averaged in three groups: spam, genre and quality (as in Table 5). Findings
are similar: with BM25 domination, part or all of the content features slightly
increase the performance. Results for the quality attributes and in particular
for trust are very low. Classification for these aspects remains a challenging
task for the future.

For ClueWeb09 detailed performance for selected ODP categories can be
seen in Table 9. Identically to DC2010 results BM25 features provide the best
classification performance. However, combinations with other feature sets yield
gains only for spam classification. For the ODP classification tasks linkage in-
formation does not help in general: the content based feature set has roughly
the same performance with or without page-level linkage information, and com-
bining with the link based feature set does not improve performance notably in
most labeling tasks.

5.3 Temporal Link Ensembles

First, we compare the temporal link features proposed in Section 3.1 with those
published earlier [61]. Then, we build ensembles that combine the temporal with
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Public link-based [7] 0.655 0.614 0.519 0.587
Content (A) 0.757 0.713 0.540 0.660
Content (Aa) 0.726 0.662 0.558 0.634
Content (B) 0.799 0.735 0.512 0.668
BM25 0.876 0.805 0.584 0.739

Public link-based + (B) 0.812 0.731 0.518 0.669
BM25 + (A) 0.872 0.816 0.580 0.754

BM25 + (B) 0.891 0.810 0.612 0.744

All combined 0.885 0.813 0.553 0.734

Table 8: Performance over the DC2010 labels in terms of AUC.

Feature Set sp
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Link [7] .806 .569 .593 .591 .532 .624 .540 .504 .595
Content (A) .829 .676 .726 .632 .669 .720 .639 .673 .695
Content (Aa) .635 .508 .524 .554 .487 .558 .502 .522 .536
Content (B) .827 .673 .727 .634 .670 .720 .629 .674 .694
BM25 .845 .913 .890 .931 .907 .883 .915 .959 .914

Link + (B) .848 .675 .731 .646 .669 .727 .631 .669 .699
BM25 + (A) .871 .895 .881 .896 .879 .851 .904 .935 .892
BM25 + (B) .869 .895 .881 .898 .892 .850 .906 .934 .894

All combined .876 .896 .883 .898 .892 .852 .905 .936 .895

Table 9: Performance over the ClueWeb09 labels in terms of AUC.

the public link-based features described by [7]. The results are summarized in
Table 10. Note that all experiments in this section and Section 5.4 were carried
out on the WEBSPAM-UK2007 data set.

As these measurements show, our proposed graph similarity based features
successfully extend the growth and death rate based ones by achieving higher
accuracy, improving AUC by 1.3%. However, by adding temporal to static
link-based features we get only marginally better ensemble performance.

To rank the link-based feature sets by their contribution in the ensemble, we
build classifier models on the three separate feature subsets (public link-based,
growth/death rate based and graph similarity based features, respectively) and
let ensemble selection combine them. This restricted combination results in
a slightly worse AUC of 0.762. By calculating the total weight contribution,
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Section Feature Set
No. of

AUC
Features

3.1.1 Growth/death rates 29 0.617
3.1.3-4 XJaccard + PSimRank 63 0.625

Public link-based [7] 176 0.765

3.1.1
Public +

205 0.758
growth/death rates

3.1.3-4
Public +

239 0.769
XJaccard + PSimRank

All link-based 268 0.765

WSC 2008 Winner - 0.852

Table 10: Performance of ensembles built on link-based features.

we get the following ranked list (weight contribution showed in parenthesis):
public link-based (60.8%), graph similarity based (21.5%), growth/death rate
based (17.7%). This ranking also supports the findings presented in Table 10
that graph similarity based temporal link-based features should be combined
with public link-based features if temporal link-based features are used.

To separate the effect of ensemble selection on the performance of temporal
link-based feature sets we repeat the experiments with bagged cost-sensitive
decision trees only, a model reported to be effective for web spam classification
[59]. The results for these experiments are shown in Table 11.

Section Feature Set
No. of

AUC
Features

3.1.1 Growth/death rates 29 0.605
3.1.3 XJaccard 42 0.626
3.1.4 PSimRank 21 0.593
3.1.3-4 XJaccard + PSimRank 63 0.610

Public link-based [7] 176 0.731

3.1.1
Public +

205 0.696
growth/death rates

3.1.3-4
Public +

239 0.710
XJaccard + PSimRank

All link-based 268 0.707

WSC 2008 Winner - 0.852

Table 11: Performance of bagged cost-sensitive decision trees trained on link-
based features.

As it can be seen in Table 11, when using bagged cost-sensitive decision
trees, our proposed temporal link-based similarity features achieve 3.5% better
performance than the growth/death rate based features published earlier.
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When comparing results in Table 11 and in Table 10 we can see that ensemble
selection i) significantly improves accuracy (as expected) and ii) diminishes the
performance advantage achievable by the proposed temporal link-based features
over the previously published ones.

As evident from Table 11, the proposed PSimRank based temporal features
perform roughly the same as the growth and death rate based ones while the
XJaccard based temporal features perform slightly better.
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Figure 2: Sensitivity of temporal link-based features. Top: AUC values av-
eraged across 10 measurements. Bottom: standard deviations of AUC for
different training set sizes.

Next we perform sensitivity analysis of the temporal link-based features by
using bagged cost-sensitive decision trees. We build 10 different random training
samples for each of the possible fractions 10%, 20%, . . . , 100% of all available
labels. In Fig. 2 we can see that the growth/death rate based features as well
as the PSimRank based features are not sensitive to training set size while the
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XJaccard based ones are. That is, even though XJaccard is better in terms of
performance than the other two feature sets considered it is more sensitive to
the amount of training data used as well.

5.4 Temporal Content Ensembles

We build ensembles based on the temporal content features described in Section
3.2 and their combination themselves, with the static BM25 features, and with
the content-based features of [59]. The performance comparison of temporal
content-based ensembles is presented in Table 12.

Feature Set
No. of

AUC
Features

Static BM25 10,000 0.736
Ave 10,000 0.749

AveDiff 10,000 0.737
Dev 10,000 0.767

DevDiff 10,000 0.752
Decay 10,000 0.709

Temporal combined 50,000 0.782
Temporal combined + BM25 60,000 0.789

Public content-based [59] + temporal 50,096 0.901

All combined 60,096 0.902

Table 12: Performance of ensembles built on temporal content-based features.

By combining all the content and link-based features, both temporal and
static ones, we train an ensemble which incorporates all the previous classifiers.
This combination resulted in an AUC of 0.908 meaning no significant improve-
ment can be achieved with link-based features over the content-based ensemble.

6 Computational Resources

For the experiments we used a 45-node Hadoop cluster of dual core machines
with 4GB RAM each as well as multi-core machines with over 40GB RAM.
Over this architecture we were able to compute all features, some of which
would require excessive resources either when used by a smaller archive or if the
collection is larger or if fast classification is required for newly discovered sites
during crawl time. Some of the most resource bound features involve the multi-
step neighborhood in the page level graph that already requires approximation
techniques for WEBSPAM-UK2007 [22].

We describe the computational requirements of the features by distinguish-
ing update and batch processing. For batch processing an entire collection is
analyzed at once, a procedure that is probably performed only for reasons of
research. Update is probably the typical operation for a search engine. For an
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Feature Set Step Hours Configuration

Content (A)
+ BM25

Parsing 36 45 dual core Pentium-D
3.0GHz machines, 4GB
RAM, Hadoop 0.21

Feature generation 36
Selection of labeled pages 3

Link
PageRank 10

5 eight-core Xeon 1.6GHz
machines, 40+GB RAM

Neighborhood 4
Local features 1

Table 13: Processing times and cluster configurations for feature sets over
ClueWeb09.

Internet Archive, update is also advantageous as long as it allows fast reaction
to sample, classify and block spam from a yet unknown site.

6.1 Batch Processing

The first expensive step involves parsing to create terms and links. The time
requirement scales linearly with the number of pages. Since apparently a few
hundred page sample of each host suffices for feature generation, the running
time is also linear in the number of hosts. For a very large collection such
as ClueWeb09, distributed processing may be necessary. Over 45 dual core
Pentium-D 3.0GHz machines running Hadoop 0.21, we parsed the uncompressed
9.5TB English part of ClueWeb09 in 36 hours. Additional tasks such as term
counting, BM25 or content feature generation fits within the same time frame.
If features are generated only a small labeled part of the data, it took us 3
hours to select the appropriate documents and additional processing time was
negligible. Processing times are summarized in Table 13.

Host level aggregation allows us to proceed with a much smaller size data.
However for aggregation we need to store a large number of partial feature
values for all hosts unless we sort the entire collection by host, again by external
memory or Map-Reduce sort.

After aggregation, host level features are inexpensive to compute. The fol-
lowing features however remain expensive:

• Page level PageRank. Note that this is required for all content features
involving the maximum PageRank page of the host.

• Page level features involving multi-step neighborhood such as neighbor-
hood size at distance k as well as graph similarity.

In order to be able to process graphs of ClueWeb09 scale (4.7 billion nodes and
17 billion edges), we implemented message passing C++ codes. Over a total
30 cores of six Xeon 1.6GHz machines, each with at least 40GB RAM, one
PageRank and one Bit Propagation iteration both took approximately one hour
while all other, local features completed within one hour.

Training the classifier for a few 100,000 sites can be completed within a
day on a single CPU on a commodity machine with 4-16GB RAM; here costs
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Configuration Number Feature Example Expected Computation

of Hosts Sets Accuracy

Small 10,000 Content (A) subset of 0.80-0.87 Non-
1-2 machines BM25 UK2007 distributed
Medium 100,000 Content (A) DC2010 0.87-0.90 MapReduce

3-10 machines BM25, link and Disk-based
e.g. GraphChi

Large 1,000,000 Content (B) ClueWeb09 0.9+ MapReduce
10+ machines BM25, link and Pregel

Table 14: Sample configurations for Web spam filtering in practice.

strongly depend on the classifier implementation. Our entire classifier ensemble
for the labeled WEBSPAM-UK2007 hosts took a few hours to train.

6.2 Incremental Processing

As preprocessing and host level aggregation is linear in the number of hosts,
this reduces to a small job for an update. This is especially true if we are able
to split the update by sets of hosts; in this case we may even trivially parallelize
the procedure.

The only nontrivial content based information is related to document fre-
quencies: both the inverse document frequency term of BM25 [60] and the cor-
pus precision and recall dictionaries may in theory be fully updated when new
data is added. We may however approximate by the existing values under the
assumption that a small update batch will not affect these values greatly. From
time to time however all features beyond (Aa) need a global recomputation step.

The link structure is however nontrivial to update. While incremental al-
gorithms exist to create the graph and to update PageRank type features
[32, 33, 53], these algorithms are rather complex and their resource require-
ments are definitely beyond the scale of a small incremental data.

Incremental processing may have the assumption that no new labels are
given, since labeling a few thousand hosts takes time comparable to batch pro-
cess hundreds of thousands of them. Given the trained classifier, a new site can
be classified in seconds right after its feature set is computed.

7 Conclusions

With the illustration over the 100,000 host WEBSPAM-UK2007, the half billion
page ClueWeb09, and the 190,000 host DC2010 data sets, we have investigated
the tradeoff between feature generation and spam classification accuracy. We
observe that more features achieve better performance, however, when combin-
ing them with the public link based feature set we get only marginal perfor-
mance gain. By using the WEBSPAM-UK2007 data along with seven previous
monthly snapshots of the .uk domain, we have presented a survey of temporal
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features for Web spam classification. We investigated the performance of link,
content and temporal7 Web spam features with ensemble selection. As practi-
cal message, we may conclude that, as seen in Table 14, single machines may
compute content and BM25 features for a few 10,000 hosts only. Link features
need additional resources and either compressed, disk based or, in the largest
configuration, Pregel-like distributed infrastructures.

We proposed graph similarity based temporal features which aim to capture
the nature of linkage change of the neighborhoods of hosts. We have shown
how to compute these features efficiently on large graphs using a Monte Carlo
method. Our features achieve better performance than previously published
methods, however, when combining them with the public link-based feature set
we get only marginal performance gain.

By our experiments it has turned out that the appropriate choice of the
machine learning techniques is probably more important than devising new
complex features. We have managed to compile a minimal feature set that can
be computed incrementally very quickly to allow to intercept spam at crawl
time based on a sample of a new Web site. Sample configurations for Web spam
filtering are summarized in Table 14.

Our results open the possibility for spam filtering practice in Internet archives
who are mainly concerned about their resource waste and would require fast re-
acting filters. BM25 based models are suitable even for filtering at crawl time.

Some technologies remain open to be explored. For example, unlike ex-
pected, the ECML/PKDD Discovery Challenge 2010 participants did not deploy
cross-lingual technologies for handling languages other than English. Some ideas
worth exploring include the use of dictionaries to transfer a bag of words based
model and the normalization of content features across languages to strengthen
the language independence of the content features. The natural language pro-
cessing based features were not used either, that may help in particular with
the challenging quality attributes.
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A. Pereszlényi, S. Rácz, and A. Szabó. Web spam: a survey with vision for
the archivist. In Proc. International Web Archiving Workshop, 2008.

[10] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: A scalable
fully distributed web crawler. Software: Practice & Experience, 34(8):721–
726, 2004.

[11] P. Boldi, M. Santini, and S. Vigna. A Large Time Aware Web Graph.
SIGIR Forum, 42, 2008.

[12] I. Bordino, P. Boldi, D. Donato, M. Santini, and S. Vigna. Temporal
evolution of the uk web. In Workshop on Analysis of Dynamic Networks
(ICDM-ADN’08), 2008.

26



[13] I. Bordino, D. Donato, and R. Baeza-Yates. Coniunge et impera: Multiple-
graph mining for query-log analysis. In Machine Learning and Knowledge
Discovery in Databases, pages 168–183. Springer, 2010.

[14] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[15] A. Z. Broder. On the Resemblance and Containment of Documents.
In Proceedings of the Compression and Complexity of Sequences (SE-
QUENCES’97), pages 21–29, 1997.

[16] R. Caruana, A. Munson, and A. Niculescu-Mizil. Getting the most out of
ensemble selection. In ICDM ’06: Proceedings of the Sixth International
Conference on Data Mining, pages 828–833, Washington, DC, USA, 2006.
IEEE Computer Society.

[17] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selec-
tion from libraries of models. In ICML ’04: Proceedings of the twenty-first
international conference on Machine learning, page 18, New York, NY,
USA, 2004. ACM.

[18] C. Castillo, K. Chellapilla, and L. Denoyer. Web spam challenge 2008. In
Proceedings of the 4th International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), 2008.

[19] C. Castillo and B. Davison. Adversarial web search, volume 4. Now Pub-
lishers Inc, 2011.

[20] C. Castillo, D. Donato, L. Becchetti, P. Boldi, S. Leonardi, M. Santini, and
S. Vigna. A reference collection for web spam. SIGIR Forum, 40(2):11–24,
December 2006.

[21] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know
your neighbors: Web spam detection using the web topology. Technical
report, DELIS – Dynamically Evolving, Large-Scale Information Systems,
2006.

[22] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know
your neighbors: web spam detection using the web topology. Proceedings
of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 423–430, 2007.

[23] N. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning
from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1):1–
6, 2004.

[24] C. Chekuri, M. H. Goldwasser, P. Raghavan, and E. Upfal. Web search us-
ing automatic classification. In Proceedings of the 6th International World
Wide Web Conference (WWW), San Jose, USA, 1997.

27



[25] J. Cho and H. Garcia-Molina. The evolution of the web and implications
for an incremental crawler. In The VLDB Journal, pages 200–209, 2000.

[26] J. Cho and H. Garcia-Molina. Synchronizing a database to improve fresh-
ness. In Proceedings of the International Conference on Management of
Data, pages 117–128, 2000.

[27] E. Convey. Porn sneaks way back on web. The Boston Herald, May 1996.

[28] G. Cormack. Content-based Web Spam Detection. In Proceedings of the
3rd International Workshop on Adversarial Information Retrieval on the
Web (AIRWeb), 2007.

[29] G. Cormack, M. Smucker, and C. Clarke. Efficient and effective spam filter-
ing and re-ranking for large web datasets. Information retrieval, 14(5):441–
465, 2011.
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