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ABSTRACT
In this paper we give our solution to the RecSys Challenge
2014. In our ensemble we use (1) a mix of binary classifi-
cation methods for predicting nonzero engagement, includ-
ing logistic regression and SVM; (2) regression methods for
directly predicting the engagement, including linear regres-
sion and gradient boosted trees; (3) matrix factorization and
factorization machines over the user-movie matrix, by using
user and movie features as side information. For most of
the methods, we use the GraphLab Create implementation.
Our current nDCG achieves 0.877.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
filtering; I.2.6 [Artificial Intelligence]: Learning

Keywords
Recommender systems, RecSys Challenge; GraphLab Cre-
ate; Twitter

1. INTRODUCTION
The RecSys Challenge 2014 data set consists of movie rat-

ings automatically tweeted by the IMDb application. In
this unusual prediction task, for each user, the top-K tweets
based on predicted engagement is requested, where engage-
ment consists of favorites and retweets. Evaluation is based
on the quality of the top list produced by the recommender.
This so-called top-K recommender task is known to be hard
[10]. A recent result on evaluating top-K recommenders is
found in [9].

Predicting the number of retweets is a known task: [13]
investigates the problem of predicting the popularity of mes-
sages as measured by the number of future retweets and [18]
finds that performance is dominated by social features, but
that tweet features add a substantial boost. In our work
we use ideas from these papers for defining user and tweet
features.
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Since movie rating tweets are defined over a pair of a user
and a movie, we face a dyadic prediction task where recom-
mender and learning-to-rank approaches may also be appli-
cable. In our method we blend recommender methods with
side information and direct predictors for the engagement,
which are based on a pool of user, movie and tweet features.

Our first class of methods consists of recommenders over
the data set considered as a user-movie matrix. The Netflix
Prize competition [5] put recommender algorithms through
a systematic evaluation on standard data [3]. The final best
results blended a very large number of methods whose re-
production is out of the scope of this experiment. Among
the basic recommender methods, we use matrix factorization
[22, 15].

A twist in the data set over the user-movie matrix is rich
side information, both for users and for movies. In addition,
some users and movies appear only in the test set and hence
there we face the cold start problem [20]. Some methods
that use the side information include stochastic gradient de-
scent [17] and the product of user and item kernels [4]. In
our experiments we use the factorization machine [19] as a
very general toolkit for expressing relations within side in-
formation.

We noticed that the most important part is to distinguish
between zero and nonzero engagement. We find that the so-
lution of this simplified version of the problem still results in
a very high nDCG score of 0.986. In this sense, the task is a
mix of a recommender and a binary classification tasks. We
use linear models including regression and Support Vector
Machines (SVM) [21].

Our final prediction relies on the ensemble of a large num-
ber of methods. Classifier ensembles are known to offer a
significant improvement in prediction accuracy [23, 8, 7].
Ensembles include changing the instances used for training
through techniques such as Bagging [2] and Boosting [12].
In our results, we use gradient boosted trees [26] and we
combine classifiers, regressors and recommenders both by
averaging and by learning their weigth by linear regression.

In most of our models, we use the GraphLab Create im-
plementation1 [16].

1http://graphlab.com/products/create/
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Table 2: Users and movies in the training and testing sets.
Users Movies

Training set 22,079 13,618
Test set 5,717 4,226
Unique to training set 17,838 10,090
Unique to test set 1,476 698
Apperaing in both 4,241 3,528
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Figure 1: Top: Daily crawling frequencies. Bottom: The
scraping period with respect to the training, testing and
evaluation sets.

2. THE RECSYS CHALLENGE 2014 DATA
SET

In this section we overview the key properties of the data
set that we use for feature generation and modeling. For
general information on the number and date of users, movies
and tweets we refer to Table 2.

2.1 Training and test set statistics
The training and test sets greatly differ. Table 1 sum-

marizes their properties. While in both data sets, the per-
centage of tweets with zero engagement is high, the ratio
is significantly higher in the training set. Users may be-
long only to training, only to testing or to both sets (Ta-
ble 2). We observe large difference between the training,
testing and evaluation sets in the time elapsed between the
tweet appeared and crawled due to the different timing of the
training, testing and evaluation sets, as described in Fig. 1.

2.2 IMDb movie metadata
We collected IMDb related movie features from two differ-

ent sources. The original MovieTweetings dataset [11] con-
tains release year, movie genre(s) and title for each movie
in the dataset. We transformed genres into a binary fea-
ture vector. Besides these features, we used the IMDBbPY
Python package2 to crawl two elementary features of the
movies in the dataset: their average rating in the system,
and the number of ratings they have.

2http://imdbpy.sourceforge.net/
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Figure 2: Ratio of tweets with nonzero engagement as the
function of the time difference between the creation and
scraping timestamps.
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Figure 3: Engagement score frequency distribution of the
training set.

2.3 Spam bots
While the frequency of engagement scores appears to fol-

low a power-law relationship, we found within the training
set a large number of tweets (130) which had an engagement
score of 185, see Fig. 3. They were found to all have been a
retweet of a tweet from one of Justin Bieber’s friends, Ryan
Butler, who also appears to have a large following. Many
of the screen names of these users included variations of the
name ’Justin Bieber’ (e.g. ’thatkidbiebuh’, ’BiebsDevotion’,
’BelievingJ’,...), leading us investigate celebrity posts. In
fact the retweet times of such posts can occur within sec-
onds of the post so that we term them ’spam bots’.

One strong indicator of celebrity appears to be the ’ver-
ified user’ boolean, which is included in every status. In
the training data, there are 16 tweets from verified users,
all but 3 of which received some form of engagement. In
the test data, only one such tweet exists, which too received
engagement.

In light of these, we decided to use to remove the Ryan
Butler-related tweets from the training data before we trained
our models. Compared to the original engagement scores in
Fig. 3, after cleansing, the training and testing distribution
appears similar in Fig. 4.

http://imdbpy.sourceforge.net/


Table 1: Training and test set properties.
Training set Test set

Number of users 22,079 5,717
Number of movies 13,618 4,226
Number of tweets 170,285 21,285
Number of zero engagement scores 162,108 (95.19%) 19,727 (92.68%)
Earliest creation time 28/02/2013 14:43 8/01/2014 22:06
Latest creation time 8/01/2014 22:06 11/02/2014 15:49
Minimum number of days between
creation and scraping

23 0
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Figure 4: Engagement score frequency distributions in the
cleansed training set and the test set.

Table 3: Properties of the cleansed training set.
Number of users 21,950
Number of movies 13,618
Number of tweets 170,155
Number of tweets with zero
engagement score

162,107
(95.27%)

2.4 Extreme ratings
In Fig. 5 a U-shaped relationship can be made out within

both datasets. In other words, tweets with extremist ratings
generate higher engagement scores in average. In fact in
terms of linear regressions based on only one feature, we
found that rating performed the best, achieving as high as
0.818 nDCG on the test set. However, we found tweets
containing ratings that fell outside of the “standard” range
determined by the IMDb tweet template (1-10, inclusive). In
the training set, 73 ratings were given outside of this range.
The higher “extreme rating” tweets also more often receive
engagement than regular tweets.

2.5 Cleansed training set
Table 3 summarizes the properties of our cleansed train-

ing dataset. We removed tweets with rating larger than 10
or less than 1. We also excluded the spammers from the
dataset.

2.6 Features
Here we list the features we extracted from the original

datasets.
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Figure 5: Engagement score as the function of rating for the
training set (top), and for the test set (bottom).
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Figure 6: Follower distributions on the training set and the
test set.

User features extracted from the Twitter json data:
creation time, followers and friends count (see Fig. 6,
favourites count, statuses count

Tweet features extracted from the Twitter json data:
creation time, scraping time, time difference between
creation and scraping, number of hashtags / URLs
/ mention in the tweet, tweet is retweet, tweet has
retweet in the dataset



Table 4: Best nDCG@10 results of the invidual algorithms, separate for resubstitution over the training set and for the test
set. In both cases we give the best result not using and using retweet information (“no RT” and “with RT”, respectively).

Method Training set Test set
no RT with RT no RT with RT

Random prediction (RN) ≈ 0.61 - ≈ 0.75 -
Retweet based prediction (RT) - 0.73038 - 0.80098
Rating based prediction (RA) 0.69386 0.75670 0.82125 0.84980
Graphlab Create Item Means Model (IM) 0.74821 0.80729 0.79957 0.84340
Graphlab Create Popularity Model (POP) 0.75935 0.81684 0.79467 0.83862
SVM (SVM) 0.63976 0.73112 0.81850 0.86777
Graphlab Create Gradient Boosted Tree (GCGT) 0.71009 0.79220 0.83336 0.87127
Graphlab Create Linear Regression (GCLR) 0.67782 0.75374 0.82726 0.86089
Graphlab Create Logistic Regression (GCGR) 0.67724 0.75270 0.82807 0.86078
Graphlab Create Matrix Factorization (GCMF) 0.70343 0.77598 0.82444 0.86291
Graphlab Create LibFM based recommender (GCFM) 0.68005 0.75878 0.82019 0.84139
NDCGboost (NB) 0.68663 0.77032 0.80532 0.86282

Movie features extracted from the MovieTweetings dataset
and our IMDb crawl:
movie average rating, number of ratings on IMDb, bi-
nary vector of movie genres from the movieTweetings
dataset.

Rating based features: Besides the original user rating,
we take the difference of the user’s rating and the
movie’s average rating on IMDb. We also give a score
for each tweet based on its extremeness (see 2.4). More-
over, we have created feature vectors from the ratings.
We use the average engagement value as the function
of the rating (1–10) as shown in Fig. 5.

2.7 Zero and nonzero engagement
In order to simplify the task, we considered separating

those tweets that received engagement from those that did
not. Assuming that this binary classification task could be
perfectly solved, we measured an nDCG@10 of 0.988 over
the test set. The fact that the actual engagement count is
less important compared to separating zero from nonzero
is in part due the shear number of tweets with no engage-
ment (see Table 1), as well as the fact that most of the users
have no more than 5 tweets: in the training data, 7,012 of
the 22,079 users have 5 or more tweets. Note that of the
7012 users in the training set with more than 5 tweets, only
2285 of them have at least one tweet with nonzero engage-
ment. The advantage of the zero-nonzero task is that binary
classifiers are applicable, some of which giving the strongest
performance with respect to nDCG, see Table 4.

2.8 Information leakage through retweets
Retweets of movie rating tweets were also fetched by the

Twitter API. A retweeted message has by definition nonzero
engagement. In addition, the retweet of a message received
the engagement score of the original message, possibly as
a side effect of how the Twitter API gives information on
retweets. Moreover, if we see a retweet in the dataset, if
its root tweet is in our dataset, we immediately know that
the root tweet’s engagement score is higher than 0. We use
retweet information in two ways. First, we may include the
fact that a retweet exists as a binary feature. Second, since
retweets and retweeted messages have nonzero engagement,
we increased the predicted score by a large constant for these

tweets. For reference, we included the performance of all
methods without using the retweet information in any way.

3. THE EVALUATION METRIC
Recommender systems in practice need to rank the best

K items for the user. In this top-K recommendation task
[10, 9] the goal is not to rate some of the individual items
but to provide the best candidates. Despite the fact that
only prediction for the top list matters in top-K evaluation,
several authors propose models trained for RMSE or AUC
with good top-K performance [14, 25] and hence we follow
their approach.

The RecSys Challenge 2014 task is evaluated by nDCG,
one of the most common measures for top-K recommender
evaluation [1]. Note that we train our binary classifiers op-
timized for RMSE or AUC, both evaluated as a macro mea-
sure by globally ranking all tweets. The challenge evalua-
tion, in contrast, defines a user micro average.

4. ELEMENTS OF OUR ENSEMBLE AND
EXPERIMENTAL RESULTS

We describe two groups of methods. The first one is based
on binary classification and regression in Section 4.2. The
details of the features and parameters used in each model
are described in Table 5. The second one in Section 4.3 is
an online matrix factorization. The performance overview
is found in Table 4 both for resubstitution on the training
set and for the testing set. We show results not using any
retweet based information separate. The columns that use
retweet information include the best performing combina-
tion of using retweet as a binary feature for training and
moving retweets and their root tweets ahead in the ranking.
The final blending results are in Table 6.

4.1 Baseline measurements
We defined five nDCG baselines for both the training and

testing set to benchmark the result of our models. The first
is the random prediction (RN) for the models that does not
use the retweet features. This method randomly sorts the
tweets for each user and then calculates the nDCG. The
second is the retweet based prediction (RT) for the models
that uses retweet features. This model gives score 1 to tweets
that are retweets or root tweets, and score 0 to all other



Table 5: Main parameters of our algorithms.
Method Parameters

GCGT num trees: 18, step size: 0.3, max depth: 4, num iterations: 18,
min child weight: 0.1, min loss reduction: 0

GCLR L2 penalty: .10, solver: newton, max iter: 10
GCGR L2 penalty: .10, solver: newton, max iter: 10
GCMF n factors: 8 linear regularization: 0, regularization: 0.0001
GCFM n factors: 8 linear regularization: 0, regularization: 0.0001
SVM with RT Features C : 0.5, kernel: linear
SVM no RT Features C : 0.25, kernel: polynomial, degree: 2
NB num trees : 20, num leaves: 8

Table 6: Best blended nDCG@10 results.
Blending Method Test set

no RT features with RT features

Best combination achieved by grid search 0.83922 0.87713
Average of RA, GCGT, GCGR 0.38973 0.87340
Scikit-learn Linear Regression 0.84027 0.87435

tweets. Our rating based prediction (RA) uses the U-shape
based extremeness to predict the ranking of the tweets. We
also used the popularity model and the item means model
in Graphlab Create as baseline measures. The values of the
baselines are shown in Table 4. It turns out that the nDCG
changes because of the different properties of each dataset
(e.g. engagement frequency, users engaged.).

4.2 Binary classification
In order to apply the binary classification methods, we

created a binary feature that expresses if a tweet had en-
gagement or not. We applied linear regression, logistic linear
regression, Gradient Boosting Trees [26] and SVM [21].

For both linear regression (GCLR) and logistic linear re-
gression (GCGR), the Newton method and stochastic sradi-
ent descent (SGD) solvers were used. However, the Newton
method solver led to a better nDCG@10 than SGD. The fea-
tures were rescaled using the L2-norm to ensure that the fea-
tures have the same norm. The strongest three features were
the rating, the difference of the rating and the movie’s aver-
age rating in IMDb, and the number of personal mentions in
the tweet. Note that one can edit the tweet generated by the
IMDb application. If someone includes a personal mention
in a tweet, it has higher probability to receive engagement
in the future.

In case of the gradient boosted tree algoritm (GCGT) we
set the maximum depth of the trees 4, and enabled maxi-
mum 18 iterations. Note that this algorithm performed the
best on the test set even with and without using the retweet
features.

By using support vector machine (SVM) we were able to
achieve our second highest nDCG@10. We could observe
that normalization, parameters and kernel selection are a
very important step. Because of the different scale of the
features, we scaled them linearly between zero and one ex-
cept for the rating and retweet features. Our main reason
was to gain advantage of the known relevance of these fea-
tures.

4.3 Matrix factorization

We used two different matrix factorization techniques that
are both implemented in GraphLab Create. The first one
is a traditional matrix factorization method [15], while the
second one is Steffen Rendle’s LibFM algorithm [19]. Both
techniques use stochastic gradient descent to optimize for
mean-square error on the training set. The difference be-
tween the methods is that LibFM uses the side information
of the users and items more sophisticatedly. Therefore we
used the original matrix factorization technique without any
side information, and used LibFM for user and item feature
included collaborative filtering prediction. Note that in both
cases we used movies instead of tweets as items, as each
tweet (excluding the few retweets) is unique in the data.

4.4 Ranking based approach
NDCGboost [24] (NB) is a decision tree boosting algo-

rithm that optimizes the expectation of NDCG over all pos-
sible permutations of items. We usend NDCFboost as one
algorithm in our ensemble. The models included twenty
trees with 8 leaves each.

4.5 Blending
We combined our methods linearly to yield the final pre-

diction. Our methods reach close to the best possible com-
bination weights that we obtained by grid search over the
testing set as seen in Table 6. In the simplest method, we
average the well performing methods. We also learn the
weights by linear regression. Here we used the implementa-
tion of scikit-learn3

Conclusions
The RecSys Challenge 2014 task for predicting engagement
of movie rating tweets has turned out to be a mix of Twitter
activity prediction and user-movie top-K recommendation.
For the activity prediction component of the task, classi-
fication and regression methods have worked well. And for
top-k recommendation, we have used dyadic classifiers, vari-
ants of recommender methods that may use side informa-
tion. As different classes of methods model different views

3http://scikit-learn.org/



of the data, they have combined well in our final ensem-
ble. Due to the variety of user, movie and tweet side infor-
mation, data collection and cleansing issues have played an
important role. We have collected IMDb movie metadata,
removed Twitter spam, and noticed an information leak for
retweet information that was probably unintentionally col-
lected for the challenge data set.
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