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ABSTRACT
Besides finding trends and unveiling typical patterns, mod-
ern information retrieval is increasingly more interested in
the discovery of surprising information in textual datasets.
In this work we focus on finding unexpected links in hyper-
linked document corpora when documents are assigned to
categories; our approach is based on the determination of
a latent category matrix that explains common links; the
matrix is built using a perceptron-like technique. We show
that our method provides better accuracy than most exist-
ing text-based techniques, with higher efficiency and relying
on a much smaller amount of information. It also provides
higher precision than standard link prediction, especially at
low recall levels; the two methods are in fact shown to be
orthogonal and can therefore be fruifully combined.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining; H.3.3 [In-
formation Storage and Retrieval]: Information Retrieval;
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Networks; Categorization; Outliers

1. INTRODUCTION
In general, data mining (text mining, if the data involved
take the form of textual documents) aims at extracting po-
tentially useful information from some (typically, unstruc-
tured, or poorly structured) dataset. The basic and foremost
aim of data mining is discovering frequent patterns, and this
problem attracted and still attracts a large part of the re-
search efforts in this field. Nonetheless a quite important
and somehow dual problem is that of finding unexpected
(unusual, new, unforeseen. . . ) information; it is surprising
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to note that this line of investigation did not receive the
same amount of attention.

Albeit there is some research on the determination of sur-
prising information in textual corpora (most often based on
the determination of outliers in the distribution of terms or
n-grams) there is essentially no work dealing with unexpected
links. Even if some of the previous proposals exploiting text
features can be adapted to this case, a simpler (and, as we
here show, more effective) way to approach this problem is
by using link prediction algorithms [15], stipulating that a
link that is difficult to predict is unexpected.

In this paper, we prove that the availability of some form
of categorization of documents can significantly improve the
techniques described, leading to algorithms that are extremely
efficient, use much less information than text-based meth-
ods, and offer better precision/recall trade-offs. Compared
to link prediction, our technique also provides higher preci-
sion at low recall levels; moreover, the two methods have or-
thogonal outputs, and therefore their combination improves
over both.

Our idea is that if the documents within a linked corpora
are tagged with categorical information, one can learn which
category/category pairs are more likely to appear, and as a
consequence determine which links are unusual (in the sense
that they are not “typical”). For example, documents of the
category “Actor” often contain links to the category “Movie”
(simply because almost all actor pages contain links to the
movies they acted in). The fact that George Clooney used
to own Max, a 300-pound pig, for 18 years presents itself
as a link from an “Actor” page to a page belonging to the
category “Pigs”/“Coprophagous animals”, which is atypical
in the sense above.

Our basic algorithm – henceforth called LlamaFur, “Learn-
ing LAtent MAtrix to Find Unexpected Relations” – tries to
learn a category/category matrix describing the latent rela-
tions between categories: to this aim we apply a Passive-
Aggressive learning method. Then we reconstruct which
part of the graph is more explainable according to the ma-
trix, and which links cannot be justified by the categories
alone. Not only LlamaFur is also more efficient than both
link prediction and the previous techniques based on the
analysis of the textual content of the page, but it also im-
proves the accuracy of link prediction algorithms in identi-
fying unexpected links, if the two are combined.



It is worth noting that the discovery of unexpected links of-
fers a chance to find unknown information: given a certain
document, we can highlight text snippets containing unex-
pected links. Meaningful text is often characterized, in web
documents, by the presence of links that enrich its semantic;
this is especially true in the case of Wikipedia, often used
as a knowledge base for ontologies. Its link structure has
proven to be a powerful resource for many tasks [20, 19].
For this reason, finding unexpected links seems a valuable
way to detect meaningful text with information unknown to
the reader.

Nevertheless, our results could be in principle applied to a
plethora of different kinds of objects. The only assumption
on the input is a (directed) graph, and a meaningful catego-
rization of its nodes; categories can be overlapping as well,
so in fact they may just be some observed features of each
object. These assumptions are quite general, and could be
applied to many use cases, from the detection of unexpected
collaborations between grouped individuals to finding sur-
prising travel habits from geotagged data.

The paper is organized as follows. In Section 2 we will review
other works dealing with mining of unexpected information.
Our technique will be presented through Section 3, where we
explain how to estimate a latent category matrix with online
learning; Section 4, where we describe a simpler, naive way
to compute it; and Section 5, where we show how to use
such a matrix to measure the unexpectedness of a link. In
Section 6 we exhibit experimental evidence for the efficacy of
our methods, by comparing them with different approaches
derived from literature. Finally, in Section 7 we will sum up
our work and suggest possible directions for future research.

2. RELATED WORK
One of the first papers trying to consider the problem in the
context of text mining was [14]. In that work, two suppos-
edly similar web sites are compared (ideally, two web sites
of two competitors). The authors first try to find a match
between the pages of the two web sites, and then propose a
measure of unexpectedness of a term when comparing two
otherwise similar pages. All measures are based on term (or
document) frequencies; unexpected links are also dealt with
but in a quite simplistic manner (a link in one of the two
web sites is considered “unexpected” if it is not contained in
the other).

This unexpectedness measure is taken up in [11], where the
aim is that of finding documents that are similar to a given
set of samples and ordering the results based on their un-
expectedness, using also the document structure to enhance
the measures defined in [14]. Finding outliers in web col-
lections is also considered in [3], where again dissimilarity
scores are computed based on word and n-gram frequency.

Some authors approach the strictly related problem of de-
termining lacking content (called content hole in [18]) rather
than unexpected information, using Wikipedia as knowledge
base. A similar task is undertaken by [9], this time assum-
ing the dual approach of finding content holes in Wikipedia
using the web as a source of information.

More recently, [21] considers the problem of finding unex-

pected related terms using Wikipedia as source, and taking
into account at the same time the relation between terms
and their centrality.

An alternative way to approach the problem of finding unex-
pected links is by using link prediction [15]: the expectedness
of a link e in a network G is the likelihood of the creation of
e in G−{e}. In fact, we will later show that state-of-the-art
link prediction algorithms like [1] are very good at evaluating
the (un)expectedness of links. Nonetheless, it turns out that
the signal obtained from the latent categoy matrix is even
better and partly orthogonal to the one that comes from
the graph alone, and combining the two techniques greatly
improve the accuracy of both.

3. LEARNING THE CATEGORY MATRIX
Consider a directed graphG = (D,L) (the“document graph”),
whose nodes d ∈ D represent documents and whose arcs
(d, d′) ∈ L represent (hypertextual) links between documents.
Further assume that we have a set C of categories and that
each document d ∈ D is assigned a set of categories Cd ⊆ C.

Our first goal is to reconstruct the most plausible latent“cat-
egory matrix” that explains the observed document graph;
more precisely, we wish to find a C × C real-valued matrix
W such that ∑

c∈Cd

∑
c′∈Cd′

wc,c′ (1)

is positive iff (d, d′) ∈ L.

We are going to assume that in most cases a relation is
unexpected – that is, surprising to the reader – if it is poorly
explained by a plausible category matrix. We will put this
assumption under test in the experimental section.

To find such a matrix W , we recast our goal in the frame-
work of online binary classification. Binary classification is
a well-known problem in supervised machine learning. Sup-
pose to have a traning set of examples, each one associated
with a binary label ŷi ∈ {−1, 1}; based on these data, the
problem is to build a classifier able to label correctly un-
known data. Online classification simplifies this problem by
assuming each example is presented in a sequential fashion;
the classifier (1) observes an example; (2) tries to predict
its label; (3) receives the true label, and consequentially up-
dates its internal state; (4) moves on to the next example.
An online learning algorithm, generally, needs a constant
amount of memory with respect to the number of examples,
which allows to employ these algorithms in a situation where
a very large set of voluminous input data is avaiable – like
in our case.

A well-known type of online learning algorithms are the
so-called perceptron-like algorithms. They all share these
traits: each example must be a vector xi ∈ Rn; the internal
state of the classifier is also represented by a vector w ∈ Rn;
the predicted label is yi = sign(w · xi), and the algorithms
differ on how w is built. Perceptron-like algorithms (for ex-
ample, ALMA and Passive-Aggressive) are usually simple
to implement, provide tight theoretical bounds, and have
been proved to be fast and accurate in practice [10, 8]. For
these reasons, we will reduce our problem to online binary



classification.

To this aim, let us represent each document d with the indi-
cator vector of Cd, i.e., with the binary vector d such that
dc = 1 iff c ∈ Cd. Now, an example will be a pair of
documents (d, d′), represented as the outer product kernel
d ⊗ d′: this is a matrix where the element [d ⊗ d′]c,c′ is
1 iff the first document belongs to c and the second to c′.
This (|C| × |C|)-matrix1 can be alternatively thought of as
a vector of size |C|2, allowing us to use them as training
examples for a perceptron-like classifier, where the label is
y = 1 iff (d, d′) ∈ L (if there is a link), and y = −1 other-
wise. The learned vector w will be, if seen as a |C| × |C|
matrix, the desired W appearing in (1). In other words, we
are using |C|2 features, in fact a kernel projection of a space
of dimension 2|C| onto the larger space of size |C|2. Simi-
larly the weight vector to be learned has size |C|2. Positive
examples are those that correspond to existing links.

A Passive-Aggressive algorithm. Among the existing per-
ceptron-like online classification frameworks, we chose the
well-known Passive-Aggressive classifier, characterized by be-
ing extremely fast, simple to implement, and shown by many
experiments [6, 17] to perform well on similar datasets. To
cast this algorithm for our case, let us consider a sequence
of pairs of documents

(d1, d
′
1), . . . , (dT , d

′
T ) ∈ D2

(to be defined later). Define a sequence of matricesW0, . . . ,WT

and of slack variables ξ1, . . . , ξT ≥ 0 as follows:

• W0 = 0

• Wt+1 is a matrix minimizing ‖Wt+1 − Wt‖ + Kξt+1

subject to the constraint that

σ(dt, d
′
t) ·

∑
c∈Cdt

∑
c′∈Cd′t

wt+1(c, c′) ≥ 1− ξt+1, (2)

where

σ(x, y) =

{
−1 if (x, y) 6∈ L
1 if (x, y) ∈ L

,

‖ − ‖ denotes the Frobenius norm and K is an opti-
mization parameter determining the amount of aggres-
siveness.

The intuition behind the above-described optimization prob-
lem [8] is the following:

• the left-hand-side of the inequality (2) is positive iff
Wt+1 correctly predicts the presence/absence of the
link (dt, d

′
t); its absolute value can be thought of as

the confidence of the prediction;

1In practice, we normalize this matrix so that it has unit
L1-norm, both because this is a common practice in the
perceptron-like algorithms and because documents belong-
ing to few categories provide stronger signals than those that
belong to many categories.

• we would like the confidence to be at least 1, but allow
for some error (embodied in the slack variable ξt+1);

• the cost function of the optimization problem tries to
keep as much memory of the previous optimization
steps as possible (minimizing the difference with the
previous iterate), and at the same time to minimize
the error contained in the slack variable.

By merging the Passive-Aggressive solution to this prob-
lem with our aforementioned framework, we obtain the al-
gorithm described in Alg. 1.

Algorithm 1 Passive-Aggressive algorithm to build the la-
tent category matrix.

Input:
Categories Cd ⊆ C for each document d ∈ D
A sequence (d1, d

′
1), . . . , (dT , d

′
T ) of elements of D ×D

A parameter K > 0
Output:

The latent category matrix W

1. W ← 0

2. For i = 1, . . . , T

(a) ρ← 1
|Cdi

|·|Cd′
i
|

(b) µ←
∑

c∈Cdi

∑
c′∈Cd′

i

Wc,c′

(c) If (di, d
′
i) ∈ L

δ ← ρ ·min(K, 1− µρ)
else

δ ← −ρ ·min(K, 1 + µρ)

(d) For each c ∈ Cdi , c
′ ∈ Cd′i

:
Wc,c′ ←Wc,c′ + δ

Please note that our aim is not to build a perfect classi-
fier: instead, we will use this algorithm to find a plausible
category-category matrix. This can be seen as a rivisitation
of the use of classifiers to detect outliers, as described for
example in [2].

Sequence of pairs. In our case, W is built through a single-
pass online learning process, where we have all positive ex-
amples at our disposal (and they are in fact all included in
the training sequence), but where negative examples cannot
be all included, because they are too many and they would
produce overfitting.

The Passive-Aggressive construction described above depends
crucially on the sequence of positive and negative examples
(d1, d

′
1), . . . , (dT , d

′
T ) that is taken as input. In particular,

as discussed in [12], it is critical that the number of negative



and positive examples in the sequence is balanced. Taking
this suggestion into account, we build the sequence as fol-
lows: nodes are enumerated (in arbitrary order), and for
each node d ∈ D, all arcs of the form (d,−) ∈ E are put in
the sequence, followed by an equal number of pairs of the
form (d,−) 6∈ E (for those pairs, the destination nodes are
chosen uniformly at random). Of course, if m = |E| is the
number of links, then T = 2m and the sequence contains all
the m links along with m non-links.

Obviously, there are other possible ways to define the se-
quence of examples and to select the subset of negative ex-
amples. We suggest some of them in Section 7. However,
we chose to adopt this technique – single pass on a balanced
random sub-sample of pairs – in order to test our method-
ology with a single, natural and computationally efficient
approach.2

4. A NAIVE WAY TO BUILD THE CATE-
GORY MATRIX

Let us describe an alternative, easier, naive variant of how
the latent category matrix W could be obtained. Recall that
the purpose is to use equation (1) to compute the expected-
ness of a link (d, d′).

For a given category c, let Dc be the set of documents that
have the category c; let also Ec,d represent the event that d
belongs to the category c (i.e., c ∈ Cd or, equivalently, d ∈
Dc). Now for any two categories c and c′ one can compute
the probability that there is a link between two documents
that belong to those categories as

pc,c′ = P [(d, d′) ∈ L | Ec,d and Ec′,d′ ].

This quantity can be naively estimated as the fraction of
pairs (d, d′) such that Ec,d ∧ Ec′,d′ that happen to be links.
In other words,

pc,c′ =
|{(Dc ×Dc′) ∩ L}|
|Dc| · |Dc′ |

.

For a specific pair of documents (d, d′), the probability of
the presence of a link is given by

P

(d, d′) ∈ L
∣∣∣∣ ⋂
c∈Cd

Ec,d and
⋂

c′∈Cd′

Ec′,d′

 .
Now, under some independence assumptions3, the latter can
be expressed as∏

c∈Cd

∏
c′∈Cd′

P

[
(d, d′) ∈ L

∣∣∣∣Ec,d and Ec′,d′
]

=

=
∏

c∈Cd

∏
c′∈Cd′

pc,c′ .

2We carried out experiments performing more passes on the
same subsample; it slightly increased (less than 2%) the ac-
curacy of W – i.e., the number of pairs that are correctly
classified. However, it is dubious whether the increased time
cost is worth the limited improvement in terms of unexpect-
edness mining.
3More precisely, we are assuming that Ec,d and Ec′,d′ are
independent, whenever c 6= c′ or d 6= d′, and also that they
are independent even under the knowledge that (d, d′) ∈ L.

Applying a logarithm, this is rank-equivalent to∑
c∈Cd

∑
c′∈Cd′

wc,c′

where

wc,c′ = log pc,c′ = log
|{(Dc ×Dc′) ∩ L}|
|Dc| · |Dc′ |

This is yet another way to define the matrix W used in
the LlamaFur algorithm; the resulting expectedness score
for link (d, d′) is given by (1), and will be referred to as
Naive-LlamaFur.

5. USING THE CATEGORY MATRIX
Let us now call W the category matrix obtained at the
end of the learning process (that is, W = WT , according
to the notation of Section 3), or equivalently the matrix
built using the naive approach of Section 4. This matrix
allows one to sort the links (d, d′) ∈ L in increasing order
of
∑

c∈Cdt

∑
c′∈Cd′t

wc,c′ (i.e., by increasing explainability):

the first links are the most unexpected.

In particular, in the case of the learning approach of Sec-
tion 3, one can build a graph G∗ = (D,L∗) whose links are
the set L∗ of pairs (d, d′) such that∑

c∈Cdt

∑
c′∈Cd′t

wc,c′ ≥ 0.

In a standard binary-classification scenario, G∗ would be
the graph G that our classifier learned. In particular, the
elements of the set L\L∗ (L∗\L, resp.) are the false negative
(false positive, resp.) instances.

But ours is not a link-prediction task, and we do not expect
in any sense that L and L∗ are similar. In particular, we
shall certainly observe a phenomenon that we can call gen-
eralization effect : suppose that it frequently happens that a
document assigned to a category c (e.g., an actor) contains
links to documents assigned to another category c′ (e.g., a
movie). This will probably make wc,c′ very large, and so
we may falsely deduce that every document assigned to c
(every actor) contains a link to every document assigned to
c′ (every movie).

The generalization effect will, by itself, make L∗ much larger
than L (i.e., it will produce many false positive instances),
but we do not care much about this aspect. Our focus is
not on trying to reconstruct L, but rather in understanding
which elements of L are difficult to explain based on the
categories of the involved documents. We say that a link
(d, d′) ∈ L is explainable iff (d, d′) ∈ L∗; the set of explain-
able links is therefore L∩L∗. On the contrary, the elements
of L \ L∗ are called unexplainable, and these are the links
we want to focus on.

In Figure 1 we show two small examples of how the matrix
W learned as in Section 3 looks like, when considering the
Wikipedia dataset (for a full explanation of how the dataset
was built, see Section 6): in the picture, we display the 18
neighbours closer to two starting categories (“Science Fiction
Films” and “Keyboardists”); the width of the arc from c to



Science fiction by nationalityScience fiction by nationality

Science fiction book seriesScience fiction book series

Science fiction by franchiseScience fiction by franchise

RobotsRobots

Science fiction novelsScience fiction novels

SpaceflightSpaceflight

Speculative fiction novelsSpeculative fiction novels

Planets of the Solar SystemPlanets of the Solar System

MaterialsMaterials

Evolutionary biologyEvolutionary biology

PredationPredation

Technology systemsTechnology systems

German cultureGerman culture

Science fiction filmsScience fiction films

Theory of relativityTheory of relativity

Celestial mechanicsCelestial mechanics

Production and manufacturingProduction and manufacturing

SaurischiansSaurischians

Prehistoric reptilesPrehistoric reptiles

Music-related listsMusic-related lists

Catholic pilgrimage sitesCatholic pilgrimage sites

Place namesPlace names

London boroughsLondon boroughs

ArtistsArtists

Multinational companies in the U.S.Multinational companies in the U.S.

KeyboardistsKeyboardists

Buildings and structures by American architectsBuildings and structures by American architects

Power metal albumsPower metal albums

Human–machine interactionHuman–machine interaction

AnimationAnimation

British songsBritish songs

Universities by countryUniversities by country

Progressive rock albums by British artistsProgressive rock albums by British artists

British awardsBritish awards

English writersEnglish writers

Music by nationalityMusic by nationality

Short filmsShort films

Electronic albums by American artistsElectronic albums by American artists

Figure 1: Two fragments of the latent category graph induced by LlamaFur matrix W , representing the 18
closer neighbors of categories “Science Fiction Films” and “Keyboardists”, respectively. The width of the arc
from c to c′ is proportional to wc,c′ , and arcs with wc,c′ ≤ 1 are not shown.

c′ is proportional to wc,c′ , and arcs with wc,c′ ≤ 1 are not
shown.

For example, from the picture it is clear that a link from a
page of a science-fiction film to a page of a science-fiction
novel is highly expected, as it is one from a page of a key-
boardist to one of a british progressive rock album.

The rougher version induced by Naive-LlamaFur is shown
in Figure 2.

6. EXPERIMENTS
Given its increasing importance in knowledge representa-
tion [20], we used the English edition of Wikipedia as our
testbed. In praticular, we employed the enwiki snapshot4

of February 3, 2014 to obtain:

• the document graph, composed by 4 514 662 Wikipedia
pages, with 110 699 703 arcs; every redirect was merged
to its target page;

• the full categorization of pages: a map associating ev-
ery page to one of the 1 134 715 categories;

• the category pseudo-tree: a graph built by Wikipedia
editors, with the aim of assigning each category to a
“parent” category.

Wikipedia categories. The first problem is that the cate-
gorization on Wikipedia is quite noisy and, in fact, a con-
tinuous work-in-progress: therefore, categories may contain
only one (or even no) page, they might be duplicates of
each other, and so on. The obvious solution would be to
use the pseudo-tree to find the top categories; but the cate-
gory tree is a work-in-progress itself. Not only – as stated5

4This dataset is commonly referred to as enwiki-20140203-
pages-articles according to Wikipedia naming scheme.
5See “Known issues” on en.wikipedia.org/wiki/
Wikipedia:FAQ/Categorization.

by Wikipedia – “categories can be sub-categories of them-
selves”, but cycles are also present: for example, the largest
strongly connected component has 6 833 categories, all di-
rect or indirect subcategories of one another.

We therefore cleansed the page categorization as follows: we
computed the harmonic centrality measure [4] on the cate-
gory pseudo-tree, and considered only the set C of the 20 000
most central categories. To give an idea about the effective-
ness of this simple method in capturing the generality of
categories, we report in Table 1 the first and the last cate-
gories on our list6.

We then computed, for every category c, the category ι(c) ∈
C closest to c in the pseudo-tree, and re-categorized all the
pages applying ι(−) to its original categories. If there is
no c′ ∈ C connected to c, ι(c) is undefined and we simply
discarded c. In Table 2 we show some examples of this re-
categorization of pages.

In the end, we obtained a set C of 20 000 categories, and a
map associating each Wikipedia page d to Cd ⊂ C; on aver-
age, each page belongs to 4 categories. We procedeed then
to apply LlamaFur to extract the latent category matrix W ;
the ratio |L∩L∗|/|L| – that is, how many existing links are
explained by W – is equal to 86%. We illustrated previously
in Fig. 1 some fragments of W . Finally, we proceeded to
assign our unexpectedness score to each link.

Evaluation methodology. We want to evaluate the effec-
tiveness of LlamaFur using the standard framework com-
monly adopted in Information Retrieval. In our context, a
query is a document, the possible results are the hyperlinks
that the document contains, and a result is relevant for our
problem if it represents an unexpected link. The scenario
we have in mind is that of a user wishing to find surprising
links in a certain Wikipedia page.

6We also excluded utility categories, like “Categories by
country” and “Main topic classifications” – originally highly
ranked.



Rank Category Rank Category
1 Countries 19981 Maldives
2 Society 19982 Government buildings on the National Register of Historic Places
3 Nationality 19983 Illinois waterways
4 Political geography 19984 Bodies of water of Illinois
5 Culture 19985 2002 in association football
6 Humans 19986 Electronica albums by British artists
7 Social sciences 19987 Visitor attractions in Arkansas by county
8 Structure 19988 Years of the 20th century in Europe
9 Human–geographic territorial entities 19989 Commonwealth Games events
10 Contents 19990 Albums by English artists by genre
11 Geographic taxonomies 19991 American football in Pennsylvania
12 Fields of history 19992 Ethnic groups in Poland
13 Places 19993 Card games
14 Humanities 19994 Central African people
15 Continents 19995 Deaths by period
16 Political concepts 19996 Visitor attractions in Vermont
17 Human geography 19997 Ancient roads and tracks
18 Subfields of political science 19998 People in finance by nationality
19 Articles 19999 Populated places in Greater St. Louis
20 Subfields by academic discipline 20000 Religion in Poland

Table 1: Topmost and bottommost wikipedia categories according to their harmonic centrality in the
Wikipedia category graph.

Original category c Substitution ι(c) ∈ C
Southern Tang poets Poets by nationality
Antsiranana Province Country subdivisions of Africa
Fellows of Magdalen College, Oxford University of Oxford
Actresses from Greater Manchester Greater Manchester
Guyanese slaves History of South America
Swiss manuscripts Swiss culture
Wilson Pickett songs Songs by artist
Baroque architecture in Austria Baroque architecture by country
Eastern Collegiate Roller Hockey Association @
Art schools in Washington (state) Washington (state) culture
Rivers of Kostroma Oblast Rivers by country
Flamenco compositions Spanish music
Oil fields of Gabon Geology of Africa
Basketball teams in Georgia (U.S. state) Basketball teams in the United States by state
2004 in Australian motorsport 2004 in sports
Populated places established in 1821 @
Elections in Southwark Local government in London
Permanent Representatives of Norway to NATO Ambassadors of Norway
Basketball in Turkey Basketball by country
Balli Kombëtar @

Table 2: An excerpt of the re-categorization process. We write @ if there is no category in C connected to c.



ScreenplaysScreenplays

FilmmakingFilmmakingUnited StatesUnited States

Media formatsMedia formats

Media occupationsMedia occupations

Entertainment companiesEntertainment companies

G8 nationsG8 nations

Music and videoMusic and video

Film theoryFilm theory

Languages of Hong KongLanguages of Hong Kong
Languages of MalaysiaLanguages of Malaysia

Languages of SingaporeLanguages of Singapore

Languages of the CaribbeanLanguages of the Caribbean

Film location shootingFilm location shooting

Storage mediaStorage media

Languages of South AmericaLanguages of South America

Federal constitutional republicsFederal constitutional republics
Science fiction filmsScience fiction films

Economy of EcuadorEconomy of Ecuador

Rhythm and blues music genresRhythm and blues music genres

North American musicNorth American music

Keyboard instrumentsKeyboard instruments

Instrumental and vocal genresInstrumental and vocal genres

United StatesUnited States

ChordophonesChordophones

CathedralsCathedrals G8 nationsG8 nations

Broadcasting occupationsBroadcasting occupations

Occupations in musicOccupations in music

Irish musical instrumentsIrish musical instrumentsNecked lutesNecked lutes

Federal constitutional repu...Federal constitutional repu...

CanadaCanada

Finnish-speaking countries ...Finnish-speaking countries ...

Swedish-speaking countries ...Swedish-speaking countries ...

KeyboardistsKeyboardists

States and territories esta...States and territories esta...

Music productionMusic production

Figure 2: Two fragments of the latent category graph induced by Naive-LlamaFur matrix, representing the
18 closer neighbors of categories “Science Fiction Films” and “Keyboardists”, respectively. The width of the
arc from c to c′ is proportional to wc,c′ , and the lighter arcs are not shown. For comparison with LlamaFur,
see Figure 1.

Label Fraction
Totally Unexpected 2.3%
Unexpected 8.9%
Expected 30.8%
Totally Expected 58.0%

Table 3: Distribution of labels obtained from human
evaluation.

In order to compare the results obtained by LlamaFur with
the existing state-of-the-art for similar problems, we per-
formed a user study based on the same pooling method
adopted for many standard collections such as TREC (trec.
nist.gov): we considered a random sample of 237 queries
(i.e., Wikipedia documents); for each query we took, among
its t possible results (i.e., links), the top-bα · tc most un-
expected ones according to each system under comparison
(see below); all the resulting links were evaluated by human
beings. We set α = 0.1, and obtained about 3 620 links.

The human evaluators were asked to categorize each link into
one of four classes (“totally expected”, “slightly expected”,
“slightly unexpected” and “totally unexpected”). After the
human evaluation, we only considered the queries that have
at least one irrelevant (“totally/slightly expected”) and one
relevant (“totally/slightly unexpected”) result according to
the evaluation, obtaining a dataset with 117 queries. In this
dataset, on average each query has 3.45 relevant results over
20.56 evaluated links. The distribution of labels is reported
in Table 3.

Baselines and competitors. In our comparison, LlamaFur
is tested in combination and against a number of baselines
and competitors. In particular, we considereded LlamaFur
and its naive variant, Naive-LlamaFur, along with some of
the other (un)expectedness measures proposed in the liter-
ature.

Albeit there are, at the best of our knowledge, no algorithms
specifically devoted to determining unexpected links, we can
adapt some techniques used for unexpected documents to
our case. All of those methods try to measure the unexpect-
edness of a document d among a set of retrieved documents
R. In our application, we are considering a link (d′, d) and
taking R to be the set of all documents towards which d′

has a hyperlink.

• Text-based methods. In the literature, all of the mea-
sures of unexpectedness are based on the textual con-
tent of the document under consideration.

– The first index, called M2 in [11] (a better variant
of M1, the measure proposed in [14]), is defined
as:

M2(d) =

∑
t U(d, t, R)

m

where m is the number of terms in the dictionary,
and U(d, t, R) is the maximum between 0 and the
difference between the normalized term frequency
of term t in document d and the normalized term
frequency of t in R (the set of all retrieved doc-
uments). The normalized term frequency is the
frequency of a term divided by the frequency of
the most frequent term.

– The second index, called M4 in [11] (where they
prove that it works better than M2 in their con-
text), is the

M4(d) = max
t

tf(t) · log
|R|

df(t)

where tf(t) is the normalized term frequency of
term t in d, and df(t) the number of documents
in R where t appears.

• Link-prediction methods. A completely different, alter-
native approach to the problem is based on link pre-
diction: how likely is it that the link (d′, d) is created,
if we assume that it is not there? Among the many



techniques for link prediction [15], we tested the well-
known Adamic-Adar index [1] (AA, in the following),
defined7 by

AA(d, d′) =
∑

d′′∈Γ(d)∩Γ(d′)

1

log |Γ(d′′)| ,

where Γ(d) is the set of documents which d links to.

• Combinations. Besides testing all the described tech-
niques in isolation, we tried to combine them linearly.
Since each unexpectedness measure exhibits a differ-
ent scale, we first need to normalize each measure by
taking its studentized residual8 [7].

Results. In the following, we are only going to discuss the
best algorithms and combinations, besides some of the most
interesting alternatives. The raw average bpref [5] values are
displayed in Table 4. Figure 4 shows, for each algorithm,
how many queries have obtained a certain bpref value; for
the sake of readability, we have grouped bpref values into
four groups. Ideally, an algorithm should produce as many
large bpref values as possible. LlamaFur is the one single al-
gorithm that goes closer to the target, whereas M4 and AA
are the second best with a small margin. Naive-LlamaFur
is worse, wheras M2 is the overall worst. Interestingly, com-
bining pure link prediction methods (AA) with LlamaFur
significantly improves AA of about 28%.
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Figure 4: Distribution of the bpref measure over
each evaluated query. Average values are shown in
Table 4.

Some complementary information about the behaviour is
provided by the precision-recall graph of Figure 3: first of

7The formula is applied to the symmetric version of the
graph, in our case; note that this (like LlamaFur) is a mea-
sure of expectedness, whereas M2 and M4 are measures of
unexpectedness.
8The (internally) studentized residual is obtained by divid-
ing the residual (i.e., the difference from the sample mean)
by the sample standard deviation.

Algorithm Average bpref Input data
AA 0.288 graph
M2 0.179 bag of words
M4 0.290 bag of words
Naive-LlamaFur 0.216 graph, categories
LlamaFur 0.364 graph, categories
LlamaFur + AA 0.372 graph, categories

Table 4: Average values for bpref.
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Figure 5: Comparison of the unexpectedness evalu-
ated by LlamaFur with equation (1) over the differ-
ent labels obtained from human evaluation.

all, LlamaFur, AA, M4 and their combinations have larger
precision than the remaining ones for almost all the recall
levels; on the other hand LlamaFur +AA is the best method
for recall values up to 50%, and LlamaFur has definitely
better precision than AA until 30% of recall.

In fact, M4, AA and LlamaFur seem to be complementary to
one another; in some sense, this is not surprising given that
they stem from completely different sources of information:
one is based on the textual content, another on the pure link
graph and the latter on the category data.

Some further clue on the behaviour of LlamaFur is provided
by Figures 5 and 6, where the distribution of LlamaFur and
LlamaFur + AA expectedness values is shown for each of
the four labels provided by the human evaluation. The red
line is the median.

7. CONCLUSIONS AND FUTURE WORK
In this work we presented a technique to find unexpected
links in hyperlinked document corpora based on the deter-
mination of a latent category matrix that explains common
links; the latter is built using a perceptron-like technique.
We show that our method provides better accuracy than
most existing text-based techniques, with higher efficiency
and relying on a much smaller amount of information. An
interesting question is whether the latent category matrix
can be used to improve link prediction per se, i.e. if it is use-
ful to find links and not only unexpected ones: this problem
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Figure 3: Average precision-recall values evaluated after the 1st, 2nd, 5th, 8th, 10th, 15th, 25th, 50th, and
100th percentiles for each query.
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Figure 6: Comparison of the unexpectedness score
evaluated by LlamaFur + AA over the different la-
bels obtained from human evaluation.

requires that one finds a way to bypass the generalization
effect that the matrix produces.

Another possible direction would be to try different ap-
proach to the classification problem described in Section 3,
in order to improve its effectiveness. To this aim, one could
recast the problem as a cost-sensitive classification where
false negatives are more costly than false positives. Other
useful techniques include active learning [16]: since we need
a subset of the non-linked pairs as counter-examples, active
learning would select the more effective ones. An alterna-
tive approach to the same task would be to employ one-class

learning [13]. This is left as future work.
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