

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Spam filtering, ranking and recommendation systems

Andras Benczur

Insitute for Computer Science and Control

Hungarian Academy of Sciences

benczur@sztaki.mta.hu

http://datamining.sztaki.hu

Supported by the EC FET Open project "New tools and algorithms for directed network analysis" (NADINE No 288956)

Spam, Ranking and Recommenders

14 November 2013 •

WP4: Applications of new tools and

algorithms to real-world network structures

- Milestone M4: Spam Filtering
- Milestone M7: Protocols for large-scale network processing
- Milestone M13: Characterization of ranking of Wikipedia and other networks
- (Milestone M14: Characterization of time evolving Web structures; Contribution to recommender Milestones)

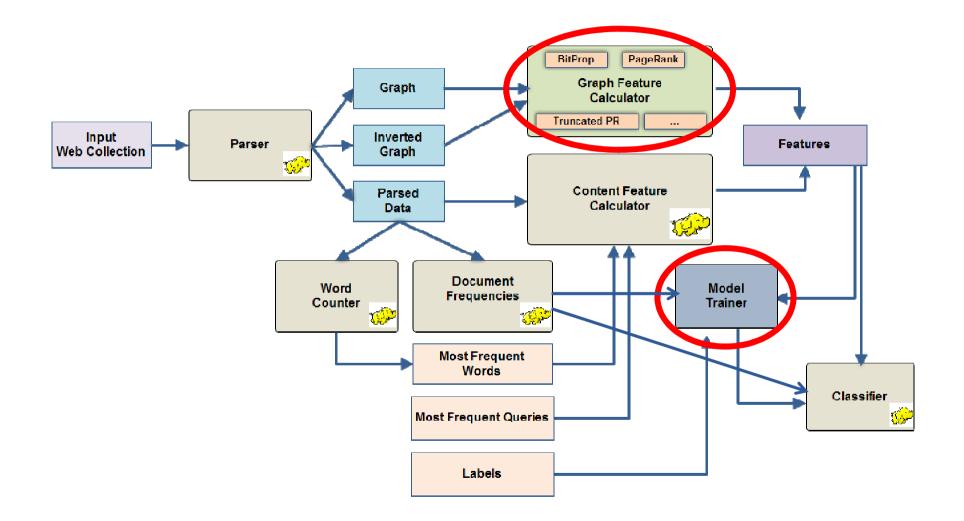
WP4 main goal: collaboration of Physicists, Mathematicians and CS for applying new theoretical results for practical problems

Overview

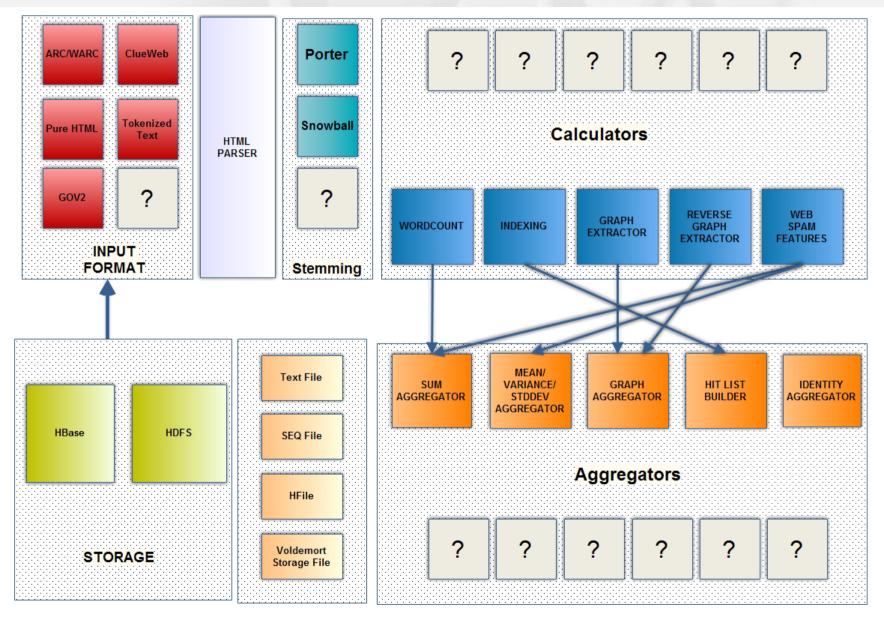
- Web classification, spam filtering
- Temporal ranking, Wikipedia experiments
- Last.fm network recommenders
- Twitter: Andreas Kaltenbrunner's collection and a 1B'n Firehose
- Distributed systems for very large problems
- The SZTAKI Text Mining Center test bed

Hardware

- 50 x old dual core Hadoop
- 5 x 8-core Hadoop/HBASE
- 2 x 32-core 256GB
- 260TB net Isilon

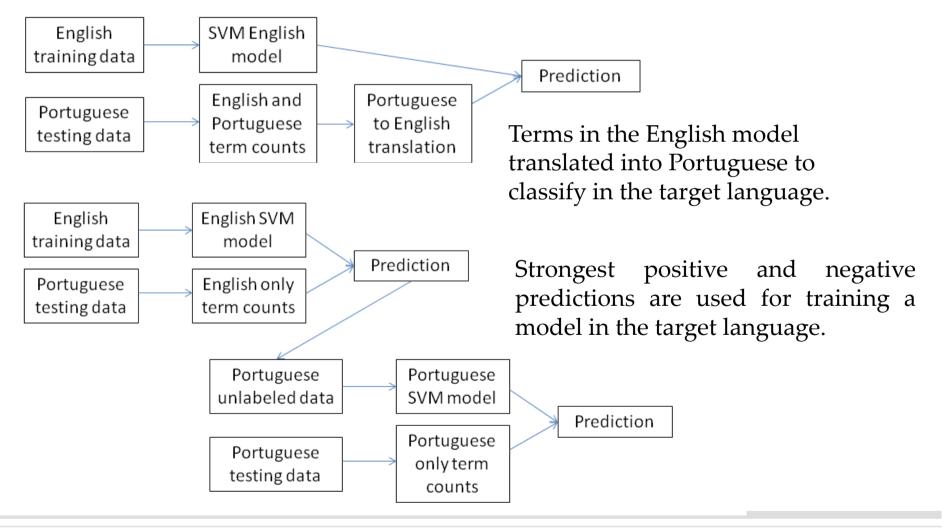

Selected publications

- A.Garzo, B.Daroczy, T.Kiss, D.Siklosi, and A.A.Benczur, "Cross-Lingual Web Spam Classification", The 3rd Joint WICOW/AIRWeb Workshop on Web Quality in conj. WWW 2013, Rio de Janeiro, Brasil. May 13 (2013), Proceedings of the 22nd international conference on World Wide Web companion
- M.Erdelyi, A.A.Benczur, B.Daroczy, A.Garzo, T.Kiss and D.Siklosi,
 "The classification power of Web features", Internet Mathematics, to appear (2013)
- J.Gobolos-Szabo, and A.A.Benczur, "Temporal Wikipedia search by edits and linkage", SIGIR 2013 Workshop on Time-aware Information Access, 28 July - 1 August 2013, Dublin, Ireland
- R.Palovics, and A.A.Benczur, **"Temporal influence over the Last.fm social network"**, The 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013 Niagara Falls, Canada, August 25-28, 2013


Web Classification

- Save resources, select quality and topic
- Legal regulation (porn, illicit content)
- Web scale data (Test: ClueWeb09 25TB 0.5 Billion English language docs)
- Large set of features
 - o Term frequency
 - tf.idf or BM25 scores for frequent terms
 - o Content
 - DOM, HTML, HTTP elements
 - Appearance of popular terms
 - Term, n-gram statistics, compressibility
 - o Linkage
 - PageRank (truncated variants; ratios)
 - Neighborhood (only approximate counting is possible)
 - TrustRank

Workflow (MapRed jobs indicated)


SZTAKI Web Processing Framework

https://github.com/garzoand/webspam-hadoop

Crosslingual Web Classification

- Expensive human labeling task language by language?
- How can models be "translated"?

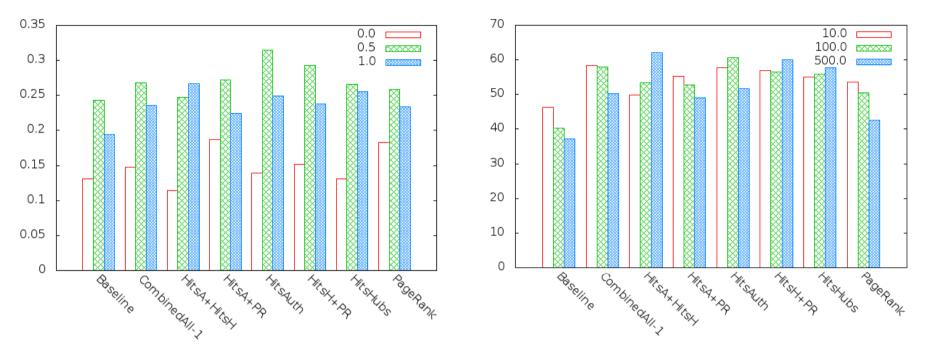
Crawler integration

- Very good results by SVM on top of BM25
- BM25 of top terms can be aggregated in memory
- SVM training is "expensive" but ...
- SVM learning just needs the support vectors
- Classification result is immediately available once sufficient number of sample pages (~100) crawled

Feature set	Spam	Genre	Quality	Avg
Public link based	0.655	0.614	0.519	0.587
Local content based	0.726	0.662	0.558	0.634
Local content + PageRank	0.757	0.713	0.540	0.660
Public content based	0.799	0.735	0.512	0.668
BM25	0.876	0.805	0.584	0.739
Public link + content	0.812	0.731	0.518	0.669
BM25 + local content	0.872	0.816	0.580	0.754
BM25 + public content	0.891	0.810	0.612	0.744
All combined	0.885	0.813	0.553	0.734

Research on Wikipedia

- Wikipedia great virtue is being utterly up-to-date
- Significant events usually have an immediate trace
- Chain of events causes and effects represented by links
- Find evolving stories by information on appearance of pages and links

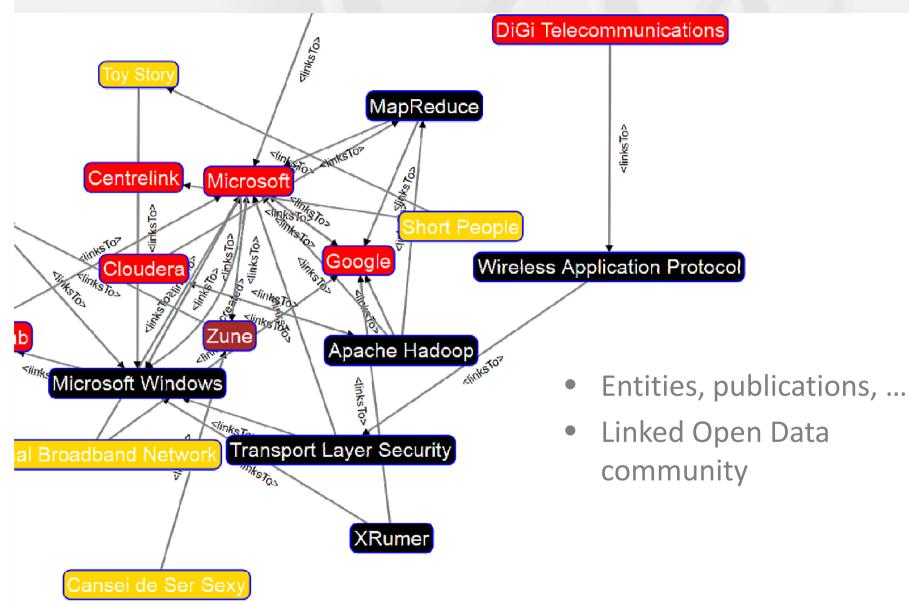

	File Display details Layout Options Windows History
	🔍 🔍 🕵 📅 💥 👪 💥 🍙 🧖 🚳
Enter a query: arab spring	Id: Kuwait Id: International_reactions_to I Libyan civil Id: Summary: The international reac I Libyan civil
HitsWithAuthorities Choose an algorithm: PageRank Neve	Id: Acto_Spring Summary: Id: Occupy_stovement
○ None Choose a start date: 10 ▼ 1 ▼ 2011 ▼ Load graph	Id: Id: Dummary: Id: Austria Id: Austria Id: Austria Summary: Id: Aus
	Id: Palestine Summary: Palestine, in dark gre

Measures of change

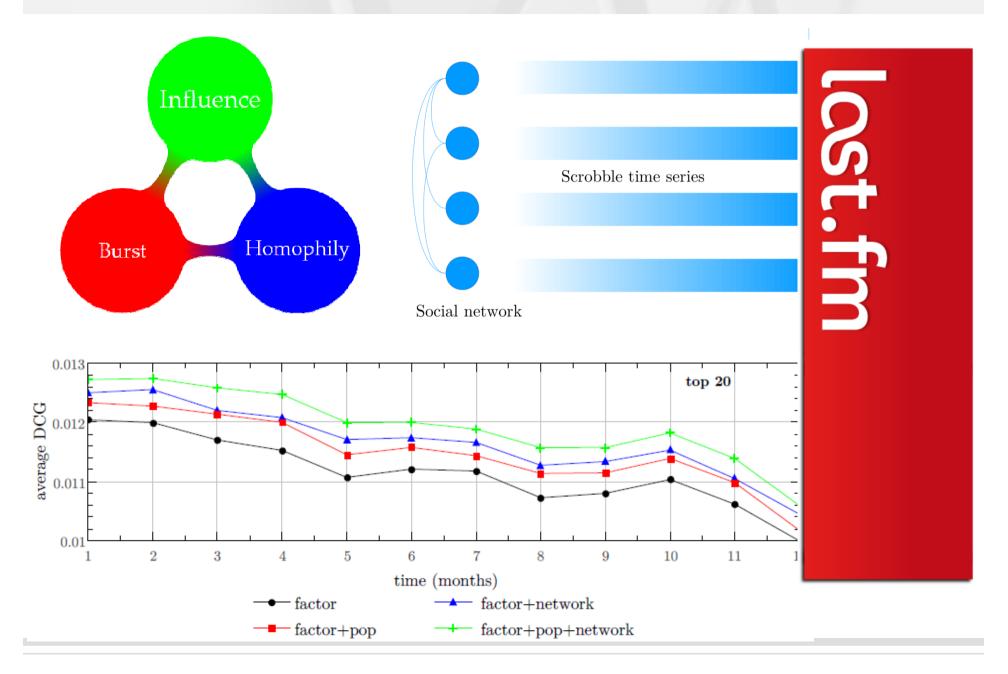
Difference in #words Log of in and out degree Neighborhood Search results form seed Extend along changing edges&nodes 0 Ranking PageRank Ο HITS \bigcirc Personalization on \bigcirc change and relevance - new method for HITS by supersources

		Sep	Oct
		↓	\downarrow
		Oct	Nov
	content	0.044	0.18
Muammar	inlink	0.55	0.12
Gaddafi	outlink	0.033	0.04
	total	0.63	0.34
Death of	content	0	7.71
	inlink	0	4.21
Muammar Gaddafi	outlink	0	4.64
Gaddall	total	0	16.6
	content	7.78	0.79
Battle of	inlink	4.78	0.21
Sirte (2011)	outlink	4.9	0.14
	total	17.5	1.1
National	content	0.15	0.08
	inlink	0.91	0.13
Transitional Council	outlink	5.68	0.29
Council	total	6.7	0.5

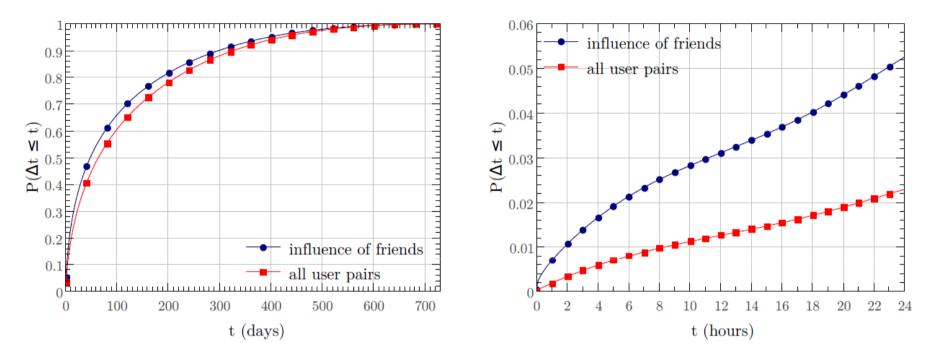
Experiments



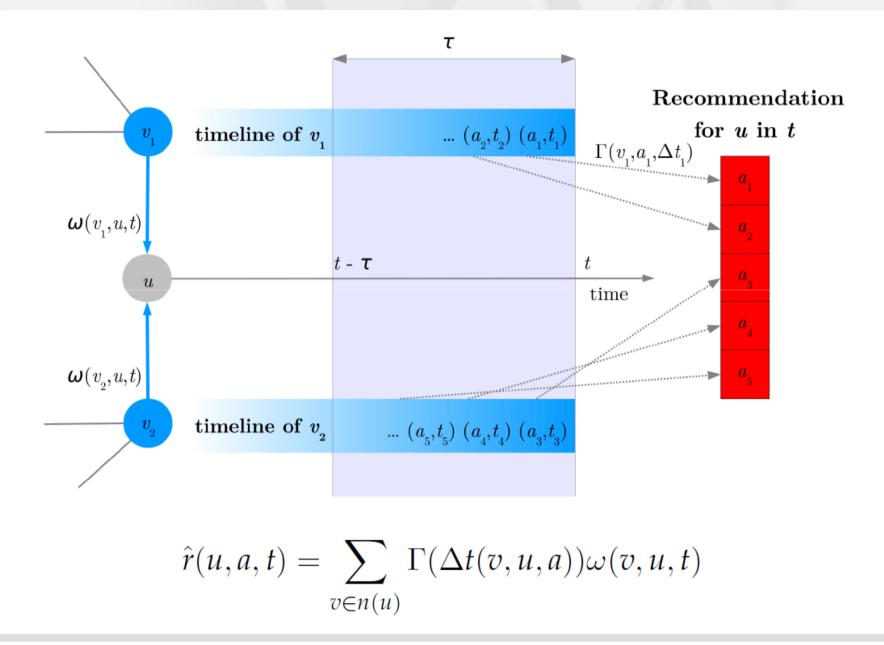
- NDCG @ 15 for best seed
- Increase in # edges in top 15
- Best seed (100) and expansion (1000) sizes
- Combination between relevance only (0), change (1) and avg (.5)


Trend detection

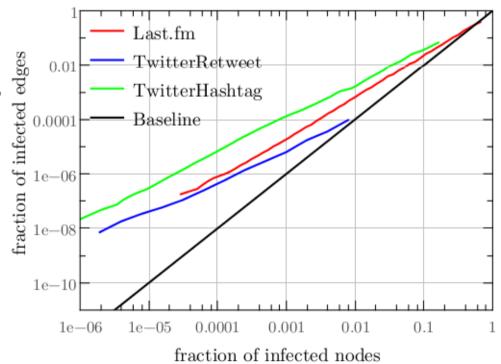
Search Yammut						
steve jobs	ClueWeb	UKParl	News	Twitter	Wikipedia	YAGO
+ OR	2008-01-01		2013	3-05-01		
Tag cloud						
Trend						
				h		
+				D	ook	
)	/ea	ir Sl nev	IIE MSct	or
 So far, work on algorithm challenges only 	nic		h	iste	ife WSst ory	
• Millions of relevant docs						
 Real time user app 						
 Approximate data 						20
structures for counting						


Plans with subgraph ranking

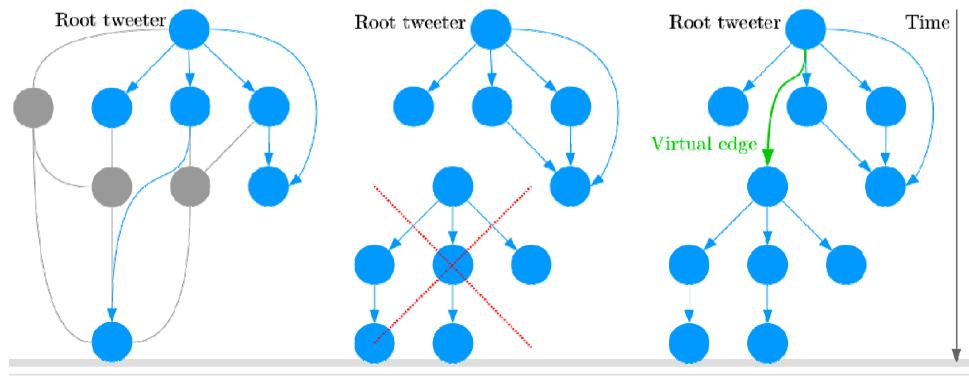
Network Influence in Recommenders



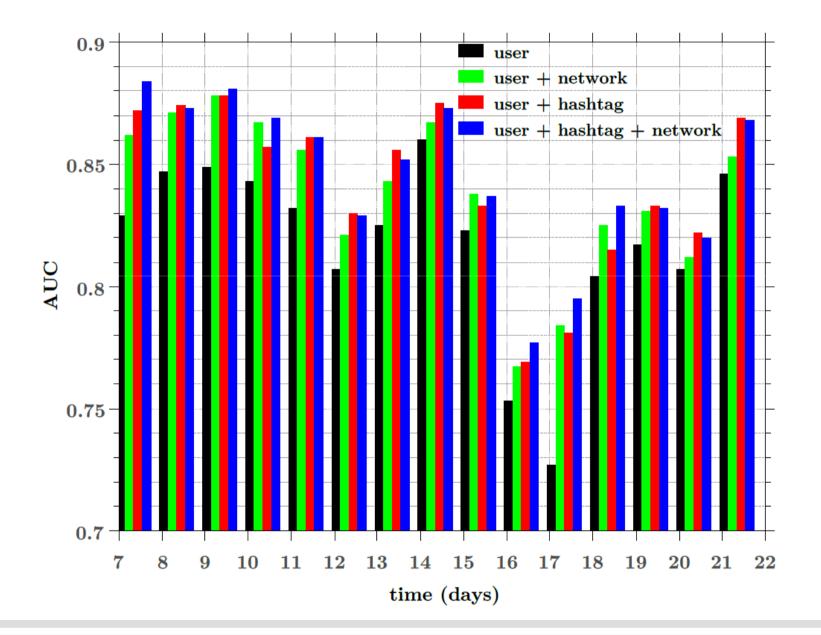
Observed influence


- User influenced if scrobbles new artist first time after a friend
- Delay is time elapsed after friend's last scrobble
- Baseline: random users scrobbling by coincidence before a first time scrobble

Influence recommendation


Densification law (under progress)

- Number of edges in spanned subgraph for users who scrobbled a given artist
- Small communities have larger edge density than random
- Looking for models, explanation
 - Several data sets
 - One model adds edge
 proportional to friends'
 earliest adoption time



Apply for Twitter: retweets

- Twitter four topic crawl ("10o","occupy","20n","yosoy132").
 - o Obtained by Andreas Kaltenbrunner
 - \circ Follower network: 10⁶ users; Tweets: ~ 10⁵ 10⁶ per topic
- We crawled the social network (who follows who)
- Needed since we only know the ROOT of a retweet sequence
- Approximate only

Prediction for retweet cascade size

The Matrix Factorization recommender

- Model
 - How we approximate user preferences S_U R \approx P S_U $\widetilde{S_I}$

$$\hat{r}_{u,i} = p_u^T q_i$$

- Objective function (error function)
 - What we want to minimize or optimize?
 - E.g. optimize for RMSE with regularization $\mathbf{L} = \sum_{(u,i)\in Train} (\hat{r}_{u,i} - r_{u,i})^2 + \lambda_U \sum_{u=1}^{S_U} ||P_u||^2 + \lambda_I \sum_{i=1}^{S_I} ||Q_i||^2 \Big]$
- Learning method
 - How we improve the objective function?
 - E.g. stochastic gradient descent (SGD)

Source of next slides: Domonkos Tikk, CEO, Gravity

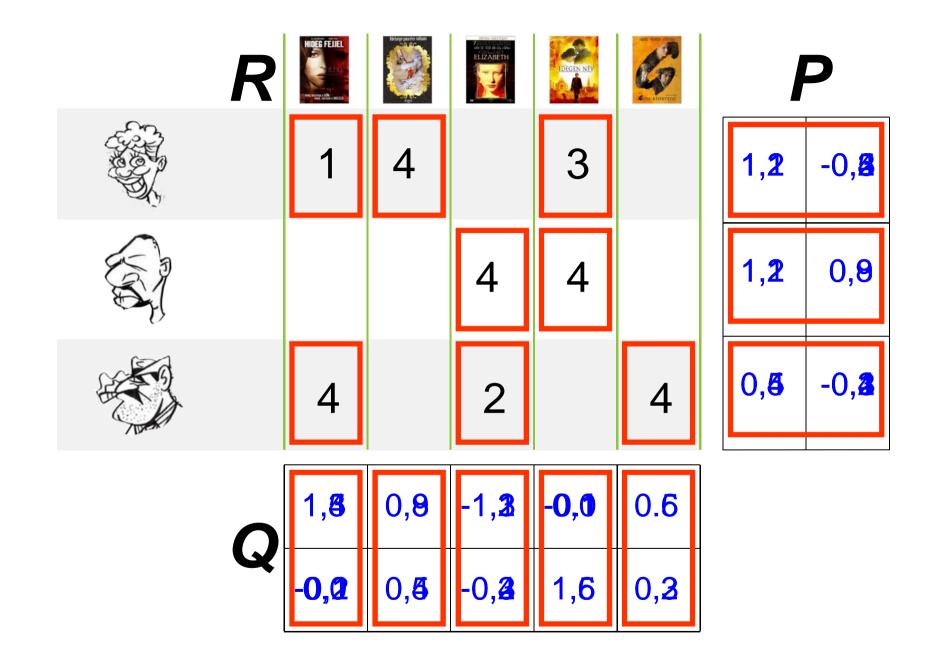
Learning

 S_{I}

BRISMF model

- Biased Regularized Incremental Simultaneous Matrix Factorization
- Apply regularization to prevent overfitting
- To further decrease RMSE using bias values
- Model:

$$\hat{r}_{ui} = \vec{p}_u \vec{q}_i + b_u + c_i = \sum_{k=1}^{K} p_{uk} q_{ki} + b_u + c_i$$


BRISMF Learning

• Loss function

$$\sum_{(u,i)\in R_{train}} \left(r_{ui} - \sum_{k=1}^{K} p_{uk} q_{ki} - b_u - c_i \right)^2 + \lambda \sum_{(u,k)} p_{uk}^2 + \lambda \sum_{(i,k)} q_{ki}^2 + \lambda \sum_{u} b_u^2 + \lambda \sum_{i} c_i^2$$

• SGD update rules

$$\Delta p_{uk} = \eta (e_{ui} q_{ki} - \lambda p_{uk}) \quad \Delta q_{ki} = \eta (e_{ui} p_{uk} - \lambda q_{ki})$$
$$\Delta b_{u} = \eta (e_{ui} - \lambda b_{u}) \qquad \Delta c_{i} = \eta (e_{ui} - \lambda c_{i})$$

Spam, Ranking and Recommenders

R	HIDEE FEJIEL	Fiday parts often	The second secon	IDEGEN NÊV			D
	1	4	3.3	3	2.4	1,4	1,1
	-0.5	3.5	4	4	1.5	0,9	1,9
A CONTRACTOR	4	4.9	2	1.1	4	2,5	-0,3
	4.5	0.4	4.0	0.7			

	1,5	2,1	1,0	0.7	1.6
4	-1,0	0,8	1,6	1,8	0,0

Influence Learning by Gradient Descent

- Present influence recommender:
 - o heuristic weighted network learning
 - o no artist based learning part
- Heuristic combination of the influence and factor models
 - Is it likely that user v influences user u on artist a?
 - Can user a be influenced at all in case of artist a?
- Use SGD method to learn user and artist factors

$$\hat{r}_{uat} = \sum_{v} \Gamma(\Delta t) (\vec{p}_{v} \vec{q}_{a} + b_{v} + c_{i})$$

Conclusions

- Web classification plans to integrate with BUbiNG, use SZTAKI cluster to test the crawler
- Temporal ranking in Wikipedia, Twitter trends, changes, events
- Ranking for subgraph selection, new applications
- Twitter
 - o Understand the 1TBdata
 - o Find influences in the user graph that we collect for Andreas' data
- Distributed machine learning and graph algorithms

Data sets and test bed

Web classification

- o ClueWeb
- Portuguese archive
- o Source codes released
- Twitter
 - o Topical collection around four hashtags (Andreas Kaltenbrunner)
 - o 1+Bio firehose
- The SZTAKI Text Mining Center

http://info.ilab.sztaki.hu/vwo/second/vwo

Plans for Period II

- Research on crawler and classification integration strategies
- Modeling information diffusion and community densification
- Applying network models in recommender systems (e.g. geolocation, see Robert's talk in the afternoon)