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Power laws

I degree of the node = # links, [fraction nodes degree k] = pk ,

I Power law: pk ≈ const · k−γ−1, γ > 1.
I Power laws: Internet, WWW, social networks,etc...
I Model for high variability, scale-free graphs
I Model for hubs: nodes with extremely large number of

connections

I Hubs play a crucial role in the analysis of networks
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Formal view on the hubs

Let D be a degree of a random node. Regular varying distribution:

P(D > x) = L(x)x−γ (1)

L(x) is slowly varying, i.e. limt→∞ L(tx)/L(t) = 1, x > 0

Extreme value theory. Let F1 > F2 > · · · > FN be the order
statistics of the i.i.d. r.v.’s D1,D2, . . . ,DN as in (1). Then there
are (aN), (bN) such that for finite k(
F1 − bN

aN
, · · · Fk − bN

aN

)
d→

E−δ
1 − 1

δ
, · · · ,

(∑k
i=1 Ei

)−δ
− 1

δ

 ,

where δ = 1/γ and Ei ’are i.i.d. exponential(1) r.v.’s.

Example. P(D > x) = Cx−γ, then aN = δCδNδ, bN = CδNδ.
The largest degrees are ‘of the order’ N1/γ.
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Finding most popular entities in social networks

I Social networks are large

I The complete graphs structure is only available to the owners
I Many companies maintain network statistics

(twittercounter.com, followerwonk.com, twitaholic.com,
www.insidefacebook.com, yavkontakte.ru)

I The network can be accessed only via API, with limited access
I Twitter API allows one access per minute. We need 950 years

to crawl the current Twitter graph!

Goal: Find top-k most popular entities in social (directed) networks
(nodes with highest in/out-degrees, largest interest groups, largest
user categories), using the minimal number of API requests.
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Problem formulation

I Consider a bi-partite graph (V ,W ,E )
I V and W are sets of entities, |V | = M, |W | = N.
I A directed edge (v ,w) ∈ E represents a relation between

v ∈ V and w ∈W .
I Goal: Quickly find entities in W with highest degrees.

Example. V = W is a set of Twit-
ter users, (v ,w) means that v fol-
lows w .

Example. V is a set of users, W
is a set of interest groups, (v ,w)
means that user v is a member of
an interest group w .
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Algorithm for finding top-k most popular entities

Algorithm for finding top-k most popular entities

1 Choose a set A ⊂ V of n1 nodes sampled from V at random.

2 For each v ∈ A retrieve the id’s of nodes in W that have an
edge from v .

3 Compute Sw – the number of edges of w ∈W from A.

4 Retrieve the actual degrees for the n2 nodes w with the
largest values of Sw .

5 Return the identified top-k list of most popular entities in W .

In total, we use n = n1+ n2 requests to API
(Step 2 and Step 4).
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Example: finding most followed users on Twitter

I Huge network (more than 500M users)

I Network accessed only through Twitter API
I The rate of requests is limited
I One request:

I ID’s of at most 5000 followers of a node, or
I the number of followers of a node

I In a randomly chosen set of n1 Twitter users only a few users
follow more than 5000 people. Thus, we retrieve at most 5000
followees of each node. This does not affect the results.

I Make a guess: We use 1000 requests to API. For which k can
we identify a top-k list of most followed Twitter users with
90% precision?
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Results

N = 500M, n = 1000
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Interest groups VKontakte

I Popular social network in Russian, more than 200M users.

Rank Number of participants Topic

1 4,35M humor
2 4,1M humor
3 3,76M movies
4 3,69M humor
5 3,59M humor
6 3,58M facts
7 3,36M cookery
8 3,31M humor
9 3,14M humor
10 3,14M movies

100 1,65M success

I With n1 = 700, n2 = 300, our algorithm identifies on average
73.2 from the top-100 interest groups (averaged over 25
experiments). The standard deviation is 4.6.
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Sublinear complexity

I 1, . . . , k – top-k nodes in W ; F1, . . . ,Fk – their degrees

I Sj ∼ Binomial(n1,Fj/N)
I With normal approximation, and error pr-ty α we need that√

n1
N

Fk − Fn2√
Fk + Fn2

> z1−α

I Fk >> Fn2
I Assuming the i.i.d. degrees, by the Extreme Value Theory,

w.h.p., log(Fk) = γ
−1 log(N)(1 + o(log(N)))

I Roughly, n1 = O(N1−1/γ)
I Since

∑
w Sw = O(n1) w.h.p., n2 is at most O(n1)

I We conclude that roughly n = n1 + n2 = O(N1−1/γ)
I Note that the complexity is in terms of |W | = N
I Popular groups are easier to find than popular users!
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Alpha current flow betweenness centrality

I G = (V ,E ), |V | = n, |E | = m

I Betweenness centrality: the fraction of shortest paths,
andveraged over all source-destination pairs

I Newman (2005), Brandes and Fleischer (2005):
current flow (CF) betweenness centrality

I Graph is an electrical network, edges are unit resistances,
current is induced to s, t is connected to the ground

I The CF-betweenness of edge e ∈ E is the amount of current
through e, averaged over source-destination pairs (s, t)
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Alpha current flow betweenness centrality

I The CF centrality has a high computational complexity
(I (n− 1) +O(nm log(n))), where I (n− 1) is the complexity of
the matrix inversion of a (n − 1)× (n − 1) matrix

I Idea: α-CF betweenness centrality
I Each edge has resistence α−1

I Each node v is connected to the ground node n+ 1 by an edge
with resistance (1 − α)−1d−1

v , where dv is the degree of v .
I In the spirit of PageRank
I Easy to compute
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Formal definition

I A unit of current is supplied to a source node s ∈ V

I A destination node t ∈ V connected to the ground
I ϕ

(s,t)
v is the absolute potential of node v ∈ V

I ϕ
(s,t)
t = ϕ

(s,t)
n+1 = 0

I ϕ(s,t) = [ϕ
(s,t)
1 , ...,ϕ

(s,t)
n−1 ]

T

I Kirchhoff’s current law:

[D̃t − αÃt ]ϕ
(s,t) = es ,

D̃t and Ãt are the degree and the adjacency matrices of
G \ {t}, es is the sth basis vector (Brandes and Fleischer 2005)

I x
(s,t)
e = |ϕ

(s,t)
v −ϕ

(s,t)
w |, (v ,w) ∈ E is the difference of

potentials

I α-CF betweenness: xαe =
1

n(n − 1)

∑
s,t∈V ,s 6=t

x
(s,t)
e , e ∈ E .
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(s,t) = es ,
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Analysis and computation

Theorem

The voltage drop along the edge (v ,w) is given by

ϕ
(s,t)
v −ϕ

(s,t)
w = (cs,v − cs,w ) +

cs,t
ct,t

(ct,w − ct,v ),

where C = (cv ,w ) = [D − αA]−1.

I It is sufficient to invert the matrix [D − αA] only once. This
can be done efficiently

I P̃t transition probability matrix of a random walk on G \ {t}
I π̃·,t(v) = (1 − α)eTv [I − αP̃t ]

−1 is close to Personalized
PageRank with teleportation to v . Then we derive:

ϕ
(s,t)
v = (1 − α)−1π̃s,t(v)d

−1
s
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Datasets

|V | |E | 〈deg(v)〉 diam(G) Cclustering 〈d(u, v)〉
Dolphins network 62 159 5.13 8 0.259 3.357
VKontakte AMCP 2092 14816 14.16 14 0.338 4.598
Watts-Strogatz 1000 6000 12.00 6 0.422 3.713

Enron 36692 183831 10.02 11 0.4970 ≈ 4.8

I The small graphs are used to compare CF and α-CF
betweenness

I On the Enron graph, only α-CF betweenness can be computed

[ Nelly Litvak, NADINE review ] 16/29



Correlations between centrality measures

Kendall tau for centrality measures in the social graph VKontakte
AMCP:

D PR Cl B/w CF (0.8) tr(0.8) (0.98)
Degree 1.000 0.655 0.679 0.521 0.545 0.659 0.668 0.599
PageRank 0.655 1.000 0.375 0.662 0.717 0.833 0.811 0.766
Closeness 0.679 0.375 1.000 0.382 0.356 0.424 0.445 0.395
Between. 0.521 0.662 0.382 1.000 0.761 0.760 0.749 0.778
CF 0.545 0.717 0.356 0.761 1.000 0.812 0.833 0.917
αCF(0.8) 0.659 0.833 0.424 0.760 0.812 1.000 0.938 0.878
αCF-tr(0.8) 0.668 0.811 0.445 0.749 0.833 0.938 1.000 0.903
αCF(0.98) 0.599 0.766 0.395 0.778 0.917 0.878 0.903 1.000

[ Nelly Litvak, NADINE review ] 17/29



Influence on the network connectivity

Inverse average distance: < d−1 >=
1

n(n − 1)

∑
u,v∈V ,u 6=v

1

d(u, v)
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Correlations in power law networks

I We study the dependencies between degrees of
neighboring nodes in graphs with power law degree
distribution

Example: Internet and network of bank transactions

[ Nelly Litvak, NADINE review ] 19/29



Assortativity coefficient

I G = (V ,E ) undirected graph of n nodes, E ′– directed edges
I Dv degree of node v ∈ V

I Newman (2002): assortativity measure ρ(G )

ρ(G ) =

1

|E ′|

∑
(v ,w)∈E ′

DvDw −
( 1

|E ′|

∑
(v ,w)∈E ′

1
2(Dv + Dw )

)2
1

|E ′|

∑
(v ,w)∈E ′

1
2(D

2
v + D2

w ) −
( 1

|E ′|

∑
(v ,w)∈E ′

1
2(Dv + Dw )

)2
I Statistical estimation of the Pearson’s correlation

coefficient between degrees on two ends of a random edge
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Assortative and disassortative graphs

I Newman(2003)

I Technological and biological networks are disassortative,
ρ(G ) < 0

I Social networks are assortative, ρ(G ) > 0
I Note: large networks are never strongly disassortative...

Dorogovtsev et al. (2010), Raschke et al. (2010)
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Convergence of ρ(G ) to a non-negtive value

Theorem

Let (Gn)n>1 be a sequence of graphs of size n satisfying that there
exist γ ∈ (1, 3) and 0 < c < C <∞ such that cn 6 |E | 6 Cn,
cn1/γ 6 maxv∈Vn Dv 6 Cn1/γ and
cn(2/γ)∨1 6

∑
v∈Vn

D2
v 6 Cn(2/γ)∨1. Then, any limit point of the

Pearson’s correlation coefficient ρ(Gn) is non-negative.
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Alternative: rank correlations

I G = (V ,E ), E – set of edges, E ′ – set of directed edges

I (Rv ,Rw ) – ranks of (Dv ,Dw ), where (v ,w) is a uniformly
chosen directed edge

I Ties are resolved at random by adding independent
Uniform(0, 1) random variables (Mesfioui and Tajar, 2005)
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Spearman’s rho

I G = (V ,E ), E – set of edges, E ′ – set of directed edges
I (Rv ,Rw ) – ranks of (Dv + Ue ,Dw + U ′e), where (v ,w) is a

uniformly chosen directed edge

I The Spearman’s rho (Spearman 1904, H. Hotelling and
M.R. Pabst 1936):

ρrank(G ) =

1
|E ′|

∑
(v ,w)∈E ′ RvRw − (|E ′|+ 1)2/4

(|E ′|2 − 1)/12
.

I Pearson’s coefficient for (Rv ,Rw )
I Rv and Rw are from uniform distribution: |E ′| · Uniform(0, 1)
I Factor |E ′| cancels, no influence of high dispersion

[ Nelly Litvak, NADINE review ] 24/29



Spearman’s rho

I G = (V ,E ), E – set of edges, E ′ – set of directed edges
I (Rv ,Rw ) – ranks of (Dv + Ue ,Dw + U ′e), where (v ,w) is a

uniformly chosen directed edge
I The Spearman’s rho (Spearman 1904, H. Hotelling and

M.R. Pabst 1936):

ρrank(G ) =

1
|E ′|

∑
(v ,w)∈E ′ RvRw − (|E ′|+ 1)2/4

(|E ′|2 − 1)/12
.

I Pearson’s coefficient for (Rv ,Rw )
I Rv and Rw are from uniform distribution: |E ′| · Uniform(0, 1)
I Factor |E ′| cancels, no influence of high dispersion

[ Nelly Litvak, NADINE review ] 24/29



Spearman’s rho

I G = (V ,E ), E – set of edges, E ′ – set of directed edges
I (Rv ,Rw ) – ranks of (Dv + Ue ,Dw + U ′e), where (v ,w) is a

uniformly chosen directed edge
I The Spearman’s rho (Spearman 1904, H. Hotelling and

M.R. Pabst 1936):

ρrank(G ) =

1
|E ′|

∑
(v ,w)∈E ′ RvRw − (|E ′|+ 1)2/4

(|E ′|2 − 1)/12
.

I Pearson’s coefficient for (Rv ,Rw )
I Rv and Rw are from uniform distribution: |E ′| · Uniform(0, 1)

I Factor |E ′| cancels, no influence of high dispersion

[ Nelly Litvak, NADINE review ] 24/29



Spearman’s rho

I G = (V ,E ), E – set of edges, E ′ – set of directed edges
I (Rv ,Rw ) – ranks of (Dv + Ue ,Dw + U ′e), where (v ,w) is a

uniformly chosen directed edge
I The Spearman’s rho (Spearman 1904, H. Hotelling and

M.R. Pabst 1936):

ρrank(G ) =

1
|E ′|

∑
(v ,w)∈E ′ RvRw − (|E ′|+ 1)2/4

(|E ′|2 − 1)/12
.

I Pearson’s coefficient for (Rv ,Rw )
I Rv and Rw are from uniform distribution: |E ′| · Uniform(0, 1)
I Factor |E ′| cancels, no influence of high dispersion

[ Nelly Litvak, NADINE review ] 24/29



Convergence criteria in random graphs

(Gn)n>1 be a sequence of random graphs of size n, Gn = (Vn,En).
(Xn,Yn) degrees on both sides of a uniform directed edge e ∈ E ′n .

Theorem

If every bounded continuous h : IR2 → IR

En[h(Xn,Yn)]
P−→ E[h(X ,Y )],

where the r.h.s. is non-random, then

ρrank(Gn)
P−→ ρrank = 12 · Cov(FX (X ),FX (Y )),

If, in addition, En[X
2
n ]

P−→ E[X 2] <∞, and Var(X ) > 0, then

ρ(Gn)
P−→ ρ =

Cov(X ,Y )

Var(X )
.
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Preferential Attachment (PA) graph

I Vertex arriving at time t + 1 attaches to a vertex v ∈ [t] with
probability (Dv (t) + δ)/((2 + δ)t + 1 + δ)

I Dorogovtsev et al. (2010), Grechnikov (2012).

Theorem

Let (G (m)

t )t>1 be the PAM. Then

ρrank(G (m)

t )
P−→ ρrank,

ρ(G (m)

t )
P−→

{
0 if δ 6 m,

ρ if δ > m,

where, abbreviating a = δ/m,

ρ =
(m − 1)(a − 1)[2(1 +m) + a(1 + 3m)]

(1 +m)[2(1 +m) + a(5 + 7m) + a2(1 + 7m)].
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Preferential Attachment (PA) graph

ρ(Gn) (blue), ρrank(Gn) (red), and mean ρ−(Gn) (black) in 20
simulations for different n
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Web and social networks

Dataset Description # nodes max d ρ(Gn) ρ(Gn)
rank ρ−(Gn)

stanford-cs web domain 9,914 340 -0.1656 -0.1627 -0.4648
eu-2005 .eu web crawl 862,664 68,963 -0.0562 -0.2525 -0.0670
uk@100,000 .uk web crawl 100,000 55,252 -0.6536 -0.5676 -1.117
uk@1,000,000 .uk web crawl 1,000,000 403,441 -0.0831 -0.5620 -0.0854
enron e-mailing 69,244 1,634 -0.1599 -0.6827 -0.1932
dblp-2010 co-authorship 326,186 238 0.3018 0.2604 -0.7736
dblp-2011 co-authorship 986,324 979 0.0842 0.1351 -0.2963
hollywood co-starring 1,139,905 11,468 0.3446 0.4689 -0.6737

I Spearman’s rho is able to reveal strong negative correlations
in large networks

I Still largely open problem: statistical significance of
degree-degree correlations

I More on correlations in directed networks: talk of Pim

[ Nelly Litvak, NADINE review ] 28/29



Web and social networks

Dataset Description # nodes max d ρ(Gn) ρ(Gn)
rank ρ−(Gn)

stanford-cs web domain 9,914 340 -0.1656 -0.1627 -0.4648
eu-2005 .eu web crawl 862,664 68,963 -0.0562 -0.2525 -0.0670
uk@100,000 .uk web crawl 100,000 55,252 -0.6536 -0.5676 -1.117
uk@1,000,000 .uk web crawl 1,000,000 403,441 -0.0831 -0.5620 -0.0854
enron e-mailing 69,244 1,634 -0.1599 -0.6827 -0.1932
dblp-2010 co-authorship 326,186 238 0.3018 0.2604 -0.7736
dblp-2011 co-authorship 986,324 979 0.0842 0.1351 -0.2963
hollywood co-starring 1,139,905 11,468 0.3446 0.4689 -0.6737

I Spearman’s rho is able to reveal strong negative correlations
in large networks

I Still largely open problem: statistical significance of
degree-degree correlations

I More on correlations in directed networks: talk of Pim

[ Nelly Litvak, NADINE review ] 28/29



Web and social networks

Dataset Description # nodes max d ρ(Gn) ρ(Gn)
rank ρ−(Gn)

stanford-cs web domain 9,914 340 -0.1656 -0.1627 -0.4648
eu-2005 .eu web crawl 862,664 68,963 -0.0562 -0.2525 -0.0670
uk@100,000 .uk web crawl 100,000 55,252 -0.6536 -0.5676 -1.117
uk@1,000,000 .uk web crawl 1,000,000 403,441 -0.0831 -0.5620 -0.0854
enron e-mailing 69,244 1,634 -0.1599 -0.6827 -0.1932
dblp-2010 co-authorship 326,186 238 0.3018 0.2604 -0.7736
dblp-2011 co-authorship 986,324 979 0.0842 0.1351 -0.2963
hollywood co-starring 1,139,905 11,468 0.3446 0.4689 -0.6737

I Spearman’s rho is able to reveal strong negative correlations
in large networks

I Still largely open problem: statistical significance of
degree-degree correlations

I More on correlations in directed networks: talk of Pim

[ Nelly Litvak, NADINE review ] 28/29



Web and social networks

Dataset Description # nodes max d ρ(Gn) ρ(Gn)
rank ρ−(Gn)

stanford-cs web domain 9,914 340 -0.1656 -0.1627 -0.4648
eu-2005 .eu web crawl 862,664 68,963 -0.0562 -0.2525 -0.0670
uk@100,000 .uk web crawl 100,000 55,252 -0.6536 -0.5676 -1.117
uk@1,000,000 .uk web crawl 1,000,000 403,441 -0.0831 -0.5620 -0.0854
enron e-mailing 69,244 1,634 -0.1599 -0.6827 -0.1932
dblp-2010 co-authorship 326,186 238 0.3018 0.2604 -0.7736
dblp-2011 co-authorship 986,324 979 0.0842 0.1351 -0.2963
hollywood co-starring 1,139,905 11,468 0.3446 0.4689 -0.6737

I Spearman’s rho is able to reveal strong negative correlations
in large networks

I Still largely open problem: statistical significance of
degree-degree correlations

I More on correlations in directed networks: talk of Pim

[ Nelly Litvak, NADINE review ] 28/29



Further research

I Monte Carlo methods for fast evaluation of centrality
measures and correlation measures

I Goal: sublinear complexity

I Hot topic

I Statistical significance of correlations in networks

I Spectral analysis, second-order characteristics of centrality
scores (jointly with Toulouse)

I Optimization of the web crawler BUbiNG (jointly with Milano)
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