Factor and Geolocation Based Recommendation

Róbert Pálovics

Informatics Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences

Supported by the EC FET Open project "New tools and algorithms for directed network analysis" (NADINE No 288956) Collaboration between Partners 1 & 3

2013

Introduction	Dataset	Collaborative filtering	Results
•00	00000	00	0000000

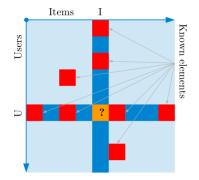
OUTLINE

- Recommender systems
- Collaborative Filtering (CF) methods
- Geolocation related dataset
- ► CF vs. Geolocation data

Introduction	Dataset	Collaborative filtering	Results
000	00000	00	0000000

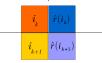
RECOMMENDER SYSTEMS

- Predict the 'rating' or 'preference' that user would give to an item (r̂)
- i.e. predict the unknown elements of a user-item matrix



Recommender systems

- Top-k recommendation task: retrieve the best k items for a given user u
 - 1. Compute \hat{r}_{ui} for all (unknown) items
 - 2. Order the items
 - 3. Return the top-*k* elements in the list



Introduction	Dataset	Collaborative filtering	Results
000	•0000	00	000000

DATASETS

- ► Two datasets, one for France, one for Paris
- User-item scores: how a given user rated a given item
- Item locations: GPS coordinates of the rated items (!)

Introduction Dataset Collaborative filte	ering Results
000 0000 00	0000000

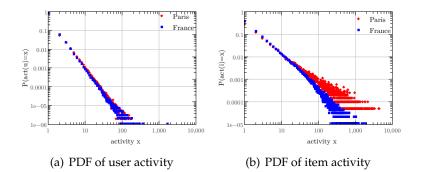
BASIC ATTRIBUTES

	Paris	France
Number of ratings	1,539,964	1,432,601
Number of users	998,127	1,077,568
Number of items	20,576	99,976
Average ratings per user	1.543	1.329
Average ratings per item	74.84	14.32
Ratio of known ratings	0.0075%	0.0013%

Table: Attributes of the original Paris dataset.

Introduction	Dataset	Collaborative filtering	Results
000	0000	00	0000000

USER AND ITEM ACTIVITY



Introduction	Dataset	Collaborative filtering	Results
000	00000	00	000000

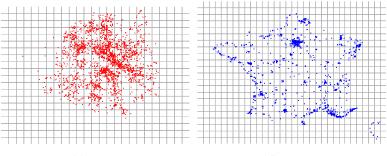
CLEANED DATASETS

- We select users and items that have at least A ratings between each other
- For Paris we set A = 10, for France we set A = 5

	Paris	France
Number of ratings	114,352	97,452
Number of users	5,756	9,471
Number of items	2,952	7,605
Average ratings per user	19.87	10.29
Average ratings per item	38.74	12.81
Ratio of known ratings	0.672%	0.135%
Average of rating	3.714	3.747

Introduction	Dataset	Collaborative filtering	Results
000	00000	00	000000

MAP OF LOCATIONS



(c) Paris

(d) France

Introduction	Dataset	Collaborative filtering	Results
000	00000	•0	000000

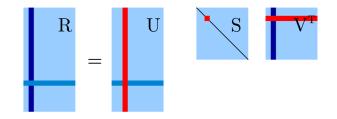
SVD

$$\bullet R = USV^T = \sum_{i=1}^n u_i \sigma_i v_i$$
$$\bullet \hat{R} = \sum_{i=1}^k u_i \sigma_i v_i$$

$$\blacktriangleright R_k = \sum_{i=1} u_i \sigma_i v_i$$

• min
$$||R - \hat{R}||$$
 : rank $\hat{R} = k$

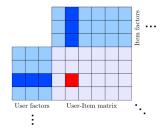
• \hat{R}_k is the best *k*-rank approximation of the matrix *R*.



Introduction	Dataset	Collaborative filtering	Results
000	00000	0 0	0000000

STOCHASTIC GRADIENT DESCENT (SGD)

- Collaborative filtering based recommenders became popular during the Netflix Prize competition¹
- Large matrix with many unknown values
- $\hat{r}_{ui} = \underline{p}_{u} \cdot \underline{q}_{i} + \dots$ $\hat{r}_{ui} = \sum_{(u,i) \in \text{Train}} |r_{ui} \hat{r}_{ui}|^{2} + \dots$
- Optimize using SGD



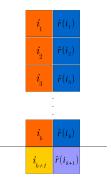
¹R. Bell and Y. Koren, "Lessons from the Netflix prize challenge," 2007.

¹ "Netflix update: Try this at home http://sifter.org/~simon/journal/20061211.html," 2006

Introduction Datas	et Cona	laborative filtering Results	\$
000 0000	00 00	0000	200

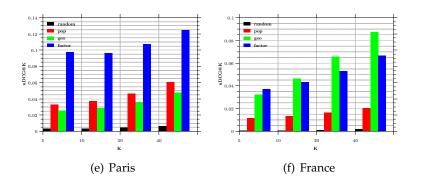
RECOMMENDER EVALUATION

- ► Remember: top-*k* recommendation
- Random train + test sets
- ▶ Performance measure: *nDCG*@*K*
- ► DCG = $\sum_{i \in K} \frac{r(i)}{\log_2(rank(i) + 1)}$
- Baseline recommenders: random, popularity, geo

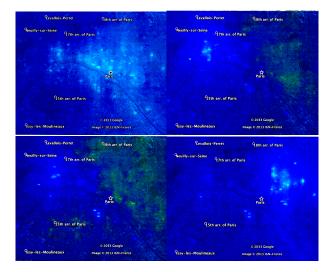


Introduction	Dataset	Collaborative filtering	Results
000	00000	00	000000

RESULTS



SVD DECOMPOSITIONS - PARIS

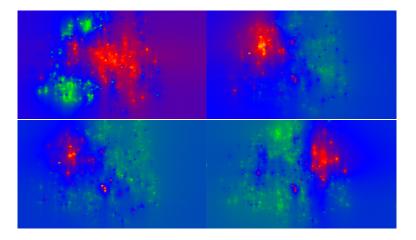


Dataset

Collaborative filtering

Results 000●000

SVD DECOMPOSITIONS - PARIS

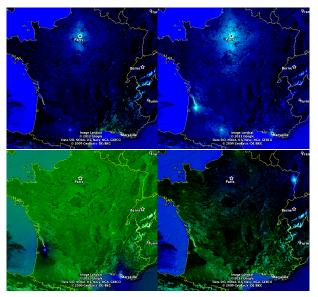


Dataset

Collaborative filtering 00

Results 0000●00

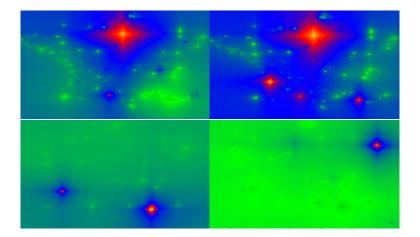
SVD DECOMPOSITIONS - FRANCE



Dataset 00000 Collaborative filtering 00

Results 00000●C

SVD DECOMPOSITIONS - FRANCE



Introduction	Dataset	Collaborative filtering	Results
000	00000	00	000000

CONCLUSIONS, FUTURE WORK

- Successful application of the SGD recommender on geolocation based dataset
- SGD can learn geo related features (positive + negative effects)
- Combination, better use of location information
- Create location based networks
- ► Social regularization (Last.fm):

$$\min \sum_{(u,i)\in\text{Train}} \{ |r_{ui} - \hat{r}_{ui}|^2 + \sum_{v \in n(u)} s_{uv} |p_u - p_v|^2 + \sum_{j \in n(i)} s_{ij} |q_i - q_j|^2 \}$$

