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OUTLINE

I Recommender systems

I Collaborative Filtering (CF)

methods

I Geolocation related dataset

I CF vs. Geolocation data
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RECOMMENDER SYSTEMS

I Predict the ’rating’ or
’preference’ that user would
give to an item (̂r)

I i.e. predict the unknown
elements of a user-item matrix
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RECOMMENDER SYSTEMS

I Top-k recommendation task: retrieve
the best k items for a given user u

1. Compute r̂ui for all (unknown)
items

2. Order the items
3. Return the top-k elements in the

list
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DATASETS

I Two datasets, one for France, one for Paris

I User-item scores: how a given user rated a
given item

I Item locations: GPS coordinates of the
rated items (!)
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BASIC ATTRIBUTES

Paris France
Number of ratings 1,539,964 1,432,601
Number of users 998,127 1,077,568
Number of items 20,576 99,976

Average ratings per user 1.543 1.329
Average ratings per item 74.84 14.32
Ratio of known ratings 0.0075% 0.0013%

Table: Attributes of the original Paris dataset.
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USER AND ITEM ACTIVITY
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CLEANED DATASETS

I We select users and items that have at least A ratings
between each other

I For Paris we set A = 10, for France we set A = 5

Paris France
Number of ratings 114,352 97,452
Number of users 5,756 9,471
Number of items 2,952 7,605

Average ratings per user 19.87 10.29
Average ratings per item 38.74 12.81
Ratio of known ratings 0.672% 0.135%

Average of rating 3.714 3.747
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MAP OF LOCATIONS

(c) Paris (d) France



Introduction Dataset Collaborative filtering Results

SVD

I R = USVT =

n∑
i=1

uiσivi

I R̂k =

k∑
i=1

uiσivi

I min ||R− R̂|| : rank R̂ = k
I R̂k is the best k-rank approximation of the matrix R.
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STOCHASTIC GRADIENT DESCENT (SGD)

I Collaborative filtering based recommenders became popular
during the Netflix Prize competition1

I Large matrix with many
unknown values

I r̂ui = p
u
· q

i
+ ...

I min
∑

(u,i)∈Train

|rui − r̂ui|2 + ...

I Optimize using SGD

1
R. Bell and Y. Koren, “Lessons from the Netflix prize challenge,” 2007.

1
“Netflix update: Try this at home http://sifter.org/∼simon/journal/20061211.html,” 2006
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RECOMMENDER EVALUATION

I Remember: top-k recommendation

I Random train + test sets

I Performance measure: nDCG@K

I DCG =
∑
i∈K

r(i)
log2(

ˆrank(i) + 1)
I Baseline recommenders: random,

popularity, geo
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RESULTS
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SVD DECOMPOSITIONS - PARIS
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SVD DECOMPOSITIONS - PARIS
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SVD DECOMPOSITIONS - FRANCE
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SVD DECOMPOSITIONS - FRANCE
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CONCLUSIONS, FUTURE WORK

I Successful application of the SGD recommender on
geolocation based dataset

I SGD can learn geo related features (positive + negative
effects)

I Combination, better use of location information

I Create location based networks

I Social regularization (Last.fm):

min
∑

(u,i)∈Train

{|rui− r̂ui|2+
∑

v∈n(u)

suv|pu−pv|2+
∑

j∈n(i)

sij|qi−qj|2}
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