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PART I:
 BUbiNG



Why a new crawler?

• Not so many open-source crawlers

• Not so configurable

• Not so extensible

• Not distributed

• NIH



Previous work

• Mercator (Najork et al.)

• UbiCrawler (Boldi et al.)

• IRLBot (WWW 2008)

• Heritrix (Internet Archive)

• Nutch (based on Hadoop)

• Bixo (based on Hadoop)

• Surprisingly little performance data



Challenges
• Use massive memory and multiple cores 

efficiently (does not work on a mobile 
phone)

• Fill bandwidth in spite of politeness (both at 
host and IP level)

• Stoppable/restartable

• Completely configurable

• Extensible will little effort



High Parallelism

• We use massively multiple (like 5000) 
fetching threads

• Every thread handles a request and is I/O 
bound

• Parallel threads parse and store pages

• Slow data structures are sandwiched 
between lock-free queues



Fully Distributed

• We use JGroups to set up a view on a set 
of agents

• Hosts are assigned to agent using 
consistent hashing

• URLs for which an agent is not responsible 
are quickly delivered to the right agent

• We use JAI4J, a thin layer over JGroups that 
handles job assignment.



Near–Duplicates
• We detect (presently) near-duplicates using 

a fingerprint of a stripped page (stored in a 
Bloom filter)

• The stripping includes eliminating almost all 
tag attributes and numbers from text

• We are going to experiment with more 
sophisticated methods like SimHash

• Suggestions for heuristics are welcome

• We would like to have a test collection



Fast?
• In vitro: >9000 pages/s average, peaks at 

18000 pages/s

• Actual crawl of the .it domain done at 
iStella: >5000 pages/s average (single 
crawler), but we saturated a 2Gb/s link, so 
we don’t really know

• ClueWeb09 (Nutch): 4.3 pages/s

• ClueWeb12 (Heritrix): 60 pages/s

• IRLbot: 1790 pages/s (unverifiable)



Almost everything broke down
• Unfortunately, when you develop on the edge...

• Hardware breaks down: €40,000 server replaced for 
no charge with a €60,000 server

• OS breaks down:  Linux kernel’s bug 862758

• JVM breaks down: try opening 5000 random-access 
files

• Dozens of bug reports and improvements to a 
number of open-source projects, including the 
Jericho HTML parser,  Apache Software Foundation’s 
HTTP Client, etc.

https://bugzilla.redhat.com/show_bug.cgi?id=862758
https://bugzilla.redhat.com/show_bug.cgi?id=862758


PART II:
 Axioms



What is centrality?
• To understand centrality, we need 

mathematical properties

• One of the major goals of our research in 
NADINE was to isolate such properties

• In “Axioms for Centrality” we propose 
three properties

• (Beside sorting out the zoo of centralities)

• Do we understand centrality?



Hollywood: PageRank 
Ron Jeremy Adolf Hitler Lloyd Kaufman George W. Bush

Ronald Reagan Bill Clinton Martin Sheen Debbie Rochon



Hollywood: Degree
William Shatner Bess Flowers Martin Sheen Ronald Reagan

George Clooney Samuel Jackson Robin Williams Tom Hanks



Hollywood: Betweenness
Adolf Hitler Lloyd Kaufman Ron Jeremy Tony Robinson

Olu Jacobs Max von Sydow Udo Kier George W. Bush



Hollywood: Katz
William Shatner Martin Sheen

George Clooney

Robin WilliamsTom Hanks

Ronald Reagan Bruce Willis Samuel Jackson



Hollywood: Closeness
Lina Tjeng Ryan VillapotoAnh Loan Nguyen Thi Chad Reed

Bjorn van Wenum J.P. Ramackers Herbert Sydney R.D. Nicholson
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Axiomatic
Sensitivity to density

Densifying the left-hand side, we expect the red node to 
become more important than the blue node

The blue and the red node have the same 
importance (the two rings have the same size!)



Axiomatic
Sensitivity to size

When k or p goes to ∞, the nodes of the 
corresponding subnetwork must become 

more important

k p

Two disjoint (or 
very far) 

components of a 
single network



Axiomatic
Monotonicity

When we add an arc from x to y, the score of 
y must increase



An axiomatic slaughter
Density Size Monotonicity

Degree yes only k yes
Betweenness no (!) only p no
Katz yes only k yes
Closeness no no (!) no
Lin no only k no
Harmonic yes yes yes
PageRank yes no yes
Seeley yes no no
HITS yes only k no
SALSA yes no no
Dominant yes only k no



• Give a warm welcome to harmonic centrality:  

• The denormalized reciprocal of the harmonic mean of 
all distances (even ∞)

• Inspired by the use the the harmonic mean in 
(Marchiori, Latora 2000)

• Quoted for undirected graphs in Tore Opsahl’s blog

A better closeness

charm(x) =
X

y 6=x

1

d(y, x)



Hollywood: Harmonic
George Clooney Samuel Jackson Sharon Stone Tom Hanks

Martin Sheen Dennis Hopper Antonio Banderas Madonna



• Aaron Clauset is already teaching our axioms and 
harmonic centrality at Santa Fe Institute!

• Luca Aiello @Yahoo! Barcelona is using harmonic 
centrality for recommendation systems

• Spread the word!

People seem to like it



PART III:
 Algorithms



Nice idea but...
• ...computing harmonic centrality is not so 

easy

• In particular on directed network

• General problem of anything based on 
shortest paths

• Solution: approximated/probabilistic/
Monte–Carlo algorithms

• HyperBall (from Flajolet’s HyperLogLog 
probabilistic counters)



For real

• Highly scalable, massively parallel computation

• Open-source software part of the WebGraph 
framework

• Run on Facebook (whole graph) using just a 
workstation (72GiB RAM)



Intermediate step

• For each node, we compute in sequence the 
number of nodes at distance exactly t

• Adding up over all nodes, we get the distance 
distribution (modulo normalization)

• Centralities can be rewritten, e.g., harmonic:

X
t>0

1

t

ˇ̌
fy j d.y; x/ D tg

ˇ̌



Dynamic Programming
• Basic idea: Palmer et. al, KDD ’02

• Let Bt(x) be the ball of radius t around x 
(nodes at distance at most t from x)

• Clearly B0(x)={x}

• But also Bt+1(x)=∪x→yBt(y)∪{x}

• So we can compute balls by enumerating 
the arcs x→y and performing set unions...

• ...using a probabilistic representation!



Performance
• On a 177K nodes / 2B arcs graph, RSD ~14%:

• Hadoop: 2875s per iteration [Kang, 
Papadimitriou, Sun and H. Tong, 2011]

• HyperBall on this laptop: 70s per iteration

• On a 32-core workstation: 23s per iteration

• On ClueWeb09 (4.8G nodes, 8G arcs) on a 40-
core workstation: 141m (avg. 40s per iteration)



• École Polytechnique Fédéral de Lausanne’s x-stream 
project implemented HyperBall (http://labos.epfl.ch/x-
stream)

• Tokyo Institute of Technology’s ScaleGraph project, 
too (http://scalegraph.sourceforge.net/web/)

• [Named HyperANF at that time!]

People seem to like it

http://labos.epfl.ch/x-stream
http://labos.epfl.ch/x-stream
http://labos.epfl.ch/x-stream
http://labos.epfl.ch/x-stream
http://scalegraph.sourceforge.net/web/
http://scalegraph.sourceforge.net/web/


Thanks!
Questions?


