
Harvesting and analyzing
large-scale directed networks:

theory and practice

Sebastiano Vigna
(with Paolo Boldi, Andrea Marino and Massimo Santini)

PART I:
 BUbiNG

Why a new crawler?

• Not so many open-source crawlers

• Not so configurable

• Not so extensible

• Not distributed

• NIH

Previous work

• Mercator (Najork et al.)

• UbiCrawler (Boldi et al.)

• IRLBot (WWW 2008)

• Heritrix (Internet Archive)

• Nutch (based on Hadoop)

• Bixo (based on Hadoop)

• Surprisingly little performance data

Challenges
• Use massive memory and multiple cores

efficiently (does not work on a mobile
phone)

• Fill bandwidth in spite of politeness (both at
host and IP level)

• Stoppable/restartable

• Completely configurable

• Extensible will little effort

High Parallelism

• We use massively multiple (like 5000)
fetching threads

• Every thread handles a request and is I/O
bound

• Parallel threads parse and store pages

• Slow data structures are sandwiched
between lock-free queues

Fully Distributed

• We use JGroups to set up a view on a set
of agents

• Hosts are assigned to agent using
consistent hashing

• URLs for which an agent is not responsible
are quickly delivered to the right agent

• We use JAI4J, a thin layer over JGroups that
handles job assignment.

Near–Duplicates
• We detect (presently) near-duplicates using

a fingerprint of a stripped page (stored in a
Bloom filter)

• The stripping includes eliminating almost all
tag attributes and numbers from text

• We are going to experiment with more
sophisticated methods like SimHash

• Suggestions for heuristics are welcome

• We would like to have a test collection

Fast?
• In vitro: >9000 pages/s average, peaks at

18000 pages/s

• Actual crawl of the .it domain done at
iStella: >5000 pages/s average (single
crawler), but we saturated a 2Gb/s link, so
we don’t really know

• ClueWeb09 (Nutch): 4.3 pages/s

• ClueWeb12 (Heritrix): 60 pages/s

• IRLbot: 1790 pages/s (unverifiable)

Almost everything broke down
• Unfortunately, when you develop on the edge...

• Hardware breaks down: €40,000 server replaced for
no charge with a €60,000 server

• OS breaks down: Linux kernel’s bug 862758

• JVM breaks down: try opening 5000 random-access
files

• Dozens of bug reports and improvements to a
number of open-source projects, including the
Jericho HTML parser, Apache Software Foundation’s
HTTP Client, etc.

https://bugzilla.redhat.com/show_bug.cgi?id=862758
https://bugzilla.redhat.com/show_bug.cgi?id=862758

PART II:
 Axioms

What is centrality?
• To understand centrality, we need

mathematical properties

• One of the major goals of our research in
NADINE was to isolate such properties

• In “Axioms for Centrality” we propose
three properties

• (Beside sorting out the zoo of centralities)

• Do we understand centrality?

Hollywood: PageRank
Ron Jeremy Adolf Hitler Lloyd Kaufman George W. Bush

Ronald Reagan Bill Clinton Martin Sheen Debbie Rochon

Hollywood: Degree
William Shatner Bess Flowers Martin Sheen Ronald Reagan

George Clooney Samuel Jackson Robin Williams Tom Hanks

Hollywood: Betweenness
Adolf Hitler Lloyd Kaufman Ron Jeremy Tony Robinson

Olu Jacobs Max von Sydow Udo Kier George W. Bush

Hollywood: Katz
William Shatner Martin Sheen

George Clooney

Robin WilliamsTom Hanks

Ronald Reagan Bruce Willis Samuel Jackson

Hollywood: Closeness
Lina Tjeng Ryan VillapotoAnh Loan Nguyen Thi Chad Reed

Bjorn van Wenum J.P. Ramackers Herbert Sydney R.D. Nicholson

Iso
lat

ed
 no

de
s h

av
e l

arg
es

t c
en

tra
lit

y

Axiomatic
Sensitivity to density

Densifying the left-hand side, we expect the red node to
become more important than the blue node

The blue and the red node have the same
importance (the two rings have the same size!)

Axiomatic
Sensitivity to size

When k or p goes to ∞, the nodes of the
corresponding subnetwork must become

more important

k p

Two disjoint (or
very far)

components of a
single network

Axiomatic
Monotonicity

When we add an arc from x to y, the score of
y must increase

An axiomatic slaughter
Density Size Monotonicity

Degree yes only k yes
Betweenness no (!) only p no
Katz yes only k yes
Closeness no no (!) no
Lin no only k no
Harmonic yes yes yes
PageRank yes no yes
Seeley yes no no
HITS yes only k no
SALSA yes no no
Dominant yes only k no

• Give a warm welcome to harmonic centrality:

• The denormalized reciprocal of the harmonic mean of
all distances (even ∞)

• Inspired by the use the the harmonic mean in
(Marchiori, Latora 2000)

• Quoted for undirected graphs in Tore Opsahl’s blog

A better closeness

charm(x) =
X

y 6=x

1

d(y, x)

Hollywood: Harmonic
George Clooney Samuel Jackson Sharon Stone Tom Hanks

Martin Sheen Dennis Hopper Antonio Banderas Madonna

• Aaron Clauset is already teaching our axioms and
harmonic centrality at Santa Fe Institute!

• Luca Aiello @Yahoo! Barcelona is using harmonic
centrality for recommendation systems

• Spread the word!

People seem to like it

PART III:
 Algorithms

Nice idea but...
• ...computing harmonic centrality is not so

easy

• In particular on directed network

• General problem of anything based on
shortest paths

• Solution: approximated/probabilistic/
Monte–Carlo algorithms

• HyperBall (from Flajolet’s HyperLogLog
probabilistic counters)

For real

• Highly scalable, massively parallel computation

• Open-source software part of the WebGraph
framework

• Run on Facebook (whole graph) using just a
workstation (72GiB RAM)

Intermediate step

• For each node, we compute in sequence the
number of nodes at distance exactly t

• Adding up over all nodes, we get the distance
distribution (modulo normalization)

• Centralities can be rewritten, e.g., harmonic:

X
t>0

1

t

ˇ̌
fy j d.y; x/ D tg

ˇ̌

Dynamic Programming
• Basic idea: Palmer et. al, KDD ’02

• Let Bt(x) be the ball of radius t around x
(nodes at distance at most t from x)

• Clearly B0(x)={x}

• But also Bt+1(x)=∪x→yBt(y)∪{x}

• So we can compute balls by enumerating
the arcs x→y and performing set unions...

• ...using a probabilistic representation!

Performance
• On a 177K nodes / 2B arcs graph, RSD ~14%:

• Hadoop: 2875s per iteration [Kang,
Papadimitriou, Sun and H. Tong, 2011]

• HyperBall on this laptop: 70s per iteration

• On a 32-core workstation: 23s per iteration

• On ClueWeb09 (4.8G nodes, 8G arcs) on a 40-
core workstation: 141m (avg. 40s per iteration)

• École Polytechnique Fédéral de Lausanne’s x-stream
project implemented HyperBall (http://labos.epfl.ch/x-
stream)

• Tokyo Institute of Technology’s ScaleGraph project,
too (http://scalegraph.sourceforge.net/web/)

• [Named HyperANF at that time!]

People seem to like it

http://labos.epfl.ch/x-stream
http://labos.epfl.ch/x-stream
http://labos.epfl.ch/x-stream
http://labos.epfl.ch/x-stream
http://scalegraph.sourceforge.net/web/
http://scalegraph.sourceforge.net/web/

Thanks!
Questions?

