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Overview:
» Monte Carlo algorithms for networks
» Statistical methods for graphs

» Local and global centralities in directed random graphs
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Finding top-k most popular nodes

» Problem: Find top-k network nodes with largest degrees
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Finding top-k most popular nodes

» Problem: Find top-k network nodes with largest degrees
» Some applications:

Routing via large degree nodes

Proxy for various centrality measures

Node clustering and classification

Epidemic processes on networks

Finding most popular entities (e.g. interest groups)
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Finding top-k most popular nodes

» Problem: Find top-k network nodes with largest degrees
» Some applications:

Routing via large degree nodes

Proxy for various centrality measures

Node clustering and classification

Epidemic processes on networks

Finding most popular entities (e.g. interest groups)
Many companies maintain network statistics
(twittercounter.com, followerwonk.com, twitaholic.com,
www.insidefacebook.com, yavkontakte.ru)
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Top-k most popular entities in directed networks

» If the adjacency list of the network is known the top-k list of
nodes can be found by the HeapSort with complexity O(N),
where N is the total number of nodes.
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Top-k most popular entities in directed networks

» If the adjacency list of the network is known the top-k list of
nodes can be found by the HeapSort with complexity O(N),
where N is the total number of nodes.

» Too high complexity for large networks

» The network can be accessed only via API, with limited
access.

» Randomized algorithms: Find a ‘good enough’ answer with a
small answer of API requests.
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Top-k most popular entities in directed networks

» If the adjacency list of the network is known the top-k list of
nodes can be found by the HeapSort with complexity O(N),
where N is the total number of nodes.

» Too high complexity for large networks

» The network can be accessed only via API, with limited
access.

» Randomized algorithms: Find a ‘good enough’ answer with a
small answer of API requests.

A lot of attention in the literature.

v
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Two-stage algorithm

Two-stage algorithm

» Stage 1: Use n; API requests to retrieve id's of the followees
of n; random users

» Stage 2: Use ny API requests to check real degrees of the ny
users with largest number of followers among the n; random
users from Stage 1.

» Result: Return the identified top-k list of most popular users.

In total, we use n = ny + ny requests to API
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Results on Twitter
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Figure : The fraction of correctly identified top-k most followed Twitter
users as a function of n,, with n = 1000.
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Known algorithms

» Random-walk based. Cooper, Radzik, Siantos (2012)
Transitions probabilities along undirected edges (x, y) are
proportional to (d(x)d(y))?, where d(x) is the degree of a
vertex x and b > 0 is some parameter.

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  7/49



Known algorithms

» Random-walk based. Cooper, Radzik, Siantos (2012)
Transitions probabilities along undirected edges (x, y) are
proportional to (d(x)d(y))?, where d(x) is the degree of a
vertex x and b > 0 is some parameter.

» Random Walk Avrachenkov, L, Sokol, Towsley (2012)
Random walk with uniform jumps. In an undirected graphs
the stationary distribution is a linear function of degrees.

» Crawl-Al and Crawl-GAl. Kumar, Lang, Marlow, Tomkins
(2008) At every step all nodes have their apparent in-degrees
S;, j=1,..., N: the number of discovered edges pointing to
this node. Designed for WWW crawl.
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» Random-walk based. Cooper, Radzik, Siantos (2012)
Transitions probabilities along undirected edges (x, y) are
proportional to (d(x)d(y))?, where d(x) is the degree of a
vertex x and b > 0 is some parameter.

» Random Walk Avrachenkov, L, Sokol, Towsley (2012)
Random walk with uniform jumps. In an undirected graphs
the stationary distribution is a linear function of degrees.

» Crawl-Al and Crawl-GAl. Kumar, Lang, Marlow, Tomkins
(2008) At every step all nodes have their apparent in-degrees
S;, j=1,..., N: the number of discovered edges pointing to
this node. Designed for WWW crawl.

» HighestDegree. Borgs, Brautbar, Chayes, Khanna, Lucier
(2012) Retrieve a random node, check in-degrees of its
out-neighbors. Proceed while resources are available.
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Comparison of the algorithms

Table : Percentage of correctly identified nodes from top-100 in Twitter
averaged over 30 experiments, n = 1000

Algorithm \ mean \ standard deviation
Two-stage algorithm 92.6 4.7
Random walk (strict) 0.43 0.63
Random walk (relaxed) | 8.7 2.4
Crawl-GAl 4.1 5.9
Crawl-Al 23.9 20.2
HighestDegree 24.7 11.8
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Comparison of the algorithms

Table : Percentage of correctly identified nodes from top-100 in Twitter
averaged over 30 experiments, n = 1000

Algorithm \ mean \ standard deviation
Two-stage algorithm 92.6 4.7
Random walk (strict) 0.43 0.63
Random walk (relaxed) | 8.7 2.4
Crawl-GAl 4.1 5.9
Crawl-Al 23.9 20.2
HighestDegree 24.7 11.8

Advantages of the two-stage algorithm:

» does not waste resources

» obtains exact degrees of the ny ‘most promising’ nodes
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Comparison of the algorithms
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Figure : The fraction of correctly identified top-100 most followed
Twitter users as a function of n averaged over 10 experiments.
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Performance prediction

G = (V, E) — directed graph, |V|=N
» Number the vertices in the decreasing order of their degrees:
FizF2>2-2>2Fn.
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» Number the vertices in the decreasing order of their degrees:
FizF2>2-2>2Fn.

» S; is the number of followers of node j =1,2,..., N among
the n; randomly chosen vertices in V

» S; ~ Binomial(ny, Fj/N)

» S;, =S, > ... 2 Sj, be the order statistics of 51, ..., Sn.

» Performance measure:

Elfraction of correctly identified top-k entities]
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Performance prediction

G = (V, E) — directed graph, |V|=N

» Number the vertices in the decreasing order of their degrees:
FirzF 22> Fpn.

» S; is the number of followers of node j =1,2,..., N among
the n; randomly chosen vertices in V

» S; ~ Binomial(ny, Fj/N)

» S;, =S, > ... 2 Sj, be the order statistics of 51, ..., Sn.

» Performance measure:

Elfraction of correctly identified top-k entities]

k
1 )
= > PGedn, ... iy 1) (1)
j=1
» Computation of P(j € {i1,...,in,}) is not feasible even if

degrees are known
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Poisson prediction

> PG e{in, ... in))

— P(Sj > S;n2) + P(Sj = 5,'"2,j € {1'1 ..... I'nQ})

» Example. Twitter graph, take n; = n, =500. Then the
average number of nodes / with S; = 1 among the top-/ nodes
is

I

/ = = 499
P(Si=1)=) 500 — — (1—— ,
; (5 =1) ; 5-108 ( 5-108>
which is 2540.6 for / = 10,000 and it is 57.4 for | = ny, = 500.
Hence, typically, [Si,, = 1]. The event [i € {i1, ..., in,}] occurs
only for a small fraction of nodes i with [S; = 1].
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» Example. Twitter graph, take n; = n, =500. Then the
average number of nodes / with S; = 1 among the top-/ nodes
is

/ / F; F; 499
;P(S,1);5005'108 <1—5'108> ,
which is 2540.6 for / = 10,000 and it is 57.4 for | = ny, = 500.
Hence, typically, [Si,, = 1]. The event [i € {i1, ..., in,}] occurs

only for a small fraction of nodes i with [S; = 1].

» Approximation:

P(je{n, ....in}) = P(S5 > 5,-n2) ~ P(S; > max{S,,,1})
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=P(5>S5,,)+ PS5 =S,,.j€eln, ..., iny })

» Example. Twitter graph, take n; = n, =500. Then the
average number of nodes / with S; = 1 among the top-/ nodes
is

/ / F; F; 499
;P(S,1);5005'108 <1—5'108> ,

which is 2540.6 for / = 10,000 and it is 57.4 for | = ny, = 500.

Hence, typically, [Si,, = 1]. The event [i € {i1, ..., in,}] occurs
only for a small fraction of nodes i with [S; = 1].

» Approximation:

P(je{n, ....in}) = P(S5 > 5,-n2) ~ P(S; > max{S,,,1})

» Assume F; and Fp, are known, then approximate

Sj ~ Poisson(niF;/N)
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EVT predictions

» Poisson approximation is not realistic: degrees are unknown
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EVT predictions

» Poisson approximation is not realistic: degrees are unknown
» The algorithm finds a few highest degrees with accuracy

almost 100%
» Let F; > F» > -+ > Fp, be the top-m degrees found by the

algorithm, m < k
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EVT predictions

» Poisson approximation is not realistic: degrees are unknown

» The algorithm finds a few highest degrees with accuracy
almost 100%

> Let ,2—1 > 132 > > I:_m be the top-m degrees found by the
algorithm, m < k

» The degrees follow a power law distribution with exponent y

» Hill's estimator:

-1
1 m—1 R R
¥ = <m_1 Zl log(Fi) — Iog(Fm)> : (2)
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EVT predictions

» Poisson approximation is not realistic: degrees are unknown

» The algorithm finds a few highest degrees with accuracy
almost 100%

> Let ,2—1 > 132 > > I:_m be the top-m degrees found by the
algorithm, m < k

» The degrees follow a power law distribution with exponent y

» Hill's estimator:

—1
< _1Z|og Iogﬁ)) : (2)

» Estimator for high degrees: Dekkers et al. (1989)
/¥
f= (Jml) L j>1,j<<N.
» Use S5 ~ Pmsson(nlﬁ-/N)
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Performance predictions on the Twitter graph
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Optimal parameters

» 1,..., k—top-k nodes in W; Fq,..., Fx — their degrees
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Optimal parameters
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» S; ~ Binomial(ny, Fj/N)
» With normal approximation, and error pr-ty & we need that

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  14/49



Optimal parameters

» 1,..., k — top-k nodes in W; F1,..., Fi — their degrees
Sj ~ Binomial(ny, Fj/N)
With normal approximation, and error pr-ty & we need that

vy

v

n= O(n1) (SLLN)
Assume that k = o(n) as n — oo, then the maximizer of the
probability P(k € {i, ..., in,}) is

v

ny = (3ykYn) 71 (14 0(1)).
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Sublinear complexity

V=

» For any fixed ¢, 6 > 0, our algorithm finds the fraction 1 — ¢
of top-k nodes with probability 1 — 6 in

= O(N/a(N))

API requests, as N — oo, where a(N) = /(N)NY and /(-) is
some slowly varying function.
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Sublinear complexity

V| =N

» For any fixed ¢, 6 > 0, our algorithm finds the fraction 1 — ¢
of top-k nodes with probability 1 — 6 in

n=0(N/a(N))

API requests, as N — oo, where a(N) = /(N)NY and /(-) is
some slowly varying function.

» For Twitter top-k, n = O(N~1/7)

» High variability helps a lot!

» K.Avrachenkov, N.Litvak, L.Ostroumova-Prokhorenkova and
E.Suyargulova, Quick detection of high-degree entities in large

directed networks, IEEE International Conference on Data Mining
(ICDM 2014), (arXiv:1410.0571v2[cs.SI]) [M10-WP1.4]
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Directed random graphs

» Null-models for statistical analysis of real networks
» Theoretical characterization of centralities in networks

» In the literature, attention is mainly on undirected networks
and their geometric properties (degree distributions, distances,
component sizes etc.)

» We analyze centralities and statistical estimators in directed
random graphs
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Directed Configuration Model
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Directed Configuration Model
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Directed Configuration Model

F+ =
%1 \ Vi
v &

V2

Vn — Vn

NNV

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  17/49



Directed Configuration Model

F+ =
Vi 121
v &

V2

Vn — Vn

NN

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  17/49



Directed Configuration Model

General Model

F+ =
%1 Vi
% V2
Vn Vn
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Directed Configuration Model

Repeated Model

F+ =
%1 Vi
% V2
Vn Vn
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Directed Configuration Model
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Directed Configuration Model

Erased Model

F+ =
Vi ® «u
Vo @ »
Vn ® v
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Heavy-tailed degree distributions
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Heavy-tailed degree distributions
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Heavy-tailed degree distributions
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Heavy-tailed degree distributions
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Heavy-tailed degree distributions
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l1<y<2 = E[Dl<ox
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Heavy-tailed degree distributions
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l<y<2 = E[Dl<w E[D}=c
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Degree-degree correlations

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  19/49



Degree-degree correlations

Given a directed graph G = (V, E).
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Degree-degree correlations

Given a directed graph G = (V, E).

s B
D! D

\' i
/i J

Index degree type by «, 3 € {4+, —}.
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Four types of degree-degree correlation
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Four types of degree-degree correlation
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Degree-degree correlations in practice
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Degree-degree correlations in practice

Information flow neural networks.
Stability of P2P networks under attack.
Epidemics on networks.

Network Observability.

Opinion dynamics based on social influence.

vV v v v vy

Collaboration in social networks.
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Pearson’s correlation coefficients
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Pearson’s correlation coefficients

Given a set of m joint measurements {X;, Yili<i<m
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Pearson’s correlation coefficients

Given a set of m joint measurements {X;, Yili<i<m

%Z?’lef\’f—#ZLX"ZfL Yi
\/Var(X) \/Var(Y)

m 2
Var(X) = % > XP- % (Z X,-)

i=1

r(X,Y)=
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Pearson’s correlation coefficients

Given a set of m joint measurements {X;, Yili<i<m

%Z,'-llXin—#ZLXfZ,’-L Yi
\/Var(X) \/Var(Y)

m m 2
Var(X) = % > XP- % (Z X,-)
i=1 i=1

r(X,Y)=

Given a graph G, of size n, pick «, B € {+, —}.
We have E joint measurements {D, DJ.B},-HJ-
roff(G,,) = r(D%, DP)

Newman 2003
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Convergence of Pearson’s correlation coefficients
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Convergence of Pearson’s correlation coefficients

Theorem 1 (vdHoorn and L 2014)

Let o, @ € {+,—}. Then there exists an area Ag’( C RR? such that if
{Gp}nen is a sequence of graphs with scale-free degree distributions
where the tail-exponents (y.,v_) € AE(,

lim r8(G,) > 0.

X
n—0o0
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Convergence of Pearson’s correlation coefficients

Theorem 1 (vdHoorn and L 2014)

Let o, @ € {+,—}. Then there exists an area Ag’( C RR? such that if
{Gp}nen is a sequence of graphs with scale-free degree distributions
where the tail-exponents (y.,v_) € AE(,

g B
nIl_)moo rg(Gn) = 0.

l<ys <2€AB, forall o, B € {+, —}
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Given a graph G, of size n, o, B € {+, —}
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We have E joint measurements {D, Djﬁ},qj = {R%, F\’jﬁ},-ﬁj
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Rank correlations: Spearman’s rho

Given a graph G, of size n, o, B € {+, —}

Rank the degrees in descending order

We have E joint measurements {D, Djﬁ},qj = {R%, F\’jﬁ},-ﬁj
Compute Pearsons correlation coefficient on {R?, RJ.B},-_U-

0B (G,) == r(R*, RP)
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Statistical consistency Spearman’s rho

Theorem 2 (vdHoorn and L 2014)

Let {G,},en be a sequence of random graphs, «, f € {+, —} and
suppose there exist integer valued random variables D% and DP
such that
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Spearman’s rho in the Erased Configuration Model

» Simple graph: multiple edges and loops are removed
» Wiring is not entirely neutral
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Spearman’s rho in the Erased Configuration Model

» Simple graph: multiple edges and loops are removed
» Wiring is not entirely neutral

Theorem 3 (vdHoorn and L 2014)

Let {G,},en be a sequence of graphs of size n, generated by either
the Repeated or Erased Configuration Model and o, f € {+, —}.
Then, as n — o,

P
pB(G,) = 0.
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Spearman’s rho in the Erased Configuration Model

» Simple graph: multiple edges and loops are removed
» Wiring is not entirely neutral

Theorem 3 (vdHoorn and L 2014)

Let {G,},en be a sequence of graphs of size n, generated by either
the Repeated or Erased Configuration Model and o, f € {+, —}.
Then, as n — o,

P
pB(G,) = 0.

» Use Theorem 2
PPk 0) SP (D% =k DP =) =P (D = k) P(DP =)

» ECM is a null-model for degree-degree correlations
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Erased model in practice

X Out-In In-Out
r 1
[—size =10000 fi
size =50000
0.8 f|—size =100000 0.8
—size =500000
0.6 | [=size =1000000) 0.6
0.4 0.4
0.2 0.2 J
0 J%; 0 4—~
004 002 0 002 004 004 -0.02 0 002 004

S
J% J

-0.04 -0.02 0 0.02 0.04 -0.04 -0.02 0 0.02 0.04

Figure : Empirical cdf of pﬁ(G,,) for ECM graphs with yL =2.1
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Erased model in practice

Out-In In-Out
1 1
===size =10000
size =50000
08 ~size =100000 08
===size =500000
0.6 [|==size =1000000 0.6
0.4 0.4
0.2 0.2
0 0
02 -015 -01 -0.05 0 0.05 -0.03 -0.02 -0.01 0 0.01 0.02
Out-Out In-In
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
oL 0
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

Figure : Empirical cdf of pg(G,,) for ECM graphs with y+ =15
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Why is Out-In different?
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Why is Out-In different?

high D+

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  28/49



Why is Out-In different?

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  28/49



What about In-Out?

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  29/49



What about In-Out?

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  29/49



What about In-Out?

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  29/49



What about In-Out?

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  29/49



What about In-Out?

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  29/49



Scaling of pf

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  30/49



Scaling of pf

Let G, be a graph of size n, generated by the ECM and denote by
G, the graph before the removal of edges.

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  30/49



Scaling of pf

Let G, be a graph of size n, generated by the ECM and denote by
G, the graph before the removal of edges.

Let E,-JC- denote the number of erased edges between j and j in
ECM.

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  30/49



Scaling of pf

Let G, be a graph of size n, generated by the ECM and denote by
G, the graph before the removal of edges.

Let E,-JC- denote the number of erased edges between j and j in
ECM.

n

+/ _ pt c

D' =Df -y Ef.
j=1

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  30/49



Scaling of pf

Let G, be a graph of size n, generated by the ECM and denote by
G, the graph before the removal of edges.

Let E,-JC- denote the number of erased edges between j and j in
ECM.

n

+/ _ -+ c

D' =Df -y Ef.
j=1

07(Gn) —03(6) =0 | £ Y B [E5]

ij=1
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> &

ij=1
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A first upper bound

) E= ZMU+ZS~

ij=1 ij=1
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A first upper bound

i ZMU+ZS,,

ij=1 ij=1

D:*D;

E,[Sil = 5
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A first upper bound

i ZMU+ZS,,

ij=1 ij=1
D D (D;)*(D;7)?
E, [Sii] = % E, [MU] < IE72J
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i ZMU+ZS,,

ij=1 ij=1

D D (D;j)?(D;)?
E, [Si] = ~F E, [MU] < TJ

EZE <)Y —mrY e

ij=1 ij=1 i=1
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A first upper bound

i ZMU+ZS,,

ij=1 ij=1

D D (D;)*(D;7)?
E, [Si] = T E, [MU] < TJ

Ly < o(m ) co()

ij=1
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A first upper bound

i ZMU+ZS,,

ij=1 ij=1
D D (D;)*(D;7)?
E, [Sii] = % E, [MU] < IE72J
£ X miEl S 0(07 )
ij=1
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A second upper bound

1 & 7?1l D;*D;-

ij=1 ij=1

CLT for heavy-tailed distributions and Tauberian theorem
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A second upper bound

1 ¢ (1 g DD D+D
ij=1

ij=1 I_] 1

CLT for heavy-tailed distributions and Tauberian theorem
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A second upper bound

1 n n2 1 n DI+ Djf 1 n D,Jr Dj,
ij=1 ij=1 =
CLT for heavy-tailed distributions and Tauberian theorem
1 o L
E Z E, [EUC] <0 (nV+/1\v7 1) +0 (nlf(V+/\V—))
ij=1
32/49
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A second upper bound

1 ¢ (1 & DDy 1< D D}
ELEIEISE| gl —F 1t ee) g

ij=1 ij=1 ij=1
CLT for heavy-tailed distributions and Tauberian theorem
Ly c Ay 1 1 (v Ay-)
£ 2 En[E] <0 (0 o ()

ij=1

1<yt <2
32/49
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A second upper bound

1 ¢ (1 & DDy 1< D D}
ELEIEISE| gl —F 1t ee) g

ij=1 ij=1 ij=1
CLT for heavy-tailed distributions and Tauberian theorem
1 - c +_1
E Z ]En [EU] < 0 (nV+ Y- )

ij=1

1<yt <2
32/49
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Phase transitions for p. (G,)

07 (G, Z E, )

I_j 1
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Phase transitions for p. (G,)

p+ Z E ) +O(p+( ))

Ij 1
UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  33/49



Phase transitions for p. (G,)

1 Y+ 2

P (Gn) =0 (é > E, [E,-j-]> + 0 (p3(G)))
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Phase transitions for p. (G,)

1
E

pI(Gn) =0

5 E, [Eﬂ) +0(pr(6)
=]
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Phase transitions for p. (G,)

p7(Gy) =0 % Y E, [E-j-]) +0 (n172)
ij=1
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Phase transitions for p. (G,)

1 . 1
Y+ Av- 2
2 2 1
— + ——3<-—3
Y+ Y- 2

p7(Gy) =0 % Y E, [E-j-]) +0 (n172)
ij=1
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Phase transitions for p7(G,)

1 ) 1
Y+ Av— 2
2 2 1
—+——=3<—3
Y+ Y- 2

P (Gs) =0 % > E, [EUC]> 10 <n71/2)
j—1
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pI ( Gn) —-E [pI ( Gn)]
Nf(vey-)
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Scaling of pL(G,) in practice

pI ( Gn) —-E [pI ( Gn)]

Nf(v+v-)
1 1 1
—size =10000
size =50000
0.8 f|—size =100000 i 08 08
—size =500000
0.6 [=size =1000000) 06 06
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
-4 2 0 2 02 0.1 0 0.1 150 -100  -50 0 50
(a) N~V v Ay () Ny + 2/ )3 (c) N2
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Scaling of pL(G,) in practice

pI ( Gn) —-E [pI ( Gn)]

Nf(vey-)
- 1 1
—size =10000
size =50000
0.8 f|—size =100000 08 08
==size =500000
0.6 {=—size =1000000 0.6 06
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
1 05 0 05 -10 5 0 5 30 20 10 0 10
(a) N~V v Ay () Ny + 2/ )3 (c) N2
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Scaling of pL(G,) in practice

pI ( Gn) —-E [pI ( Gn)]

Nf(v+v-)
1 1 1
—size =10000
size =50000
0.8 f|—size =100000 08 08
—size =500000
0.6 [=size =1000000) 06 06
0.4 04 04
0.2 0.2 0.2
0 0 0
-2 -1 0 1 60 -40 20 0 20 -5 10 -5 0 5
(a) N~V v Ay () Ny + 2/ )3 (c) N2
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Scaling of p™(G,) in practice

pi(Gn) —E [pi(Gn)]

Nf(v+v-)
f F— 1 1
—size =10000
size =50000
0.8 f|—size =100000 08 08
—size =500000
06 [—size =1000000) 0.6 06
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
-0.4 -0.2 0.2 -0.02 -0.01 0 0.01 -10 -5 0 5
(a) N1/ (v Ay -) (b) N@/y)+(2/v-)-3 (c) N—1/2
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Scaling of p™(G,) in practice

=—=size =10000

size =50000
0.8|—size 100000
—size =500000
[—size =1000000)

0.6

0.4

0.2

-0.2

-0.1 0

0.1 0.2

UNIVERSITY OF TWENTE.

pi(Gn) —E [pi(Gn)]

1

0.8

0.6

0.4

0.2

0 -

1 -0.5 0 0.5 1

(a) N=HHY/ v YD () N@R/Y)+(2/y )3

[ Nelly Litvak, NADINE Review 2 ]

Nf(vev-)

1
0.8
0.6
0.4
0.2

0
-2 -1 0 1 2

YIS
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Scaling of p™(G,) in practice

pi(Gn) —E [pi(Gn)]
Nf(v+v-)

1 Y+ 2

1 1 1
=—=size =10000
size =50000
0.8|—size 100000 0.8 0.8
—size =500000
0.6 {=—size =1000000 0.6 0.6

0.4 04 04
0.2 02 02

0 0 o

0.5 0 05 -10 o 10 20 4 P 0 5 "
(a) N1/ (v Ay ) (b) N(@/v)+(2/y-)-3 (©) N-1/2
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Finite-size effects result in structural out-in correlations
We have proved that rank correlations are consistent
estimators and characterized their behavior in ECM
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Our results lay the basis for rigorous statistical analysis of
wiring preferences in directed networks of any size

vvyyy

v

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  36/49



Statistical analysis of directed networks

ECM is easy to construct, and it is a simple graph

Asymptotically neutrally wired

Finite-size effects result in structural out-in correlations

We have proved that rank correlations are consistent

estimators and characterized their behavior in ECM

Our results lay the basis for rigorous statistical analysis of

wiring preferences in directed networks of any size

» P. van der Hoorn and N. Litvak, Convergence of rank based
degree-degree correlations in random directed networks,
Moscow Journal of Combinatorics and Number Theory (2015)
(arXiv:1407.7662[math.PR], 2014) [M13-WP4.3]

» P. van der Hoorn and N. Litvak, Phase transitions for scaling of

structural correlations in directed networks,

(arXiv:1504.01535[physics.soc-ph], 2015 [M13- WP4.3]

vvyyy

v
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PageRank in Directed Configuration Model (DCM)

» PageRank R; of page i =1,..., nis defined as a stationary
distribution of a random walk with jumps:

c .
Ri = .Z.Fj:‘?j+(1—c)ql', i=1....n
J—i
» d; = # out-links of page j
» c € (0,1), originally 0.85, probability of a random jump
» g; probability to jump to page i, originally, g; =1/n
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PageRank in Directed Configuration Model (DCM)

» PageRank R; of page i =1,..., nis defined as a stationary
distribution of a random walk with jumps:

c .
R;:.Z.ij?j+(1—c)q,-, i=1,....n
J—1

v

d; = # out-links of page j
c € (0,1), originally 0.85, probability of a random jump
g; probability to jump to page i, originally, g; = 1/n

vy

v

Problem: What is the distribution of the PageRank in DCM?
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PageRank in Directed Configuration Model (DCM)

» PageRank R; of page i =1,..., nis defined as a stationary
distribution of a random walk with jumps:

c .
Ri = .Z.Fj:‘?j+(1—c)ql', i=1....n
J—i
» d; = # out-links of page j
c € (0,1), originally 0.85, probability of a random jump
» g; probability to jump to page i, originally, g; =1/n

v

» Problem: What is the distribution of the PageRank in DCM?

» N.Chen, N.Litvak and M.Olvera-Cravioto, Ranking algorithms on
directed configuration networks, (arXiv:1409.7443v2[math.PR],
2014) [M7-WP5.2]
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Bi-directed degree sequence

» Directed graph on n nodes V ={vq, ..., vp}
» Extended bi-degree sequence
(an Dnv Cnv Qn) :{(Nlr Dlv Clr QI) : 1 < I < n}

L= Z N; = Z D;
i=1 i=1
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Bi-directed degree sequence

» Directed graph on n nodes V ={vq, ..., vp}
» Extended bi-degree sequence
(an Dnv cnv Qn) :{(Nlr Dlv Clr QI) : 1 < I < n}

L= Z N; = Z D;
i=1 i=1

» Assumption 1. Existence of certain limits in the spirit of the
weak law of large numbers, including %27:1 D,-2 to be
bounded in probability (finite variance of the out-degrees).

» Assumption 2. In a sequence of random graphs of growing
size, the empirical probabilities P(D; = k) converge to certain
distributions.
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PageRank in the DCM

» M= M(n) € R™*" is related to the adjacency matrix of the
graph:

M — s;jCi,  if there are s edges from i to J,
" 0, otherwise.

» Q € R" is a personalization vector

» We are interested in the distribution of one coordinate, Rl("),
of the vector R(") € R" defined by

R(W — R M + Q
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Original and size-biased distribution

» Given the extended bi-degree sequence (N,, D,, C,, Q,):
» Empirical distribution for the root node's parameters:

Fr(m.q): Zl <m, Q< q),

converges to F*(m, q) := P(No <m,Qy < q)
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Original and size-biased distribution

» Given the extended bi-degree sequence (N,, D,, C,, Q,):
» Empirical distribution for the root node's parameters:

Fr(m.q): Zl <m, Q< q),

converges to F*(m, q) := P(No <m,Qy < q)

» Empirical distribution for a node that has a out-link to any
arbitrary node (size-biased by out-degree)

n(m, q,x) Zl k<m Q< q,C < x)—

converges to F(m, q, x) =PN<m Q< qg)P(C < x).
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Main result

N
REZ(‘ZJ‘R]—FQ,

j=1

» Let R denote the endogenous solution to the SFPE above.
» The endogenous solution is the limit of iterations of the
recursion starting, say, from Ry = 1.
» Main result:
Rl(") = R*, n — oo,
where =- denotes weak convergence and R* is given by
No
R* =) €Rj+
j=1

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  41/49



Methodology

» Three steps, three entirely different techniques.
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Methodology

» Three steps, three entirely different techniques.

» 1. Finite approximation. PageRank is accurately
approximated by a finite number of matrix iterations.

» 2. Coupling with a tree. Construct a coupling of the DCM
graph and a “thorny branching tree” (TBT). The coupling
between the graph and the TBT will hold for a number of
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» 1. Finite approximation. PageRank is accurately
approximated by a finite number of matrix iterations.

» 2. Coupling with a tree. Construct a coupling of the DCM
graph and a “thorny branching tree” (TBT). The coupling
between the graph and the TBT will hold for a number of
generations in the tree that is logarithmic in n.

» 3. Convergence to a weighted branching process. Show
that the rank of the root node of the TBT converges weakly
to the stated limit. Chen and Olvera-Cravioto (2014)
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Matrix iterations

R = B,
R(n,l) — R(nvO)M + Q = BM + Qv

k—1
RWK =3 QM+ BM*, k>1.
i=0
Under event Bn = {maxlg,-gn |C,|D, <c, %Z?:l |Q,| < H}

ck

[e¢]
R = RO | < firollyc+ Y 11QUe" " = rolnc’+Qlls
1 P 1

All nodes are symmetric! Markov inequality:
P (R = R(™| > 51| By) = O (xnc)
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Coupling with branching tree

» We start with random node (node 1) and explore its
neighbours, labeling the stubs that we have already seen
» T — the number of generations of WBP completed before

./.'/'.//
A IAVK

I
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Coupling with branching tree

Lemma (Chen, L, Olvera-Cravioto 2014)

Suppose (N,,D,,, C,,, Q) satisfies WLLN, w = E(ND)/E(D).
Then,

» forany 1l < k < hlognwith0<h<1/(2logu), ifu>1,
> foranylgkgnb with b<1/2, ifu <1,
we have
O ((n/u?)712), u>1,
P(t<kQn) =40 ((n/k)Y2), u=1,
0 (n1/?), <,
as n — o0o.

Remark: 1 corresponds to the average number of offspring of a
node in TBT.
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Numerical results-1
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Figure : The empirical CDFs of 1000 samples of R*, R\"*) R!"™*) and
R(nka) for n = 10000 and k, = 9.
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Numerical results-2
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Figure : The empirical CDFs of 1000 samples of R* and R\™* for
n = 10, 100 and 10000.
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Wiki graph

PageRank inverse cdf's
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Figure : The empirical distribution of PageRank in English Wikipedia
graph and its theoretical prediction. Dataset from U.Milan
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Conclusions and ongoing research

» Breakthrough in probabilistic analysis of centralities and
relations between them

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  49/49



Conclusions and ongoing research

» Breakthrough in probabilistic analysis of centralities and
relations between them

» The methodology developed for analysis of PageRank in DCM
can be applied for many other problems (distances, other
centralities, other random graphs)

Current work:
» Distances in DCM

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  49/49



Conclusions and ongoing research

» Breakthrough in probabilistic analysis of centralities and
relations between them

» The methodology developed for analysis of PageRank in DCM
can be applied for many other problems (distances, other
centralities, other random graphs)

Current work:
» Distances in DCM
» Analysis of voting models (jointly with U. Milan)

UNIVERSITY OF TWENTE. [ Nelly Litvak, NADINE Review 2]  49/49
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» Breakthrough in probabilistic analysis of centralities and
relations between them

» The methodology developed for analysis of PageRank in DCM
can be applied for many other problems (distances, other
centralities, other random graphs)

Current work:
» Distances in DCM
» Analysis of voting models (jointly with U. Milan)
» Extension to dynamic centralities (jointly with MTA SZTAKI)
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