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Finding top-k most popular nodes

I Problem: Find top-k network nodes with largest degrees

I Some applications:

I Routing via large degree nodes
I Proxy for various centrality measures
I Node clustering and classification
I Epidemic processes on networks
I Finding most popular entities (e.g. interest groups)
I Many companies maintain network statistics

(twittercounter.com, followerwonk.com, twitaholic.com,
www.insidefacebook.com, yavkontakte.ru)
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Top-k most popular entities in directed networks

I If the adjacency list of the network is known the top-k list of
nodes can be found by the HeapSort with complexity O(N),
where N is the total number of nodes.

I Too high complexity for large networks

I The network can be accessed only via API, with limited
access.

I Randomized algorithms: Find a ‘good enough’ answer with a
small answer of API requests.

I A lot of attention in the literature.
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Two-stage algorithm

Two-stage algorithm

I Stage 1: Use n1 API requests to retrieve id’s of the followees
of n1 random users

I Stage 2: Use n2 API requests to check real degrees of the n2
users with largest number of followers among the n1 random
users from Stage 1.

I Result: Return the identified top-k list of most popular users.

In total, we use n = n1 + n2 requests to API
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Results on Twitter
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Figure : The fraction of correctly identified top-k most followed Twitter
users as a function of n2, with n = 1000.
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Known algorithms

I Random-walk based. Cooper, Radzik, Siantos (2012)
Transitions probabilities along undirected edges (x , y) are
proportional to (d(x)d(y))b, where d(x) is the degree of a
vertex x and b > 0 is some parameter.

I Random Walk Avrachenkov, L, Sokol, Towsley (2012)
Random walk with uniform jumps. In an undirected graphs
the stationary distribution is a linear function of degrees.

I Crawl-Al and Crawl-GAI. Kumar, Lang, Marlow, Tomkins
(2008) At every step all nodes have their apparent in-degrees
Sj , j = 1, . . . ,N: the number of discovered edges pointing to
this node. Designed for WWW crawl.

I HighestDegree. Borgs, Brautbar, Chayes, Khanna, Lucier
(2012) Retrieve a random node, check in-degrees of its
out-neighbors. Proceed while resources are available.
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Comparison of the algorithms

Table : Percentage of correctly identified nodes from top-100 in Twitter
averaged over 30 experiments, n = 1000

Algorithm mean standard deviation

Two-stage algorithm 92.6 4.7

Random walk (strict) 0.43 0.63

Random walk (relaxed) 8.7 2.4

Crawl-GAI 4.1 5.9

Crawl-AI 23.9 20.2

HighestDegree 24.7 11.8

Advantages of the two-stage algorithm:

I does not waste resources
I obtains exact degrees of the n2 ‘most promising’ nodes
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Figure : The fraction of correctly identified top-100 most followed
Twitter users as a function of n averaged over 10 experiments.
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Performance prediction

G = (V ,E ) – directed graph, |V | = N

I Number the vertices in the decreasing order of their degrees:
F1 > F2 > · · · > FN .

I Sj is the number of followers of node j = 1, 2, . . . ,N among
the n1 randomly chosen vertices in V

I Sj ∼ Binomial(n1,Fj/N)
I Si1 > Si2 > . . . > SiN be the order statistics of S1, . . . ,SN .
I Performance measure:

E [fraction of correctly identified top-k entities]

=
1

k

k∑
j=1

P(j ∈ {i1, . . . , in2}). (1)

I Computation of P(j ∈ {i1, . . . , in2}) is not feasible even if
degrees are known
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Poisson prediction

I P(j ∈ {i1, . . . , in2})
= P(Sj > Sin2 ) + P(Sj = Sin2 , j ∈ {i1, . . . , in2})

I Example. Twitter graph, take n1 = n2 = 500. Then the
average number of nodes i with Si = 1 among the top-l nodes
is

l∑
i=1

P(Si = 1) =
l∑

i=1

500
Fi

5 · 108

(
1 −

Fi
5 · 108

)499

,

which is 2540.6 for l = 10, 000 and it is 57.4 for l = n2 = 500.
Hence, typically, [Si500 = 1]. The event [i ∈ {i1, . . . , in2}] occurs
only for a small fraction of nodes i with [Si = 1].

I Approximation:
P(j ∈ {i1, . . . , in2}) ≈ P(Sj > Sin2 ) ≈ P(Sj > max{Sn2 , 1})

I Assume Fj and Fn2 are known, then approximate
Sj ∼ Poisson(n1Fj/N)
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EVT predictions

I Poisson approximation is not realistic: degrees are unknown

I The algorithm finds a few highest degrees with accuracy
almost 100%

I Let F̂1 > F̂2 > · · · > F̂m be the top-m degrees found by the
algorithm, m < k

I The degrees follow a power law distribution with exponent γ
I Hill’s estimator:

γ̂ =

(
1

m − 1

m−1∑
i=1

log(F̂i ) − log(F̂m)

)−1

. (2)

I Estimator for high degrees: Dekkers et al. (1989)

f̂j = F̂m

(
m
j−1

)1/γ̂
, j > 1, j << N.

I Use Sj ∼ Poisson(n1f̂j/N)
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Performance predictions on the Twitter graph
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Optimal parameters

I 1, . . . , k – top-k nodes in W ; F1, . . . ,Fk – their degrees

I Sj ∼ Binomial(n1,Fj/N)
I With normal approximation, and error pr-ty α we need that√

n1
N

Fk − Fn2√
Fk + Fn2

> z1−α

I n = O(n1) (SLLN)
I Assume that k = o(n) as n→∞, then the maximizer of the

probability P(k ∈ {i1, . . . , in2}) is

n2 = (3γkγn)
1
γ+1 (1 + o(1)) .
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Sublinear complexity

|V | = N √
n1
N

Fk − Fn2√
Fk + Fn2

> z1−α

I For any fixed ε, δ > 0, our algorithm finds the fraction 1 − ε
of top-k nodes with probability 1 − δ in

n = O(N/a(N))

API requests, as N →∞, where a(N) = l(N)Nγ and l(·) is
some slowly varying function.

I For Twitter top-k , n = O(N1−1/γ)
I High variability helps a lot!
I K.Avrachenkov, N.Litvak, L.Ostroumova-Prokhorenkova and

E.Suyargulova, Quick detection of high-degree entities in large
directed networks, IEEE International Conference on Data Mining
(ICDM 2014), (arXiv:1410.0571v2[cs.SI]) [M10-WP1.4]
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Directed random graphs

I Null-models for statistical analysis of real networks

I Theoretical characterization of centralities in networks

I In the literature, attention is mainly on undirected networks
and their geometric properties (degree distributions, distances,
component sizes etc.)

I We analyze centralities and statistical estimators in directed
random graphs
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Directed Configuration Model
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Heavy-tailed degree distributions

p(k) ≈ k−γ−1

1 < γ 6 ⇒ E [D] <∞ E
[
D2
]
=∞
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Degree-degree correlations

i → j

i j

D+
i

D−
jDαi Dβj

Index degree type by α,β ∈ {+,−}.
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Four types of degree-degree correlation

Out-In In-Out

Out-Out In-In
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Degree-degree correlations in practice

I Information flow neural networks.

I Stability of P2P networks under attack.

I Epidemics on networks.

I Network Observability.

I Opinion dynamics based on social influence.

I Collaboration in social networks.

I . . .
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Pearson’s correlation coefficients

Given a set of m joint measurements {Xi ,Yi }16i6m

r(X ,Y ) =
1
m

∑m
i=1 XiYi −

1
m2

∑m
i=1 Xi

∑m
i=1 Yi√

Var(X )
√

Var(Y )

Given a graph Gn of size n, pick α,β ∈ {+,−}.

We have E joint measurements {Dαi ,Dβj }i→j

rβα (Gn) := r(Dα,Dβ)

Newman 2003
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Convergence of Pearson’s correlation coefficients

Theorem 1 (vdHoorn and L 2014)

Let α,β ∈ {+,−}. Then there exists an area Aβα ⊂ R2 such that if
{Gn}n∈N is a sequence of graphs with scale-free degree distributions
where the tail-exponents (γ+,γ−) ∈ Aβα,

lim
n→∞ rβα (Gn) > 0.

1 < γ± 6 2 ∈ Aβα, for all α,β ∈ {+,−}
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Rank correlations: Spearman’s rho

Given a graph Gn of size n, α,β ∈ {+,−}

Rank the degrees in descending order

We have E joint measurements {Dαi ,Dβj }i→j

⇒ {Rαi ,Rβj }i→j

Compute Pearsons correlation coefficient on

ρβα(Gn) := r(Rα,Rβ)
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Statistical consistency Spearman’s rho

Theorem 2 (vdHoorn and L 2014)

Let {Gn}n∈N be a sequence of random graphs, α,β ∈ {+,−} and
suppose there exist integer valued random variables Dα and Dβ

such that

pβα(k , `)
P→ P

(
Dα = k ,Dβ = `

)
as n→∞.

Then, as n→∞,

ρβα(Gn)
P→ ρ

(
Dα,Dβ

)

[ Nelly Litvak, NADINE Review 2 ] 25/49



Spearman’s rho in the Erased Configuration Model

I Simple graph: multiple edges and loops are removed
I Wiring is not entirely neutral

Theorem 3 (vdHoorn and L 2014)

Let {Gn}n∈N be a sequence of graphs of size n, generated by either
the Repeated or Erased Configuration Model and α,β ∈ {+,−}.
Then, as n→∞,

ρβα(Gn)
P→ 0.

I Use Theorem 2

pβα(k, `)
P→ P

(
Dα = k ,Dβ = `

)
= P

(
Dα = k

)
P
(
Dβ = `

)

I ECM is a null-model for degree-degree correlations
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Erased model in practice
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Erased model in practice
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Figure : Empirical cdf of ρβα(Gn) for ECM graphs with γ± = 2.1
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Why is Out-In different?

...
...

high D+

high D−
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What about In-Out?

...
...
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Scaling of ρβα

Let Gn be a graph of size n, generated by the ECM and denote by
G∗n the graph before the removal of edges.

Let E c
ij denote the number of erased edges between i and j in

ECM.

D+ ′
i = D+

i −

n∑
j=1

E c
ij .
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∣∣ρ−+(Gn) − ρ
−
+(G

∗
n )
∣∣ = O

 1

E

n∑
i ,j=1

En

[
E c
ij

]
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A first upper bound

n∑
i ,j=1

E c
ij

=

n∑
i ,j=1

Mij +

n∑
i=1

Sii

En [Sii ] =
D+
i D−

i

E
En [Mij ] 6

(D+
i )2(D−

j )2

E 2

1

E

n∑
i ,j=1

En

[
E c
ij

]
6
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A second upper bound
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Phase transitions for ρ−+(Gn)
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Scaling of ρ−+(Gn) in practice
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Scaling of ρ+−(Gn) in practice
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Statistical analysis of directed networks

I ECM is easy to construct, and it is a simple graph

I Asymptotically neutrally wired
I Finite-size effects result in structural out-in correlations
I We have proved that rank correlations are consistent

estimators and characterized their behavior in ECM
I Our results lay the basis for rigorous statistical analysis of

wiring preferences in directed networks of any size
I P. van der Hoorn and N. Litvak, Convergence of rank based

degree-degree correlations in random directed networks,

Moscow Journal of Combinatorics and Number Theory (2015)

(arXiv:1407.7662[math.PR], 2014) [M13-WP4.3]
I P. van der Hoorn and N. Litvak, Phase transitions for scaling of

structural correlations in directed networks,

(arXiv:1504.01535[physics.soc-ph], 2015 [M13- WP4.3]
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PageRank in Directed Configuration Model (DCM)

I PageRank Ri of page i = 1, . . . , n is defined as a stationary
distribution of a random walk with jumps:

Ri =
∑
j → i

c

dj
Rj + (1 − c)qi , i = 1, . . . , n

I dj = # out-links of page j
I c ∈ (0, 1), originally 0.85, probability of a random jump
I qi probability to jump to page i , originally, qi = 1/n

I Problem: What is the distribution of the PageRank in DCM?

I N.Chen, N.Litvak and M.Olvera-Cravioto, Ranking algorithms on
directed configuration networks, (arXiv:1409.7443v2[math.PR],
2014) [M7-WP5.2]
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Bi-directed degree sequence

I Directed graph on n nodes V = {v1, . . . , vn}.
I Extended bi-degree sequence

(Nn, Dn, Cn, Qn) = {(Ni ,Di ,Ci ,Qi ) : 1 6 i 6 n}

Ln =

n∑
i=1

Ni =

n∑
i=1

Di

I Assumption 1. Existence of certain limits in the spirit of the
weak law of large numbers, including 1

n

∑n
i=1D

2
i to be

bounded in probability (finite variance of the out-degrees).
I Assumption 2. In a sequence of random graphs of growing

size, the empirical probabilities P(Di = k) converge to certain
distributions.
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PageRank in the DCM

I M = M(n) ∈ Rn×n is related to the adjacency matrix of the
graph:

Mi ,j =

{
sijCi , if there are sij edges from i to j ,

0, otherwise.

I Q ∈ Rn is a personalization vector

I We are interested in the distribution of one coordinate, R
(n)
1 ,

of the vector R(n) ∈ Rn defined by

R(n) = R(n)M + Q
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Original and size-biased distribution

I Given the extended bi-degree sequence (Nn, Dn, Cn, Qn):
I Empirical distribution for the root node’s parameters:

F ∗n (m, q) :=
1

n

n∑
k=1

1(Nk 6 m,Qk 6 q),

converges to F ∗(m, q) := P(N0 6 m,Q0 6 q)

I Empirical distribution for a node that has a out-link to any
arbitrary node (size-biased by out-degree)

Fn(m, q, x) :=
n∑

k=1

1(Nk 6 m,Qk 6 q,Ck 6 x)
Dk

Ln

converges to F (m, q, x) := P(N 6 m,Q 6 q)P(C 6 x).
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F ∗n (m, q) :=
1

n

n∑
k=1

1(Nk 6 m,Qk 6 q),

converges to F ∗(m, q) := P(N0 6 m,Q0 6 q)

I Empirical distribution for a node that has a out-link to any
arbitrary node (size-biased by out-degree)

Fn(m, q, x) :=
n∑

k=1

1(Nk 6 m,Qk 6 q,Ck 6 x)
Dk

Ln
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Main result

R
D
=

N∑
j=1

CjRj + Q,

I Let R denote the endogenous solution to the SFPE above.
I The endogenous solution is the limit of iterations of the

recursion starting, say, from R0 = 1.
I Main result:

R
(n)
1 ⇒ R∗, n→∞,

where ⇒ denotes weak convergence and R∗ is given by

R∗ :=

N0∑
j=1

CjRj + Q0,
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Methodology

I Three steps, three entirely different techniques.

I 1. Finite approximation. PageRank is accurately
approximated by a finite number of matrix iterations.

I 2. Coupling with a tree. Construct a coupling of the DCM
graph and a “thorny branching tree” (TBT). The coupling
between the graph and the TBT will hold for a number of
generations in the tree that is logarithmic in n.

I 3. Convergence to a weighted branching process. Show
that the rank of the root node of the TBT converges weakly
to the stated limit. Chen and Olvera-Cravioto (2014)
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Matrix iterations

R(n,0) = B,

R(n,1) = R(n,0)M + Q = BM + Q,

. . .

R(n,k) =

k−1∑
i=0

QM i + BMk , k > 1.

Under event Bn =
{

max16i6n |Ci |Di 6 c , 1
n

∑n
i=1 |Qi | 6 H

}
∣∣∣∣∣∣R(n,k) − R(n,∞)

∣∣∣∣∣∣
1
6 ||r0||1c

k+

∞∑
i=0

||Q||1c
k+i = |r0|nc

k+||Q||1
ck

1 − c
.

All nodes are symmetric! Markov inequality:

P
(∣∣∣R(n,∞)

1 − R
(n,k)
1

∣∣∣ > x−1
n

∣∣∣Bn

)
= O

(
xnc

k
)
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Coupling with branching tree

I We start with random node (node 1) and explore its
neighbours, labeling the stubs that we have already seen

I τ – the number of generations of WBP completed before
coupling breaks
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Coupling with branching tree

Lemma (Chen, L, Olvera-Cravioto 2014)

Suppose (Nn, Dn, Cn, Qn) satisfies WLLN, µ = E (ND)/E (D).
Then,

I for any 1 6 k 6 h log n with 0 < h < 1/(2 logµ), if µ > 1,

I for any 1 6 k 6 nb with b < 1/2, if µ 6 1,

we have

P (τ 6 k |Ωn) =


O
(
(n/µ2k)−1/2

)
, µ > 1,

O
(
(n/k2)−1/2

)
, µ = 1,

O
(
n−1/2

)
, µ < 1,

as n→∞.

Remark: µ corresponds to the average number of offspring of a
node in TBT.
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Numerical results-1
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Figure : The empirical CDFs of 1000 samples of R∗, R
(n,∞)
1 , R

(n,kn)
1 and

R̂(n,kn) for n = 10000 and kn = 9.
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Numerical results-2
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Figure : The empirical CDFs of 1000 samples of R∗ and R
(n,∞)
1 for

n = 10, 100 and 10000.
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Wiki graph

Figure : The empirical distribution of PageRank in English Wikipedia
graph and its theoretical prediction. Dataset from U.Milan
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Conclusions and ongoing research

I Breakthrough in probabilistic analysis of centralities and
relations between them

I The methodology developed for analysis of PageRank in DCM
can be applied for many other problems (distances, other
centralities, other random graphs)

Current work:

I Distances in DCM

I Analysis of voting models (jointly with U. Milan)

I Extension to dynamic centralities (jointly with MTA SZTAKI)
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