UNIVERSITY OF TWENTE.

Monte Carlo methods and mathematical analysis of directed networks

Nelly Litvak P2: University of Twente, The Netherlands NADINE Review 2 Brussels, 02-06-2015

P2: University of Twente, The Netherlands

Nelly Litvak, Pim van der Hoorn

Nelly Litvak, Pim van der Hoorn

Overview:

- Monte Carlo algorithms for networks
- Statistical methods for graphs
- Local and global centralities in directed random graphs

Problem: Find top-k network nodes with largest degrees

Finding top-k most popular nodes

- ▶ Problem: Find top-*k* network nodes with largest degrees
- ► Some applications:
 - Routing via large degree nodes
 - Proxy for various centrality measures
 - Node clustering and classification
 - Epidemic processes on networks
 - ► Finding most popular entities (e.g. interest groups)

Finding top-k most popular nodes

- ▶ Problem: Find top-*k* network nodes with largest degrees
- Some applications:
 - Routing via large degree nodes
 - Proxy for various centrality measures
 - Node clustering and classification
 - Epidemic processes on networks
 - ► Finding most popular entities (e.g. interest groups)
 - Many companies maintain network statistics (twittercounter.com, followerwonk.com, twitaholic.com, www.insidefacebook.com, yavkontakte.ru)

► If the adjacency list of the network is known the top-k list of nodes can be found by the HeapSort with complexity O(N), where N is the total number of nodes.

- ► If the adjacency list of the network is known the top-k list of nodes can be found by the HeapSort with complexity O(N), where N is the total number of nodes.
- Too high complexity for large networks

- ► If the adjacency list of the network is known the top-k list of nodes can be found by the HeapSort with complexity O(N), where N is the total number of nodes.
- ► Too high complexity for large networks
- The network can be accessed only via API, with limited access.
- Randomized algorithms: Find a 'good enough' answer with a small answer of API requests.

- ► If the adjacency list of the network is known the top-k list of nodes can be found by the HeapSort with complexity O(N), where N is the total number of nodes.
- ► Too high complexity for large networks
- The network can be accessed only via API, with limited access.
- Randomized algorithms: Find a 'good enough' answer with a small answer of API requests.
- A lot of attention in the literature.

Two-stage algorithm

- ► Stage 1: Use n₁ API requests to retrieve id's of the followees of n₁ random users
- ► Stage 2: Use n₂ API requests to check *real* degrees of the n₂ users with largest number of followers among the n₁ random users from Stage 1.
- ▶ **Result:** Return the identified top-*k* list of most popular users.

In total, we use $n = n_1 + n_2$ requests to API

Results on Twitter

Figure : The fraction of correctly identified top-k most followed Twitter users as a function of n_2 , with n = 1000.

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 6/49

Known algorithms

Random-walk based. Cooper, Radzik, Siantos (2012) Transitions probabilities along undirected edges (x, y) are proportional to (d(x)d(y))^b, where d(x) is the degree of a vertex x and b > 0 is some parameter.

Known algorithms

- Random-walk based. Cooper, Radzik, Siantos (2012) Transitions probabilities along undirected edges (x, y) are proportional to (d(x)d(y))^b, where d(x) is the degree of a vertex x and b > 0 is some parameter.
- Random Walk Avrachenkov, L, Sokol, Towsley (2012)
 Random walk with uniform jumps. In an undirected graphs the stationary distribution is a linear function of degrees.
- ► Crawl-Al and Crawl-GAl. Kumar, Lang, Marlow, Tomkins (2008) At every step all nodes have their apparent in-degrees S_j, j = 1,..., N: the number of discovered edges pointing to this node. Designed for WWW crawl.

Known algorithms

- Random-walk based. Cooper, Radzik, Siantos (2012) Transitions probabilities along undirected edges (x, y) are proportional to (d(x)d(y))^b, where d(x) is the degree of a vertex x and b > 0 is some parameter.
- Random Walk Avrachenkov, L, Sokol, Towsley (2012)
 Random walk with uniform jumps. In an undirected graphs the stationary distribution is a linear function of degrees.
- ► Crawl-Al and Crawl-GAl. Kumar, Lang, Marlow, Tomkins (2008) At every step all nodes have their apparent in-degrees S_j, j = 1,..., N: the number of discovered edges pointing to this node. Designed for WWW crawl.
- HighestDegree. Borgs, Brautbar, Chayes, Khanna, Lucier (2012) Retrieve a random node, check in-degrees of its out-neighbors. Proceed while resources are available.

Table : Percentage of correctly identified nodes from top-100 in Twitter averaged over 30 experiments, n = 1000

Algorithm	mean	standard deviation
Two-stage algorithm	92.6	4.7
Random walk (strict)	0.43	0.63
Random walk (relaxed)	8.7	2.4
Crawl-GAI	4.1	5.9
Crawl-Al	23.9	20.2
HighestDegree	24.7	11.8

Table : Percentage of correctly identified nodes from top-100 in Twitter averaged over 30 experiments, n = 1000

Algorithm	mean	standard deviation
Two-stage algorithm	92.6	4.7
Random walk (strict)	0.43	0.63
Random walk (relaxed)	8.7	2.4
Crawl-GAI	4.1	5.9
Crawl-Al	23.9	20.2
HighestDegree	24.7	11.8

Advantages of the two-stage algorithm:

- does not waste resources
- ▶ obtains *exact* degrees of the *n*₂ 'most promising' nodes

Comparison of the algorithms

Figure : The fraction of correctly identified top-100 most followed Twitter users as a function of n averaged over 10 experiments.

- G = (V, E) directed graph, |V| = N
 - Number the vertices in the decreasing order of their degrees: $F_1 \ge F_2 \ge \cdots \ge F_N.$

- G = (V, E) directed graph, |V| = N
 - ▶ Number the vertices in the decreasing order of their degrees: $F_1 \ge F_2 \ge \cdots \ge F_N.$
 - ► S_j is the number of followers of node j = 1, 2, ..., N among the n₁ randomly chosen vertices in V
 - $S_j \sim Binomial(n_1, F_j/N)$

G = (V, E) – directed graph, |V| = N

- ▶ Number the vertices in the decreasing order of their degrees: $F_1 \ge F_2 \ge \cdots \ge F_N.$
- ► S_j is the number of followers of node j = 1, 2, ..., N among the n₁ randomly chosen vertices in V
- $S_j \sim Binomial(n_1, F_j/N)$
- $S_{i_1} \ge S_{i_2} \ge \ldots \ge S_{i_N}$ be the order statistics of S_1, \ldots, S_N .
- Performance measure:

E[fraction of correctly identified top-k entities]

$$=\frac{1}{k}\sum_{j=1}^{k}P(j\in\{i_{1},\ldots,i_{n_{2}}\}).$$
 (1)

G = (V, E) – directed graph, |V| = N

- ▶ Number the vertices in the decreasing order of their degrees: $F_1 \ge F_2 \ge \cdots \ge F_N.$
- ► S_j is the number of followers of node j = 1, 2, ..., N among the n₁ randomly chosen vertices in V
- $S_j \sim Binomial(n_1, F_j/N)$
- ► $S_{i_1} \ge S_{i_2} \ge \ldots \ge S_{i_N}$ be the order statistics of S_1, \ldots, S_N .
- ► Performance measure:

E[fraction of correctly identified top-k entities]

$$=\frac{1}{k}\sum_{j=1}^{k}P(j\in\{i_{1},\ldots,i_{n_{2}}\}).$$
 (1)

► Computation of P(j ∈ {i₁,..., i_{n₂}}) is not feasible even if degrees are known

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 10/49

Poisson prediction

- ► $P(j \in \{i_1, ..., i_{n_2}\})$ = $P(S_j > S_{i_{n_2}}) + P(S_j = S_{i_{n_2}}, j \in \{i_1, ..., i_{n_2}\})$ ► Example Twitter graph take n = n = 500. Then t
- ► Example. Twitter graph, take n₁ = n₂ = 500. Then the average number of nodes *i* with S_i = 1 among the top-*l* nodes is

$$\sum_{i=1}^{l} P(S_i = 1) = \sum_{i=1}^{l} 500 \, \frac{F_i}{5 \cdot 10^8} \left(1 - \frac{F_i}{5 \cdot 10^8} \right)^{499},$$

which is 2540.6 for l = 10,000 and it is 57.4 for $l = n_2 = 500$. Hence, typically, $[S_{i_{500}} = 1]$. The event $[i \in \{i_1, \ldots, i_{n_2}\}]$ occurs only for a small fraction of nodes i with $[S_i = 1]$.

Poisson prediction

- ► $P(j \in \{i_1, ..., i_{n_2}\})$ = $P(S_j > S_{i_{n_2}}) + P(S_j = S_{i_{n_2}}, j \in \{i_1, ..., i_{n_2}\})$ Example Twitter much take n = 500. Then the
- ► Example. Twitter graph, take n₁ = n₂ = 500. Then the average number of nodes *i* with S_i = 1 among the top-*l* nodes is

$$\sum_{i=1}^{l} P(S_i = 1) = \sum_{i=1}^{l} 500 \, \frac{F_i}{5 \cdot 10^8} \left(1 - \frac{F_i}{5 \cdot 10^8} \right)^{499},$$

which is 2540.6 for l = 10,000 and it is 57.4 for $l = n_2 = 500$. Hence, typically, $[S_{i_{500}} = 1]$. The event $[i \in \{i_1, \ldots, i_{n_2}\}]$ occurs only for a small fraction of nodes i with $[S_i = 1]$.

Approximation:

$$P(j \in \{i_1, \dots, i_{n_2}\}) \approx P(S_j > S_{i_{n_2}}) \approx P(S_j > \max\{S_{n_2}, 1\})$$

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 11/49

Poisson prediction

- ► $P(j \in \{i_1, ..., i_{n_2}\})$ = $P(S_j > S_{i_{n_2}}) + P(S_j = S_{i_{n_2}}, j \in \{i_1, ..., i_{n_2}\})$ Example Twitteners to be a file $n \in [0, ..., n_{n_2}]$
- ► Example. Twitter graph, take n₁ = n₂ = 500. Then the average number of nodes *i* with S_i = 1 among the top-*l* nodes is

$$\sum_{i=1}^{l} P(S_i = 1) = \sum_{i=1}^{l} 500 \, rac{F_i}{5 \cdot 10^8} \left(1 - rac{F_i}{5 \cdot 10^8} \right)^{499}$$
 ,

which is 2540.6 for l = 10,000 and it is 57.4 for $l = n_2 = 500$. Hence, typically, $[S_{i_{500}} = 1]$. The event $[i \in \{i_1, \ldots, i_{n_2}\}]$ occurs only for a small fraction of nodes i with $[S_i = 1]$.

 Approximation: P(j ∈ {i₁,..., i_{n2}}) ≈ P(S_j > S_{in2}) ≈ P(S_j > max{S_{n2}, 1})

 Assume F_j and F_{n2} are known, then approximate
 S______(N)

 $S_j \sim Poisson(n_1 F_j/N)$

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 11/49

▶ Poisson approximation is not realistic: degrees are unknown

- ► Poisson approximation is not realistic: degrees are unknown
- ► The algorithm finds a few highest degrees with accuracy almost 100%
- Let $\hat{F}_1 \ge \hat{F}_2 \ge \cdots \ge \hat{F}_m$ be the top-*m* degrees found by the algorithm, m < k

- ► Poisson approximation is not realistic: degrees are unknown
- ► The algorithm finds a few highest degrees with accuracy almost 100%
- Let $\hat{F}_1 \ge \hat{F}_2 \ge \cdots \ge \hat{F}_m$ be the top-*m* degrees found by the algorithm, m < k
- \blacktriangleright The degrees follow a power law distribution with exponent γ

- ► Poisson approximation is not realistic: degrees are unknown
- ► The algorithm finds a few highest degrees with accuracy almost 100%
- Let $\hat{F}_1 \ge \hat{F}_2 \ge \cdots \ge \hat{F}_m$ be the top-*m* degrees found by the algorithm, m < k
- \blacktriangleright The degrees follow a power law distribution with exponent γ
- Hill's estimator:

$$\hat{\gamma} = \left(\frac{1}{m-1} \sum_{i=1}^{m-1} \log(\hat{F}_i) - \log(\hat{F}_m)\right)^{-1}.$$
 (2)

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 12/49

- Poisson approximation is not realistic: degrees are unknown
- ► The algorithm finds a few highest degrees with accuracy almost 100%
- Let $\hat{F}_1 \ge \hat{F}_2 \ge \cdots \ge \hat{F}_m$ be the top-*m* degrees found by the algorithm, m < k
- \blacktriangleright The degrees follow a power law distribution with exponent γ
- Hill's estimator:

$$\hat{\gamma} = \left(\frac{1}{m-1} \sum_{i=1}^{m-1} \log(\hat{F}_i) - \log(\hat{F}_m)\right)^{-1}.$$
 (2)

► Estimator for high degrees: Dekkers et al. (1989) $\hat{f}_j = \hat{F}_m \left(\frac{m}{j-1}\right)^{1/\hat{\gamma}}, \quad j > 1, j << N.$ ► Use $S_j \sim Poisson(n_1\hat{f}_j/N)$

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 12/49

Performance predictions on the Twitter graph

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 13/49

▶ 1,..., k – top-k nodes in W; F_1 ,..., F_k – their degrees

Optimal parameters

- ▶ 1,..., k top-k nodes in W; F_1 ,..., F_k their degrees
- $S_j \sim Binomial(n_1, F_j/N)$

Optimal parameters

- ▶ 1,..., k top-k nodes in W; F_1 ,..., F_k their degrees
- $S_j \sim Binomial(n_1, F_j/N)$
- \blacktriangleright With normal approximation, and error pr-ty α we need that

$$\sqrt{\frac{n_1}{N}}\frac{F_k-F_{n_2}}{\sqrt{F_k+F_{n_2}}} > z_{1-\alpha}$$

Optimal parameters

- ▶ 1,..., k top-k nodes in W; F_1 ,..., F_k their degrees
- $S_j \sim Binomial(n_1, F_j/N)$
- ▶ With normal approximation, and error pr-ty α we need that

$$\sqrt{\frac{n_1}{N}}\frac{F_k - F_{n_2}}{\sqrt{F_k + F_{n_2}}} > z_{1-\alpha}$$

•
$$n = O(n_1)$$
 (SLLN)

Assume that k = o(n) as n → ∞, then the maximizer of the probability P(k ∈ {i₁,..., i_{n₂}}) is

$$n_2 = (3\gamma k^{\gamma} n)^{\frac{1}{\gamma+1}} (1 + o(1)).$$

Sublinear complexity

|V| = N

$$\sqrt{\frac{n_1}{N}}\frac{F_k - F_{n_2}}{\sqrt{F_k + F_{n_2}}} > z_{1-\alpha}$$

For any fixed ε, δ > 0, our algorithm finds the fraction 1 − ε of top-k nodes with probability 1 − δ in

$$n = O(N/a(N))$$

API requests, as $N \to \infty$, where $a(N) = I(N)N^{\gamma}$ and $I(\cdot)$ is some slowly varying function.

Sublinear complexity

|V| = N

$$\sqrt{\frac{n_1}{N}}\frac{F_k-F_{n_2}}{\sqrt{F_k+F_{n_2}}} > z_{1-\alpha}$$

For any fixed ε, δ > 0, our algorithm finds the fraction 1 − ε of top-k nodes with probability 1 − δ in

$$n = O(N/a(N))$$

API requests, as $N \to \infty$, where $a(N) = I(N)N^{\gamma}$ and $I(\cdot)$ is some slowly varying function.

• For Twitter top-k, $n = O(N^{1-1/\gamma})$

Sublinear complexity

|V| = N

$$\sqrt{\frac{n_1}{N}}\frac{F_k-F_{n_2}}{\sqrt{F_k+F_{n_2}}} > z_{1-\alpha}$$

For any fixed ε, δ > 0, our algorithm finds the fraction 1 − ε of top-k nodes with probability 1 − δ in

$$n = O(N/a(N))$$

API requests, as $N \to \infty$, where $a(N) = I(N)N^{\gamma}$ and $I(\cdot)$ is some slowly varying function.

- For Twitter top-k, $n = O(N^{1-1/\gamma})$
- High variability helps a lot!

Sublinear complexity

|V| = N

$$\sqrt{\frac{n_1}{N}}\frac{F_k - F_{n_2}}{\sqrt{F_k + F_{n_2}}} > z_{1-\alpha}$$

For any fixed ε, δ > 0, our algorithm finds the fraction 1 − ε of top-k nodes with probability 1 − δ in

$$n = O(N/a(N))$$

API requests, as $N \to \infty$, where $a(N) = I(N)N^{\gamma}$ and $I(\cdot)$ is some slowly varying function.

- For Twitter top-k, $n = O(N^{1-1/\gamma})$
- High variability helps a lot!
- K.Avrachenkov, N.Litvak, L.Ostroumova-Prokhorenkova and E.Suyargulova, Quick detection of high-degree entities in large directed networks, IEEE International Conference on Data Mining (ICDM 2014), (arXiv:1410.0571v2[cs.SI]) [M10-WP1.4]

UNIVERSITY OF TWENTE.

- ► Null-models for statistical analysis of real networks
- Theoretical characterization of centralities in networks
- ► In the literature, attention is mainly on undirected networks and their geometric properties (degree distributions, distances, component sizes etc.)
- We analyze centralities and statistical estimators in directed random graphs

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma - 1}$$

UNIVERSITY OF TWENTE.

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma - 1}$$

 $1 < \gamma \leqslant 3$

UNIVERSITY OF TWENTE.

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma - 1}$$

 $1 < \gamma \leqslant 2$

UNIVERSITY OF TWENTE.

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

 $p(k) \approx k^{-\gamma - 1}$ $1 < \gamma \leqslant 2 \quad \Rightarrow \quad \mathbb{E}[D] < \infty$

UNIVERSITY OF TWENTE.

Loglog plot distribution in-degrees of English Wikipedia (data from U.Milan)

$$p(k) \approx k^{-\gamma - 1}$$
$$1 < \gamma \leq 2 \quad \Rightarrow \quad \mathbb{E}[D] < \infty \quad \mathbb{E}[D^2] = \infty$$

UNIVERSITY OF TWENTE.

Given a directed graph G = (V, E).

UNIVERSITY OF TWENTE.

Given a directed graph G = (V, E).

UNIVERSITY OF TWENTE.

Given a directed graph G = (V, E).

Index degree type by α , $\beta \in \{+, -\}$.

UNIVERSITY OF TWENTE.

Four types of degree-degree correlation

UNIVERSITY OF TWENTE.

- ► Information flow neural networks.
- ► Stability of P2P networks under attack.
- Epidemics on networks.
- Network Observability.
- Opinion dynamics based on social influence.
- Collaboration in social networks.

- ► Information flow neural networks.
- ► Stability of P2P networks under attack.
- Epidemics on networks.
- Network Observability.
- Opinion dynamics based on social influence.
- Collaboration in social networks.

▶ ...

Pearson's correlation coefficients

UNIVERSITY OF TWENTE.

Given a set of *m* joint measurements $\{X_i, Y_i\}_{1 \leq i \leq m}$

Given a set of *m* joint measurements $\{X_i, Y_i\}_{1 \leq i \leq m}$

$$r(X, Y) = \frac{\frac{1}{m} \sum_{i=1}^{m} X_i Y_i - \frac{1}{m^2} \sum_{i=1}^{m} X_i \sum_{i=1}^{m} Y_i}{\sqrt{Var(X)} \sqrt{Var(Y)}}$$

Given a set of *m* joint measurements $\{X_i, Y_i\}_{1 \leq i \leq m}$

$$r(X,Y) = \frac{\frac{1}{m}\sum_{i=1}^{m}X_iY_i - \frac{1}{m^2}\sum_{i=1}^{m}X_i\sum_{i=1}^{m}Y_i}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$$

$$Var(X) = \frac{1}{m} \sum_{i=1}^{m} X_i^2 - \frac{1}{m^2} \left(\sum_{i=1}^{m} X_i \right)^2$$

Given a set of *m* joint measurements $\{X_i, Y_i\}_{1 \leq i \leq m}$

$$r(X,Y) = \frac{\frac{1}{m} \sum_{i=1}^{m} X_i Y_i - \frac{1}{m^2} \sum_{i=1}^{m} X_i \sum_{i=1}^{m} Y_i}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}$$

$$Var(X) = \frac{1}{m} \sum_{i=1}^{m} X_i^2 - \frac{1}{m^2} \left(\sum_{i=1}^{m} X_i \right)^2$$

Given a graph G_n of size n, pick $\alpha, \beta \in \{+, -\}$. We have E joint measurements $\{D_i^{\alpha}, D_i^{\beta}\}_{i \to j}$

Given a set of *m* joint measurements $\{X_i, Y_i\}_{1 \leq i \leq m}$

$$r(X,Y) = \frac{\frac{1}{m} \sum_{i=1}^{m} X_i Y_i - \frac{1}{m^2} \sum_{i=1}^{m} X_i \sum_{i=1}^{m} Y_i}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}$$

$$Var(X) = \frac{1}{m} \sum_{i=1}^{m} X_i^2 - \frac{1}{m^2} \left(\sum_{i=1}^{m} X_i \right)^2$$

Given a graph G_n of size n, pick $\alpha, \beta \in \{+, -\}$. We have E joint measurements $\{D_i^{\alpha}, D_i^{\beta}\}_{i \to j}$

$$r_{\alpha}^{\beta}(G_n) := r(D^{\alpha}, D^{\beta})$$

UNIVERSITY OF TWENTE.

Given a set of *m* joint measurements $\{X_i, Y_i\}_{1 \leq i \leq m}$

$$r(X, Y) = \frac{\frac{1}{m} \sum_{i=1}^{m} X_i Y_i - \frac{1}{m^2} \sum_{i=1}^{m} X_i \sum_{i=1}^{m} Y_i}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}$$

$$Var(X) = \frac{1}{m} \sum_{i=1}^{m} X_i^2 - \frac{1}{m^2} \left(\sum_{i=1}^{m} X_i \right)^2$$

Given a graph G_n of size n, pick $\alpha, \beta \in \{+, -\}$. We have E joint measurements $\{D_i^{\alpha}, D_i^{\beta}\}_{i \to j}$

$$r_{\alpha}^{\beta}(G_n) := r(D^{\alpha}, D^{\beta})$$

Newman 2003

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

Theorem 1 (vdHoorn and L 2014)

Let $\alpha, \beta \in \{+, -\}$. Then there exists an area $A_{\alpha}^{\beta} \subset \mathbb{R}^2$ such that if $\{G_n\}_{n \in \mathbb{N}}$ is a sequence of graphs with scale-free degree distributions where the tail-exponents $(\gamma_+, \gamma_-) \in A_{\alpha}^{\beta}$,

 $\lim_{n\to\infty}r_{\alpha}^{\beta}(G_n) \geq 0.$

Theorem 1 (vdHoorn and L 2014)

Let $\alpha, \beta \in \{+, -\}$. Then there exists an area $A_{\alpha}^{\beta} \subset \mathbb{R}^2$ such that if $\{G_n\}_{n \in \mathbb{N}}$ is a sequence of graphs with scale-free degree distributions where the tail-exponents $(\gamma_+, \gamma_-) \in A_{\alpha}^{\beta}$,

 $\lim_{n\to\infty}r_{\alpha}^{\beta}(G_n) \ge 0.$

$$1 < \gamma_{\pm} \leqslant 2 \in A^{\beta}_{lpha}$$
, for all $lpha, eta \in \{+, -\}$

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

We have *E* joint measurements $\{D_i^{\alpha}, D_i^{\beta}\}_{i \to j}$

We have *E* joint measurements $\{D_i^{\alpha}, D_i^{\beta}\}_{i \to j}$

Compute Pearsons correlation coefficient on $\{D_i^{\alpha}, D_i^{\beta}\}_{i \to j}$

Rank the degrees in descending order

We have E joint measurements $\{D_i^{\alpha}, D_j^{\beta}\}_{i \to j} \Rightarrow \{R_i^{\alpha}, R_j^{\beta}\}_{i \to j}$

Compute Pearsons correlation coefficient on $\{R_i^{\alpha}, R_j^{\beta}\}_{i \to j}$

Rank the degrees in descending order

We have E joint measurements $\{D_i^{\alpha}, D_j^{\beta}\}_{i \to j} \Rightarrow \{R_i^{\alpha}, R_j^{\beta}\}_{i \to j}$

Compute Pearsons correlation coefficient on $\{R_i^{\alpha}, R_i^{\beta}\}_{i \to j}$

$$\rho_{\alpha}^{\beta}(G_n) := r(R^{\alpha}, R^{\beta})$$

Theorem 2 (vdHoorn and L 2014)

Let $\{G_n\}_{n\in\mathbb{N}}$ be a sequence of random graphs, $\alpha, \beta \in \{+, -\}$ and suppose there exist integer valued random variables \mathcal{D}^{α} and \mathcal{D}^{β} such that

$$p^{eta}_{lpha}(k,\ell) \stackrel{\mathbb{P}}{
ightarrow} \mathbb{P}\left(\mathbb{D}^{lpha} = k, \mathbb{D}^{eta} = \ell
ight) \quad ext{as } n
ightarrow \infty.$$

Then, as $n \to \infty$,

$$\rho_{\alpha}^{\beta}(G_n) \xrightarrow{\mathbb{P}} \rho\left(\mathcal{D}^{\alpha}, \mathcal{D}^{\beta}\right)$$

UNIVERSITY OF TWENTE.

Spearman's rho in the Erased Configuration Model

- Simple graph: multiple edges and loops are removed
- Wiring is not entirely neutral

Spearman's rho in the Erased Configuration Model

- Simple graph: multiple edges and loops are removed
- Wiring is not entirely neutral

Theorem 3 (vdHoorn and L 2014)

Let $\{G_n\}_{n\in\mathbb{N}}$ be a sequence of graphs of size *n*, generated by either the Repeated or Erased Configuration Model and α , $\beta \in \{+, -\}$. Then, as $n \to \infty$,

$$\rho_{\alpha}^{\beta}(G_n) \xrightarrow{\mathbb{P}} 0.$$

Spearman's rho in the Erased Configuration Model

- Simple graph: multiple edges and loops are removed
- Wiring is not entirely neutral

Theorem 3 (vdHoorn and L 2014)

Let $\{G_n\}_{n\in\mathbb{N}}$ be a sequence of graphs of size *n*, generated by either the Repeated or Erased Configuration Model and α , $\beta \in \{+, -\}$. Then, as $n \to \infty$,

$$\rho_{\alpha}^{\beta}(G_n) \xrightarrow{\mathbb{P}} 0.$$

► Use Theorem 2

$$p_{\alpha}^{\beta}(k,\ell) \xrightarrow{\mathbb{P}} \mathbb{P}\left(\mathcal{D}^{\alpha}=k,\mathcal{D}^{\beta}=\ell\right) = \mathbb{P}\left(\mathcal{D}^{\alpha}=k\right)\mathbb{P}\left(\mathcal{D}^{\beta}=\ell\right)$$

► ECM is a null-model for degree-degree correlations
UNIVERSITY OF TWENTE. [Nelly Litvak, NADINE Review 2] 26/49

Erased model in practice

Figure : Empirical cdf of $\rho_{\alpha}^{\beta}(\textit{G}_{n})$ for ECM graphs with $\gamma_{\pm}=2.1$

UNIVERSITY OF TWENTE.

Erased model in practice

Figure : Empirical cdf of $\rho_{\alpha}^{\beta}(\textit{G}_{n})$ for ECM graphs with $\gamma_{\pm}=1.5$

UNIVERSITY OF TWENTE.

Why is Out-In different?

UNIVERSITY OF TWENTE.

Why is Out-In different?

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

Scaling of ρ_{α}^{β}

UNIVERSITY OF TWENTE.

Let G_n be a graph of size *n*, generated by the ECM and denote by G_n^* the graph before the removal of edges.

Let G_n be a graph of size *n*, generated by the ECM and denote by G_n^* the graph before the removal of edges.

Let E_{ij}^c denote the number of erased edges between i and j in ECM.

Scaling of ρ_{α}^{β}

Let G_n be a graph of size n, generated by the ECM and denote by G_n^* the graph before the removal of edges.

Let E_{ij}^c denote the number of erased edges between *i* and *j* in ECM.

$$D_i^{+\,\prime} = D_i^+ - \sum_{j=1}^n E_{ij}^c.$$

Scaling of ρ_{α}^{β}

Let G_n be a graph of size n, generated by the ECM and denote by G_n^* the graph before the removal of edges.

Let E_{ij}^c denote the number of erased edges between *i* and *j* in ECM.

$$D_{i}^{+\,\prime} = D_{i}^{+} - \sum_{j=1}^{n} E_{ij}^{c}.$$
$$\left| \rho_{+}^{-}(G_{n}) - \rho_{+}^{-}(G_{n}^{*}) \right| = O\left(\frac{1}{E} \sum_{i,j=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \right)$$

UNIVERSITY OF TWENTE.

A first upper bound

UNIVERSITY OF TWENTE.

$$\sum_{i,j=1}^{n} E_{ij}^{c} = \sum_{i,j=1}^{n} M_{ij} + \sum_{i=1}^{n} S_{ii}$$

$$\sum_{i,j=1}^{n} E_{ij}^{c} = \sum_{i,j=1}^{n} M_{ij} + \sum_{i=1}^{n} S_{ii}$$

$$\mathbb{E}_n[S_{ii}] = \frac{D_i^+ D_i^-}{E}$$

$$\sum_{i,j=1}^{n} E_{ij}^{c} = \sum_{i,j=1}^{n} M_{ij} + \sum_{i=1}^{n} S_{ii}$$
$$\mathbb{E}_{n} [S_{ii}] = \frac{D_{i}^{+} D_{i}^{-}}{E} \quad \mathbb{E}_{n} [M_{ij}] \leqslant \frac{(D_{i}^{+})^{2} (D_{j}^{-})^{2}}{E^{2}}$$

$$\sum_{i,j=1}^{n} E_{ij}^{c} = \sum_{i,j=1}^{n} M_{ij} + \sum_{i=1}^{n} S_{ii}$$

$$\mathbb{E}_{n}[S_{ii}] = \frac{D_{i}^{+}D_{i}^{-}}{E} \quad \mathbb{E}_{n}[M_{ij}] \leq \frac{(D_{i}^{+})^{2}(D_{j}^{-})^{2}}{E^{2}}$$

$$\frac{1}{E}\sum_{i,j=1}^{n} \mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant \sum_{i,j=1}^{n} \frac{(D_{i}^{+})^{2}(D_{j}^{-})^{2}}{E^{3}} + \sum_{i=1}^{n} \frac{D_{i}^{+}D_{i}^{-}}{E^{2}}$$

$$\sum_{i,j=1}^{n} E_{ij}^{c} = \sum_{i,j=1}^{n} M_{ij} + \sum_{i=1}^{n} S_{ii}$$

$$\mathbb{E}_{n}[S_{ii}] = \frac{D_{i}^{+}D_{i}^{-}}{E} \quad \mathbb{E}_{n}[M_{ij}] \leq \frac{(D_{i}^{+})^{2}(D_{j}^{-})^{2}}{E^{2}}$$

$$\frac{1}{E}\sum_{i,j=1}^{n} \mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant \sum_{i,j=1}^{n} \frac{(D_{i}^{+})^{2}(D_{j}^{-})^{2}}{E^{3}} + O\left(n^{-1}\right)$$

$$\sum_{i,j=1}^{n} E_{ij}^{c} = \sum_{i,j=1}^{n} M_{ij} + \sum_{i=1}^{n} S_{ii}$$

$$\mathbb{E}_{n}[S_{ii}] = \frac{D_{i}^{+}D_{i}^{-}}{E} \quad \mathbb{E}_{n}[M_{ij}] \leq \frac{(D_{i}^{+})^{2}(D_{j}^{-})^{2}}{E^{2}}$$

$$\frac{1}{E}\sum_{i,j=1}^{n} \mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant O\left(n^{\frac{2}{\gamma_{+}}+\frac{2}{\gamma_{-}}-3}\right) + O\left(n^{-1}\right)$$

$$\sum_{i,j=1}^{n} E_{ij}^{c} = \sum_{i,j=1}^{n} M_{ij} + \sum_{i=1}^{n} S_{ii}$$

$$\mathbb{E}_{n}[S_{ii}] = \frac{D_{i}^{+}D_{i}^{-}}{E} \quad \mathbb{E}_{n}[M_{ij}] \leq \frac{(D_{i}^{+})^{2}(D_{j}^{-})^{2}}{E^{2}}$$

$$\frac{1}{E}\sum_{i,j=1}^{n}\mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant O\left(n^{\frac{2}{\gamma_{+}}+\frac{2}{\gamma_{-}}-3}\right)$$

$$\frac{1}{E}\sum_{i,j=1}^{n} \mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant 1 - \frac{n^{2}}{E} + \frac{1}{E}\sum_{i,j=1}^{n} \exp\left\{\frac{D_{i}^{+}D_{j}^{-}}{E}\right\}$$

UNIVERSITY OF TWENTE.

$$\frac{1}{E}\sum_{i,j=1}^{n}\mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant \frac{n^{2}}{E}\left(\frac{1}{n^{2}}\sum_{i,j=1}^{n}\frac{D_{i}^{+}D_{j}^{-}}{E} - 1 + \frac{1}{n^{2}}\sum_{i,j=1}^{n}\exp\left\{\frac{D_{i}^{+}D_{j}^{-}}{E}\right\}\right)$$

UNIVERSITY OF TWENTE.

$$\frac{1}{E}\sum_{i,j=1}^{n}\mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant \frac{n^{2}}{E}\left(\frac{1}{n^{2}}\sum_{i,j=1}^{n}\frac{D_{i}^{+}D_{j}^{-}}{E} - 1 + \frac{1}{n^{2}}\sum_{i,j=1}^{n}\exp\left\{\frac{D_{i}^{+}D_{j}^{-}}{E}\right\}\right)$$

$$\frac{1}{E}\sum_{i,j=1}^{n}\mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant O\left(n^{\frac{1}{\gamma_{+}\wedge\gamma_{-}}-1}\right) + O\left(n^{1-(\gamma_{+}\wedge\gamma_{-})}\right)$$

UNIVERSITY OF TWENTE.

$$\frac{1}{E}\sum_{i,j=1}^{n}\mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant \frac{n^{2}}{E}\left(\frac{1}{n^{2}}\sum_{i,j=1}^{n}\frac{D_{i}^{+}D_{j}^{-}}{E} - 1 + \frac{1}{n^{2}}\sum_{i,j=1}^{n}\exp\left\{\frac{D_{i}^{+}D_{j}^{-}}{E}\right\}\right)$$

$$\frac{1}{E}\sum_{i,j=1}^{n} \mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant O\left(n^{\frac{1}{\gamma_{+}\wedge\gamma_{-}}-1}\right) + O\left(n^{1-(\gamma_{+}\wedge\gamma_{-})}\right)$$
$$1 < \gamma_{\pm} \leqslant 2$$

UNIVERSITY OF TWENTE.

$$\frac{1}{E}\sum_{i,j=1}^{n}\mathbb{E}_{n}\left[E_{ij}^{c}\right] \leqslant \frac{n^{2}}{E}\left(\frac{1}{n^{2}}\sum_{i,j=1}^{n}\frac{D_{i}^{+}D_{j}^{-}}{E} - 1 + \frac{1}{n^{2}}\sum_{i,j=1}^{n}\exp\left\{\frac{D_{i}^{+}D_{j}^{-}}{E}\right\}\right)$$

$$\frac{1}{E} \sum_{i,j=1}^{n} \mathbb{E}_{n} \left[E_{ij}^{c} \right] \leqslant O\left(n^{\frac{1}{\gamma_{+} \wedge \gamma_{-}} - 1} \right)$$
$$1 < \gamma_{+} \leqslant 2$$

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

 $\frac{\rho_{+}^{-}(G_{n}) - \mathbb{E}\left[\rho_{+}^{-}(G_{n})\right]}{N^{f(\gamma_{+},\gamma_{-})}}$

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

Scaling of $\rho_-^+({\it G}_n)$ in practice

UNIVERSITY OF TWENTE.

 $\frac{\rho_{-}^{+}(G_{n}) - \mathbb{E}\left[\rho_{-}^{+}(G_{n})\right]}{N^{f(\gamma_{+},\gamma_{-})}}$

UNIVERSITY OF TWENTE.

Scaling of $\rho_{-}^{+}(G_n)$ in practice

 $\frac{\rho_{-}^{+}(G_{n}) - \mathbb{E}\left[\rho_{-}^{+}(G_{n})\right]}{N^{f(\gamma_{+},\gamma_{-})}}$

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

Scaling of $\rho^+_{-}(G_n)$ in practice

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 35/49

ECM is easy to construct, and it is a simple graph

- ▶ ECM is easy to construct, and it is a simple graph
- Asymptotically neutrally wired

- ▶ ECM is easy to construct, and it is a simple graph
- Asymptotically neutrally wired
- ► Finite-size effects result in structural out-in correlations
- ► We have proved that rank correlations are consistent estimators and characterized their behavior in ECM

- ECM is easy to construct, and it is a simple graph
- Asymptotically neutrally wired
- ► Finite-size effects result in structural out-in correlations
- ► We have proved that rank correlations are consistent estimators and characterized their behavior in ECM
- Our results lay the basis for rigorous statistical analysis of wiring preferences in directed networks of any size

- ► ECM is easy to construct, and it is a simple graph
- Asymptotically neutrally wired
- ► Finite-size effects result in structural out-in correlations
- ► We have proved that rank correlations are consistent estimators and characterized their behavior in ECM
- Our results lay the basis for rigorous statistical analysis of wiring preferences in directed networks of any size
- P. van der Hoorn and N. Litvak, Convergence of rank based degree-degree correlations in random directed networks, Moscow Journal of Combinatorics and Number Theory (2015) (arXiv:1407.7662[math.PR], 2014) [M13-WP4.3]
- P. van der Hoorn and N. Litvak, Phase transitions for scaling of structural correlations in directed networks, (arXiv:1504.01535[physics.soc-ph], 2015 [M13- WP4.3]

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 36/49

PageRank in Directed Configuration Model (DCM)

▶ PageRank R_i of page i = 1, ..., n is defined as a stationary distribution of a random walk with jumps:

$$R_i = \sum_{j \to i} \frac{c}{d_j} R_j + (1-c)q_i, \quad i = 1, \dots, n$$

- $d_j = \#$ out-links of page j
- $c \in (0, 1)$, originally 0.85, probability of a random jump
- q_i probability to jump to page *i*, originally, $q_i = 1/n$

PageRank in Directed Configuration Model (DCM)

▶ PageRank R_i of page i = 1, ..., n is defined as a stationary distribution of a random walk with jumps:

$$R_i = \sum_{j \to i} \frac{c}{d_j} R_j + (1-c)q_i, \quad i = 1, \dots, n$$

- $d_j = \#$ out-links of page j
- $c \in (0, 1)$, originally 0.85, probability of a random jump
- q_i probability to jump to page *i*, originally, $q_i = 1/n$
- ▶ Problem: What is the distribution of the PageRank in DCM?

PageRank in Directed Configuration Model (DCM)

▶ PageRank R_i of page i = 1, ..., n is defined as a stationary distribution of a random walk with jumps:

$$R_i = \sum_{j \to i} \frac{c}{d_j} R_j + (1-c)q_i, \quad i = 1, \dots, n$$

- $d_j = \#$ out-links of page j
- $c \in (0, 1)$, originally 0.85, probability of a random jump
- q_i probability to jump to page *i*, originally, $q_i = 1/n$
- Problem: What is the distribution of the PageRank in DCM?
- N.Chen, N.Litvak and M.Olvera-Cravioto, Ranking algorithms on directed configuration networks, (arXiv:1409.7443v2[math.PR], 2014) [M7-WP5.2]

Bi-directed degree sequence

- Directed graph on *n* nodes $V = \{v_1, \ldots, v_n\}$.
- ► Extended bi-degree sequence $(\mathbf{N}_n, \mathbf{D}_n, \mathbf{C}_n, \mathbf{Q}_n) = \{(N_i, D_i, C_i, Q_i) : 1 \leq i \leq n\}$

$$L_n = \sum_{i=1}^n N_i = \sum_{i=1}^n D_i$$

Bi-directed degree sequence

- Directed graph on *n* nodes $V = \{v_1, \ldots, v_n\}$.
- ► Extended bi-degree sequence $(\mathbf{N}_n, \mathbf{D}_n, \mathbf{C}_n, \mathbf{Q}_n) = \{(N_i, D_i, C_i, Q_i) : 1 \leq i \leq n\}$

$$L_n = \sum_{i=1}^n N_i = \sum_{i=1}^n D_i$$

- ► Assumption 1. Existence of certain limits in the spirit of the weak law of large numbers, including ¹/_n ∑ⁿ_{i=1} D²_i to be bounded in probability (finite variance of the out-degrees).
- ► Assumption 2. In a sequence of random graphs of growing size, the empirical probabilities P(D_i = k) converge to certain distributions.

M = M(n) ∈ ℝ^{n×n} is related to the adjacency matrix of the graph:

$$M_{i,j} = \begin{cases} s_{ij}C_i, & \text{if there are } s_{ij} \text{ edges from } i \text{ to } j, \\ 0, & \text{otherwise.} \end{cases}$$

- $Q \in \mathbb{R}^n$ is a personalization vector
- We are interested in the distribution of one coordinate, R₁⁽ⁿ⁾, of the vector **R**⁽ⁿ⁾ ∈ ℝⁿ defined by

$$\mathbf{R}^{(n)} = \mathbf{R}^{(n)}M + Q$$

Original and size-biased distribution

- Given the extended bi-degree sequence (N_n, D_n, C_n, Q_n) :
- Empirical distribution for the root node's parameters:

$$F_n^*(m,q) := \frac{1}{n} \sum_{k=1}^n \mathbb{1}(N_k \leqslant m, Q_k \leqslant q),$$

converges to $F^*(m, q) := P(\mathfrak{N}_0 \leqslant m, \mathfrak{Q}_0 \leqslant q)$

Original and size-biased distribution

- Given the extended bi-degree sequence (N_n, D_n, C_n, Q_n) :
- Empirical distribution for the root node's parameters:

$$F_n^*(m,q) := \frac{1}{n} \sum_{k=1}^n \mathbb{1}(N_k \leqslant m, Q_k \leqslant q),$$

converges to $F^*(m,q) := P(\mathfrak{N}_0 \leqslant m, \mathfrak{Q}_0 \leqslant q)$

 Empirical distribution for a node that has a out-link to any arbitrary node (size-biased by out-degree)

$$F_n(m, q, x) := \sum_{k=1}^n \mathbb{1}(N_k \leqslant m, Q_k \leqslant q, C_k \leqslant x) \frac{D_k}{L_n}$$

converges to $F(m, q, x) := P(\mathbb{N} \leqslant m, \mathbb{Q} \leqslant q) P(\mathbb{C} \leqslant x).$

$$\mathfrak{R} \stackrel{\mathcal{D}}{=} \sum_{j=1}^{\mathcal{N}} \mathfrak{C}_{j} \mathfrak{R}_{j} + \mathfrak{Q},$$

- Let \mathcal{R} denote the *endogenous* solution to the SFPE above.
- ► The *endogenous* solution is the limit of iterations of the recursion starting, say, from R₀ = 1.
- ► Main result:

$${\sf R}_1^{(n)} \Rightarrow \mathfrak{R}^*$$
, $n o \infty$,

where \Rightarrow denotes weak convergence and \mathcal{R}^* is given by

$$\mathcal{R}^* := \sum_{j=1}^{\mathcal{N}_0} \mathcal{C}_j \mathcal{R}_j + \mathcal{Q}_0,$$

► Three steps, three entirely different techniques.

- ► Three steps, three entirely different techniques.
- ► 1. Finite approximation. PageRank is accurately approximated by a finite number of matrix iterations.

- ► Three steps, three entirely different techniques.
- ► 1. Finite approximation. PageRank is accurately approximated by a finite number of matrix iterations.
- ► 2. Coupling with a tree. Construct a coupling of the DCM graph and a "thorny branching tree" (TBT). The coupling between the graph and the TBT will hold for a number of generations in the tree that is logarithmic in n.

- ► Three steps, three entirely different techniques.
- ► 1. Finite approximation. PageRank is accurately approximated by a finite number of matrix iterations.
- ► 2. Coupling with a tree. Construct a coupling of the DCM graph and a "thorny branching tree" (TBT). The coupling between the graph and the TBT will hold for a number of generations in the tree that is logarithmic in n.
- ► 3. Convergence to a weighted branching process. Show that the rank of the root node of the TBT converges weakly to the stated limit. Chen and Olvera-Cravioto (2014)

$$\mathbf{R}^{(n,0)} = B,$$

$$\mathbf{R}^{(n,1)} = \mathbf{R}^{(n,0)}M + Q = BM + Q,$$

$$\cdots$$

$$\mathbf{R}^{(n,k)} = \sum_{i=0}^{k-1} QM^i + BM^k, \quad k \ge 1.$$
Under event $B_n = \{\max_{1 \le i \le n} |C_i| D_i \le c, \ \frac{1}{n} \sum_{i=1}^n |Q_i| \le H\}$

$$\left\| \left\| \mathbf{R}^{(n,k)} - \mathbf{R}^{(n,\infty)} \right\|_{1} \leq \|\mathbf{r}_{0}\|_{1} c^{k} + \sum_{i=0}^{\infty} \|\mathbf{Q}\|_{1} c^{k+i} = |r_{0}| n c^{k} + \|\mathbf{Q}\|_{1} \frac{c^{k}}{1-c}$$

All nodes are symmetric! Markov inequality:

$$P\left(\left|R_{1}^{(n,\infty)}-R_{1}^{(n,k)}\right|>x_{n}^{-1}\right|B_{n}\right)=O\left(x_{n}c^{k}\right)$$

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 43/49

Coupling with branching tree

- ► We start with random node (node 1) and explore its neighbours, labeling the stubs that we have already seen
- τ the number of generations of WBP completed before coupling breaks

Coupling with branching tree

Lemma (Chen, L, Olvera-Cravioto 2014) Suppose $(\mathbf{N}_n, \mathbf{D}_n, \mathbf{C}_n, \mathbf{Q}_n)$ satisfies WLLN, $\mu = E(\mathcal{ND})/E(\mathcal{D})$. Then,

- for any $1 \leqslant k \leqslant h \log n$ with $0 < h < 1/(2 \log \mu)$, if $\mu > 1$,
- for any $1 \leq k \leq n^b$ with b < 1/2, if $\mu \leq 1$,

we have

$$P(\tau \leq k | \Omega_n) = \begin{cases} O((n/\mu^{2k})^{-1/2}), & \mu > 1, \\ O((n/k^2)^{-1/2}), & \mu = 1, \\ O(n^{-1/2}), & \mu < 1, \end{cases}$$

as $n \to \infty$.

Remark: μ corresponds to the average number of offspring of a node in TBT.

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 45/49

Numerical results-1

Figure : The empirical CDFs of 1000 samples of \Re^* , $R_1^{(n,\infty)}$, $R_1^{(n,k_n)}$ and $\hat{R}^{(n,k_n)}$ for n = 10000 and $k_n = 9$.

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 46/49

Numerical results-2

Figure : The empirical CDFs of 1000 samples of \mathcal{R}^* and $R_1^{(n,\infty)}$ for n = 10, 100 and 10000.

UNIVERSITY OF TWENTE.

[Nelly Litvak, NADINE Review 2] 47/49

Wiki graph

Figure : The empirical distribution of PageRank in English Wikipedia graph and its theoretical prediction. Dataset from U.Milan

Wiki graph

Figure : The empirical distribution of PageRank in English Wikipedia graph and its theoretical prediction. Dataset from U.Milan

 Breakthrough in probabilistic analysis of centralities and relations between them

- Breakthrough in probabilistic analysis of centralities and relations between them
- The methodology developed for analysis of PageRank in DCM can be applied for many other problems (distances, other centralities, other random graphs)

Current work:

Distances in DCM

- Breakthrough in probabilistic analysis of centralities and relations between them
- The methodology developed for analysis of PageRank in DCM can be applied for many other problems (distances, other centralities, other random graphs)

Current work:

- Distances in DCM
- ► Analysis of voting models (jointly with U. Milan)

- Breakthrough in probabilistic analysis of centralities and relations between them
- The methodology developed for analysis of PageRank in DCM can be applied for many other problems (distances, other centralities, other random graphs)

Current work:

- Distances in DCM
- ► Analysis of voting models (jointly with U. Milan)
- Extension to dynamic centralities (jointly with MTA SZTAKI)