NADINE Part II

UMIL

Software (M7)

Open Tools

- WebGraph: representing and analyzing large compressed graphs; new parallel version
- fastutil: high-performance collections, foundations for WebGraph
- Used to analyze large crawls
- Used at Twente to perform experiments on large datasets
- BUbiNG: high-performance crawler (currently used by Information Technologies Institute in Thessaloniki, Greece in a EU project, Istituto per le Applicazioni del Calcolo di Roma, ENEA ICT DIVISION)
- Integrated with spam detector from Sztaki
- HyperBall: computing distance distributions and geometric centralities

Creating large and diverse datasets (M9)

Web datasets

- Large scale web crawls
- Target: 1B pages, ~100B links
- Single-source seed for better reproducibility, open-source highperformance crawler
- EU countries crawls for diversity inside the EU
- UK crawls for linguistic uniformity
- General shallow crawls for maximum diversity
- Additionally, collaboration to the creation of ClueWeb12 dataset

Wiki datasets

- Several languages
- Freely available to the community in pre-packaged format
- WikipediaDocumentSequence: a single class (part of MG4J) that can transform a Wikipedia dump into a graph and a search engine over the content
- Basic statistics available from the site
- Foundation for the PLoS ONE paper (and others) with Toulouse
- <u>http://wikirank.di.unimi.it/</u>

Understanding large graphs

The problem

- Previous analysis on web graphs was flakey
- Unreproducible result, "eyeballing" on plots instead of statistical tests
- Spurred the "power-law" craze, but without actual foundations
- In collaboration with the Data and Web Science Group of the University of Mannheim, we unleashed the tools developed by NADINE for graph analysis

The result

- The in-depth analysis of the largest available web graph (3.5 billion pages)
- Kolmogoroff–Smirnoff testing of power laws
- Several level of aggregation
- Published on the Web Science Track of WWW 2014, soon on Network Science.
- Andrei Broder mentioned the paper in his "crystal ball keynote" at WWW 2015 together with Clauset's analysis of empirical power laws

Ranking

- We published the first open ranking of the web
- The scale is unprecedented: we provide different rankings on the 100M hosts of a 3.5B pages crawl
- Available for browsing from a web site
- http://wwwranking.webdatacommons.org/
- Data downloadable (actually, we didn't think anybody wanted it, but then some national libraries asked for it)

Understanding ranking on (directed) networks (M13)

The problem

- Understanding the correlation between different rankings
- Why results in information retrieval about exogenous rankings are so flakey?
- Taking care of ties is essential (indegree)
- Rank differences between important elements should be more relevant
- Large-scale target (whole graphs), not small sets of results

Indegree	PageRank	Katz	Harmonic	Closeness
United States	United States	United States	United States	Kharqan Rural District
List of sovereign states	Animal	List of sovereign states	United Kingdom	Talageh-ye Sofla
Animal	List of sovereign states	United Kingdom	World War II	Talageh-ye Olya
England	France	France	France	Greatest Remix Hits (Whigfield album)
France	Germany	Animal	Germany	Suzhou HSR New Town
Association football	Association football	World War II	Association football	Suzhou Lakeside New City
United Kingdom	England	England	English language	Mepirodipine
Germany	India	Association football	China	List of MPs M-N
Canada	United Kingdom	Germany	Canada	List of MPs O-R
World War II	Canada	Canada	India	List of MPs S-T
India	Arthropod	India	Latin	List of MPs U-Z
Australia	Insect	Australia	World War I	List of MPs J-L
London	World War II	London	England	List of MPs C
Japan	Japan	Italy	Italy	List of MPs F-I
Italy	Australia	Japan	Russia	List of MPs A–B
Arthropod	Village	New York City	Europe	List of MPs D-E
Insect	Italy	English language	Australia	Esmaili-ye Sofla
New York City	Poland	China	European Union	Esmaili-ye Olya
English language	English language	Poland	Catholic Church	Levels of organization (ecology)
Village	Nationa Reg. of Hist. Places	World War I	London	Jacques Moeschal (architect)

Table 1: Top 20 pages of the English version of Wikipedia following five different centrality measures.

	Ind.	PR	Katz	Harm.	C1.		Ind.	PR	Katz	Harm.	C 1.
Indegree	1	0.75	0.90	0.62	0.55	Indegree	1	0.31	0.63	0.24	0.06
PageRank	0.75	1	0.75	0.61	0.56	PageRank	0.31	1	0.27	0.10	0.10
Katz	0.90	0.75	1	0.70	0.62	Katz	0.63	0.27	1	0.50	0.20
Harmonic	0.62	0.61	0.70	1	0.92	Harmonic	0.24	0.10	0.50	1	0.65
Closeness	0.55	0.56	0.62	0.92	1	Closeness	0.06	0.10	0.20	0.65	1

Indegree	PageRank	Katz	Harmonic	Closeness
Carl Linnaeus	Carl Linnaeus	Carl Linnaeus	Aristotle	Noël Bernard (botanist)
Aristotle	Aristotle	Aristotle	Albert Einstein	Charles Coquelin
Thomas Jefferson	Thomas Jefferson	Thomas Jefferson	Thomas Jefferson	Markku Kivinen
Margaret Thatcher	Charles Darwin	Albert Einstein	Charles Darwin	Angiolo Maria Colomboni
Plato	Plato	Charles Darwin	Thomas Edison	Om Prakash (historian)
Charles Darwin	Albert Einstein	Karl Marx	Alexander Graham Bell	Michel Mandjes
Karl Marx	Karl Marx	Plato	Nikola Tesla	Kees Posthumus
Albert Einstein	Pliny the Elder	Margaret Thatcher	William James	F. Wolfgang Schnell
Vladimir Lenin	Vladimir Lenin	Vladimir Lenin	Isaac Newton	Christof Ebert
Sigmund Freud	Johann Wolfgang von Goethe	Isaac Newton	Karl Marx	Reese Prosser
J. R. R. Tolkien	Margaret Thatcher	Ptolemy	Charles Sanders Peirce	David Tulloch
Johann Wolfgang von Goethe	Ptolemy	Johann Wolfgang von Goethe	Noam Chomsky	Kim Hawtrey
Spider-Man	Sigmund Freud	Pliny the Elder	Enrico Fermi	Patrick J. Miller
Pliny the Elder	Isaac Newton	Benjamin Franklin	Ptolemy	Mikel King
Benjamin Franklin	Benjamin Franklin	J. R. R. Tolkien	John Dewey	Albert Perry Brigham
Leonardo da Vinci	J. R. R. Tolkien	Thomas Edison	Johann Wolfgang von Goeth	e Gordon Wagner (economist)
Isaac Newton	Immanuel Kant	Sigmund Freud	Bertrand Russell	George Henry Chase
Ptolemy	Leonardo da Vinci	Immanuel Kant	Plato	Charles C. Horn
Immanuel Kant	Pierre André Latreille	Leonardo da Vinci	John von Neumann	Paul Goldstene
George Bernard Shaw	Thomas Edison	Noam Chomsky	Vladimir Lenin	Robert Stanton Avery
Indegree	PageRank	Katz	Harmonic	Closeness
Martini (cocktail)	Martini (cocktail)	Irish coffee I	rish coffee	Magie Noir
Piña colada	Caipirinha	Caipirinha (Caipirinha	Batini (drink)
Mojito	Mojito	Martini (cocktail)	(cocktail)	Scorpion bowl

Martini (cocktail)	Martini (cocktail)	Irish coffee	Irish coffee	Magie Noir
Piña colada	Caipirinha	Caipirinha	Caipirinha	Batini (drink)
Mojito	Mojito	Martini (cocktail)	Kir (cocktail)	Scorpion bowl
Caipirinha	Piña colada	Piña colada	Martini (cocktail)	Poinsettia (cocktail)
Cuba Libre	Irish coffee	Kir (cocktail)	Piña colada	Irish coffee
Irish coffee	Kir (cocktail)	Mojito	Mojito	Caipirinha
Singapore Sling	Cosmopolitan (cocktail)	Mai Tai	Beer cocktail	Kir (cocktail)
Manhattan (cocktail)	Manhattan (cocktail)	Cuba Libre	Shaken, not stirred	Martini (cocktail)
Windle (sidecar)	IBA Official Cocktail	Singapore Sling	Pisco Sour	Piña colada
Cosmopolitan (cocktail)	Beer cocktail	Long Island Iced Tea	Mai Tai	Mojito
Mai Tai	Mai Tai	Shaken, not stirred	Spritz (alcoholic beverage)	Beer cocktail
IBA Official Cocktail	Singapore Sling	Beer cocktail	Long Island Iced Tea	Shaken, not stirred
Kir (cocktail)	Cuba Libre	Manhattan (cocktail)	Sazerac	Mai Tai
Shaken, not stirred	Tom Collins	Cosmopolitan (cocktail)	Fizz (cocktail)	Spritz (alcoholic beverage)
Beer cocktail	Long Island Iced Tea	Windle (sidecar)	Flaming beverage	Pisco Sour
Pisco Sour	Sour (cocktail)	Pisco Sour	Cuba Libre	Long Island Iced Tea
Long Island Iced Tea	Shaken, not stirred	White Russian (cocktail)	Wine cocktail	Sazerac
Sour (cocktail)	Negroni	IBA Official Cocktail	Singapore Sling	Flaming beverage
White Russian (cocktail)	Flaming beverage	Moscow mule	Moscow mule	Fizz (cocktail)
Vesper (cocktail)	Lillet	Vesper (cocktail)	White Russian (cocktail)	Wine cocktail

Kendall's t 1938

- Score vectors *r*, *s*
- Concordances: pairs (*i*, *j*), *i* < *j*, such that the ranks for *i* and *j* in *r* and *s* are in the same order (assuming no ties)
- τ: Concordances minus discordances divided by concordances plus discordances (i.e., the number of ordered pairs)
- Ties cannot be solved by random assignment!
- <0,0,0,...,1,1,1,1,...> and <1,1,1,...,2,2,2,...> give correlation ≈0.5!

Kendall's t 1945

$$\langle \boldsymbol{r}, \boldsymbol{s} \rangle := \sum_{i < j} \operatorname{sgn}(r_i - r_j) \operatorname{sgn}(s_i - s_j)$$

$$\|r\| := \sqrt{\langle r, r \rangle}$$

$$\tau(\boldsymbol{r},\boldsymbol{s}) := \frac{\langle \boldsymbol{r},\boldsymbol{s} \rangle}{\|\boldsymbol{r}\| \cdot \|\boldsymbol{s}\|}$$

Now

$$\langle \mathbf{r}, \mathbf{s} \rangle_w := \sum_{i < j} \operatorname{sgn}(r_i - r_j) \operatorname{sgn}(s_i - s_j) w(i, j)$$

$$\tau_w(\boldsymbol{r},\boldsymbol{s}) := \frac{\langle \boldsymbol{r},\boldsymbol{s} \rangle_w}{\|\boldsymbol{r}\|_w \cdot \|\boldsymbol{s}\|_w}$$

$$|\langle \boldsymbol{r},\boldsymbol{s}\rangle_w| \leq \|\boldsymbol{r}\|_w \|\boldsymbol{s}\|_w$$

Computable Quickly

- O(n log n) variant of Knight's algorithm (highly parallelizable, distributable—it's a MergeSort)
- Open-source implementation in Java (scales to billion items)
- Works for any scheme $w(i, j) := f(i) \odot g(j)$ with suitable operation \odot (e.g., addition, multiplication)
- We suggest additive hyperbolic weighting, weighting (*i*, *j*) by1 / (*i* +1) +1 / (*j* +1): τ_h!

Correlation with Kendall's T

Wikipedia

	Ind.	PR	Katz	Harm.	C 1.
Indegree	1	0.75	0.90	0.62	0.55
PageRank	0.75	1	0.75	0.61	0.56
Katz	0.90	0.75	1	0.70	0.62
Harmonic	0.62	0.61	0.70	1	0.92
Closeness	0.55	0.56	0.62	0.92	1

	Ind.	PR	Katz	Harm.	C 1.
Indegree	1	0.95	0.98	0.90	0.27
PageRank	0.95	1	0.96	0.92	0.65
Katz	0.98	0.96	1	0.93	0.26
Harmonic	0.90	0.92	0.93	1	0.28
Closeness	0.27	0.65	0.26	0.28	1

Table 6: τ_h on Wikipedia.

Voting in social networks (M12)

Recommendation by voting

- Recommendation happens usually by some form of collaborative filtering
- LiquidFM is a Facebook application that tries to shift the power to the users
- The basic underlying mechanism is that of a *liquid democracy*, in which users can take decisions or delegate them

Viscous democracy

- In pure liquid democracy, votes are transferred exactly
- Viscous democracy has been proposed by Boldi et al. [CACM 2011] as a way to introduce some friction in vote transmission
- The idea is that a vote will conserve just a fraction α of its power when it is transferred to a delegate

Basic setting

- We have a set of user *U* and a set of songs *S*
- There is an underlying *friendship graph* having U as set of nodes, i.e., $F \subseteq U \times U$
- Every user expresses votes for some song
- Every user can *delegate* at most a friend as an expert, giving rise to a *delegation graph* $D \subseteq F$

Computing votes

- In liquid democracy, one assumes that there are no cycles and the "power" of a user is simply the size of its in-tree
- In viscous democracy, a vote traveling k hops has weight α^k
- The score of a user *u* is thus $\sum_{v} \alpha^{-d(v,u)}$
- Note that this is just Katz's index (or PageRank); actually, cycles are possible and the formula becomes an infinite path sum
- The score of a song is the sum of the scores of the users voting it

Implementation

- Katz's index computed in Java (periodically)
- MongoDB to store data
- A MusicBrainz local server to provide suggestions and unique references to music
- The resulting score is used in convex combination with the global score
- <u>http://bit.ly/liquidfm</u>

Main problem

- Not surprisingly: *user engagement*
- Chicken-and-egg: if LiquidFM was famous, people would like to have an "expert" label
- Without that, people have no incentive to add delegations and suggestions
- This is particularly bad for the "active" nature of the recommendation

On the positive side

- High privacy: you decide what to make visible of your music taste
- High serendipity: even in our small set of user (a hundred) it is evident that people tend to insert songs that are not "obvious"
- (Actually, there are a few records that entered my listening list from LiquidFM.)

Foundations for Monte–Carlo (and randomized) algorithms (M10)

A new, old family of PRNGs

- Most algorithmic software used in NADINE is Monte–Carlo or randomized in nature
- Such software needs very fast PRNGs of high quality
- In some cases (e.g., generating random permutation) the PRNG cost can be dominant
- Current available generators suffer unfortunately from an "academic slant" syndrome

Developing new PRNGs

- Starting point: Marsaglia's well-known xorshift family
- Almost trivial generators using just three shifts and three xors (which reflect linear operations on Z / 2Z)
- Need just a little "bump" to hide linear artefacts
- xorshift* generators multiply by a constant
- xorshift+ generators add part of the state

Fast & good

- xorshift128+ is the fastest known generator passing the BigCrush statistical test suite
- Scheduled to be the new generator of the Erlang and Julia language (actually, xorshift112+)
- xorshift1024+ offers a quality superior to the Mersenne Twister or WELL1024 at twice the speed uint64_t s[2];

```
uint64_t next(void) {
    uint64_t s1 = s[ 0 ];
    const uint64_t s0 = s[ 1 ];
    s[ 0 ] = s0;
    s1 ^= s1 << 23; // a
    return ( s[ 1 ] = ( s1 ^ s0 ^ ( s1 >> 17 ) ^ ( s0 >> 26 ) ) ) + s0; // b, c
}
```

```
#define W 32
#define R 32
#define M1 3
#define M2 24
#define M3 10
#define MAT0POS(t,v) (v^(v>>t))
#define MATONEG(t,v) (v^{(v<<(-(t)))})
#define Identity(v) (v)
#define V0
                    STATE[state_i
                                                  ]
#define VM1 STATE[(state_i+M1) & 0x0000001fU]
#define VM2
                   STATE[(state_i+M2) & 0x0000001fU]
#define VM3 STATE[(state_i+M3) & 0x0000001fU]
#define VRm1 STATE[(state_i+31) & 0x0000001fU]
#define newV0 STATE[(state_i+31) & 0x0000001fU]
#define newV1
                                                  ]
                   STATE[state_i
static unsigned int state_i = 0;
static unsigned int STATE[R];
static unsigned int z0, z1, z2;
static unsigned long int next( void *unused0, void *unused1 ) {
       = VRm1;
 z0
 z1 = Identity(V0) ^ MATOPOS (8, VM1);
       = MATONEG (-19, VM2) ^ MATONEG(-14, VM3);
 z2
 newV1 = z1
                      ^ z2;
 newV0 = MATONEG (-11, z0) ^ MATONEG(-7, z1) ^ MATONEG(-13, z2);
 state_i = (state_i + 31) & 0x0000001fU;
 return REV( STATE[state_i] );
}
```

Analysis and prediction on directed networks

LlamaFur

- Wikipedia = Directed knowledge base
- Wikipedia pages (*concepts*) are tagged by *categories*
- There exists a latent (unknown) relation between categories

LlamaFur: phase 1

- Llama = Learning Latent Matrix
- Extract a latent Tag x Tag category matrix W that "explains" wikipedia links
 - E.g.: actor → movie is *typical* because many actor pages link to the movies they acted in
- We use the Passive/Aggressive learning algorithm

LlamaFur: phase 1

- Objective function: keep some memory of the past
- Constraint: learn correctly the *t*-th pair (ξ_t allows for some error)

LlamaFur: phase 2

- Fur = to Find Unexpected Relations
- Use W to assign a score of expectedness to each link of the original knowledge base
- E.g.: did you know that George Clooney used to have a pig pet named Oscar?
- Applications: better ranking algorithms, diversifying search results, building restricted knowledge bases for serendipitous search

Local Ranking on the BrowseGraph

- Local Ranking Problem (LRP): divergence between PageRank computed on a known subgraph (local) and that computed on the large unknown graph (global)
- Here: study the problem on the BrowseGraph (Liu et al., SIGIR 2008)
- BrowseGraph: a weighted graph that reflects the users' transition among pages (of a given portion of the web)

Entry points

- Users enter the domain of interest from different entry points (e.g., from a search engine, from facebook, from a news website)
- Each entry point defines a different BrowseGraph
- How much do they look alike?

Rank comparison

	full	facebook	google	bing	ysearch	reddit	ymy	ynews	twitter
full	1.0000	0.1791	0.3931	0.3278	0.3548	0.0656	0.2931	0.2797	0.0764
facebook	0.1791	1.0000	0.3146	0.4111	0.3430	0.2616	0.3895	0.4070	0.3026
google	0.3931	0.3146	1.0000	0.5815	0.5860	0.1088	0.4960	0.4217	0.1297
bing	0.3278	0.4111	0.5815	1.0000	0.6624	0.1469	0.5741	0.5238	0.1688
search	0.3548	0.3430	0.5860	0.6624	1.0000	0.1245	0.5168	0.4632	0.1386
reddit	0.0656	0.2616	0.1088	0.1469	0.1245	1.0000	0.1513	0.1534	0.2309
my	0.2931	0.3895	0.4960	0.5741	0.5168	0.1513	1.0000	0.5040	0.1506
news	0.2797	0.4070	0.4217	0.5238	0.4632	0.1534	0.5040	1.0000	0.1523
t.co	0.0764	0.3026	0.1297	0.1688	0.1386	0.2309	0.1506	0.1523	1.0000

Table 3: Kendall's τ correlations between PageRank values ($\alpha = 0.85$).

Poor correlation between local ranks!

⇒ The behaviour of users is *different* depending on the entry point

Prediction

• Is it possible to guess the entry point, observing the user's behaviour?

- After observing 5 → 15 steps, the entry point can be guessed with extremely high accuracy
- Once more, the accuracy depends on the entry point

Conclusion

- Software tools in collaboration with other nodes
- Many new open datasets for the community, used throughout the project
- Entirely generated and ranked by open-source software
- Significantly deeper understanding of the structure of web graphs
- Open Wikipedia ranking by category / Open WWW ranking
- Facebook app for voting using spectral graph algorithms
- New algorithms to predict links and behaviour on directed graphs (Wikipedia, BrowseGraph)