
NADINE
Part II

UMIL

Software (M7)

Open Tools
• WebGraph: representing and analyzing large compressed graphs; new

parallel version

• fastutil: high-performance collections, foundations for WebGraph

• Used to analyze large crawls

• Used at Twente to perform experiments on large datasets

• BUbiNG: high-performance crawler (currently used by Information
Technologies Institute in Thessaloniki, Greece in a EU project, Istituto per
le Applicazioni del Calcolo di Roma, ENEA ICT DIVISION)

• Integrated with spam detector from Sztaki

• HyperBall: computing distance distributions and geometric centralities

Creating large and
diverse datasets (M9)

Web datasets
• Large scale web crawls

• Target: 1B pages, ~100B links

• Single-source seed for better reproducibility, open-source high-
performance crawler

• EU countries crawls for diversity inside the EU

• UK crawls for linguistic uniformity

• General shallow crawls for maximum diversity

• Additionally, collaboration to the creation of ClueWeb12 dataset

Wiki datasets
• Several languages

• Freely available to the community in pre-packaged format

• WikipediaDocumentSequence: a single class (part of MG4J)
that can transform a Wikipedia dump into a graph and a search
engine over the content

• Basic statistics available from the site

• Foundation for the PLoS ONE paper (and others) with Toulouse

• http://wikirank.di.unimi.it/

http://wikirank.di.unimi.it/

Understanding large
graphs

The problem
• Previous analysis on web graphs was flakey

• Unreproducible result, “eyeballing” on plots instead
of statistical tests

• Spurred the “power-law” craze, but without actual
foundations

• In collaboration with the Data and Web Science
Group of the University of Mannheim, we unleashed
the tools developed by NADINE for graph analysis

The result
• The in-depth analysis of the largest available web

graph (3.5 billion pages)

• Kolmogoroff–Smirnoff testing of power laws

• Several level of aggregation

• Published on the Web Science Track of WWW 2014,
soon on Network Science.

• Andrei Broder mentioned the paper in his “crystal ball
keynote” at WWW 2015 together with Clauset’s analysis
of empirical power laws

Ranking
• We published the first open ranking of the web

• The scale is unprecedented: we provide different
rankings on the 100M hosts of a 3.5B pages crawl

• Available for browsing from a web site

• http://wwwranking.webdatacommons.org/

• Data downloadable (actually, we didn’t think
anybody wanted it, but then some national libraries
asked for it)

Understanding
ranking on (directed)

networks (M13)

The problem
• Understanding the correlation between different rankings

• Why results in information retrieval about exogenous
rankings are so flakey?

• Taking care of ties is essential (indegree)

• Rank differences between important elements should be
more relevant

• Large-scale target (whole graphs), not small sets of
results

Kendall’s τ 1938
• Score vectors r, s

• Concordances: pairs (i, j), i < j, such that the ranks for i
and j in r and s are in the same order (assuming no ties)

• 𝜏: Concordances minus discordances divided by
concordances plus discordances (i.e., the number of
ordered pairs)

• Ties cannot be solved by random assignment!

• <0,0,0,...,1,1,1,...> and <1,1,1,...,2,2,2,...> give correlation
≈0.5!

Kendall’s τ 1945

Now

Computable Quickly
• O(n log n) variant of Knight’s algorithm (highly

parallelizable, distributable—it’s a MergeSort)

• Open-source implementation in Java (scales to
billion items)

• Works for any scheme w(i, j) := f(i) ⊙ g(j) with
suitable operation ⊙ (e.g., addition, multiplication)

• We suggest additive hyperbolic weighting,
weighting (i, j) by1 / (i +1) +1 / (j +1): 𝜏h!

Correlation with Kendall’s τ

Wikipedia

Voting in social
networks (M12)

Recommendation by voting

• Recommendation happens usually by some form of
collaborative filtering

• LiquidFM is a Facebook application that tries to
shift the power to the users

• The basic underlying mechanism is that of a liquid
democracy, in which users can take decisions or
delegate them

Viscous democracy
• In pure liquid democracy, votes are transferred

exactly

• Viscous democracy has been proposed by Boldi et
al. [CACM 2011] as a way to introduce some
friction in vote transmission

• The idea is that a vote will conserve just a fraction α
of its power when it is transferred to a delegate

Basic setting
• We have a set of user U and a set of songs S

• There is an underlying friendship graph having U
as set of nodes, i.e., F ⊆ U × U

• Every user expresses votes for some song

• Every user can delegate at most a friend as an
expert, giving rise to a delegation graph D ⊆ F

Francis

David

Sun Ra,
 "Enlightenment"Hugo

Ornette Coleman,
 "Eventually"

Miles Davis,
 "Pharaoh's Dance"

Joe

Bob

Albert Ayler,
 "Ghosts"

John Zorn,
 "Batman"

Alice

Klaudia

John Coltrane,
 "My Favorite Things"

Elizabeth

Mulatu Astatke,
 "Yegelle Tezeta"

Charlie

Gustav

Isaac

Lou

Computing votes
• In liquid democracy, one assumes that there are no cycles

and the “power” of a user is simply the size of its in-tree

• In viscous democracy, a vote traveling k hops has weight αk

• The score of a user u is thus ∑v α–d(v,u)

• Note that this is just Katz’s index (or PageRank); actually,
cycles are possible and the formula becomes an infinite
path sum

• The score of a song is the sum of the scores of the users
voting it

Implementation
• Katz’s index computed in Java (periodically)

• MongoDB to store data

• A MusicBrainz local server to provide suggestions
and unique references to music

• The resulting score is used in convex combination
with the global score

• http://bit.ly/liquidfm

http://bit.ly/liquidfm

Main problem
• Not surprisingly: user engagement

• Chicken-and-egg: if LiquidFM was famous, people
would like to have an “expert” label

• Without that, people have no incentive to add
delegations and suggestions

• This is particularly bad for the “active” nature of the
recommendation

On the positive side
• High privacy: you decide what to make visible of

your music taste

• High serendipity: even in our small set of user (a
hundred) it is evident that people tend to insert
songs that are not “obvious”

• (Actually, there are a few records that entered my
listening list from LiquidFM.)

Foundations for Monte–Carlo
(and randomized) algorithms

(M10)

A new, old family of PRNGs
• Most algorithmic software used in NADINE is

Monte–Carlo or randomized in nature

• Such software needs very fast PRNGs of high
quality

• In some cases (e.g., generating random
permutation) the PRNG cost can be dominant

• Current available generators suffer unfortunately
from an “academic slant” syndrome

Developing new PRNGs
• Starting point: Marsaglia’s well-known xorshift

family

• Almost trivial generators using just three shifts and
three xors (which reflect linear operations on Z / 2Z)

• Need just a little “bump” to hide linear artefacts

• xorshift* generators multiply by a constant

• xorshift+ generators add part of the state

Fast & good
• xorshift128+ is the fastest known generator passing

the BigCrush statistical test suite

• Scheduled to be the new generator of the Erlang
and Julia language (actually, xorshift112+)

• xorshift1024+ offers a quality superior to the
Mersenne Twister or WELL1024 at twice the speed
uint64_t s[2];

uint64_t next(void) {
 uint64_t s1 = s[0];
 const uint64_t s0 = s[1];
 s[0] = s0;
 s1 ^= s1 << 23; // a
 return (s[1] = (s1 ^ s0 ^ (s1 >> 17) ^ (s0 >> 26))) + s0; // b, c
}

#define W 32
#define R 32
#define M1 3
#define M2 24
#define M3 10

#define MAT0POS(t,v) (v^(v>>t))
#define MAT0NEG(t,v) (v^(v<<(-(t))))
#define Identity(v) (v)

#define V0 STATE[state_i]
#define VM1 STATE[(state_i+M1) & 0x0000001fU]
#define VM2 STATE[(state_i+M2) & 0x0000001fU]
#define VM3 STATE[(state_i+M3) & 0x0000001fU]
#define VRm1 STATE[(state_i+31) & 0x0000001fU]
#define newV0 STATE[(state_i+31) & 0x0000001fU]
#define newV1 STATE[state_i]

static unsigned int state_i = 0;
static unsigned int STATE[R];
static unsigned int z0, z1, z2;

static unsigned long int next(void *unused0, void *unused1) {
 z0 = VRm1;
 z1 = Identity(V0) ^ MAT0POS (8, VM1);
 z2 = MAT0NEG (-19, VM2) ^ MAT0NEG(-14,VM3);
 newV1 = z1 ^ z2;
 newV0 = MAT0NEG (-11,z0) ^ MAT0NEG(-7,z1) ^ MAT0NEG(-13,z2) ;
 state_i = (state_i + 31) & 0x0000001fU;
 return REV(STATE[state_i]);
}

Analysis and
prediction on directed

networks

LlamaFur

• Wikipedia = Directed knowledge base

• Wikipedia pages (concepts) are tagged by
categories

• There exists a latent (unknown) relation
between categories

LlamaFur: phase 1
• Llama = Learning Latent Matrix

• Extract a latent Tag ⨉ Tag category matrix W that
“explains” wikipedia links

• E.g.: actor → movie is typical because many actor
pages link to the movies they acted in

• We use the Passive/Aggressive learning algorithm  
 
 

LlamaFur: phase 1
• A balanced set of positive and negative examples (i.e., existent

and non-existent directed links between concepts) is built:

• The PA learning algorithm minimises  

• subject to  
 

• Objective function: keep some memory of the past

• Constraint: learn correctly the t-th pair (allows for some
error)

(d1, d
0
1), . . . , (dT , d

0
T)

kWt+1 �Wtk+K⇠t+1

�(dt, d
0
t) ·

X

c2Cdt

X

c02Cd0t

wt+1(c, c
0) � 1� ⇠t+1

⇠t

+1/-1 depending 
on whether 

it is a positive or 
negative example

The categories 
tagging 

the concept

LlamaFur: phase 2
• Fur = to Find Unexpected Relations

• Use W to assign a score of expectedness to each
link of the original knowledge base

• E.g.: did you know that George Clooney used to
have a pig pet named Oscar?

• Applications: better ranking algorithms, diversifying
search results, building restricted knowledge bases
for serendipitous search

Local Ranking on the
BrowseGraph

• Local Ranking Problem (LRP): divergence
between PageRank computed on a known
subgraph (local) and that computed on the large
unknown graph (global)

• Here: study the problem on the BrowseGraph (Liu
et al., SIGIR 2008)

• BrowseGraph: a weighted graph that reflects the
users’ transition among pages (of a given portion of
the web)

Entry points

• Users enter the domain of interest from different
entry points (e.g., from a search engine, from
facebook, from a news website)

• Each entry point defines a different BrowseGraph

• How much do they look alike?

Rank comparison

Poor correlation between local ranks!

⇒ The behaviour of users is different depending on the entry
point

Prediction
• Is it possible to guess the entry point, observing the user’s behaviour? 
 
 
 
 
 
 
 

• After observing 5 → 15 steps, the entry point can be guessed with
extremely high accuracy

• Once more, the accuracy depends on the entry point 

Conclusion
• Software tools in collaboration with other nodes

• Many new open datasets for the community, used throughout the
project

• Entirely generated and ranked by open-source software

• Significantly deeper understanding of the structure of web graphs

• Open Wikipedia ranking by category / Open WWW ranking

• Facebook app for voting using spectral graph algorithms

• New algorithms to predict links and behaviour on directed graphs
(Wikipedia, BrowseGraph)

