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Software (M7)



Open Tools
• WebGraph: representing and analyzing large compressed graphs; new 

parallel version 

• fastutil: high-performance collections, foundations for WebGraph 

• Used to analyze large crawls 

• Used at Twente to perform experiments on large datasets 

• BUbiNG: high-performance crawler (currently used by Information 
Technologies Institute in Thessaloniki, Greece in a EU project, Istituto per 
le Applicazioni del Calcolo di Roma, ENEA ICT DIVISION) 

• Integrated with spam detector from Sztaki 

• HyperBall: computing distance distributions and geometric centralities



Creating large and 
diverse datasets (M9)



Web datasets
• Large scale web crawls 

• Target: 1B pages, ~100B links 

• Single-source seed for better reproducibility, open-source high-
performance crawler 

• EU countries crawls for diversity inside the EU 

• UK crawls for linguistic uniformity 

• General shallow crawls for maximum diversity 

• Additionally, collaboration to the creation of ClueWeb12 dataset



Wiki datasets
• Several languages 

• Freely available to the community in pre-packaged format 

• WikipediaDocumentSequence: a single class (part of MG4J) 
that can transform a Wikipedia dump into a graph and a search 
engine over the content 

• Basic statistics available from the site 

• Foundation for the PLoS ONE paper (and others) with Toulouse 

• http://wikirank.di.unimi.it/

http://wikirank.di.unimi.it/


Understanding large 
graphs



The problem
• Previous analysis on web graphs was flakey 

• Unreproducible result, “eyeballing” on plots instead 
of statistical tests 

• Spurred the “power-law” craze, but without actual 
foundations 

• In collaboration with the Data and Web Science 
Group of the University of Mannheim, we unleashed 
the tools developed by NADINE for graph analysis



The result
• The in-depth analysis of the largest available web 

graph (3.5 billion pages) 

• Kolmogoroff–Smirnoff testing of power laws 

• Several level of aggregation 

• Published on the Web Science Track of WWW 2014, 
soon on Network Science. 

• Andrei Broder mentioned the paper in his “crystal ball 
keynote” at WWW 2015 together with Clauset’s analysis 
of empirical power laws



Ranking
• We published the first open ranking of the web 

• The scale is unprecedented: we provide different 
rankings on the 100M hosts of a 3.5B pages crawl 

• Available for browsing from a web site 

• http://wwwranking.webdatacommons.org/ 

• Data downloadable (actually, we didn’t think 
anybody wanted it, but then some national libraries 
asked for it)



Understanding 
ranking on (directed) 

networks (M13)



The problem
• Understanding the correlation between different rankings 

• Why results in information retrieval about exogenous 
rankings are so flakey? 

• Taking care of ties is essential (indegree) 

• Rank differences between important elements should be 
more relevant 

• Large-scale target (whole graphs), not small sets of 
results







Kendall’s τ 1938
• Score vectors r, s 

• Concordances: pairs (i, j), i < j, such that the ranks for i 
and j in r and s are in the same order (assuming no ties) 

• 𝜏: Concordances minus discordances divided by 
concordances plus discordances (i.e., the number of 
ordered pairs) 

• Ties cannot be solved by random assignment! 

• <0,0,0,...,1,1,1,...> and <1,1,1,...,2,2,2,...> give correlation 
≈0.5!



Kendall’s τ 1945



Now



Computable Quickly
• O(n log n) variant of Knight’s algorithm (highly 

parallelizable, distributable—it’s a MergeSort) 

• Open-source implementation in Java (scales to 
billion items) 

• Works for any scheme w(i, j) := f(i) ⊙ g(j) with 
suitable operation ⊙ (e.g., addition, multiplication) 

• We suggest additive hyperbolic weighting, 
weighting (i, j) by1 / (i +1) +1 / (j +1): 𝜏h!



Correlation with Kendall’s τ



Wikipedia



Voting in social 
networks (M12)



Recommendation by voting

• Recommendation happens usually by some form of 
collaborative filtering 

• LiquidFM is a Facebook application that tries to 
shift the power to the users 

• The basic underlying mechanism is that of a liquid 
democracy, in which users can take decisions or 
delegate them



Viscous democracy
• In pure liquid democracy, votes are transferred 

exactly 

• Viscous democracy has been proposed by Boldi et 
al. [CACM 2011] as a way to introduce some 
friction in vote transmission 

• The idea is that a vote will conserve just a fraction α 
of its power when it is transferred to a delegate



Basic setting
• We have a set of user U and a set of songs S 

• There is an underlying friendship graph having U 
as set of nodes, i.e., F ⊆ U × U 

• Every user expresses votes for some song 

• Every user can delegate at most a friend as an 
expert, giving rise to a delegation graph D ⊆ F
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Computing votes
• In liquid democracy, one assumes that there are no cycles 

and the “power” of a user is simply the size of its in-tree 

• In viscous democracy, a vote traveling k hops has weight αk 

• The score of a user u is thus ∑v α–d(v,u) 

• Note that this is just Katz’s index (or PageRank); actually, 
cycles are possible and the formula becomes an infinite 
path sum 

• The score of a song is the sum of the scores of the users 
voting it



Implementation
• Katz’s index computed in Java (periodically) 

• MongoDB to store data 

• A MusicBrainz local server to provide suggestions 
and unique references to music 

• The resulting score is used in convex combination 
with the global score 

• http://bit.ly/liquidfm

http://bit.ly/liquidfm


Main problem
• Not surprisingly: user engagement 

• Chicken-and-egg: if LiquidFM was famous, people 
would like to have an “expert” label 

• Without that, people have no incentive to add 
delegations and suggestions 

• This is particularly bad for the “active” nature of the 
recommendation



On the positive side
• High privacy: you decide what to make visible of 

your music taste 

• High serendipity: even in our small set of user (a 
hundred) it is evident that people tend to insert 
songs that are not “obvious” 

• (Actually, there are a few records that entered my 
listening list from LiquidFM.)



Foundations  for Monte–Carlo  
(and randomized) algorithms 

(M10)



A new, old family of PRNGs
• Most algorithmic software used in NADINE is 

Monte–Carlo or randomized in nature 

• Such software needs very fast PRNGs of high 
quality 

• In some cases (e.g., generating random 
permutation) the PRNG cost can be dominant 

• Current available generators suffer unfortunately 
from an “academic slant” syndrome



Developing new PRNGs
• Starting point: Marsaglia’s well-known xorshift 

family 

• Almost trivial generators using just three shifts and 
three xors (which reflect linear operations on Z / 2Z) 

• Need just a little “bump” to hide linear artefacts 

• xorshift* generators multiply by a constant 

• xorshift+ generators add part of the state



Fast & good
• xorshift128+ is the fastest known generator passing 

the BigCrush statistical test suite 

• Scheduled to be the new generator of the Erlang 
and Julia language (actually, xorshift112+) 

• xorshift1024+ offers a quality superior to the 
Mersenne Twister or WELL1024 at twice the speed
uint64_t s[ 2 ]; 

uint64_t next(void) {  
 uint64_t s1 = s[ 0 ];   
 const uint64_t s0 = s[ 1 ];   
 s[ 0 ] = s0;   
 s1 ^= s1 << 23; // a   
 return ( s[ 1 ] = ( s1 ^ s0 ^ ( s1 >> 17 ) ^ ( s0 >> 26 ) ) ) + s0; // b, c   
} 



#define W 32 
#define R 32 
#define M1 3 
#define M2 24 
#define M3 10 

#define MAT0POS(t,v) (v^(v>>t)) 
#define MAT0NEG(t,v) (v^(v<<(-(t)))) 
#define Identity(v) (v) 

#define V0            STATE[state_i                   ] 
#define VM1           STATE[(state_i+M1) & 0x0000001fU] 
#define VM2           STATE[(state_i+M2) & 0x0000001fU] 
#define VM3           STATE[(state_i+M3) & 0x0000001fU] 
#define VRm1          STATE[(state_i+31) & 0x0000001fU] 
#define newV0         STATE[(state_i+31) & 0x0000001fU] 
#define newV1         STATE[state_i                   ] 

static unsigned int state_i = 0; 
static unsigned int STATE[R]; 
static unsigned int z0, z1, z2; 

static unsigned long int next( void *unused0, void *unused1 ) { 
  z0    = VRm1; 
  z1    = Identity(V0)       ^ MAT0POS (8, VM1); 
  z2    = MAT0NEG (-19, VM2) ^ MAT0NEG(-14,VM3); 
  newV1 = z1                 ^ z2;  
  newV0 = MAT0NEG (-11,z0)   ^ MAT0NEG(-7,z1)    ^ MAT0NEG(-13,z2) ; 
  state_i = (state_i + 31) & 0x0000001fU; 
  return REV( STATE[state_i] ); 
}



Analysis and 
prediction on directed 

networks



LlamaFur

• Wikipedia = Directed knowledge base 

• Wikipedia pages (concepts) are tagged by 
categories 

• There exists a latent (unknown) relation 
between categories



LlamaFur: phase 1
• Llama = Learning Latent Matrix 

• Extract a latent Tag ⨉ Tag category matrix W that 
“explains” wikipedia links  

• E.g.: actor → movie is typical because many actor 
pages link to the movies they acted in 

• We use the Passive/Aggressive learning algorithm  
 
 



LlamaFur: phase 1
• A balanced set of positive and negative examples (i.e., existent 

and non-existent directed links between concepts) is built:  

• The PA learning algorithm minimises    

• subject to  
 

• Objective function: keep some memory of the past 

• Constraint: learn correctly the t-th pair (      allows for some 
error)
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LlamaFur: phase 2
• Fur = to Find Unexpected Relations 

• Use W to assign a score of expectedness to each 
link of the original knowledge base 

• E.g.: did you know that George Clooney used to 
have a pig pet named Oscar? 

• Applications: better ranking algorithms, diversifying 
search results, building restricted knowledge bases 
for serendipitous search



Local Ranking on the 
BrowseGraph

• Local Ranking Problem (LRP): divergence 
between PageRank computed on a known 
subgraph (local) and that computed on the large 
unknown graph (global) 

• Here: study the problem on the BrowseGraph (Liu 
et al., SIGIR 2008) 

• BrowseGraph: a weighted graph that reflects the 
users’ transition among pages (of a given portion of 
the web)



Entry points

• Users enter the domain of interest from different 
entry points (e.g., from a search engine, from 
facebook, from a news website) 

• Each entry point defines a different BrowseGraph  

• How much do they look alike?



Rank comparison

Poor correlation between local ranks! 

⇒ The behaviour of users is different depending on the entry 
point



Prediction
• Is it possible to guess the entry point, observing the user’s behaviour? 
 
 
 
 
 
 
 

• After observing 5 → 15 steps, the entry point can be guessed with 
extremely high accuracy  

• Once more, the accuracy depends on the entry point 



Conclusion
• Software tools in collaboration with other nodes 

• Many new open datasets for the community, used throughout the 
project 

• Entirely generated and ranked by open-source software 

• Significantly deeper understanding of the structure of web graphs 

• Open Wikipedia ranking by category / Open WWW ranking 

• Facebook app for voting using spectral graph algorithms 

• New algorithms to predict links and behaviour on directed graphs 
(Wikipedia, BrowseGraph)


