Quantum Nonlocality and Communication Complexity

Richard Cleve University of Waterloo

February 16,20,21,22,23 2006 (first 5 lectures) IHP, Paris Quantum information can apparently be used to substantially reduce *computation* costs for a number of interesting problems, and to provide novel forms of *cryptographic security*

We'll explore this question:

How does quantum information affect the *communication costs* of information processing tasks?

Main Topics

- 1. Nonlocality à la Bell, CHSH, GHZ
- 2. Communication complexity
- 3. Nonlocal games

Contents of Lecture 1

- What quantum information *cannot* do
- The GHZ "paradox"
- The Bell inequality and its violation

 Physicist's perspective
 - Computer scientist's perspective

- What quantum information *cannot* do
- The GHZ "paradox"
- The Bell inequality and its violation

 Physicist's perspective
 - Computer scientist's perspective

How much classical information in *n* qubits?

 $2^{n}-1$ complex numbers apparently needed to **specify** an arbitrary *n*-qubit pure quantum state:

 $\alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{010}|010\rangle + \dots + \alpha_{111}|111\rangle$

Does this mean that an exponential amount of classical information is somehow *stored* in *n* qubits?

No! Holevo's Theorem [1973] implies: cannot convey more than *n* bits of information in *n* qubits

Holevo's Theorem

Easy case:

Hard case (the general case):

 $b_1b_2 \dots b_n$ cannot convey more than *n* bits!

(proof omitted here)

Entanglement and signaling

Recall that entangled states, such as $\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle$,

can be used to perform some intriguing feats, such as *teleportation* and *superdense coding*

—but they *cannot* be used to "signal instantaneously"

Any operation performed on one system has no affect on the state of the other system (its reduced density matrix)

Basic communication scenario

Goal: convey *n* bits from Alice to Bob

Basic communication scenario

Bit communication:

Cost: n

Qubit communication:

Cost: \mathcal{N} [Holevo's Theorem, 1973]

(can be deduced) Cost: \mathcal{N}

Qubit communication & prior entanglement:

Cost: n/2 superdense coding [Bennett & Wiesner, 1992]

• What quantum information *cannot* do

- The GHZ "paradox"
- The Bell inequality and its violation
 Physicist's perspective
 - Computer scientist's perspective

GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]

Rules of the game:

- 1. It is promised that $r \oplus s \oplus t = 0$
- 2. No communication after inputs received
- 3. They *win* if $a \oplus b \oplus c = r \lor s \lor t$

No perfect strategy for GHZ

Input:

rst	$a \oplus b \oplus c$		
000	0		
011	1		
101	1		
110	1		

General deterministic strategy: $a_0, a_1, b_0, b_1, c_0, c_1$

Winning conditions: Has no solution, thus no perfect strategy exists $\begin{cases} a_0 \oplus b_0 \oplus c_0 = 0 \\ a_0 \oplus b_1 \oplus c_1 = 1 \\ a_1 \oplus b_0 \oplus c_1 = 1 \\ a_1 \oplus b_1 \oplus c_0 = 1 \end{cases}$

GHZ: preventing communication

Input and output events can be **space-like** separated: so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol *still* keep on winning?

"GHZ Paradox" explained

Prior entanglement: $|\psi\rangle = |000\rangle - |011\rangle - |101\rangle - |110\rangle$

Alice's strategy:

- 1. if r = 1 then apply H to qubit
- 2. measure qubit and set a to result

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Bob's & Carol's strategies: similar

Case 1 (*rst* = 000): state is measured directly ...

Case 2 (*rst* = 011): new state $|001\rangle + |010\rangle - |100\rangle + |111\rangle$

(other cases similar by symmetry)

GHZ: conclusions

- For the GHZ game, any *classical* team succeeds with probability at most ³/₄
- Allowing the players to communicate would enable them to succeed with probability 1
- Entanglement cannot be used to communicate
- Nevertheless, allowing the players to have entanglement enables them to succeed with probability 1
- Thus, entanglement is a useful resource for the task of winning the GHZ game

What quantum information *cannot* do The GHZ "paradox" The Bell inequality and its violation Physicist's perspective Computer scientist's perspective

Bell's Inequality and its violation Part I: physicist's view:

Can a quantum state have *pre-determined* outcomes for each possible measurement that can be applied to it?

qubit:

where the "manuscript" is something like this:

called hidden variables

[Bell, 1964]

[Clauser, Horne, Shimony, Holt, 1969]

if { 0>, 1>} measurement then output 0	
if { +⟩, −⟩} measurement then output 1	
if (etc)	

table could be implicitly given by some formula

Bell Inequality

Imagine a two-qubit system, where one of two measurements, called M_0 and M_1 , will be applied to each qubit:

Define: $A_0 = (-1)^{a_0}$ $A_1 = (-1)^{a_1}$ $B_0 = (-1)^{b_0}$ $B_1 = (-1)^{b_1}$

```
Claim: A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 \le 2

Proof: A_0 (B_0 + B_1) + A_1 (B_0 - B_1) \le 2

\uparrow

one is \pm 2 and the other is 0
```

Bell Inequality

 $A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2$ is called a **Bell Inequality***

Question: could one, in principle, design an experiment to check if this Bell Inequality holds for a particular system?

Answer 1: *no, not directly*, because A_0, A_1, B_0, B_1 cannot all be measured (only **one** $A_s B_t$ term can be measured)

Answer 2: *yes, indirectly*, by making many runs of this experiment: pick a random $st \in \{00, 01, 10, 11\}$ and then measure with M_s and M_t to get the value of $A_s B_t$. The expression of $A_s B_t$

The *average* of A_0B_0 , A_0B_1 , A_1B_0 , $-A_1B_1$ should be $\leq \frac{1}{2}$

* also called CHSH Inequality

Violating the Bell Inequality

Two-qubit system in state $|\phi\rangle = |00\rangle - |11\rangle$

Applying rotations θ_A and θ_B yields: $\cos(\theta_A + \theta_B) (|00\rangle - |11\rangle) + \sin(\theta_A + \theta_B) (|01\rangle + |10\rangle)$ AB = +1

Define

 M_0 : rotate by $-\pi/16$ then measure M_1 : rotate by $+3\pi/16$ then measure

Then $A_0 B_0$, $A_0 B_1$, $A_1 B_0$, $-A_1 B_1$ all have expected value $\frac{1}{2}\sqrt{2}$, which *contradicts* the upper bound of $\frac{1}{2}$

Bell Inequality violation: summary

Assuming that quantum systems are governed by *local hidden variables* leads to the Bell inequality $A_0B_0 + A_0B_1 + A_1B_0 - A_1B_1 \le 2$

But this is *violated* in the case of Bell states (by a factor of $\sqrt{2}$)

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments along these lines have actually been conducted

• What quantum information *cannot* do

- The GHZ "paradox"
- The Bell inequality and its violation
 Physicist's perspective
 - Computer scientist's perspective

Bell's Inequality and its violation Part II: computer scientist's view:

Rules: 1. No communication after inputs received 2. They *win* if $a \oplus b = s \wedge t$

With classical resources, $\Pr[a \oplus b = s \land t] \le 0.75$

input:

output:

But, with prior entanglement state $|00\rangle - |11\rangle$, $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

The quantum strategy

- Alice and Bob start with entanglement $|\phi\rangle = |00\rangle |11\rangle$
- Alice: if s = 0 then rotate by $\theta_A = -\pi/16$ else rotate by $\theta_A = +3\pi/16$ and measure
- **Bob:** if t = 0 then rotate by $\theta_{\rm B} = -\pi/16$ else rotate by $\theta_{\rm B} = +3\pi/16$ and measure

st = 11 $3\pi/8$ st = 01 or 10 $\pi/8$ $-\pi/8$ st = 00

 $\cos(\theta_{\rm A}-\theta_{\rm B}~)~(|00\rangle-|11\rangle)+\sin(\theta_{\rm A}-\theta_{\rm B}~)~(|01\rangle+|10\rangle)$

Success probability: $\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853...$

The quantum strategy is optimal

Tsirelson [1980]: For *any* quantum strategy, the success probability is at most $\cos^2(\pi/8)$

We'll prove this in a future lecture, when we get more deeply into *nonlocal games*

Nonlocality in operational terms

Preview: magic square game

Problem: fill in the matrix with bits such that each row has even parity and each column has odd parity

Game: ask Alice to fill in one row and Bob to fill in one column

They *win* iff parities are correct and bits agree at intersection

Success probabilities: ⁸/₉ classical and 1 quantum

[Aravind, 2002]

(details omitted here) ²⁸

Contents of Lecture 2

- Communication complexity
 - Equality checking
 - Intersection (quadratic savings)
 - Are exponential savings possible?
 - Lower bound for the inner product problem
 - Simultaneous message passing & fingerprinting

Communication complexity

 Equality checking
 Intersection (quadratic savings)
 Are exponential savings possible
 Lower bound for the inner product
 Simultaneous message passing

Classical communication complexity

[Yao, 1979]

E.g. equality function: f(x,y) = 1 if x = y, and 0 if $x \neq y$

Question: can the communication be less than *n* bits?

Deterministic cost is n bits (I)

	000	001	010	011	100	101	110	111
000	1	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	1	0	0
<mark>110</mark>	0	0	0	0	0	0	1	0
111	0	0	0	0	0	0	0	1

Table of all values of f(x,y):

A *rectangle* is $R \subseteq \{0,1\}^n \times \{0,1\}^n$ of the form $R = R_A \times R_B$ Suppose the communication complexity of f is k

Each input in the domain of *f* fixes a *conversation*

$$\overbrace{C}^{\circ \circ} \underbrace{C} \in \{0,1\}^{k+1}$$

Several inputs may lead to the same conversation ...

Deterministic cost is n bits (II)

	000	001	010	011	100	101	110	111
000	1	0	0	0	0	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	0	0	0	0	1	0	0	0
101	0	0	0	0	0	1	0	0
110	0	0	0	0	0	0	1	0
111	0	0	0	0	0	0	0	1

Table of all values of f(x,y):

In fact, the inputs leading to C*must* constitute a rectangle: if (x,y), (x',y') both lead to Cthen so do (x',y) and (x,y')

Since each conversation has a unique output, f is **constant** on each of these rectangles

34

Need at least 2^{n+1} rectangles to $\{0,1\}$ -partition this table Since this implies $\ge 2^{n+1}$ distinct conversations, $k \ge n$ Therefore, the deterministic communication complexity is *n*

Probabilistic cost is $O(\log n)$ bits

Start with a "good" classical error-correcting code, which is a function $e: \{0,1\}^n \rightarrow \{0,1\}^{cn}$ such that, for all $x \neq y$,

 $\Delta(e(x), e(y)) \ge \delta cn \qquad (\Delta \text{ means Hamming distance}),$ where c, δ are constants $x_1 x_2 \dots x_n \qquad \qquad y_1 y_2 \dots y_n$ if $i \in \mathcal{O}$ randomly choose

 $(r,e(x)_r) \longrightarrow \text{output} \begin{cases} 1 \text{ if } e(y)_r = e(x)_r \\ 0 \text{ if } e(y)_r \neq e(x)_r \end{cases}$

 $r \in \{1, 2, ..., Cn\}$

Quantum communication complexity

Question: can quantum beat classical in this context?
Communication complexity Equality checking Intersection (quadratic savings) Are exponential savings possible? Lower bound for the inner product Simultaneous message passing 8

Classically, $\Omega(n)$ bits necessary to succeed with prob. $\geq 3/4$

For all $\varepsilon > 0$, $O(n^{1/2} \log n)$ qubits sufficient for error prob. < ε

[KS '87] [BCW '98]

Search problem

Given: $x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & \dots & n \\ 0 & 0 & 0 & 1 & 0 & \dots & 1 \end{bmatrix}$ accessible via *queries*

$$\log n \left\{ \begin{array}{c} |\mathbf{i}\rangle & \hline \chi \\ 1 \\ |\mathbf{b}\rangle & \hline |\mathbf{b} \oplus \mathbf{x}_i \rangle \end{array} \right.$$

Goal: find $i \in \{1, 2, ..., n\}$ such that $x_i = 1$

Classically: $\Omega(n)$ queries are necessary

Quantum mechanically: $O(n^{1/2})$ queries are sufficient

[Grover, 1996]

Communication per $x \wedge y$ -query: $2(\log n + 3) = O(\log n)$

Appointment scheduling: epilogue

Bit communication:

 $\mathsf{Cost:}\, \theta(\mathcal{N})$

Bit communication & prior entanglement:

Cost: $\theta(n^{1/2})$

Qubit communication:

Cost: $\theta(n^{1/2})$ (with refinements)

Qubit communication & prior entanglement:

[R '02] [AA '03]

Communication complexity

 Equality checking
 Intersection (quadratic savings)
 Are exponential savings possible?
 Lower bound for the inner product problem
 Simultaneous message passing & fingerprinting

Restricted version of equality

Precondition (i.e. promise): either x = y or $\Delta(x,y) = n/2$ Hamming distance

(Distributed variant of "constant" vs. "balanced")

Classically, $\Omega(n)$ bits communication are necessary *for an exact solution*

Quantum mechanically, $O(\log n)$ qubits communication are sufficient *for an exact solution*

Classical lower bound

Theorem: If $S \subseteq \{0,1\}^n$ has the property that, for all $x, x' \in S$, their *intersection* size is *not* n/4 then $|S| < 1.99^n$

Let **some** protocol solve restricted equality with k bits comm.

• 2^k conversations of length k

[Frankl and Rödl, 1987]

• restrict to the $2^n/\sqrt{n}$ input pairs (x, x), where $\Delta(x) = n/2$

There are $2^{n}/2^{k}\sqrt{n}$ input pairs (x, x) that yield **same** conv. C

Define $S = \{x : \Delta(x) = n/2 \text{ and } (x, x) \text{ yields conv. } C\}$

For any $x, x' \in S$, input pair (x, x') also yields conversation C

Therefore, $\Delta(x, x') \neq n/2$, implying intersection size is **not** n/4Theorem implies $2^n/2^k \sqrt{n} < 1.99^n$, so k > 0.007n

Quantum protocol

For each $x \in \{0,1\}^n$, define $|\psi_x\rangle = \sum_{j=1}^n (-1)^{x_j} |j\rangle$

Protocol:

- 1. Alice sends $|\psi_x\rangle$ to Bob (log *n* qubits)
- 2. Bob measures state in a basis that includes $|\psi_{\nu}\rangle$

Correctness of protocol:

If x = y then Bob's result is definitely $|\psi_y\rangle$ If $\Delta(x,y) = n/2$ then $\langle \psi_x | \psi_y \rangle = 0$, so result is definitely **not** $|\psi_y\rangle$

Question: How much communication if error ¹/₄ is permitted? **Answer:** Just **2** bits are sufficient!

Exponential quantum vs. classical separation in <u>bounded-error models</u>

 $O(\log n)$ quantum vs. $\Omega(n^{1/4} / \log n)$ classical communication

Classical description of

 $|\psi\rangle$: a log(*n*)-qubit state

M: two-outcome measurement

Output: binary result of applying M to $U|\psi
angle$

Classical description of **U**: log(n)-qubit unitary op

Communication complexity

- Equality checking
- Intersection (quadratic savings)
- Are exponential savings possible?
- Lower bound for the inner product problem
 - Simultaneous message passing & fingerprinting

Inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Classically, $\Omega(n)$ bits of communication are required, even for bounded-error protocols

Quantum protocols **also** require $\Omega(n)$ communication

The Bernstein-Vazirani problem

Let $f(x_1, x_2, ..., x_n) = a_1 x_1 + a_2 x_2 + ... + a_n x_n \mod 2$

Given: $\begin{aligned} |x_1\rangle &= |x_1\rangle \\ |x_2\rangle &= f \\ \vdots &= |x_2\rangle \\ \vdots &= f \\ |x_2\rangle \\ \vdots &= |x_1\rangle \\ \vdots &= |x_2\rangle \\ \vdots &= |x_1\rangle \\ \vdots &= |x_1\rangle$

Goal: determine a_1, a_2, \ldots, a_n

Classically, n queries are necessary

The Bernstein-Vazirani problem

Let $f(x_1, x_2, ..., x_n) = a_1 x_1 + a_2 x_2 + ... + a_n x_n \mod 2$

Goal: determine a_1, a_2, \ldots, a_n

Classically, n queries are necessary

Quantum mechanically, 1 query is sufficient

Lower bound for inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Lower bound for inner product

 $IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$

Since *n* bits are conveyed from Alice to Bob, *n* qubits communication necessary (by Holevo's Theorem)

Contents of Lecture 3

Quantum fingerprintingHidden matching problem

Quantum fingerprintingHidden matching problem

Equality revisited in simultaneous message model

Exact protocols: require 2*n* bits communication

Bounded-error protocols with a shared random key: require only O(1) bits communication

Bounded-error protocols *without* a shared key:

Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$ using quantum fingerprints [A '96] [NS '96] [BCWW '01]

Quantum fingerprints

Question 1: how many orthogonal states in m qubits? **Answer:** 2^m

Let ε be an arbitrarily small positive constant **Question 2:** how many *almost orthogonal** states in *m* qubits? (* where $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$)

Answer: $2^{2^{am}}$, for some constant 0 < a < 1

Construction of *almost* **orthogonal states**: start with a special classical error-correcting code, which is a function $e: \{0,1\}^n \rightarrow \{0,1\}^{cn}$ such that, for all $x \neq y$,

 $\frac{\delta cn \leq \Delta(e(x), e(y)) \leq (1 - \delta)cn}{(c, \delta \text{ are constants})}$

Construction of *almost* orthogonal states

Set $|\Psi_x\rangle = \frac{1}{\sqrt{cn}} \sum_{k=1}^{cn} (-1)^{e(x)_k} |k\rangle$ for each $x \in \{0,1\}^n$ (log(*cn*) qubits)

Then $\langle \Psi_{x} | \Psi_{y} \rangle = \frac{1}{cn} \sum_{k=1}^{cn} (-1)^{[e(x) \oplus e(y)]_{k}} | k \rangle = 1 - \frac{2\Delta(e(x), e(y))}{cn}$

Since $\delta cn \leq \Delta(e(x), e(y)) \leq (1 - \delta)cn$, we have $|\langle \psi_x | \psi_y \rangle| \leq 1 - 2\delta$

By duplicating each state, $|\psi_x\rangle \otimes |\psi_x\rangle \otimes \dots \otimes |\psi_x\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2\delta)^r \leq \varepsilon$

Result: $m = r \log(cn)$ qubits storing $2^n = 2^{(1/c)2^{m/r}}$ different states (as opposed to *n* qubits!)

What are these almost orthogonal states good for?

Question 3: can they be used to somehow store *n* bits using only $O(\log n)$ qubits?

Answer: No—recall that Holevo's theorem forbids this

Here's what we can do: given two states from an almost orthogonal set, we can distinguish between these two cases:

- they're both the same state
- they're almost orthogonal

Question 4: How?

Quantum fingerprints

Let $|\psi_{000}\rangle$, $|\psi_{001}\rangle$, ..., $|\psi_{111}\rangle$ be 2^n states on $O(\log n)$ qubits such that $|\langle \psi_x | \psi_y \rangle| \le \varepsilon$ for all $x \ne y$

Given $|\psi_x\rangle|\psi_y\rangle$, one can check if x = y or $x \neq y$ as follows:

if x = y, Pr[output = 0] = 1 if $x \neq y$, Pr[output = 0] = $(1 + \varepsilon^2)/2$

Note: error probability can be reduced to $((1 + \varepsilon^2)/2)^r$

protocols without a shared key:

Classical: $\theta(n^{1/2})$

Quantum: $\theta(\log n)$

[A '96] [NS '96] [BCWW '01]

Quantum protocol for equality in simultaneous message model

Quantum fingerprinting
Hidden matching problem

Hidden matching problem

For this problem, a quantum protocol is exponentially more efficient than any classical protocol—even with a shared key

Only one-way communication (Alice to Bob) is permitted

[Bar-Yossef, Jayram, Kerenidis, '04]

Classically, one-way communication is $\Omega(\sqrt{n})$, even with a shared classical key (the proof is omitted here)

Rough intuition: Alice doesn't know which edges are in M, so she apparently has to send $\Omega(\sqrt{n})$ bits of the form $x_i \bigoplus x_i \dots$

The hidden matching problem

Inputs: $x \in \{0,1\}^n$

Output: $(i, j, x_i \oplus x_j)$, $(i, j) \in M$

Quantum protocol: Alice sends $\frac{1}{\sqrt{n}}\sum_{k=1}^{n}(-1)^{x_k}|k\rangle$ (log *n* qubits)

Bob measures in $|i\rangle \pm |j\rangle$ basis, $(i, j) \in M$, and uses the outcome's relative phase to determine $x_i \bigoplus x_j$

Contents of Lecture 4

- Interactive proof systems
- Two-prover interactive proof systems (MIPs)
 - Classical \oplus -MIP = MIP = NEXP
 - Quantum \oplus -MIP* \subseteq EXP

joint work with: **Peter Høyer** (Calgary) **Ben Toner** (Caltech) **John Watrous** (Calgary)

- Interactive proof systems
- Two-prover interactive proof systems (MIPs)
 - Classical \oplus -MIP = MIP = NEXP
 - Quantum \oplus -MIP* \subseteq EXP

We'll consider connections between:

Computational proof systems: where one or more "provers" can efficiently convince a "verifier" of a mathematical truth

and ...

Nonlocality: Bell inequalities and entangled systems that violate them

One conclusion: certain interactive proof systems become *weaker* with quantum information
What is the computational cost of the process of being *convinced* of something?

Consider an instance of **3SAT**:

 $f(\mathbf{X}_1,\ldots,\mathbf{X}_n) = (\mathbf{X}_1 \vee \overline{\mathbf{X}}_3 \vee \mathbf{X}_4) \wedge (\overline{\mathbf{X}}_2 \vee \mathbf{X}_3 \vee \overline{\mathbf{X}}_5) \wedge \cdots \wedge (\overline{\mathbf{X}}_1 \vee \mathbf{X}_5 \vee \overline{\mathbf{X}}_n)$

 $f(x_1,...,x_n)$ is **satisfiable** iff there exists $b_1,...,b_n \in \{0,1\}$ such that $f(b_1,...,b_n) = 1$

Satisfiability is easy to *verify*—if one is supplied with, say, a satisfying assignment

 ${\bf NP}$ denotes the class of languages ${\pmb L}$ whose positive instances have such "witnesses" that can be verified in polynomial time

"Complexity Theory 101"

P: solvable in time $O(n^c)$

NP: positive instances <u>verifiable</u> in time $O(n^c)$

PSPACE: solvable with <u>space</u> $O(n^c)$

EXP: solvable in time $O(2^{n^c})$

NEXP: positive instances verifiable in time $O(2^{n^c})$

 $P \subset NP \subset PSPACE \subset EXP \subset NEXP$

Interactive proof systems

If one can carry out a "dialog" with a prover then the expressive power increases from **NP** to **PSPACE**

- The Verifier must be efficient (polynomial time), but the Prover is computationally unbounded
- Soundness: if x ∉ L, no Prover causes the Verifier to accept (small error probability is okay)
- **Completeness:** if $x \in L$, there exists a Prover that causes the Verifier to accept (small error is okay)

[Lund, Fortnow, Karloff, Nisan 1990; Shamir 1990]

Interactive proof systems

- Two-prover interactive proof systems (MIPs)
 Classical O-MIP = MIP = NEXP
 - Quantum \oplus -MIP* \subseteq EXP

Two provers

With two provers, who cannot communicate with each other, the expressive power increases to NEXP (nondeterministic exponential-time)

- Again, the Verifier must be efficient (polynomial time), and the Provers are computationally unbounded
- The **NEXP** result assumes the provers are *classical* ٠
- With *quantum* strategies, provers can sometimes "cheat" • [Babai, Fortnow, Lund, 1991]

Sample protocol for 3SAT ...

Instance: $(x_1 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor x_3 \lor \overline{x}_5) \land (\overline{x}_1 \lor x_5 \lor \overline{x}_n)$

- 1. The Verifier randomly chooses a clause and a variable from that clause, and then sends the clause to Alice and the variable to Bob
- 2. Alice returns a valid truth assignment for the clause, and Bob must return a consistent value for the variable

E.g., for the above instance, the Verifier might send Alice " $(\overline{X}_2 \lor X_3 \lor \overline{X}_5)$ " and send Bob " X_5 "

... and a valid response is Alice sends 1, 0, 0 (values for X_2 , X_3 , X_5 respectively), and Bob sends 0 (value for X_5)

... and how to cheat the protocol

Recall the

Kochen-Specker Theorem [1967]: there exists a finite set of vectors $v_1, v_2, ..., v_n$ in \mathbb{R}^3 that *cannot* be assigned labels from $\{0,1\}$ simultaneously satisfying:

- For any two orthogonal vectors, they are not both labeled 1
- For any three mutually orthogonal vectors, at least one of them is labeled 1

Kochen-Specker "nonlocality"

Game (essentially a Bell-inequality violation):

 The Verifier sends Alice a triple of orthogonal vectors (v_i, v_j, v_k) and Bob one vector v_m from that triple

- Alice returns a valid labeling for (v_i, v_j, v_k) , and Bob returns a label for v_m
- The verifier *accepts* iff the labels are consistent
- By the Kochen-Specker Theorem, the *classical* success probability is less than one
- There is a perfect quantum strategy using entanglement $|\psi\rangle$ = $|00\rangle$ + $|11\rangle$ + $|22\rangle$

Cheating the protocol for 3SAT

For an instance of the Kochen-Specker Theorem, the orthogonality conditions can be expressed by the formula

- By the Kochen-Specker Theorem, this formula is unsatisfiable-therefore, for classical Provers, the Verifier accepts with probability *less than one*
- But, using the quantum strategy for the KS game, the Provers can cause the Verifier to *always* accept

MIP

- Definition: MIP is the class of languages accepted by classical two-prover interactive proof systems
- Theorem [Fortnow, Rompel, Sipser, 1988; Babai, F, Lund, 1991]:
 MIP = NEXP
- Definition: MIP* is the class of languages accepted by quantum two-prover interactive proof systems
- Open questions:

Is NEXP \subseteq MIP*? Is MIP* \subseteq NEXP?

⊕-MIP and ⊕-MIP*

Restricted protocols that are **one-round** and where:

- Alice and Bob's responses, *a* and *b*, are *single bits*
- The Verifier's decision is a function of $a \oplus b$ and his questions only
- Any constant gap between the soundness and the completeness success probability is okay

Recall the CHSH version of Bell: $a \oplus b = s \wedge t$

 $a_0 \oplus b_0 = 0$ $a_0 \oplus b_1 = 0$ $a_1 \oplus b_0 = 0$ $a_1 \oplus b_1 = 1$

⊕-MIP vs ⊕-MIP*

Theorem 1: \oplus -MIP = NEXP (= MIP)

Theorem 2: \oplus -MIP* \subseteq EXP

Therefore, \oplus -MIP* is strictly weaker than \oplus -MIP (unless EXP = NEXP)

Interactive proof systems

- Two-prover interactive proof systems (MIPs)
 - Classical \oplus -MIP = MIP = NEXP
 - Quantum \oplus -MIP* \subseteq EXP

Proof that NEXP $\subseteq \oplus$ -**MIP (I)**

A *probabilistically checkable proof* (*PCP*) system is:

A single-prover interactive proof system where the prover is not adaptive (i.e., behaves like an oracle)

Equivalently, each proof is bit-string, and the verifier accesses a bounded number of bits of the string (of his choosing)

Theorem: NP = \bigoplus -PCP_{1/2+ ε , 1}[$O(\log n)$, 3]

[Håstad '01][Bellare, Goldreich, Sudan '98]

Proof that NEXP $\subseteq \oplus$ -MIP (II)

Corollary: NEXP = \bigoplus -PCP_{1/2+ ε , 1} [$n^{O(1)}$, 3]

Lemma: NEXP = \oplus -PCP_{11/16+ ϵ , 1 [$n^{O(1)}$, 2]}

fixed If $x \oplus y \oplus z = 0$ then it is is possible to satisfy 12/16 edges

 $--- a \oplus b = 1 \text{ (different)}$ $--- a \oplus b = 0 \text{ (same)}$

A test for

 $x \oplus y \oplus z = 0$

Proof that NEXP $\subseteq \oplus$ -MIP (III)

Corollary: NEXP = \bigoplus -PCP_{1/2+ ε , 1} [$n^{O(1)}$, 3]

Lemma: NEXP = \oplus -PCP_{11/16+ ϵ , 1 [$n^{O(1)}$, 2]}

A test for $x \oplus y \oplus z = 0$

If $x \oplus y \oplus z = 1$ then it is is possible to satisfy at most 10/16 edges

To test $x \oplus y \oplus z = 1$, set fixed bit to 1 (or switch incident edge colors)

--- $a \oplus b = 1$ (different) --- $a \oplus b = 0$ (same)

Finally, can "unfix" fixed bit 88

Proof that NEXP $\subseteq \oplus$ -MIP (IV)

In the \oplus -**PCP**_{1/2+ ϵ , 1}[$n^{O(1)}$, 2] construction, the underlying graph is *bipartite*, so each bit can be queried to a separate prover

What follows is a $\oplus\text{-MIP}_{0.6875}$ $_{+\epsilon}, _{0.75}$ proof system for NEXP

Therefore $NEXP \subseteq \bigoplus -MIP$

Interactive proof systems

- Two-prover interactive proof systems (MIPs)
 - Classical \oplus -MIP = MIP = NEXP
 - Quantum \oplus -MIP* \subseteq EXP

\oplus -MIP* \subseteq EXP

\oplus -MIP* \subseteq EXP (I)

Theorem [Tsirelson, 1987]: every *quantum* \oplus -type protocol corresponds to sets of unit vectors $\{x_s : s \in S\}$ & $\{y_t : t \in T\}$ in \mathbb{R}^n such that, for questions $(s,t) \in S \times T$, the responses satisfy

 $\Pr[a \oplus b = 0] = (1 + \mathbf{x}_s \cdot \mathbf{y}_t)/2$

Example: vectors in \mathbb{R}^2 for the CHSH game:

\oplus -MIP* \subseteq EXP (II)

 x_1

 $\mathcal{Y}_{\mathbf{0}}$

V

 x_0

Example: vectors in \mathbb{R}^2 for the CHSH game:

Overall success probability:

$$\frac{1}{4} \left(\frac{1 + x_0 \cdot y_0}{2} \right) + \frac{1}{4} \left(\frac{1 + x_0 \cdot y_1}{2} \right) + \frac{1}{4} \left(\frac{1 + x_1 \cdot y_0}{2} \right) + \frac{1}{4} \left(\frac{1 - x_1 \cdot y_1}{2} \right)$$

Tsirelson's Theorem implies that finding the best quantum \oplus -type protocol reduces to finding a set of vectors optimizing an expression of the form $\sum p_{st} x_s \cdot y_t$

Efficient algorithms (polynomial-time in |S| and |T|) are known for this kind of problem, using semidefinite programming ₉₃

st

Proof of Tsirelson's Theorem (I)

Converting a protocol into a vector system:

Start with a quantum \oplus -type protocol using entanglement $|\psi\rangle$

This can be described in terms of a set of binary observables (Hermitian operators with eigenvalues in $\{+1,-1\}$)

 $\{A_s : s \in S\}$ and $\{B_t : t \in T\}$, which correspond to Alice and Bob's respective actions on input $(s,t) \in S \times T$

The expected outcome is:

 $\langle \psi | A_s \otimes B_t | \psi \rangle = (\langle \psi | A_s \otimes I) (I \otimes B_t | \psi \rangle)$

which is an inner product of two (complex) vectors

These vectors can be embedded into \mathbb{R}^d

Proof of Tsirelson's Theorem (II)

Converting a vector system into a protocol:

For any k, there exists a set of k binary observables $M_1, M_2, ..., M_k$ such that, for all $i \neq j$, $M_i M_j = -M_j M_i$ They act on a d-dimensional space (where $d = 2^{(k-1)/2}$)

Convert each vector $v = (v_1, v_2, ..., v_k)$ into the observable $M^v = v_1 M_1 + v_2 M_2 + ... + v_k M_k$

Then (1/d)Tr $(M^{v}M^{w}) = v \cdot w$

It follows from this that, setting $|\psi\rangle = |1\rangle|1\rangle + |2\rangle|2\rangle + ... + |d\rangle|d\rangle$ yields the desired protocol

Open questions

- MIP* versus MIP?
- What happens with more than two provers?
- Quantum communication between the provers and a quantum verifier?
- There are interesting "spinoffs" from classical MIP (e.g. a theory of hardness of approximation problems)—what about for MIP*?
- How does "parallel repetition" work for quantum strategies?

Contents of Lecture 5

- Nonlocal games (CHSH, KS)
- Quantum versus classical XOR games
- Odd Cycle game (blackboard)
- Magic Square game (blackboard)

joint work with: **Peter Høyer** (Calgary) **Ben Toner** (Caltech) **John Watrous** (Calgary)

- **HIP*** vs one-prover systems
- Nonlocal games (CHSH, KS)
- Quantum versus classical XOR games
- Odd Cycle game (blackboard)
- Magic Square game (blackboard)

⊕-MIP* vs one-prover systems

QIP(2) is all langauges accepted by *single-prover* interactive proof systems with *one round of quantum communication* between prover and verifier (who must now be quantum)

Theorem [Wehner '05]: for $0 \le s < c \le 1$, \bigoplus -**MIP**^{*}_{*s,c*} \subseteq **QIP**_{*s,c*}(2)

Theorem [Kitaev, Watrous '00]: $\mathbf{QIP}_{S,C}(2) \subseteq \mathbf{EXP}$

- **•**-**MIP*** vs one-prover systems
- Nonlocal games (CHSH, KS)
- Quantum versus classical XOR games
- Odd Cycle game (blackboard)
- Magic Square game (blackboard)

Nonlocality game framework

- A *nonlocality game G* consists of four sets *A*, *B*, *S*, *T*, a probability distribution π on $S \times T$, and a predicate $V: A \times B \times S \times T \rightarrow \{0,1\}$
- Verifier chooses (s,t) ∈ S × T according to π and, after receiving (a,b), accepts iff V(a,b,s,t) = 1
- The *classical value* of *G*, denoted as $\omega_c(G)$, is the maximum acceptance probability, over all classical strategies of Alice and Bob

Quantum strategies

- The *quantum value* of *G*, denoted as $\omega_q(G)$, is the maximum acceptance probability of quantum strategies
- An upper bound on $\omega_c(G)$ is a **Bell inequality**
- A quantum strategy with success probability greater than $\omega_c(G)$ is a **Bell inequality violation**
- An upper bound on $\omega_q(G)$ is a *Tsirelson inequality*

π uniform distribution on {0,1}×{0,1}, and V(a,b,s,t) = 1 iff $a \oplus b = s \land t$

$$\omega_{c}(G) = \frac{3}{4} = \frac{1}{2} \left(1 + \frac{1}{2}\right)$$

 $\omega_q(G) \ge \cos^2(\pi/8) = \frac{1}{2} \left(1 + \frac{1}{2}\sqrt{2}\right)$

$$\begin{vmatrix} a_0 \oplus b_0 = 0 \\ a_0 \oplus b_1 = 0 \\ a_1 \oplus b_0 = 0 \\ a_1 \oplus b_1 = 1 \end{vmatrix}$$

Kochen-Specker game

• The Verifier sends Alice a triple of orthogonal vectors $s = (v_i, v_j, v_k)$ and Bob one vector $t = v_m$ from the triple

- Alice returns *a*, a valid labeling for (v_i, v_j, v_k) , and Bob returns *b*, a label for v_m
- The verifier accepts iff the labels are consistent
- By the Kochen-Specker Theorem, $\omega_c(G) < 1$
- There is a perfect quantum strategy using entanglement $|\psi\rangle = |00\rangle + |11\rangle + |22\rangle$, therefore $\omega_q(G) = 1$

●-MIP* vs one-prover systems

- Nonlocal games (CHSH, KS)
- Quantum versus classical XOR games
- Odd Cycle game (blackboard)
- Magic Square game (blackboard)

XOR Games

- An *XOR game* is a nonlocality game where:
 - Alice and Bob's messages, a and b, are bits
 - The Verifier's decision is a function of *s*, *t*, $a \oplus b$
- **Example:** the CHSH game is an XOR game

$\omega_q vs \omega_c$ for XOR games (I)

Theorem: for $\gamma \approx 0.72$ (formally, where a line through the origin meets the function $x \mapsto \sin^2(\pi x/2)$), for any XOR game,

$$\begin{cases} \omega_q(G) \le \sin^2\left(\frac{\pi}{2}\omega_c(G)\right) & \text{if } \omega_c(G) > \gamma, \\ \omega_q(G) \le \lambda \omega_c(G) & \text{if } \omega_c(G) \le \gamma, \end{cases}$$

where $\lambda = \pi \sin(\pi \gamma)/2 \approx 1.14$

Informally: for small ε , if $\omega_c(G) = 1 - \varepsilon$ then $\omega_q(G) \le 1 - c\varepsilon^2$, where $c \approx \pi^2/4 \approx 2.46$

Corollary: for the CHSH game, $\omega_q(G) \leq \cos^2(\pi/8)$
$\omega_a vs \omega_c$ for XOR games (II)

To prove the theorem, we make use of

Theorem [Tsirelson '87]: for any XOR games, it's quantum strategies can be characterized by sets of vectors $\{x_s : s \in S\}$ and $\{y_t : t \in T\}$ in \mathbb{R}^n such that, on input $(s,t) \in S \times T$, $\Pr[a \oplus b = 0] = (1 + \mathbf{x}_{s} \cdot \mathbf{y}_{t})/2$

E.g., vectors in \mathbb{R}^2 for the CHSH game:

 $\omega_q vs \omega_c \text{ for XOR games (III)}$

Contrapositive: $\omega_q(G) > 1 - c\epsilon^2$ implies $\omega_c(G) > 1 - \epsilon$

For a quantum strategy, we have $\{x_s : s \in S\}$, $\{y_t : t \in T\}$

Classical strategy:

- Alice and Bob share a random vector $\lambda \in \mathbb{R}^n$
- On input *s*, Alice outputs 0 if $x_s \cdot \lambda \ge 0$ and 1 otherwise
- On input *t*, Bob outputs 0 if $y_t \cdot \lambda \ge 0$ and 1 otherwise

$\omega_q \operatorname{vs} \omega_c$ for XOR games (IV)

- **Classical protocol:** $p_c = \Pr[a \oplus b = 1] = \theta/\pi$
- Quantum protocol: $p_q = \Pr[a \oplus b = 1] = (1 - \cos(\theta))/2$

• Therefore, $p_q = (1 - \cos(\pi p_c))/2$ = $\sin^2(\pi p_c/2)$ $\cos(\theta) = \mathbf{x}_{s} \cdot \mathbf{y}_{t}$

The quantum success probability is a convex combination of probabilities of the above form (averaged over all possible questions $(s,t) \in S \times T$)

$\omega_q \operatorname{vs} \omega_c \operatorname{for} \operatorname{XOR} \operatorname{games} (V)$

Upper bound of $\omega_q(G)$ in terms of $\omega_c(G)$ for XOR games

Tight bound for Odd Cycle games and Chained Bell Inequality games [Braunstein, Caves, 1990]

For *nondegenerate* XOR games, better bound when $0.5 \le \omega_c(G) \le 0.61$

Binary nonlocality games

Binary: |A| = |B| = 2 (but not necessarily XOR)

Theorem 2: for any binary game *G*, if $\omega_c(G) < 1$ then $\omega_q(G) < 1$

Note: no corresponding result if "binary" is relaxed to "ternary-binary": |A| = 3 and |B| = 2

Example: the Kochen-Specker game is ternary-binary with $\omega_c(G) < 1$ and $\omega_q(G) = 1$

- **•**-**MIP*** vs one-prover systems
- Nonlocal games (CHSH, KS)
- Quantum versus classical XOR games
- Odd Cycle game (blackboard)
- Magic Square game (blackboard)

- **•**-**MIP*** vs one-prover systems
- Nonlocal games (CHSH, KS)
- Quantum versus classical XOR games
- Odd Cycle game (blackboard)
- Magic Square game (blackboard)

