
Transparent simulation of quantum algorithms

(Object-oriented approach)

by A.A. Pomeransky, D.L. Shepelyansky and O.V. Zhirov

Abstract

We present a software library which allows to implement quantum computing algorithm in

very transparent manner.

1 Introdiction.

Currently quantum computers are on the very beginning of practical implementation. A few
qubits created in laboratories are still unsufficient to study quantum algorithms in practice and
gain their advantage. A great challenge is going on search of a physical system which is efficient
in practical quibits implementation, with unavoidable imperfections and external perturbations
caused by enviroment. In parallel, a great activity is devoted to understanding the stability of
quantum algorithms to imperfections of quantum qubits and gates, and to practical testing of
them on common classical computers.

Each of quantum algorithm consists of many elements, a linear sequence of quantum gates,
acting on quantum register. Each gate can be implemented by a piece of simple code, but the
pattern of all these gates can be rather complicated, and final program can be huge. This makes
the writing of such programs and their debugging be a difficult process, as well as their modifi-
cations can in principle break the code completely.

In fact, the object-oriented approach, which was proposed in programming about twenty
years ago, can provide a very effective and elegant solution of this problem. Below we start with
a paradigm, which turns the problem into a child game with bricks. In this way we introduce a
set of “bricks”, the objects which implement the quantum register and quantum gates. These
objects are written in C++ programming language, and can be easily extended. As a result, the
most code is incapsulated in these objects; the rules of composition of these objects are very
simple, and the final code, the implementation of quantum algorithm becomes very compact and
pictural.

2 The paradigm.

The heart of quantum computer is a quantum register , which is prepared in some quantum
state |X 〉. The process of quantum computation consist of a chain (sometimes very long!) of
unitary transformations U applied to this register subsequently:

|X ′〉=UMUM−1�U2U1|X 〉 (1)

and final state |X ′〉 contains some results of calculations. For a qubit the quantum state is
described by two-component complex array

|q〉=

(

a1

a2

)

while the quantum state of the register containing nq qubits, which is a direct product of qubit
quantum states

|X 〉= |q1〉⊗ |q2〉⊗� ⊗
∣

∣qnq

〉

is described by 2nq-component complex array. In turn, the gate matrices Ui, are 2nq × 2nq arrays
of complex numbers, too. One can see that dimensions of arrays grows exponentially with the
number of qubits nq: this is a main origin of exponential slowing down of simullations of
quantum algorithms on common “classical” computers.

1

The number of quantum gates M in quantum algorithms is in general a power-like function
of nq. In fact, all of the possible gates can be reduced into very restricted set of elementary
gates, each of that affects one or two qubits, leaving the rest untouched.

As a result, the classical code, simulating the quantum computation is a lengthy chain of
several gates composed in a very complicated inhomogeneous pattern (very similar to DNA
chain!). In order reduce mistakes in writing such code, we invent a simple human interface to
objects of simulation.

2.1 Main objects and their properties.

The main object is the quantum register, or wavefunction of its quantum state. Corresponding
type defined in header file qubits.h is QBitsWaveFunction:

#include ’’qubits.h’’

QBitsWaveFunction Psi(nq); // nq is qubits number

One can perform on the quantum state the following operations:

QBitsWaveFunction Psi2(Psi) // make a clone of the state Psi

QBitsWaveFunction Psi3(nq);

Psi3(nq)=Psi; // copy of state Psi

double<complex> z;

...

Psi.RescaleBy(z); // rescale by a complex factor;

Psi3.Sum(Psi2,Psi); // calculate a sum of two wavefunctions

Psi.Allign(); // set all qubits up

One can perform multiplication of j-th quibit state by any Pauli matrix σ:

Psi.SigmaX(j);

Psi.SigmaY(j);

Psi.SigmaZ(j);

the Walsh-Hadamard transformation:

Psi.WH_tr(j);

and rotate j-th qubit state by angle Phi:

Psi.RotateQBit(j,Phi);

Next operation is useful to simulate interaction between two qubits:

Psi.InteractQubits(j1,j2,g);

which in fact corresponds to applying to register state the operator

exp(− igσz
(j1)

σz
(j2)

)|X 〉.

Next important operations are Control-Not and Control-Control-Not gates applied to qubits j1,
j2 and j3:

Psi.Cnot(j1,j2);

Psi.CCnot(j1,j2,j3);

2 Section 2

The contents of Psi can be printed by command Psi.print(); to stdout, into three col-
lumn form: first is plain index of the complex array, second and third are real and imaginary
part of amplitude. The correspondence between plain index and states of qubits is:

j = s1 + 2s2 +� + 2nq−1snq

where si equal 1 and 0 for “up” and “down” states of i-th qubit, respectively.
In fact, in mutiplication and sum one can use more simpler interface:

Psi2=Psi*z; // similar to Rescale by, but content of Psi remains unchanged

Psi2=z*Psi;

z=Psi1*Psi2; // scalar product

Psi3=Psi1+Psi2; // sum of two states

2.2 Advanced interface to objects: basic operations and gates.

Addressing to gates as properties of wavefunction is not convenient. Instead we introduce a set
of new objects, which can simplify appearence of code. Most of their definitions are collected in
the header file qAlgebra.h. Let us start with prepared quantum state object Psi and applied to
it several described above operations:

#include ’’qAlgebra.h’’

QBitsWaveFunction Psi(nq); // nq is qubits number

...

Psi << X(j1,j2) << WH(j3,j4) << rotQBitBy(angle,j5,j6) << Cnot(ic,iq);

Psi << X(m1) << WH(m2) << rotQBitBy(angle,m3) << CCnot(ic1,ic2,iq);

At first single line we perform on Psi subsequently:

1. Apply matrix σx to qubits from j1-th to j2-th;

2. Apply Walsh-Hadamard transformation to qubits from j3-th to j4-th;

3. Rotate qubits from j5-th to j6-th by angle “angle”;

4. Apply Control-Not gate, with control qubit ic and working qubit iq.

The single qubit operations are presented by the second line, where m1, m2 and m3 are indices of
qubits; at the end of second line we give an example of Control-Control-Not gate operation.
After all the object Psi contains the cumulative result of both lines.

The syntax of this interface is very simple and self-explaning: sequence of operations from
left to right is very natural for human reading and direction of symbol “<<” point to the object,
to which the action is applied.

3 Extentions.

3.1 Qubits interactions.

Interactions of qubits depend on their mutual positions. In our simulations we have assumed
that they are placed on sites of simple rectangular lattice, and interactions among them and
qubits imperfections are described by Hamiltonian

Hs =
∑

i

aiσi
z +

∑

ij

bijσi
xσj

x

where couplings ai, bij are random numbers, distributed homogeneously inside [− α, α] and [−
β, β] respectively.

Extentions. 3

Implementation of object, providing simulation of these interactions is located in the header
files qLattice.h and qAlgebra.h:

#include ’’qLattice.h’’

#include ’’qAlgebra.h’’

Lattice L(Lx,Ly,Alpha,Beta); // create a lattice of size Lx by Ly qubits }

L.Rand(); // generate a new set of random couplings

L.Perturb(Psi); // introduce perturbations into state Psi

// by time evolution with Hamiltonian

In fact, the best way to introduce perturbation is

Psi << Pert();

3.2 Interaction with enviroment.

The underlying mechanism of decoherence is assumed a random flip of a qubit |1〉 → |0〉, with a
rate Γ. The necessary initialization of the process is creating an object of type Jump:

#include ’’qJump.h’’

Jump(Gamma*dt);

Then one can simply act on the wave function Psi:

Psi << Jump(Gamma*dt);

As a result we get a state which either is the orignal one but damped by the probability
amplitude of no qubit be flipped, or it start a new quantum branch.

4 Applications.

This library is used in simulations of Grover problem with imperfections (subdirectory Grover)
and decoherence effects, caused by interactions with enviroment (subdirectory DecoGr). The
former one is an earlier version of the library, where all objects are included in a single header
file. The latter is the last version, actually described in this document.

4 Section 4

