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Abstract. Signaling pathways represent parts of the global biological network which connects them into a
seamless whole through complex direct and indirect (hidden) crosstalk whose structure can change during
normal development or in a pathological conditions such as cancer. Advanced methods for characteriz-
ing the structure of the global directed causal network can shed light on the mechanisms of global cell
reprogramming changing the distribution of possible signaling flows. We suggest a methodology, called
Googlomics, for the analysis of the structure of directed biological networks using spectral analysis of their
Google matrix. This approach uses parallels with quantum scattering theory, developed for processes in
nuclear and mesoscopic physics and quantum chaos. We introduce the notion of reduced Google matrix
in the context of the regulatory biological networks and demonstrate how its computation allows inferring
hidden causal relations between the members of a signaling pathway or a functionally related group of
genes. We investigate how the structure of hidden causal relations can be reprogrammed as the result of
changes in the transcriptional network layer during cancerogenesis. The suggested Googlomics approach
can be useful in various contexts for characterizing non-intuitive changes in the wiring of complex and
large causal biological networks.

1 Introduction

The network biology point of view on signaling pathway
as a part of complex integrated molecular machinery con-
sists in considering it as a subnetwork embedded into a
global molecular network. As a consequence, all properties
of the pathway functioning depend on the network context
to which it remains connected. Considering only the set
of direct causal relations between pathway members (as
is frequently the case) neglects the indirect effect of the
global biological network changes which may significantly
re-wire the pathway topology by introducing implicit (hid-
den) causal relations. Characterizing such influence of the
global network structure on the local network properties
and dynamics remains one of the major challenges of sys-
tems and network biology [3]. A number of empirical and
pragmatic approaches have been suggested recently to ad-
dress this question [16,26,33,12,17].

Reconstructions of the global directed causal signal-
ing network structure have appeared only recently in the
form of comprehensive molecular interaction databases
such as SIGNOR[42], SignaLink [22], where the pair-wise
relations between molecules are oriented. Large-scale cell
type-specific reconstructions of transcriptional causal net-
works have become possible thanks to appearance of Chip-
Seq technology [23,25] or advances in computational method-

ology of transcription factor binding site predictions com-
bined with the data on chromatin accessibility [39].

In the previous works, quantification of indirect in-
teractions (sometimes called influences) between pathway
members mainly exploited the calculation of shortest or
second shortest paths (the paths that become shortest
after removal of an edge in a shortest path), following
quantification of the balance between negative and posi-
tive path signs [17,7]. The limitation of such approaches
is, however, in that they do not take into account the com-
plex global structure of the network: multiple dense causal
connections between two nodes might be more important
than a single shortest path connecting them, representing
a hypothetical sequence of intermediate regulations.

Global changes in the structure of the global network
might effectively re-wire a signaling pathway even if its
direct interactions are weakly dependent on the biolog-
ical context. For example, the functioning of a signal-
ing pathway must be heavily affected by the structure of
transcriptional feedbacks indirectly re-wiring the pathway
structure by gross effect of implicit (hidden) causal rela-
tions.Therefore, changing the transcriptional layer in the
global network effectively rewires many signaling path-
ways even without affecting the structure of direct con-
nections between its members. Therefore, it would be ad-
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vantageous to develop an efficient and rigorous mathemat-
ical formalism allowing quantifying such a phenomenon.
In this paper, we suggest a candidate methodology for this
purpose.

We assess the characteristics of signal propagation through
a pathway by considering the stochastic Markov process
of random walk with uniform non-zero restart (teleporta-
tion) probability along oriented edges of the graph repre-
senting the global biological network. This process is de-
scribed by Google matrix (see Materials and Methods sec-
tion), and its stationary state defines PageRank centrality
measure of the graph nodes. More complete and subtle
description of the process can be obtained by looking at
the complete (complex) spectrum of the Google matrix,
which might reflect complex non-stationary properties of
the random walk. For example, grouped eigenvalues of the
Google matrix in the complex plane can define weak com-
munities in the graph where the signaling flow (random
walk) can be “trapped” for a finite time. In order to quan-
tify indirect hidden causal relations between the members
of a pathway, we introduce the original formalism of re-
duced Google matrix, based on decomposing the global
Google matrix into the parts describing the pathway itself
and the influence of the rest of the network.

To our knowledge, Google matrix approach or related
ideas have been applied before only to undirected net-
works, in order to find activated network modules or to
smooth the high-throughput data [43,29,32], establish con-
nection of genes to diseases [45,31], improve interpretabil-
ity of genome-wide analyses [40,36,34] and compute network-
based cancer biomarkers [46]. The formalism of reduced
Google matrix is applied for biological networks in this
paper for the first time.

We describe the details of the Google matrix and re-
duced Google matrix methodology in the “Methods” sec-
tion, and in the “Results” section application of the method-
ology to several large regulatory networks is documented.
Using the suggested approach, we quantify the effect of
the changes in the structure of transcriptional network as
a result of oncogenic events during chronic myelogenous
leukemia onto re-wiring connections between proteins in
several cancer-related groups of genes. We conclude that
the method is able to infer the missing indirect causal re-
lations between the members of a pathway and can detect
events of hidden re-wiring during cancerogenesis.

2 Results

2.1 Used networks and case study description

In order to illustrate the application of Google matrix ap-
proach to studying oncogenic changes in the global and lo-
cal network structures, we constructed two large directed
networks describing global signaling in a leukemia cancer
cell line K562 compared to a healthy cell line GM12878
derived from normal B-lymphocytes. The transcriptional
networks of these two cell lines have been previously char-
acterized [25], using systematic Chip-Seq experiments on a
number of transcription factors whose activity is detected

in a given cell line. Transcriptional networks for GM12878
and K562 cells have been previously analyzed in order
to estimate their structural properties which can lead to
buffering and robustness [2]. It was demonstrated that the
wiring of the transcriptional network in cancer leads to sig-
nificant changes in the number of structural patterns lead-
ing to violating the network robustness properties. In or-
der to deal with combined signaling+transcriptional net-
works, we merged each of the transcriptional network to
the global reconstruction of signaling taken from the SIG-
NOR database [42] (version from February 2016). There-
fore, as a modeling assumption, we assume that the struc-
ture of the global signaling network does not depend on
the biological context while the transcriptional regulation
layer undergo significant changes leading to indirect effect
on the signaling.

2.2 Biological interpretation of PageRank and
CheiRank centrality measures and their changes in
cancer

2.2.1 Distribution of proteins on PageRank vs CheiRank
plane

For the three directed biological networks described above
(SIGNOR alone and two merged signaling+transcriptional
regulatory networks), we applied the Google matrix method-
ology as described in Materials and Methods section, and
determined the values of PageRank and CheiRank for
all proteins. The distribution of proteins in PageRank vs
CheiRank plane is shown in Figure 1. This figure shows
that in the case of these networks PageRank and CheiRank
measures are not correlated which reflects quite distinct
biological role of proteins with many incoming and with
many outgoing directed interactions.

It can be easily demonstrated (data not shown) that
most of the proteins simultaneously having high values
of PageRank and CheiRank (such as AKT1, NOTCH1,
CTNNB1, TP53, CDKN1A, ATM, MAPK3, CDK1, EGFR)
play an important role in cancer biology. This is, however,
a rather trivial observation having in mind that it is known
that hubs of the protein interaction networks frequently
correspond to cancer-related genes [30,3].

One can also observe that adding a transcriptional
network to a signaling network (SIGNOR) significantly
changes the top ranked proteins for CheiRank but not for
PageRank. This is consistent with the fact that the tran-
scriptional networks are characterized by fan-like struc-
tures in which a transcription factor can regulate many
(hundreds) of proteins, while the cases when a protein is
regulated by so many upstream regulator are relatively
rare.

Overall, the general shape of the distribution of pro-
teins in the “normal” GM (Figure 1,middle) and “cancer”
K562 (Figure 1,right) networks is similar; nevertheless,
there are differences. For example, it can be seen that the
top Chei-ranked proteins are not the same in these two
networks. There is a region in the PageRank vs CheiRank
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plane for GM network (Figure 1,middle) occupied by pro-
teins which are present in SIGNOR but not in GM12878
transcriptional network (cluster of green color points for
CheiRank and PageRank around 1000). Vice versa, there
is a region in K562 network (Figure 1,right) occupied by
proteins which are present in SIGNOR but not in K562
transcriptional network (cluster of dark blue points). This
observation underlines the fact that both the composition
and the wiring topology of “normal” and “cancer” networks
have important differences.

2.2.2 Detecting “creative protein elements” by comparing
PageRank and CheiRank to simple connectivity

A general statement on PageRank and CheiRank is that
they are correlated to in-degree and out-degree of a node
[21]. However, this correlation is not perfect as it can
be seen in Figure 2. Some proteins significantly deviate
from the general dependence trend, so it is interesting to
consider what kind of non-local network topologies give
unexpectedly high PageRank or CheiRank values despite
relatively low connectivity degree. This deviation can be
scored by a simple product of the rank and the corre-
sponding degree, i.e., CEin = K ·(InDegree+1), CEout =
K∗ · (OutDegree+ 1).

The notion of “creative elements” in the context of bi-
ological networks is discussed in [16] as such proteins that
are not hubs of the networks themselves but can pro-
vide important (and, frequently, transient) connections
between network hubs. Also, sometimes, together with
hubs, proteins playing the role of “connectors” are dis-
cussed as those proteins having high centrality but not
connectivity measures [3].

We suggest that the proteins significantly deviating
from the the general trend between a Google matrix-based
rank and the corresponding connectivity degree are po-
tential candidates for the role of “creative elements” and
connectors in the signaling and transcriptional networks.
Several examples of such proteins and the local topologies
explaining the deviation from the trend are provided in
Figure 3.

For example, the top ranked in PageRank protein in all
three networks is PIK3CB (look at Figure 1) having rel-
atively low in-degree (10), which makes it to significantly
deviate from the general trend (Figure 3A). PIK3CB gene
encodes a catalytic subunit of the kinase PI3K, a key ki-
nase involved in multiple cell signaling cascades. PIK3CB
gene is frequently mutated or amplified in several cancer
types (such as lung squamous cell carcinoma where its rate
of mutations can be as high as 18%), which causes abnor-
malities in cell survival signaling. From the network point
of view, it’s high value of PageRank is probably explained
by the fact that, accordingly to SIGNOR, PIK3CB is reg-
ulated by several highly connected proteins which have
predominantly incoming edges (PTEN, ERBB3, ERBB4,
HRAS, NRAS, KRAS, IRS1).

An other example of such a protein is TEK which
is ranked #4 by PageRank in SIGNOR network, having
only 5 incoming edges. From Figure 3B one can see that

TEK is the sink of the cascade TAL1→ANGPT2→TEK,
which progressively collects incoming regulations, start-
ing from the top connected hubs such as AKT1, MAPK3,
PRKACA. The biological function of the TEK protein
is quite unique: this is a receptor tyrosine kinase which
has several immunoglobulin-like domains, three epidermal
growth factor domains and three fibronectin type III re-
peats in the extracellular part. This makes this protein
potential regulator of multiple cellular functions such as
angiogenesis, endothelial cell survival, proliferation, mi-
gration, adhesion and cell spreading, reorganization of the
actin cytoskeleton, and also maintenance of vascular qui-
escence. Such rich functional cross-talk allows suggesting
TEK as a creative element in the global cell signaling net-
work.

Our final example of deviation from the major CheiRank
vs out-degree trend is TLR4 protein, which is ranked #22
by CheiRank in SIGNOR having only 2 out-going regula-
tion and 1 self-interaction. From the Google matrix-based
network analysis this can be explained by the fact that
TLR4 triggers several cascades affecting downstream sev-
eral major regulators having a large number of out-going
edges such as AKT1. Indeed, the biological function of
TLR4 (toll-like receptor 4) is activating the innate im-
mune system which requires triggering many important
cellular cascades (such as NFkB signaling), regulating a
large number of cellular processes.

Other observations from Figure 2 underlies some par-
ticular features and differences between “normal” and “can-
cer” networks. For example, one can notice in Figure 3A,right
that in the cancer network there is a large number of pro-
teins with high number of incoming transcriptional regu-
lations but not ranked well by PageRank. This feature is
almost absent in the normal GM-SIGNOR network (Fig-
ure 3A,middle).

2.2.3 Biological meaning of PageRank and CheiRank
changes in cancer

Having seen the differences in the distribution of PageR-
ank and CheiRank in Figure 1 between the “normal” and
“cancer” regulatory network, we characterized the relative
change of the ranks by computing their log ratio between
two networks. Overall, the relative changes in CheiRank
had larger amplitude than in PageRank which can be
partially explained by the different number of transcrip-
tional targets of the transcriptional factors, described in
the GM12878 and K562 transcriptional networks.

We characterized the biological functions represented
by those proteins significantly deviating from zero in Fig-
ure 4, by applying the standard enrichment analysis based
on hypergeometric test, calculating what is the probability
(p-value) of a selected protein set to intersect with some
predefined protein set by random chance. For this pur-
pose we used the toppgene bioinformatics package [11]. For
the enrichment analysis, we took those proteins deviating
from zero by two standard deviations of the distributions
of PageRank of CheiRank log ratios, and analyzed the
positive and negative sides of the distribution separately.
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Fig. 1. Distribution of proteins on PageRank x CheiRank plane for three networks (SIGNOR - signaling network, GM network
is a merge of SIGNOR and GM12878 normal blood cell transcriptional network, K562 network is a merge of SIGNOR and K562
leukemia cancer cell transcriptional network). The colors signifies to which network a protein originally belongs. Red color signi-
fies proteins which are present only in SIGNOR network and not present in any of the two transcriptional networks. Dark blue
color signifies proteins which are present in GM12878 transcriptional network and not present in K562 transcriptional network.
Green color signifies proteins which are present in K562 transcriptional network and not present in GM12878 transcriptional
network. Cyan color signifies proteins which are present in both K562 and GM12878 transcriptional networks.

The results of the analysis are presented in Table 1 and
online at http://www.ihes.fr/~zinovyev/googlomics/
grn2016/rankchanges/.

We’ve noticed, however, that the results of this analysis
can be biased by a simple fact that a protein can be in-
cluded in the “normal” transcriptional network GM12878
(thus having, for example, many transcriptional out-going
interactions) and not at all included in the “cancer” tran-
scriptional network K562 (thus having not at all transcrip-
tional out-going interactions). This is the case, for exam-
ple, for ZEB1 transcriptional factor. Despite the fact that
such difference can be “real”, i.e. the transcriptional factor
might be not expressed in the case of cancer, hence, does
not regulate any genes, we’ve decided to perform an addi-
tional analysis focusing only at those proteins which simul-
taneously present in both “normal” and “cancer” transcrip-
tional networks. These proteins might be present or not
in the SIGNOR network. This second analysis made sev-
eral biological functions detected in the previous analysis
insignificant (normal text lines in the Table 1) but many
remained significant (bold text lines in the Table 1). For
the second analysis, in case of CheiRank, we took those
proteins which deviated from zero by one standard devi-
ation in the distribution of log ratio of the CheiRanks, in
order to collect a sufficient number of proteins.

Overall, the undertaken analysis shows a picture con-
sistent with the nature of the studied cells. I.e., we show
that changes in the CheiRanks between normal and cancer
cells highlights a number of proteins previously described
as being implicated in leukemia (16 from 53 selected for
the second analysis). Interestingly, this analysis highlights
proteins implicated in the regulation of myeloid cell differ-
entiation and hemopoiesis, which is also expected. 9 from
30 selected proteins were previously associated with the

mouse phenotype characterized by the increased number
of lymphocytes and significantly improved their CheiRank
in the cancer network (they became more powerfull regu-
lators). Having many transcriptional factors in the tran-
scriptional networks explains significance of such Gene
Ontologies as “core promoter binding” and “chromatin”
in the analysis of CheiRank changes in both directions,
and also interactions with key transcription co-regulators
as EP300, HDAC1 and CREBBP.

At the same time, the analysis gives also some unex-
pected findings. For example, a number of proteins in-
volved in translation (14 from 86 selected) or having the
E2F transcription factor binding motif the promoter se-
quence (6 from 86) or being located in a specific genomic
locus 22q11 (7 from 86) improved their PageRank in can-
cer network (meaning they became more regulated). 8
from 63 genes with a specific motif in their promoter
sequences (TMTCGCGANR) showed significant increase
in the PageRank (meaning they became less regulated in
cancer) is also an unexpected finding.

2.3 Inferring hidden causal relations between members
of protein sets

Application of Google matrix to the global network al-
lows quantifying the global ranking of protein nodes and
their changes, as it was illustrated in the previous section.
Reduced Google matrix (see Materials and Methods for
formal description) allows focusing on a subset of nodes,
quantify local importance of nodes in this subset and also
detect indirect (hidden) connections between the members
of the subset.

http://www.ihes.fr/~zinovyev/googlomics/grn2016/rankchanges/
http://www.ihes.fr/~zinovyev/googlomics/grn2016/rankchanges/


J.Lages et al.: Google matrix analysis of causal cancer protein networks 5

only in SIGNOR only in GM12878 network only in K562 network in GM12878 and K562  networks 

A) 

B) 

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

MYOD1
NOTCH1

TEK

PIK3CB

LEF1 CTNNB1PPARGAXIN1CASP3 SMAD4KIT CDKN1A TP53SMAD3CASP9PIK3CD AKT1MAPK14LRP6BAX STAT3MYF5 CCND1RUNX2RELATRAF2CEBPAMAP3K7 SMAD2CDK1

FABP4
PITX2

SMARCA4
FGFR4

SIGNOR IN

SI
G

N
O

R 
PA

G
ER

A
N

K

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

NOTCH1
MYOD1

TEK

PIK3CB

LEF1 CTNNB1PPARGAXIN1CASP3 SMAD4KIT TP53CDKN1ASMAD3CASP9PIK3CD AKT1MAPK14LRP6BAXSTAT3MYF5 CCND1RUNX2CEBPAPIK3CAMAP3K7 SMAD2PITX2 CDK1

FABP4

PITX2

SMARCA4
FGFR4

ROCK1P1
ANKRD30BL

GM SIGNOR IN

G
M

 S
IG

N
O

R 
PA

G
ER

A
N

K
10

0
10

1
10

2
10

0

10
1

10
2

10
3

10
4

NOTCH1
MYOD1

CTNNB1

PIK3CB

AXIN1LEF1TEK CASP3 PPARGKIT CASP9 TP53SMAD3CDKN1ASMAD4PIK3CD AKT1MAPK14LRP6BAXSTAT3RUNX2MYF5MAP3K7TRAF2PIK3CASMAD2MAPK8CDK1CEBPA

FABP4

PITX2

SMARCA4
FGFR4

ROCK1P1
ANKRD30BL

PI4KA

K562 SIGNOR IN

K5
62

 S
IG

N
O

R 
PA

G
ER

A
N

K

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

CDK1
MAPK1

AKT1

SRC

PRKACAMAPK3CSNK2A1CDK2ATMPDPK1

TWIST1
TNK2

TLR4 PTK6

BMP7

SIGNOR OUT

SI
G

N
O

R 
CH

EI
RA

N
K

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

REST
EBF1

SPI1

GABPA

CTCFPRKAA1 NRF1PBX3YY1HOXB8

TWIST1

TNK2
TLR4 PTK6

BMP7

GM SIGNOR OUT

G
M

 S
IG

N
O

R 
CH

EI
RA

N
K

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

ZBTB7A
EGR1

YY1

GABPA

NRF1GTF2BMAPK1E2F6NFYBMAPK3

TWIST1

TNK2

TLR4 PTK6

BMP7

K562 SIGNOR OUT

K5
62

 S
IG

N
O

R 
CH

EI
RA

N
K

Fig. 2. Dependence of PageRank (A) and CheiRank (B) on the in-degree and out-degree correspondingly, in three networks
The coloring of nodes corresponds to the description provided in the caption of the Figure 1.

In order to test this approach in the context of bio-
logical networks, we’ve defined several protein sets, each
of which contains a functionally related group of proteins.
However, the meaning of the functional proximity is dif-
ferent in all cases.

We start with a definition of a biological pathway,
which play one of the most central roles in all cancer
types: AKT-mTOR pathway. It is a molecular cascade
downstream of PI3K kinase which is important in regulat-
ing the cell cycle and cell survival, controlling a number
of normal physiological processes, and being dysregulated
in many diseases including cancer. We take the definition
of the AKT-mTOR pathway from the external pathway
database Atlas of Cancer Signaling Network (ACSN) [35],
based on manual mining of molecular biology publications,
so the definition of this subset of proteins can be called
“knowledge-driven”.

Second analyzed subset is by contrast purely “data-
driven” and corresponds to a particular gene expression
signature (set of genes), shown to be connected to cell pro-
liferation in multiple cancer studies through data analysis.
We used a particular definition of this signature coming

from a large multi-cancer study of tumoral transcriptomes,
using Independent Component Analysis (ICA) method
[48,6]. Gene expression signatures obtained through sta-
tistical data analysis sometimes serve as a scaffold for re-
constructing the topology of regulatory connections be-
tween the corresponding proteins. Therefore, we consid-
ered this set for determining direct and indirect connec-
tions between its members.

Third analyzed group of proteins is a set of known di-
rect targets of a transcriptional factor E2F1 which is cen-
tral to regulation and progression through the cell cycle.
The member names of this set were manually extracted
from reading the molecular biology literature on the func-
tioning of cell cycle in order to reconstruct it as a bio-
chemical reaction diagram [9]. In this case, the challenge
is to understand what biological pathways can be directly
regulated by E2F1, what are the possible direct and in-
direct feedbacks to the regulation of E2F1 itself and how
they are changing in cancer progression.

All three subsets are central to the studied in this pa-
per cancer progression and its influence on the structure
of biological networks. In all three cases, we roughly equi-
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Fig. 4. Relative changes in the PageRank and CheiRank in cancer vs normal network. The abscissa is the decimal logarithm of
the ratio KK562/KGM , where the subscript denotes in which network the CheiRank is calculated. The ordinate is the decimal
logarithm of the ratio K∗

K562/K
∗
GM . For example, the proteins in the right part of the plot such as MEF2A, ZNF143, ZEB1

are those whose CheiRank significantly increased (i.e., the protein has less outgoing connections) in the “cancer network” K562
(which can be simply because the corresponding transcription factor is not present in K562 transcriptional network, as in the
case of ZEB1, blue points in the plot).

librated the sizes of the protein sets, limiting them to ap-
proximately 50 proteins.

It happened that the direct interactions between the
members of all three sets of proteins are described in SIG-
NOR pathway database, and not in the transcriptional
networks. Therefore, one might consider that the wiring
of direct connections between the set members are not
affected by the changes in the transcriptional program.
However, we further show that the structure of indirect

connections might change accordingly to the changes in
the global context created by the transcriptional network.

2.3.1 AKT-MTOR pathway

From SIGNOR database, we’ve retrieved 138 direct regu-
latory connections between 63 proteins of AKT-mTOR
pathway. These direct connections formed a large con-
nected subnetwork containing the majority (43 proteins)
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Table 1. Table of enriched biological functional categories of proteins. The numbers signifies the number of proteins whose ranks
are significantly changed. By bold those functional categories are highlighted which found enriched after filtering out proteins
not present in either cancer or normal transcriptional networks. In this case, two values for the number of proteins are shown
separated by semicolon: one without filtering and one after filtering. Complete interactive version of this table is available at
http://www.ihes.fr/~zinovyev/googlomics/grn2016/rankchanges/. Arrow up means that the corresponding rank decreases
(or, in other words, “improves”, rank value increases) in the cancer network (the proteins are more connected). Arrow down
means the opposite: the corresponding rank “degrades” and the proteins become less connected in cancer.

Change of
Rank in
cancer

Number
of pro-
teins

Selected enriched functional categories/signatures

Page↑ 158;86 GO:0004812: aminoacyl-tRNA ligase activity (8;4)
GO:0006412: translation (22;14)
GO:0005925: focal adhesion (11)
Interactions: FBXO6 (22), ITGA4 (19), CUL5(17 ;12)
Cytoband : 22q11.21 (9 ;7)
Transcription factor binding site: V$E2F Q6 (9;6)
Disease: Shprintzen syndrome (8;5)

Page↓ 158;63 GO:0090544: BAF-type complex (5)
GO:0016514: SWI/SNF complex (4)
Mouse phenotype: abnormal bone marrow cell morphology/development (17)
Pathway: REACTOME Cell Cycle (16), TNF-alpha/NF-kB Signaling Pathway (9)
Interactions: ARID2 (6), DPF3 (5)
Transcription factor binding site: TMTCGCGANR UNKNOWN (14;8)

Chei↑ 105;30 GO:0001047: core promoter binding (15;8)
GO:0030097: hemopoiesis (25;9)
GO:0034097: response to cytokine (22;8)
GO:0045637: regulation of myeloid cell differentiation (11;5)
GO:0000785: chromatin (21;7)
Mouse phenotype: abnormal bone marrow cell morphology/development (25)
Mouse phenotype: increased lymphocyte cell number (23;9)
Pathway: KEGG Transcriptional misregulation in cancer (12)
Pathway: WikiPathways EGFR1 Signaling Pathway (10)
Pathway: BIOCARTA MAPKinase Signaling Pathway (;5)
Interactions: EP300 (28;14), TBP ( 13;10), JUN (19 ;11)
SP1 (18 ;10), CREBBP (25 ;11), HDAC1 (28 ;12)
Co-expression : Genes up-regulated in MCF7 cells (breast cancer)
after stimulation with EGF (7;6)
Co-expression:Genes regulated by NF-kB in response to TNF (15;7)
MicroRNA targets: hsa-miR-548m:PITA (11;7)
Disease :Myeloid Leukemia (20;9)

Chei↓ 83;23 GO:0000975: regulatory region DNA binding (23;16)
GO:0048534: hematopoietic or lymphoid organ development (17;9)
GO:0000785: chromatin (14;9)
Mouse phenotype: decreased thymocyte number (9;7)
Mouse phenotype: increased apoptosis (19;10)
Pathway: WikiPathways TGF-beta Receptor Signaling Pathway (8;6)
Interactions: EP300 (23;10), RB1 (13;6)
Disease: Adult T-Cell Lymphoma/Leukemia (13;7)
Disease: B-Cell Lymphomas (16)

of the pathway members, and the rest was orphan nodes
not connected to any other.

No direct transcriptional regulatory connections was
found between the members of the pathway; hence, the
structure of direct connections did not change in the “can-
cer” network with respect to the “normal” network.

We’ve computed indirect regulatory relations using the
reduced Google matrix approach as described in Materials
and Methods section, separately for SIGNOR, the “nor-
mal” and “cancer” global regulatory networks, combined

the common signaling SIGNOR part and the specific tran-
scriptional network. The strength of the indirect regula-
tion can be evaluated by looking at its Gqr value.

For the “normal” network we found that the distribu-
tion of the corresponding G

(GM)
qr values contains essen-

tially close to zero values, with only some pointing to
existence of indirect regulation. Thus, for an arbitrarily
chosen threshold Gqr > 0.01 one detects 50 indirect in-
teractions, ten top of them are shown in Figure 5,A (in

http://www.ihes.fr/~zinovyev/googlomics/grn2016/rankchanges/
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magenta color). These 50 indirect regulations connect 8
more proteins into the large connected component.

It can be noticed that the pattern of the top indirect
connections is highly non-random and forms two “hidden
patwhays”, one pointing to CASP3 protein through BCL
proteins, and one connecting PRKA proteins to AKT1.
Both hidden pathways have rather clear biological inter-
pretation. The hidden regulations also point out to the
important crosstalk between BCL2 and MAPK1, MAPK3
proteins, not represented by direct interactions inside AKT-
mTOR pathway.

The first one can be related to the existence of apop-
totic pathway in the global regulatory network, where
BCL2 and BCL2L1 proteins play an important role. CASP3
serves the final point of the apoptotic pathway, being the
main executor protein of the apoptotic process (the ex-
ecutor caspases take care of destroying the proteins of
the suicided cell and the cell itself). In order to illustrate
how BCL proteins and CASP3 are connected through the
global network, we’ve computed the shortest and the sec-
ond shortest oriented path between BLC2 and BCL2L1
proteins and CASP3 protein (Figure 5,B). It can be seen
that these paths include the main players of the apop-
totic machinery (XIAP,CASP9,DIABLO,CYCS). Second
hidden pathway connects the subunits of AMP-activated
protein kinase (AMPK), an important energy sensor pro-
tein, to AKT1. As a conclusion, one can state that the
reduced Google matrix approach was able to point out
to biologically important and meaningful indirect connec-
tions between several AKT-mTOR pathway members.

In addition, we compared the inferred indirect interac-
tions in “normal” and “cancer” global networks. We found
that there is a strong correlation between all three set
of values G(GM)

qr , G
(K562)
qr , G

(SIGNOR)
qr (correlation coeffi-

cients are close to 0.998). All strong indirect interactions
inferred using the “normal” GM network were also found in
“cancer" K562 network. However, in the “cancer” network
we found additional candidates for indirect interactions,
top ten of which are shown in Figure 5,A and Figure 5,C.
It can be seen that such “emergent oncogenic” indirect
interactions also underline existence of a “hidden” causal
relation between RBX1 and MAPK1 proteins.

2.3.2 Data-driven signature of proliferation-related proteins

We analyzed a set of 49 proteins found in SIGNOR database
whose expression was shown to significantly change be-
tween fast proliferative and slow proliferative tumors in 9
cancer types [6]. We found 47 direct interactions connect-
ing them into one large connected component consisting
of 31 proteins who were predominantly the phosphoryla-
tion targets of the cyclin-dependent kinase CDK1, so the
structure of the network of direct interactions has a star-
like structure organized around one large hub protein. As
in the previous example, no direct transcriptional connec-
tions were found between the members of this protein set.

We’ve computed indirect regulatory relations using the
reduced Google matrix approach as described in Mate-
rials and Methods section, separately for SIGNOR, the

“normal" and “cancer" global regulatory networks, com-
bined the common signaling SIGNOR part and the spe-
cific transcriptional network. As before, we’ve found only
a minor fraction of all pair-wise protein relations as can-
didates for indirect interactions (only 32 from 2305 passed
the threshold Gqr > 0.01). In Figure 6 we show all indirect
regulations inferred in the “normal" GM network. As be-
fore, with indirect connections, it was possible to connect
more proteins (43 out of 49). Thus, the most important
indirect connection connects PCNA protein to the largest
connected component of the network. PCNA (proliferat-
ing cell nuclear antigen) protein is a key cell cycle protein
important both for DNA replication and DNA repair.

While comparing “cancer" and “normal" networks, un-
like the previous example, we do not find new “emergent
oncogenic" indirect interactions. Instead, we observed that
several indirect interactions disappear in the “cancer" net-
work, namely three indirect regulations connecting STIL
protein to CCNA2, CCNE1 and CDK1. STIL is a cyto-
plasmic protein implicated in regulation of the mitotic
spindle checkpoint, a regulatory pathway that monitors
chromosome segregation during cell division to ensure the
proper distribution of chromosomes to daughter cells. In-
terestingly, STIL protein was shown to be heavily dereg-
ulated in T-cell leukemias through genome modifications
leading to gene fusions. Disappearance of indirect connec-
tions between STIL and CDK1 can be interpreted as loos-
ening the control over several important cyclins (CCNA2
and CCNE1) and the key cell cycle protein CDK1 in can-
cer. Consistently, we find that the PageRank of the afore-
mentioned cyclins increases (e.g., for the local subnetwork
PageRanks, KGM

CCNA2 = 7 and KK562
CCNA2 = 14) which

means that they are less regulated/controlled in cancer.
Several other proteins such as AURKA, AURKB, CHEK1,
BIRC5, CDC25B decreases their local PageRanks in can-
cer which means they become more controlled. Interest-
ingly, one of the direct targets of CDK1 kinase, protein
BUB1, becomes a new hub of the indirect interactions. In-
deed, this protein plays a central role in mitosis by phos-
phorylating members of the mitotic checkpoint complex
and activating the spindle checkpoint.

2.3.3 Set of transcriptional targets of E2F1 transcription
factor

In our last example, we use the reduced Google matrix
method in order to better understand the structure of
regulations of known in advance direct targets of a se-
lected transcription factor E2F1, a key transcription fac-
tor regulating cell cycle progression. For 76 such proteins
found in SIGNOR pathway database, we find 103 direct
interaction connecting these proteins into the connected
component comprising 49 proteins. One additional direct
transcriptional regulation was found between MYC and
CBX5 proteins, but only in “cancer" K562 network.

The reduced Google matrix analysis revealed 84 indi-
rect regulations for Gqr > 0.01 in the case of the “normal"
network (Figure 7,A), all of which were also present in the
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Fig. 5. AKT-mTOR pathway reconstructed using SIGNOR database and by inferring indirect connections using reduced
Google matrix approach. A) Direct connections representing activator and inhibitor regulations are shown as red and green
arrows correspondingly. Magenta color arrows shows the inferred indirect interactions which are common between the “normal”
and “cancer” networks. Light blue color arrows represent those indirect interactions which are inferred only in the “cancer”
network. Line width of the arrows representing the indirect interactions, is proportional to their Gqr score. Here only 10 top
scored indirect connections present in both “normal" and “cancer" networks and 10 top “emergent in cancer" connections are
shown. The color of protein nodes reflects the relative change in their local PageRanks in “cancer" vs “normal" networks.
Red color means that the protein become better ranked in PageRank in the “cancer" network, and the green color means the
opposite. The size of the node is proportional to the value of the PageRank in the SIGNOR network. B) Hidden cascade of
indirect regulations connecting BCL2 and BCL2L1 proteins with CASP3. The proteins shown with grey labels are those which
are not present in the definition of AKT-mTOR pathway. C) Cascade of hidden interactions emerging in the “cancer" network
and not present in “normal" network.
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Fig. 6. Network of proteins shown to be related to cell proliferation by transcriptomic data analysis. The meaning of the node
and edge colors is the same as in Figure 5 besides those regulations which disappear in “cancer" network compared to “normal"
network (shown by interrupted line arrows).

“cancer" network. We did not find any additional indirect
interactions from the analysis of the “cancer" network.

The majority of strong indirect interactions pointed to
the 3 key apoptosis proteins CASP9, CASP3 and APAF1
(apoptotic protease activating factor) whose local PageR-
anks decreased in the “cancer" network (which means they
become more regulated). As in the AKT-mTOR exam-
ple, we find indirect regulations between BCL2, BCL2L1
and CASP3. However, unlike AKT-mTOR example, we
did not observe significant changes of local PageRanks of
BCL2 and BCL2L1. Overall, the reduced Google matrix
analysis underlines existence of hidden indirect apoptotic
program regulated by E2F1 (which is a known fact [5]).

We also found that many weaker indirect interactions
between the targets of E2F1 ends up on the E2F1 itself
(Figure 7,B), also through a key G1/S cell cycle checkpoint
protein CDKN1A (cyclin dependent kinase inhibitor 1A).
Therefore, E2F1 itself can be regulated through a num-
ber of direct (3 in Figure 7,B) and even more indirect (4
in Figure 7,B) feedback regulations. This observation can
provide hints on the principles of organization of the cell
cycle transcriptional program.

3 Materials and Methods

3.1 Google matrix construction and properties

The Google matrix G of a directed network of N nodes
is constructed from the adjacency matrix Aij which has
elements 1 if a protein (node) j points to a protein (node)
i and zero otherwise. Then the matrix elements of G take
the standard form [8,37]

Gij = αSij + (1− α)/N , (1)

where S is the matrix of Markov transitions with elements
Sij = Aij/kout(j), kout(j) =

∑N
i=1Aij 6= 0 being the

node j out-degree (number of outgoing links) and with
Sij = 1/N if j has no outgoing links (dangling node).
Here 0 < α < 1 is the damping factor which for a ran-
dom surfer determines the probability (1− α) to jump to
any node. The properties of spectrum and eigenstates of
G have been discussed in detail for Wikipedia and other
directed networks (see e.g. [18]).

The right eigenvectors ψi(j) of G are determined by
the equation: ∑

j′

Gjj′ψi(j
′) = λiψi(j) . (2)

The PageRank eigenvector P (j) = ψi=0(j) corresponds to
the largest eigenvalue λi=0 = 1 [8,37]. It has positive ele-
ments which give a probability to find a random surfer on a
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Fig. 7. Network of targets of E2F1 transcription targets. The meaning of the node and edge colors is the same as in Figure 5.
A) Complete network with a subset of 19 top scored indirect interactions is shown for Gqr > 0.05. B) Network of E2F1 direct
and indirect (Gqr > 0.01) regulators of E2F1, showing multiple indirect feedback loops in the regulation of E2F1 itself.

given node in the stationary long time limit of the Markov
process. All nodes can be ordered by a monotonically de-
creasing probability P (Ki) with the highest probability at
K = 1. The index K is the PageRank index. Left eigen-
vectors are biorthogonal to right eigenvectors of different
eigenvalues. The left eigenvector for λ = 1 has identical
(unit) entries due to the column sum normalization of G.
One can show that the damping factor α in (1) only af-
fects the PageRank vector (or other eigenvectors for λ = 1

of S in case of a degeneracy) while other eigenvectors are
independent of α due to their orthogonality to the left
unit eigenvector for λ = 1 [37]. Thus all eigenvalues, ex-
cept λ = 1, are multiplied by a factor α when replacing
S by G. In the following we use the notations ψTL and ψR
for left and right eigenvectors respectively (here T means
vector or matrix transposition).

In many real networks the number of nonzero elements
in a column of S is significantly smaller than the whole
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Fig. 8. PageRank probability P (red points) and CheiRank
probability P ∗ (green points) as a function of K and K∗ in-
dexes, calculated for SIGNOR molecular interaction database.
Straight dashed lines are drawn to adapt an eye and show al-
gebraic decay with exponents −0.5 and −1. Here α = 0.85.

matrix size N that allows to find efficiently the PageRank
vector by the PageRank algorithm of power iterations [37].
Also a certain number of largest eigenvalues (in modulus)
and related eigenvectors can be efficiently computed by
the Arnoldi algorithm (see [18] and Refs. therein).

In addition to the matrix G it is useful to introduce
a Google matrix G∗ constructed from the adjacency ma-
trix of the same network but with inverted direction of all
links. The statistical properties of the eigenvector P ∗ of
G∗ with the largest eigenvalue λ = 1 have been studied
first for the Linux Kernel network [13] showing that there
are nontrivial correlations between P and P ∗ vectors of
the network. More detailed studied have been done for
Wikipedia and other networks [18]. The vector P ∗(K∗)
is called the CheiRank vector and the index numbering
nodes in order of monotonic decrease of probability P ∗

is noted as CheiRank index K∗. Thus, nodes with many
ingoing links have small value of K = 1, 2, 3... and nodes
with many outgoing links have K∗ = 1, 2, 3, ... [37,18]. Ex-
amples of density distributions for Wikipedia editions and
other directed networks are given in [18]. It is also useful
to use 2DRank index K2 which represents a certain com-
bination of K,K∗ indexes (K2 is the sequence of K,K∗
values appearing first on a sequence of squares which have
left corner at K = K∗ = 1 with size increasing one by one
up to maximal N value, see details in [18]).

At α < 1 only the PageRank vector have λ = 1 while
all other eigenvectors of G have |λ| ≤ α [37,18]. For
Wikipedia is was shown that the eigenvectors with a large
modulus of λ select some specific communities of Wikipedia
network [18]. However, a priory it is not possible to know
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Fig. 9. (a,b) Complex spectrum {λi}i=0,...,N−1 of Google
matrices G (a) and G∗ (b) at α = 0.85, computed for
SIGNOR molecular interaction database. Colors give the in-
verse participation ratio ξi from ξi = 1 (black) to ξi =
150 (bright yellow). (c,d) Inverse participation ratio ξi =(∑N

n=1 |ψi(n)|2
)
/
∑N

n=1 |ψi(n)|4 of the ith eigenvector as a
function of Re (λi) for Google matrices G (c) and G∗ (d). Col-
ors give in logarithmic scale i indexes of eigenvalues ranked
by decreasing modulus; from i = 1 (black) to i = N = 2432
(bright yellow). Quasi-uniform picture of the spectrum reflects
inexistence of weak protein node communities in the SIGNOR
network.

what are the meanings of these communities. Thus other
methods are required to determine effective interactions
between Nr nodes of a specific subset (group) of the global
network of a large size N � Nr.

In this work we apply the Google matrix analysis to
the directed network of protein interactions from the can-
cer database SIGNOR [42], and two hybrid networks, con-
structed by merging SIGNOR to two transcriptional net-
works measured in normal blood cells and in cancer (leukemia).
The SIGNOR directed network contains N = 2432 pro-
teins (nodes) with the total number of links N` = 6569.
In all our analysis we use the typical damping factor value
α = 0.85 [37].

For the studied protein networks the dependencies of
PageRank and CheiRank probabilities on rank indexes are
shown in Figure 8. The decay of probabilities is approxi-
mately described by a power law P ∝ 1/Kβ ;P ∗ ∝ 1/K∗β

with the decay exponent β in a range 0.5 − 1. However,
this is only an approximation for a whole curve. The dis-
tribution on nodes on the PageRank-CheiRank plane is
shown in Figure 1. The spectra of G and G∗ are shown in
Figure 9.
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3.2 Reduced Google matrix

Recently, the method of reduced Google matrix has been
proposed for analysis of effective interactions between nodes
of a selected subset embedded into a large size network
[19]. This approach uses parallels with the quantum scat-
tering theory, developed for processes in nuclear and meso-
scopic physics and quantum chaos.

It turns out that the Google matrix GR matrix describ-
ing the interactions inside a group of proteins is composed
of three matrix components which describe the direct in-
teractions between group members, Grr, a projector part
Gpr which is mainly imposed by the PageRank of selected
proteins given by the global G matrix and a component
Gqr from hidden interactions between proteins which ap-
pear due to indirect links via the global network. Thus the
reduced matrix GR = Grr+Gpr+Gqr allows to obtain pre-
cise information about the group of proteins taking into
account their environment given by the global network.

The concept of reduced Google matrix GR was intro-
duced in [19] on the basis of the following observation. At
present directed networks of real systems can be very large
(about 4.2 millions for the English Wikipedia edition in
2013 [18] or 3.5 billion web pages for a publicly accessible
web crawl that was gathered by the Common Crawl Foun-
dation in 2012 [38]). In certain cases one may be interested
in the particular interactions among a small reduced sub-
set of Nr nodes with Nr � N instead of the interactions
in the entire network. However, the interactions between
these Nr nodes should be correctly determined taking into
account that there are many indirect links between the Nr
nodes via all other Ns = N − Nr nodes of the network.
This leads to the problem of the reduced Google matrix
GR with Nr nodes which describes the interactions of a
subset of Nr nodes.

In a certain sense we can trace parallels with the prob-
lem of quantum scattering appearing in nuclear and meso-
scopic physics [44,4,28] and quantum chaotic scattering
[24]. Indeed, in the scattering problem there are effec-
tive interactions between open channels to localized basis
states in a well confined scattering domain where a par-
ticle can spend a certain time before its escape to open
channels. Having this analogy in mind we construct the
reduced Google matrix GR which describes interactions
between selected Nr nodes and satisfies the standard re-
quirements of the Google matrix.

Let G be a typical Google matrix of Perron-Frobenius
type for a network with N nodes such that Gij ≥ 0 and
the column sum normalization

∑N
i=1Gij = 1 are verified.

We consider a sub-network with Nr < N nodes, called
“reduced network”. In this case we can write G in a block
form :

G =

(
Grr Grs
Gsr Gss

)
(3)

where the index “r” refers to the nodes of the reduced net-
work and “s” to the other Ns = N −Nr nodes which form
a complementary network which we will call “scattering
network”.

We denote the PageRank vector of the full network as

P =

(
Pr
Ps

)
(4)

which satisfies the equation GP = P or in other words P
is the right eigenvector of G for the unit eigenvalue. This
eigenvalue equation reads in block notations:

(1−Grr)Pr −Grs Ps = 0, (5)
−Gsr Pr + (1−Gss)Ps = 0. (6)

Here 1 is a unit diagonal matrix of corresponding size Nr
or Ns. Assuming that the matrix 1−Gss is not singular,
i.e. all eigenvalues Gss are strictly smaller than unity (in
modulus), we obtain from (6) that

Ps = (1−Gss)−1Gsr Pr (7)

which gives together with (5):

GRPr = Pr , GR = Grr +Grs(1−Gss)−1Gsr (8)

where the matrix GR of size Nr × Nr, defined for the
reduced network, can be viewed as an effective reduced
Google matrix. Here the contribution of Grr accounts for
direct links in the reduced network and the second term
with the matrix inverse corresponds to all contributions
of indirect links of arbitrary order. We note that in meso-
scopic scattering problems one typically uses an expres-
sion of the scattering matrix which has a similar structure
where the scattering channels correspond to the reduced
network and the states inside the scattering domain to the
scattering network [4].

The matrix elements of GR are non-negative since the
matrix inverse in (8) can be expanded as:

(1−Gss)−1 =

∞∑
l=0

G l
ss . (9)

In (9) the integer l represents the order of indirect links,
i. e. the number of indirect links which are used to connect
indirectly two nodes of the reduced network. The matrix
inverse corresponds to an exact resummation of all orders
of indirect links. According to (9) the matrix (1−Gss)−1
and therefore also GR have non-negative matrix elements.
It can be shown that GR also fulfills the condition of col-
umn sum normalization being unity [19].

The results obtained in [19,20] show that the reduced
Google matrix can be presented as a sum of three compo-
nents

GR = Grr +Gpr +Gqr, (10)

with the first component Grr given by direct matrix el-
ements of G among the selected Nr nodes, the second
projector component Gpr is given by

Gpr = GrsPcGsr/(1− λc), Pc = ψRψ
T
L . (11)

Here λc is the leading eigenvalue and by ψR (ψTL ) the
corresponding right (left) eigenvector such that GssψR =
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λcψR (or ψTLGss = λcψ
T
L ). Both left and right eigenvec-

tors as well as λc can be efficiently computed by the power
iteration method in a similar way as the standard PageR-
ank method. We note that one can easily show that λc
must be real and that both left/right eigenvectors can be
chosen with positive elements. Concerning the normaliza-
tion for ψR we choose ETs ψR = 1 and for ψL we choose
ψTLψR = 1 (the vector ETs has all elements being unity).
It is well known (and easy to show) that ψTL is orthogonal
to all other right eigenvectors (and ψR is orthogonal to
all other left eigenvectors) of Gss with eigenvalues differ-
ent from λc. Here we introduce the operator Pc = ψRψ

T
L

which is the projector onto the eigenspace of λc and we
denote by Qc = 1−Pc the complementary projector. One
verifies directly that both projectors commute with the
matrix Gss and in particular PcGss = GssPc = λcPc.

We mention that this contribution is of the form Gpr =

ψ̃Rψ̃
T
L/(1−λc) with ψ̃R = Grs ψR and ψ̃TL = ψTLGsr being

two small vectors defined on the reduced space of dimen-
sion Nr. Therefore Gpr is indeed a (small) matrix of rank
one which is also confirmed by a numerical diagonaliza-
tion of this matrix. The third component Gqr of indirect
or hidden links is given by

Gqr = Grs[Qc
∞∑
l=0

Ḡ l
ss]Gsr, Qc = 1−Pc, Ḡss = QcGssQc.

(12)
Even though the decomposition (10) is at first moti-

vated by the numerical efficiency to evaluate the matrix
inverse it is equally important concerning the interpreta-
tion of the different terms and especially the last contri-
bution (12) which is typically rather small as compared to
(11) plays in an important role as we will see below.

Concerning the numerical algorithm to evaluate all
contributions in (10), we mention that we first determine
by the power iteration method the leading left ψL and
right eigenvector ψR of the matrix Gss which also pro-
vides an accurate value of the corresponding eigenvalue λc
or better of 1−λc (by taking the norm of the projection of
GψR on the reduced space which is highly accurate even
for λc close to 1). These two vectors provide directly Gpr

by (11) and allow to numerically apply the projector Qc
to an arbitrary vector (with ∼ N operations). The most
expensive part is the evaluation of the last contribution
according to (12). For this we apply successively Gss and
Qc to an arbitrary column of Gsr which can be done by a
sparse matrix vector multiplication or the efficient appli-
cation of the projector. We compute simultaneously the
series in (12) which converges rather quickly after about
200 terms since the contribution of the leading eigenvalue
(of Gss) has been taken out and the eigenvalues of Ḡss
are roughly below the damping factor α = 0.85. In the
end the resulting vector is multiplied with the matrix Grs
which provides one column of Gqr. This procedure has to
be repeated for each of the Nr columns but the number Nr
is typically rather modest. We also note that the results
obtained in [20] show that an approximate relation holds:
1 − λc ≈ ΣP = ‖Pr‖1 where ΣP is the PageRank proba-

bility of the global network concentrated on the subset of
Nr selected nodes.

The results obtained here and in [20] for the Wikipedia
network show that the contribution of Gpr is dominant
in GR but it is also kind of trivial with nearly identical
columns. Therefore the two small contributions of Grr and
Gqr are indeed very important for the interpretation even
though they only contribute weakly to the overall column
sum normalization.

The meaning of Grr is rather clear since is gives direct
links between the selected nodes. In contrast, the meaning
of Gqr is significantly more interesting since it generates
indirect links between the Nr nodes due to their interac-
tions with the global network environment. We note that
Gqr is composed of two partsGqr = Gqrd+Gqrnd where the
first diagonal term Gqrd represents a probability to stay
on the same node during multiple iterations of Ḡss in (12)
while the second nondiagonal term Gqrnd represents indi-
rect (hidden) links between the Nr nodes appearing due
via the global network. We note that in principle certain
matrix elements of Gqr can be negative, which is possible
due to negative terms in Qc = 1 − Pc appearing in (12).
However, for all subsets considered in this work the total
weight of negative elements was negligibly small (at most
some 10−3) of the total weight 1 for GR).

It is convenient to characterize the strength of 3 com-
ponents in (10) by their respective weights Wrr, Wpr,
Wqr given respectively by the sum of all matrix elements
of Grr, Gpr, Gqr divided by Nr. By definition we have
Wrr +Wpr +Wqr = 1. All numerical data of the reduced
Google matrix of groups of proteins considered here are
publicly available at the web site [49].

3.3 Global network reconstruction for GM12878 and
K562 cell lines

The transcriptional networks for normal GM12878 and
cancer K562 cell lines were obtained from the web-site
http://encodenets.gersteinlab.org/
(files enets7.K562_proximal_filtered_network.txt,
enets8.GM_proximal_filtered_network.txt) accompany-
ing the original publication [25]. SIGNOR network for
H.Sapiens was downloaded from the SIGNOR web-site
http://signor.uniroma2.it/downloads.php. Both tran-
scriptional and SIGNOR networks were represented as
simple interaction format (SIF) files and merged by sim-
ple concatenation. They were further processed in in Cy-
toscape [14] with use of BiNoM plugin [47,7] for finding
shortest and second shortest paths, and copy-paste oper-
ations.

3.4 Definitions of functionally related groups of
proteins

The composition of AKT-mTOR pathway and the set of
direct transcriptional targets of E2F1 protein were down-
loaded from the Atlas of Cancer Signaling Network (ACSN)
database [?], by using GMT files of version 1.1 available

http://encodenets.gersteinlab.org/
http://signor.uniroma2.it/downloads.php


J.Lages et al.: Google matrix analysis of causal cancer protein networks 15

from the ACSN web-site http://acsn.curie.fr (sets E2F1-
TARGETS and AKT-mTOR gene sets).

The group of proteins related to proliferation was de-
termined as a set of 50 gene names top-contributing to
the transcriptomic signature associated to the cell cycle
through a large-scale pan-cancer analysis of transcriptomic
data [6], using the lists provided in the Supplementary in-
formation.

4 Discussion

The results of application of high-throughput technologies
in modern molecular biology are more and more frequently
presented in the form of complex networks, representing
measured causal relations between biological molecules.
For example, systematic application of Chip-Seq technol-
ogy for a significant number of transcription factors can
result in the global cell line-specific reconstruction of the
transcriptional network [25]. Despite many methods aimed
at the analysis of complex networks, there is still a need
for mathematically rigorous and computationally efficient
methods able to quantify complex non-local network topolo-
gies, especially in the case of directed networks.

In this work we show that the global Google matrix
and the reduced Google matrix approaches represent use-
ful tools for the analysis of directed interaction networks
in biology.

We show that the global analysis of a directed biolog-
ical network using Google matrix and by computing node
PageRanks and CheiRanks and their relative changes in
cancer allows obtaining insights about specific and precise
aspects of how the biological network topology evolve in
different biological contexts.

The reduced Google matrix approach is a novel method
allowing quantifying indirect (hidden) connections between
members of a specified subset of network nodes. These
connections represent paths of oriented graph edges through
the global network and involving nodes outside the speci-
fied set. This approach is applied to the global network of
directed protein-protein interactions, with a focus on some
groups of proteins corresponding to a well-defined biologi-
cal function (cell survival signaling, cell proliferation), ob-
tained by different methods (prior knowledge-based or by
data-driven approaches). We show that application of the
reduced Google matrix approach leads to inferring a mean-
ingful set of indirect interactions highlighting existence of
specific biological programs not reflected in the structure
of direct relations between the members of a protein set.
We also show that the structure of such hidden relations
can be modified from one condition to another, reflecting
some global changes in the wiring of, for example, global
transcriptional networks during cancer or differentiation.

There are multiple possible ways to exploit the meth-
ods suggested in this study. One of the promising ap-
plication is in mathematical modeling of biological pro-
cesses, i.e. mathematical modeling of molecular pathways
[10,27,15,41]. Construction of a mathematical model of a
pathway usually starts with defining the restrictive set of
biological molecules or processes most closely related to

the studied phenomenon (i.e., regulation of programmed
cell death). In the current methodologies, the number of
such model elements (proteins) can not be very large.
Therefore, there is always a danger of neglecting impor-
tant indirect causal relations between the elements via
regulations passing through the global network in which
a given pathway is embedded. The reduced Google ma-
trix method allows systematically inferring indirect regu-
lations, in a context-specific manner which allows to use in
this analysis the results of high-throughput biotechnolo-
gies, as it is demonstrated in the current study.

Note that indirect regulations can involve too many
proteins in order to characterize them by ad hoc meth-
ods such as counting the number of paths connecting two
proteins. The suggested method takes into account the
directed network in its whole complexity without naive
simplifying assumptions. Moreover, the method is compu-
tationally efficient for the typical sizes of the biological
networks involving tens of thousands of nodes and hun-
dreds of thousands of interactions.

Google matrix, or Googlomics, methodology can be
used in other types of directed networks appearing in bi-
ology such as state transition graphs resulting from the
analysis of Boolean models of pathways [1].

Overall, the developed methodology allows combining
global structural analysis of large biological networks char-
acterized by context-specific and dynamical re-wiring to-
gether with the focused analysis of specified biological pro-
cesses, without neglecting the role of the global context.
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