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STATISTICAL PROPERTIES OF NONLINEAR STRING

F. M. Izrailev and B. V, Chirikov

The qualitative behavior of the longitudinal oscillations of a

nonlinear string with fixed ends (Fig. 1) and satisfying the equation
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is investigated in the present work. This problem was examined for the
first time in a work of Fermi, Pasta and Ulam [1] by the method of nume=-
rical integration for a chain of nonlinear oscillators (Fig. 1) appro-
ximately representing a string and satisfying the following system of

ordinary differential equations:
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where 1 = 1, 2, ,,., N =13 Q = L; and L = N, Tﬁe purpose of [1] was
to trace the ‘emergence of statistical properties on that relatively sim-
. Ple example of a mechanical system with a large number of degrees of
freedom, In the linear case (4= 0), the chain of oscillators can be
represented’in the %orm of the set of N - 1 completely independent modes
(normal modes) and, consequently, does not have any statistical proper-
ties. Until recently it was assumed (see, for example, [2]) that any
nonlinearity, no matter how small, was -adequate for the.emergence of.
statistical properties. Therefore the authors of [1] expected that the
initial energy of system (2), concentrated only in the first (lowest

- mode) would be distributed in the course of time approximately uniformly
among all the modes. However, the numerical solution of (2) led the N

directly opposite picture: first, the energy exchange occurred only among

‘the first few modes; secondly, and this is still more essential, the
e
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energy exchange had a quasi-periodic character, so that in a definite,
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relatively short, interval of time all the energy was collected once
more in the first mode with a precision of several per cent. Further
calculations made by ng:showed that for considerably longer intervals
of time the quasi-periodic character of the motion becomes still more -
definite; in particular, the return of all the energy to the first modé
occurs with considerably greater precision . [:The authors are grateful
~to Professor Ulam for the communication of these interesting detailsa

These results caused the authors of [1] to express a hypothesis of
the existenbe sui generis of new normal coordinates (quasi-modes) for
nonlinear systems (see also [3]).

At approximately the same time, preservation of the quasi-periodic
character of the motion of the mechanical system during fairly small,
but finite, excitation was proved analytically in the works of Kolmogorov
and Arnol'd (see, for example, [4,5]). It is true that the Kolmogorov-
Arnol'd theory is inapplicable directly to system (2), because that
system is linear in zero approximation ( ﬂ = 0), but a corresponding
genemlization can be made. Thus; from the present-day point of view,
the result of [1] is reasonable.

On the other hand, when the nonlinear excitation is great enough
and N in system (2) is large enough, statistical properties evidently
should appear sooner or later, as follows from the well known fact of
the applicability of statistical mechanics to any system with a large
number of degrees of freedom (see also [6]). Consequently, some critical
value of the excitation (/6 cr) should exist, corresponding to the boun-
dary between the region of quasi-periodic motion and the region of sto-
chasticity. We will use the latter term to designate the essential sta-
tistical properties (ergodicity, intense mixing and, most important of
all, positive Kolmogorov entropy [ 7], which designates physically the

exponential decrease of time correlations in the system. The region of
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3
guasi-periodic motion will henceforth be called the region of Kolomogorov

stability, -since from the standpoint of a mechanical §ystem the motion
in that region is maximally'stable--there is a complete set of NQ1 inte-
grals of the motion. In the region of stochasticity, however, there is
a total of one motion integral--the energy,--so that it is the region of
maximal instability. Thus, the critical value of excitation Ber deter-
mines the boundary of the so-called stochastic instability, which is the
most essential for a nonlinear system [6 10]. '

The purpose of the present study 13 to estimate the boundaryvof sto-
chastic instability for the system of oscillators (2).

1. Pundamental Relations

First we change to the normal coordinates (for the linear case) in

Eqs. (2) with ‘the formulas-
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After complicated calculations we obtaln- .
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where rxe

K
QK= 2- S““ -'-Z-f-\?

and the wvalues pf Aij are given by the expressions
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Equations (1.2) can be presented in the form
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Then we separate from that sum the terms Qin2 and transfer them to the

left side:
N-4 .
e & | |
Q;‘* \g“Q‘Q* z,m :CB .-_'\,QT:\: - %' ;%?\‘Q?Q &(1.6)

where D, ; Is certain new coefficients (see below) and (pqs) designates
the sum of the remaining terms. The sense of the separation of the

sum in (1.5) consists in the different effect of the two sides. The
terms in the left side of (1.6) lead to the dependence of the frequency
of normal oscillators both on their amplitude and on the amplitude qf'
other oscillators. However, the remaining terms in the right side of
(1.6) have the character of external forces with different frequencies.
Thus the problem is reduéed to studying the motion of a nonlinear oscil-
lator close to many resonances.

We seek the solution in the form:
Q.= &) Lon .Y, Q=) @

where C and @', are the slowly changing -- under the conditions of (2.12)
-- amplitudes and frequencies of the normal modes; the prime indicates

that the frequency is not equal to its value in linear approximation

(1.3) but includes all the corrections connected with the excitation.
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By using (1.7) it is possible to represent the right side of

(1.6) in the form:

3:_5?\5 0.Q.- }:h,,gmem

Cea®d (1.8)

\
Qv_m- \Q&M -

where W'y, is the frequencies of the external forces acting on the
oscillator k.

The sum on the right side is:

w,,Zcm ) Gt 1(2-t)- 60 (o w\+

i \sl
(1.9)
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Since henceforth we will be interested mainly in the boundary of sto-
chasticity when a small number of modes has been excited, it 1is possible
to ignore the contribution of the further modes (Qn-x=290). Let us

note further that the sum in (1.9) is identical for all the oscillators
(does not depend on k) and consequently it le;ds to an identical shift
of all the frequencies and in first approximation does not influence

the resonances.

Finally, equation (1.6) is transformed to the following form:
Cl ba (; 5 N’“D (2. ‘122
H Z .
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v

Let us examine at first the influence of one resonance harmonic

(1.10)

on the right side of (1.10). By using the method of averaging [8] we
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obtain the following equations in slow variables:
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(1.11)
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Let us assume from the start that the term with ka in the second
equation can be neglected (the criterion of this will be given below);
if we differentiate with respect to time and use the first equation,

we obtain the so-called phase equation:

\ AQ.\:.W\ wnw\ ‘_. \ _ \ (1.12)
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From that equation we find the amplitude of the oscillations ¥/, de-
fining the size of the separatrix on the phase plane ( y,km' y/ em’

(see, for example [9]):

—
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The term in (l1.11) that was discarded characterizes the width of the

resonance region, and therefore approximate equation (1.12) corresponds
to the case where the size of the separatrix is much larger than the

width of the resonance, that is:

%-—__—__.- P <<i (1.14)
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Actually there are many resonances of (1.10). The motion of the
oscillator in that case depends essentially on the relation between the

size of the separatrix and the average distance between resonances
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If
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it is possible to neglect in first approximation the influence of all
the resonances except the closest. Then, as is evident from phase
equation (1.12), the motion has the character of stable oscillations

and the energy exchange between the modes is negligibly small

¢/ [ #F T
%) =<l
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by virtue of (1l.14). This also is Kolmogorov stability.

In the reverse limiting case (X'»1) the motion is stochastic [10,11]
This conclusion cannot be considered rigorously proved; rather it is
a distinctive heuristic hypothesis based on qualitative physical con-
cepts and confirmed on particular examples [10,11]. The boundary

of stochasticity of interest to us is determined with the estimate:

Y= Mew | g
LN\QL(AN\ d\C\c

Let us emphasize that in reality no sharp boundary exists between the

two regions, which should rather be considered as limiting cases. Actual-
ly, there is an entire transitional region ( X~1), in which the motion
has a very complex character and depends essentially on the initial

conditions [1g,11].
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If condition (1.1%) is not fulfilled (f 21). the simple phase
equation (1.12) ceases to be valid. Nevertheless it can be shown
(10,111 that the boundary of stochasticity is determined as before by
estimate (1.18). This is connected with the fact that the larger ferm
(/5kalsckquN) cos Yy, expresses the linear properties of the system
and therefore cannot in itself lead to stochasticity. Stochasticity
can be connected only with the ncnlinearity (dNnyp/dC,) # 0). As a
result of that nonlinearity a change of the frequency "“(df\km/dck)ékt
occurs, where t is the characteristic time of interaction. The shift
of frequency leads to an additional shift of phase by the value A?km ~
(dJLkm/de)ékt, which depends on the initial phase. At A¥ynx1 the
time correlation between the phases is disrupted, and this also leads
to stochasticity. If we assume t (AW~ (1.15), that is, that it
is of the order of the quasi-period of excitation; we get estimate
(1.18). Let us note that in the case,fé@.the energy exchange between
the modes already is not small (1.17). Nevertheless, if the nonlinearity
is small enough (X 1), the motion in that case too will have a
quasi-periodic character. Strong energy exchange between the modes
means that the "true; natural modes diffeXr substantially from the un-

excited. It was precisely this situation which took place in [1].

2. The Lower Modes (k< N)
In this limiting case, by replacing the summation in (1.2) by
integration, it is possible to obtain for F,, the estimate:

P~ 16 (o) (-‘,-f,—}k <

(2.1)

where the value QJ?> designates a certain cubic combination of the
amplitudes of those modes which participate in the formation of the
frequency Wypm3; Ak is the interval of the excited modes. The cor-
rection~to the {Egguency of the k-th mode on _account of nonlinearity
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is obtained by:=applying to equation (1.10) the standard technique of

<

averaging (8] and is:
‘ 9 3 R 2 |
We— Wum 5 v (2-w) (2.2)
Hence, we obtain for N, the estimatel:

N . |
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The resonance frequencies are

} (s )
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The multiplier 2 before the m is connected with the fact that in the
case of cubic nonlinearity (2) which preserves the symmetry of interac-
tion with respect to the sign of the shift, only the modes of identical
parity (every other one). The average distance between adjacent re-
sonances, from (2.4), is |

A\Q,\,QY‘_ (2.5)
Let us emphasize that this is precisely the average distance, since
the frequencies (2.4) are substantially shifted on account of non-
linear effects; therefore, depending on the initial conditions, the

local distances between the resonances can change. If we substitute

all these expressions in (1.18), we get

'ﬁ .
_' ‘J_f’\-' 20 P(Cl> {ax (‘5,\73"1 . (2.6)

We will express the latter condition through the dimensionless
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characteristic of the nonlinear excitation (2):

| | 2
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since z = la = 1 (2). The latter expression ceases to be valid for

10

‘very high modes; however, the equality in order of magnitude is pre-
served. It remains to us now to express the amplitude of the excited

modes through the shift of the string (I. 1.7):

w

__Sg; S_q s« .
:LQ-' N-1 CIK:£M>9KfS\m'77‘ , (2-8)
if we square and average with respect to ek(t) and 1, we get:

S

x = 2 (N-1)

- (2.9)

The maximum value of X, can be estimated with the formulaZ:

—~— —2 24 ax
¥ T 220 @10
' N-{
If we use (2.6) and (2.10) and calculate (éx/éz)m = XmI%L , we obtain

the final estimate for the boundary of stochasticity:

, . _
SN YN A~ B Nax (2.11)
: 2\ V2 ) K -
In that form the estimate is also acceptable for a homogeneous string

(does not depend on N).

The entire examination of resonances in a nonlinear system is

valid under the condition of smallness of the excitation (1.11)

™~

P rAN
¢ = TS «.gs@n w‘<<&_ (2.12)
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3. The Higher Modes (k&N)

Analogously to the preceding case, we obtain the following esti-

mates for the resonance excitation:
B ~a0¢ch | (8.1)
Kovaa '

for the nonlinearity (2.2):

d S wm ~ 3E<C_> ' (3.2)
dCw N |

for the resonance frequencies:

Wem = ZC%:—_N \J(K_NY."'ZW\ (8.8)

+va=0,1,2

——— $ o

and for the average distance between resonances:

—2
LY

—~ —— (3.4)
AW Ve

Relation (2.10) does not change, and therefore we obtain the estimate

for the boundary of stochasticity:

SRS A

Let o;ly one mode with the number k be excited at the initial
moment. Let us examine the very start of the development of stochas-
ticity, when the energy exchange takes place only between certain ad-
jacent modes. Then it can be assumed that Ak~1l and we obtain the
picture presented in Fig. 2. The solid straight lines depict the
boundary of stochasticity (on a log-log scale) and the broken curve
represents an attempt at rough interpolation between them; the circles

are the results of a numerical calculation for two cases of cubic

M T
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nonlinearity according to [1]. It is of interest to note that the.
first case lies far in the region of Kolmogorov stability in spite
of the large value /5= 8, since at the start of the excitation the
lowest mode (k = 1) is excited. The results of the numerical calcula-
tion show in this case a clearly expressed quasi-periodicity (Fig. U4,
taken from [1]). The second case lies close to the boundary of sto-
chasticity, although the valueié= 1/16 is very small, but in return
the seventh mode is excited (only once!). The picture of the oscilla-
tions in that case resembles quasi-periodic motion very little and
rather reminds one of under-developed stochasticity (Fig. 5, taken
from [1]). The quasi-period in that case must have amounted to 8000

cycles (5.1).

4, The Distribution of the Stochasticity

As was noted above, estimates (2.11) and (3.5) indicate the boun-
dary of the origination of stochasticity. Let us examine now the dis-
tribution of it on adjacent modes. We will limit ourselves to the
case kK << N (continuous string). We will utilize relation (2.6) for
the estimate. If the interval of the stochastic modes Ok is large
enough, the amplitudes of the normal modes Ck already cannot be con-
sidered identical., By virtue of the stochasticity the energies of the

modes must be identical (on the average):

. |
e C__._?:_O.... ~ e D)
A ! .

where W, is the total energy of the oscillations. Criterion (2.6)

is rewritten in the form

LO% ..WQ . K -~ & (“02)
@ N e -
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since k/VAk rises with increase of k, the right edge ko, of the in-
terval 4k always will be in the region of stochasticity and, conse;‘.
-quently, the stochasticity will always be distributed on still higher~
modes., However, the left edge (kmin) in the end turns out to be on
the boundary of stochasticity and then goes into the region of Kol-
mogorov stability. How will the energy exchange between the modes

close to kmi take place after that? Evidently the energy will, on

n
the average, go over to the higher modes. The mechanism of this pro-
cess can be as follows: as a result of energy exchange the modes tn
kmin can transfer their energy to the higher modes, but the reverse
transfer will be difficult because the boundary of stochasticity (kg ip)
is, for the diffusion of energy over the modes, a distinctive reflec-
- ting wall [111].
The estimate (4.2) can be rewritten for the left edge of the

interval in the form:

K i
N Kooy ™ Ko

~ X, (4.3)

where kg is the number of the excited mode corresponding to the boun-
dary of the onset of stochasticity ( Akwv1l).
If the stochasticity has just set in, then kmin ano and the

interval Ak “ 1 remains narrow until kK.iy increases substantially,

n
that is, until the interval Ak is shifted far to the side of the

higher modes., From (4.3) we have
2 :
AX~ (———K“"“ | (4.4)
Ko

When kpin D kg the interval is substantially expanded, its right edge

being moved considerable more rapidly than the left (4,3):

KM'W\'\’ Ko ‘KNM (4'5)

. i
ra o Ao wvbome —tre——- e { B ————p——y e <121 nnm =+ R ey E L T R
. v Ll



14

Hm Concluding Comments

The estimates made above (## 2 and 3) can serve, in our opinion,
as a basis for explanation of the results of work [1]. A numerical
verification of the position of the boundary of stochasticity is de-
sirable. It would be especially interesting to examine the expected
displacement of stochasticity to the side of the higher modes (#Uu).
The alternative explanation of the results of [1l] advanced by Ford
[12] and based on the arithmetic properties of unexcited frequencies
(1.3) (on their incommensurability, that is, the impossibility of the
equality :%a&nk for whole values of nk not simultaneou$ly equal to
zero) is, in our opinion, incorrect. The inadequacy of such an ex-
planation has also been pointed out in [191%. All the more so is it
impossible to agree with far-goirg proposal by Ford to renounce in gene-
ral the requirement of ergodicity in the statistical mechanism, re-
placing it by a specific (and often special) selection of the initial
conditions. In particular, in [12] an "equipartition" of energy was
obtained in a system of linear oscillators. It is not difficult to
see that "equipartition” was completely contained in the especially
selected initial conditions, because in a linear case the modes are
completely independent. In general, all the statistical properties of
such a system-'can be assigned only in the form of initial conditions,
and the motion itself of the system has no statistical properties.

We will not turn our attention to the fact that stochasticity,
which is the subject of discussion in this work, is not exactly ordi-
nary from the point of view of the theory of dynamic systems. The
fact is that the boundary of stochasticity depends not only on the

parameters of the excitation but also on the position of the system

in phase space, on the surface of constant energy. According to the

Ty { ‘ P
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ﬁiimates of this work, only part of the phase space (region II,

\y/fiig. 2) is stochastic, whereas the remaining part is a region of

;1;')

Kolmogorov stability (I, Fig. 2.). From the point of view of the
theory of dynamic systems (see, for example, [13]), such a motion

is even ergodic (the trajectory dces not embrace all the energy
surface). Nevertheleéss, from the physical point of view it seems to
us to be compltetly justified to speak of the statistical properties
6f the system in some part of the phase space. Evidently, a gene-
ralization of the usual concepts of the theory of dynamic systems

and statistical mechanics to similar systems with a separated phase
space is required. One of the possible ways is limitation of the
time of motion in such a way that the trajectory of the system

cannot reach the boundary of stochasticity [14]. In the presence of
such a limitation, a system has the usual statistical properties.
Another way, more convenient from the practical point of view, is to
consider the boundary of stochasticity as a reflecting wall in the
phase space for the distribution function characterizing the behavior
of the system [11]. The results of [11] show that this is possible
with a certain degreé of precision. It is not excluded, however, that
precise boundary conditions will not be successfully formulated, if

only because, instead of a sharp boundary of stochasticity, there

exists an ‘entire transitional region with a very complex character of

the motion.

It is possible, however, that systems with a separated phase

space are a unique exception. Thus, for example, by increasing the

nonlinearity it is possible, evidently to attain such a positioh that
the stochasticity is distributed over all the modes (2.11), at least
for an infinite number of degrees of freedom. But the same result
can be achieved if hard ¢ollisions are introduced among the masses

o : v,
{ .

!/\' % .
H ' v
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" .o chain (Fig. 1), as was shown in [15] by means of a numerical

o

ylntcgration of the equations of mction. Such collisions play the

role of brief but very strong nonlinearity.

In [11], another example of a dynamic system with a separafed
phase space was investigated -- the motion of a light parficle between
cscillating heavy walls. The separation of the phase space was essen-
tially connected in that case with uniformity of the motion. Upon "’
transition to a larger number of measurements in analogous systems the
stochasticity is distributed over the entire energy surface [16].

Finally, some words about Kolmogorov stability. The preservation
of the quasi-periodic character of the motion, cetected in [4,5],
means a preservation of the complete set of single-valued integrals
of the motion, in spite of the excitation. Those integrals, however,
are not analytical. .Hence it follows, in particular, that Poincare's
theorem [21] of the absence in a nonlinear system, under certain
(adequately broad) conditions, of single-valued analytical integrals
of motion except energy does not necessarily indicate the ergodicity of
such a system., It should be borne in mind, however, that the absolute,
or perpetual (for any t) stability was demonstrated in [4,5] only for
systems with two degrees of freedom. In the presence of a larger
numbervof degrees of freedom the existence of single-valued integrals
of motion of the excited system depends on the arithmetical properties
of the unexcited frequencies. Since from the physical point of view |
the arithmeticai properties of frequencies are indefinite (for example,
the difference between rational and irrational frequencies has no
meaning), the question of the absolute stability of systems with a
large number of degrees of freedom.remains open. There is an example
of the instability of such a system [17]. 1In [18] a possible mecha-
nism of such instability was pointed out and an estimate 6f the time

of its development was given. For the problem considered in the present
- —— -
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Hffi;rx, that time can be estimated very rbughly as
\/ ,

' A .
TT‘ Ede ~~ 9000 uMK.oB

Y

cycles ,
Here T is the quasi-period of motion (Fig. %) and Cis the parameter

of smallness of excitation according to (2.12); the numerical values
of T and T are given for the case in Fig. 4. Thus, if such an in-
stability 'exists, it is extremely weak and can play a role only in
exceptional cases. In particular, the stochasticity which follows
from that leads to a collision term in a kinetic equations of an
essentially different type (and of far less value) from the usual.,
The last-mentioned is connected with the "rough" stochasticity, of the
type considered in this work. The presence of weak instability
possibly indicates*the validity of Fermi's theorem [22] of ergodicity,
since it rel?tes to systems with a number of degrees of freedom
larger than two?3,

| We take this ppportunity to express our deep appreciation to
Professor S. M. Ulam for graciously giving us report [1] and to Ya.:G.

Sinai for numerous useful discussions.
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Focotnotes

1. The disappearance of dflkm/dck at b)#= 2 (k = N/2) is a
result of the neglect in (1.9) of the terms with QN-k’ which is not
allowable at k& N/23; when those terms are taken into consideration the
estimate for d_ﬂkm/dck does not change in order of magnitude.

2+ 1t is assumed that all values of Ck are of the same order;
see #4,

3. We will note however, that the arithmetic properties of the

frequencies can play a certain role in the region of Kolmogorov sta-

bility [4,5] (see also below).
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Fig. 1. String with fixed ends. L is the total length of the string;
4 - is the size of the section modelled by any oscillator of the chain.
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Fig. 2. I-Region of Kolmogorov stabiiity; II - Region of stochasticity.

a - boundary of stochasticity for k<< N (2.11); b - boundary for

s
e

N (3.5); ¢ - qualitative interpolation; numerical values of straight

lines a and b given for N = 325 1 - result of numerical calculation

for N = 323 X_ = 1;’k = i,,ﬂ = 8 [1]; 2 - the same for k = 7; /?= 1/6 [1].
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t IN THOUSANDS OF CYCLES

Fig. 4. The initial configuration assumed was a singie sine wave;
the force had a cubic tern with B =0 ond Bt2 = 1/8. Since a cublc
force acts symmetrically (in contrast to a quadratic force), the string
will forever keep its symmetry and the effective number of particles
for the computation N = 1b. The even mcdes will have energy O.
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t IN THOUSANDS OF CYCLES

Fig. 5. N = 32; Sta = 1;04; B = 1/16. The i{nitial configuration
ves & combination of 2 modes. The initial epergy vas cbosen to be 2/3
in node S and 1/3 in mode 7.
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