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NUMBRICAL EXPERIMENTSWITN A NONLINEAR QMIN

by

F. M. Izraflev,A. I. Khimmutdinov, and B. V. Chirikov

ABSTRALX

Results of numerical experimentswith a chain of non-
linear coupled oscillator are presented. The experiment
wan to check the existence and position of the stochasticity
border. Severalmethods to detect stochasticitywere used,
includingenergy spectrum,various correlation, and local
instability. The reeulte are in reasonable agreementwith
analyticalestimatee. They also demonstratea very complex
structureof the intermediatezone separatingthe region of
stochasticityfrom that of I@lmogorov’sstability. In par-
ticular the local instabilitybegina at a considerablysmal-
ler 8-value than one at whfch time correlation vanish.
Even under the strongest excitation (P - 1, E = 96), the
lowest modes haven’t been completely stochastic. The fluc-
tuations of the system’s full energy, due to computational
errors, were relatively large--upto 3%. Although the main
parametersof the motion, such as local instabilityrate,
haven’t been affectedby these errors, the trajectory itself
had to be. Therefore further computationwith higher ac-
curacy and with a larger number of oscillators in the chain
is desirable.

This work is a continuationof tunnericalex-

perimentsby Fermi, Pasta, and Ulaml to study the

statisticalpropertiesof a chain of nonlinear

coupled oscillator. The model choeen in Ref. 1

waa convenientbecause it permits, in principle,

any number of degrees of freedom and ia relatively

simple for numerical calculation(of course, with a

limited number of deg’reeaof freedom) and analyti-

cal eetimates.

Furthermore,our test shows that this model ie

even much more convenientfor numerical experiments

(especiallyover a long time) than a firet-order

equation in partial derivative of the Kmrtewag-

DeVriea type.2 In the latter case, the calculating

rate and operativememory of even the beat contem-

porary electroniccomputers, such aa the CDC-6600

or BESM-6 clearly ia not ●fficient. Of course,

the situationcan change considerablywhen the

unique “Illiac-4,”with 109 operations per second
3

comes into use.

The problem is interestingin that it throws

light on the physical nature and the mechanism of

appearanceof statisticallawa in the dynamic

system. As KZY10V4 showed, this question is still

open. The solution to this problem can be still

more important in ita practical applications. The

emergence of statisticalrules, or, for brevity,

otochasticity,Implies the developmentof the most

dangerous instabilityof nonlinear fluctuations.

On one hand, this inatabflitydevelopa rapidly

enough,fufi, as any diffueion process; on the

other hand, it covers a very wide range of values

of parameters and initial conditions.

Even in 1955,1 it was aasumed that any non-

linearity always leada to stochasticityfor a sys-

tem with enough degreea of freedom. In particular,

1

.



this followed from Fenai’a early work.5 The evi-

dence in Fermi’s paper is unconvincingnow, it

seems, mid Femni himself doubted it and therefore

decided to perform a verifying numerical experi-
1

ment. As ie known, the ●xperiment gave ● negetive

result and ehowed the presence of a wide region of

stabilitywith almost-periodicmovement.

Two other groupe of experimentaldata indicate

the prenence of such a stable region. First, the

motion of particles in accelerator, where there are

always emall nonlinearperturbations. hat signifi-

cant in this reepect are the data of Baconnier et

al.6 which establishedthe stabilityof vibration

of protons about the equilibriumorbit during at

leaet 109 vibration periods during which an addi-

tional nonlinearperturbationwae epecially intro-

duced. On the other hand, the numerical experiment

undertaken at CERW during planning for the aynchro-

tron ahowed that with a nonlinear perturbation

greater than some critical limit the emergence of
7

some irregular instabilityia poeaible. Apparently,

this was the firet indicationof the existenceof a

●tochaaticitylimit, dividing the stable and sto-

chastic regions of nonlinearvibrations.

The other group of experimentaldata is re-

lated to the remarkable otabilityof the ●oler sys-

tem. During’109 vibration perioda there are no

sign- of developmentof fnatabilityeven if there

are significantdlaruptionaof the coplanarityand

circular shape of the orbits. Of course, all these

experiments,both “real” and calculated,can demon-

strate stability for a finite time intervalonly.

Stabilityfor any time, or perpetuels etability,ia

proved analyticallyonly for two degrees of free-

dom>” However, the invarianceof an evenly denee

●yatem of tori revealed in these papert ahowa that

if even for many degreea of freedom there ia alao

inatabili.ty,
10

leading finally to ●tochaaticity(in

formal accordancewith the Fermi theorems),the rate
. . . . . . . . . . . . . ..L -––––-

ot cievelopnent01 cnla inacaollxcymuse De very

slow, at leaet for moat initial condftiona. There-

fore, even with many degreee of freedom it is nat-

ural to expect the presence of some stochaaticity

limit, beyond which rapid developmentof instability

begina.

In ita time, the result of Ref. 1 waa very

surprising,and evoked e serfea of theoretical
11-15papers which attempted to explain the paradox

2

that had arisen. In particular,Jackaon
14

intro-

duced a hypotheaim of the existence of a sto-

chaaticity limit and gave ● determinationof its

locetion. Our main problem is the numerical de-

terminationof the ●tochasticitylimit for the

●impler case of a cubic nonlinearity,which Jack-

aon considered.

1. CalculationScheme

We considar a chain of N - 1 oscillators

(N = 32) interactingby a definite nonlinear rule.

The equation of motion of each oscillator ia

iie - (X*l - 2xe + X8-I)

[
+P (X*l - xe)3 1-(Xe - Xe-l)s . (1)

The ends of the chain are rigidly secured: X. =

5 = O. The coefficientB characterizesthe

magnitude of the nonlinear perturbation,and Xe

ia the displacementof the e-th oscillator from

the equilibrftnnlocation.

Equation (1) belongs to the type y“ = j(x,y),

for which it is advantageousto uae Scraton’apro-
15

poeed method for numerical calculation. The

edvantageof this method compared to the Runge-

Kutta method, for example, ia that with the same

accuracy the number of operations is significantly

reduced. Let ua present the equationa of this

algorithm for applicationto Eq. (l). We write

Eq. (1) in the form

and introduce

~Fe=h20 f(x~el,x:,xj.l) I

where h 10 the step in time and the index % de-

notes the time t at which the valuea of x are

taken. Let us divide length h into three parts

in the followingproportions (if h ia taken a.

unity):

(2)

o l-a 1
~

,

where ● ia chosen aa a = ~ = 0.27639320. We

will ●ubaequentlyomit the index e and chow how to

.
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obtain the values X*l and

time n + 1, knowing Xn and

be representedin the form

.

.

**1 at the moment of

k“. The time axis can

and

n’-1 n CA

where <1 - n + ha, K2 = n + h(l-a), ~-1 = n - ha,

<-2 = n - h(l-a), and,

t =n-l, g~l=n
‘n-1

are detemninedby

Jl+l =xn+ h&n+

correspondingly,<n = n,

+ 1. Then X*l and **1

51A F<n +0.30150283 F
1<

+ 0.11516383F52 + 0(h7) , (3)

and

hk
n+l .n 5-hx+— 5*1) + 0(h8).~~ (F5n+ SF 1 + 5FS2 +F

The values of Fql and F<2 can be found using

#1 = Xn + 0.27639320hi” + 0.06457768 F{n

- 0.03874353F%-l +0.01871643 F5-2

- 0.00635398 F*n-l +O(h6) ;

and (4)

X<2 = Xn + 0.72360680hkn + 0.29711983 F%l

- 0.12944272F%n + 0.10937164 F~-1

- 0.01574536 Fg-2 +O(h6) .

In addition,for the firat step, knowledge of F-a,

Fa-1 -1, and F a-1
ia necessary;we obtain x-a, x ,

-L
and x , which correspondaa follows.

-1/2 o
x -x - 1/2 hk” + 1/8 FO + 0(h3) ,

X-l = Xo - hk” + 1/6 (F”+ 2F-1/2) +’0(h5) ,

-a o
x =x - 0.27639320hfc”+ 0.02861197 FO

+ 0.01213107 F-’/2 -0.00254644 F-l + O(h’),

(5)

a-1 - XO
x - 0.72360680hk” + 0.11805469 FO

+ 0.16120227 F-1/2 -0.01745356 F-l + 0(h5),

where X“ and k“ are the initial valuee. Choice of

the step h waa dictated on the one hand by the

amallneaaof the total energy fluctuations,which

for Eq. (1) must be the constant of motion,

N-1

+~ z (Xe+l 4

4 l-l
- Xe) = const , (6)

and on the other hand by the possibilityof tracing

the behavior of the ayatem over long times. In

each case, it la indicatedby E and Ai.iE. TO

ensure that the computing-schemeerror does not

affect the final result of the calculation,we

conducted separate control teata with reduced h.

Because the analyticalcalculationsfor the be-

havior of Eq. (1) are given in terms of normal

(for the linear case, ~ = O) coordinates (modes)

of Qk, over a certain number of atepa, the con-

version from x to Qk ia done according to
e

J
N-1

Qk(t) = A Z xc(t) Sin “* ,
N-1 ~=1 (7)

and the energy of the modes ia calculated,

.2 22
‘k ‘kQk

%-7+7 ‘ (8)

where Wk ia the linear frequency of the k-th mode:

(9)

Aa initial conditions,we gave the equal amplitude

of the modes C; = C, determined by

2(t?)m
x

max “-Fi-

where m is the number

(maximumdisplacement

# (10)

of excited modes and x
max

of the oscillator) ia



I
assumed equal to unity. The initial velocities,
.

Ck‘ were always chosen as zero: c: - 0. Then

~ and ;k were converted to x: and k: by a con-

version that ia the converse of Eq. (7). We

periodicallyprinted out and interpretedall the

values of interest.

2. Methods of StudyinK the Stochasticity

The main problem in analysis of numerical

calculationresults is the choice of a clear and

convenientcriterion that the movement ia actually

iitochastic. We used the followingmethods in

various cases.

1, visual calculationby curves of the energy

dependence of severalmodes on the time, aa well

as by the shape of the spectrum at differentmo-

ments of time, ~(t). This method gives a clear

enough result if at first only one mode ia ex-

cited, as occurred in most caaes in Ref. 1. An

example of such a case for our calculationsis

given in Fig. 1 at the end of the report. The

lower curve (6) shown the clear almost-periodic

energy fluctuationsof the first mode. Unfor-

tunately, such initial conditions are poaaible

only for the very lowest modes. A mode k <~ N can

exchange energy directly only with the moden 3k,

Sk, 7k, etc. In the case of excitationof a

single sufficientlyhigh mode, its energy remains

practicallyunchanged. Figure 2 ahowa excitation

of a single mode, K = 15. The small energy fluc-

tuations are related to the interactionthrough

the higher modes. (The reasona for the intensive

energy exchange after t = 5000 are discussed be-

low.) Therefore,we were forced to excite several

modes at firat. Figure 3 shows the time dependence

of the energy of three modes (K = 16, 18, 19) with

an initial excitationof five modes (~ = 14, 15,

16, 17, 18). It is seen that the energy exchange

is fairly intricatebecauae it ia difficult to

tell “by eye” whether a given motion ia stochastic

or not.

2. Chaue in the sDectrum of fluctuation

with time. Instead of observing the energy of

some mode during a time t, one can determine the

average energy value during the same time for each

mode and find out how the energy concentratedat

the initialmoment t = O in certain modes was dis-

tributed. Such a redistributionof energy is

ahown in Fig. 4, which correspondsto the case of

an initial excitationof three modes (I$ - 28, 29,

30) (curve I). The other two curves (II and 111)

give the average (during the times tl and t2)

valuea of ~. The averagingbegan at to -5900

in the calculation,which by this moment approached

a stationaryexchange of energy between the modes;

the values of l$(t) were chosen by At. It is seem

that the energy waa somehow redfstributed,but

only between adjacentmodes; transfer of energy

toward the higher modes (N - K<< N) is eaaier than

toward the lower modes (K<< N). Also, we appar-

ently observe an equilibriumstate because the two

curves (11 and III) nearly coincide.

3. Time correlationswere calculated for dis-

placement of a certain oscillator,x
j’

and for the

energy of a certain mode of fluctuations,E~, by

and

Ek(t)~(t-T) - Ek(t)2
O(Ek,T) = (12)

~ - Ek(t)2

Here the line denotes averaging over t through

equal intervalaAt, and T is the displacementwith

time. In all casea, in Eq. (11) j = 16, which for

the chosen N = 32 correspondsto the middle oscil-

lator of the chain.

The expected form of the correlationfunction

can be visualized, taking for an example the

Gauaaian vibration spectrum:

-@dz
(13)

where b la the width of the spectrum. The coef-

ficient of the correlationia calculateddirectly

and has the form:

_fi2

For rapid vibrations,where UIo>> 6, the correla-

tion function ia damping vibrationa:

.

●
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()J
2

D(T) - e Cos IJ)OT . (15)

In the opposite limiting caae, 11)0<< b, we get e

monotonic dependence (neglectingthe emall vi-

brations in the “tail”):

()6J
o(T) ~ e 2 * (16)

which ia the amplitude curve for Eq. (15).

Figure 5 shows the time dependenceof the

modulus of the correlationcoefficient. The ir-

regular upper curve (WO >> 6) ia partly explained

by the large interval,AT ( >w~l ), bywhfch

the values of the function CI(X16,T)were calcu-

lated. The lower curve (correlation of mode

K - 15) correaponda,clearly, to the caae w N 6.0
The aaymnetryof the vibrations of P(E15,T) rela-

tive to zero is clearly seen. The residual vi-

brations of o(T) at large T, which are eapecfally

clear in Fig. 5a, can be completelyexplained by

statisticalerrore in the calculationof AD.

Theee errors are not determined,of course, by the

number of components in the averaging in Eqs. (11)

and (12) because adjacent componentsare not in-

dependent. However, for a rough calculationone

can simply assume that the aum in Eq. (12) is

broken up into several independentparts, each of

which includes the components inside the interval

of correlationT. Let us denote by the latter

term the time intervalduring which the correla-

tions are still significant. The value of T is

found from the correlationfunction itself. For

example, in Fig. 3, T w 100. Because the dia-

parsion of each of these parts ia 4, then, by

the usual equation,

(17)

where t is the total time of the proceae, t - T

determines the time during which the components

in the calculationof P were accumulated. For

Fig. 6, A.IY-JO.1. The rapid damping of the cor-

relation function,13qe.(15) and (16) is charac-

teristic for the continuousapectrtan,which cor-

responds to our chosen atochaaticmovement, Eq.

(13). In the caae of almoat-periodicmovement,

tho correlationfunction can have the form of Eqe.

(15) and (16), but only to a certain value of T,

which is invarsely proportionalto the distance be-

tween the lines of the spectrum, after which it

will be repeated. In other wordn, a quasi-period

Tq appears for it. By numerical calculation,we

can find only the lower limit of T . According to
q

the data of Fig. 5, Tq >/+90. To raise this limit,

we calculated P(~,T) and CI(X16.T)for values of

T Up to To = 4900. For example, for the data of

Fig. 4, the correlationshave the form given in

Fig. 6. The correlation substantiallyexceed the

statisticalfluctuation of AD and have a qua.si-

period. This is completely natural because the

energy distributionin Fig. 4 shows that in this

caae even the highest modes lie at the stochastic-

ity limit. In other cases, as in Figs. 10 and 13,

the correlationsare lacking within the limits of

statisticalerror to T - 4900. The characteristic

time of energy exchange between the modes is

-1000.
4. Correlation between modes were calculated

by

where the valuea \ and ~, are cho8en at the same

moment of time by At, and the line, as fn Eqa.

(11) and (12), denotes averaging over t. Because

of the rule of conservationof the total energy

of the ayatem, the correlationcoefficientof Eq.

(18) differs from zero even for stochasticmove-

ment. It is eaey to show that in the latter case

it ia equal to

P(~>Ek/) - - ~ . (19)

Thus, knowledge of this coefficient affordo the

po.eaibilityof determiningthe effective (average)

number of interactingmodes. For example, for the

case ‘nFig” 5’ P(E15’EL7)= -“”24*0”l’ ‘rem
which V * 5::. For the energy spectrum of the

modes represented in Fig. 4, p(E27,E28) gives

V N 8, which generally corresponds to the number

of modes between which all the energy was distri-

buted. A rough calculationof the statistical

error of p(I$,Ek~)gives the value of AP (Eq. 17),

5



the same as for P(Ek,T).

5. JJOCalinstabilityof the vibrations,

which meana that almost any trajectorieswhich

●re clone at firnt rapidly diverge exponentially

in the proceaa of movement. To ttudy local in-

stability,we used the property of spatial sym-

metry of our ayatem, according to which even modes

cannot appear in the process of movement if they
1

were not excited at first. Therefore, there is

an exact solution,E2k(t) - 0, and we were able

to adequatelytrace the energy of the modes if a

very small energy was imparted to them at first.

We detected this unusual instabilityof the even

modes accidentally. When we studied the excita-

tion of a single mode, we found during calculation

that the energy of the even (’~forbidden”’)modem

increaaeo from machine zero (40-19) to a signif-

icant value and becomes comparableto the energies

of uneven modea. That is, from the very start

there was an asymmetry in x: relative to the mid-

dle of the chain. The “culprit”turned out to be

the procedure of calculatingthe 8ine, which

enters into the conversionequation,which is the

converse of Eq. (7). (Recall that, for initial

conditions,< and $’, and not{ and k:, were

given). We discovered that the SAne waa calculated

with a certain error, which depends on the number

of the mode, as a result of which there also arose

a weak aaynsnetrycorrespondingto some small ex-

citation of even modem. Subsequently,when this

waa necessary,we carried out a special syntnetri-

zation of x! right after the transitionfrom

l%fs effect haa also been asamed because of

the so-calledmethod of local instability,which

is generally the moat effectivemethod of deter-

mining that the system is in the ●tochasticity

region, in view of the fact that the moat charac-

teristic property of atochastici.tyin local fn-

atabilfty of motion. At the same time, in the

stable region of the phase apace, which corresponds

to quasi-periodicmotion, small disturbance fluc-

tuate around some average value.

Figure 2b ahowa the caae in which, because of

rapidly developing instability,the energy earlier

concentratedin one mode (I$ = 15) suddenly paa8ea

into the adjacentmodes. Figure 2a gives the log-

arithmic time dependenceof the energy of the in-

dividual modes, by which one can calculate the rate

of instabilitydevelopment. This method permitted

detecting the weak ln8tabilftyfor ~ -1 a180.

The parameter8 are taken from Ref. 1, whose authora

considered the motion in this ca8e to be qua8i-

periodic. Actually, Fig. 1 doe8 not give ri8e to

doubt about this. Nonethele88,Fig. la shows that

an instability,although weak, exints, and can

affect the overall behavior (for example, of the

fir8t mode) after a long enough time. In Fig. 7,

the growth of even modes (I$ = 15,17) ia once more

demonstrated;it i8 noticeable that the far (K -

2,30) mode8 “grow” later than the closer (K = 1.4,

18) ones, although the growth rate 18 approximately

the same for all. Note that the transfer of energy

to the highest mode8 (K = 30) occur8 more rapidly

than that to the 10wC8t (K = 2) ones. This effect

wa8 noted in Ref. 1.

By thf8 method, giving at some moment of time

(t. = 75) an initial disturbanceof the even modes

(40-14 E), we studied the ●tochasticitylimit.

For this, the odd modes were excited in three8,

and the energy growth rate of the adjscent even

mode8 was determined. Figure S gives the charac-

teristic dependence of the energy of the even modes

on the time; using these one can, albeit with some

error, determine the dependenceof the rate of de-

velopment of the instabilityon the nonlinearity

parameter,P.

The method is extremely convenientbecau8e of

it8 use of vi8ual method8 and becauae it does not

require a long calculatingtime. Further, a single

calculationitmnediatelygives the di8tance between

ttm close trajectories. Nonetheleaa,to be con-

vinced that 8uch a choice of trajectorieswas not

special,we conducted two experiments. The first

con8isted in exciting three uneven mode8 (I$ = 27,

29,31) at first, but we carried out synsnetrization;

i.e., we held the energies of the even modes

rigidly equal to zero for the whole time, and mis-

calculated two variants with differing Q: (6Q~

- 10-8). Then we determined the accelerationrate

of the8e two trajectories. In the 8econd ca8e,

we excited both even and odd modes a8 well (m = 3,

~ - 28,29,30) and compared tm close trajectories

analogously. In all casea (for sufficientlylarge

~) we ob8erved an exponentialaccelerationof the

trajectories,indicating local instabilityof

.

.
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motion.

3. Basic Results

As alreadymentioned, our main problem was

the experimentaldeterminationof the ntochasticity

limit for a chain of nonlinear oscillators. The

analyticalcalculationfor this limit, obtained by

Jackson,
14

has the form:

I
J&y; K==N

30 E
(20)

‘“ l~(;)z; N-?S* ‘crit N-1

where E is the total energy of Eq. (1) and m III

the number of excited modes. The shape of the

border is shown in Fig. 14 (straight lines, m- 1).

Experimentaldeterminationof the stochas-

ticity limit was made by the method of local in-

stability (Sec. 2). The combined data are given in

Fig. 15 in the form of vertical lengths giving the

range of values of the rate of growth, l/T (cf. Fig.

8). The groups of data, I, II, III, IV, were ob-

tained by the growth of even modes with an initial

excitationof three adjacentodd modes in different

part8 of the spectrum. Groups V and VI were ob-

tained by the accelerationof close trajectories.

In the first case (V), the same modes were excited

as for (I), but with aymnetrization,i.e., with

total eliminationof even modes. In the second

case (VI) both even and odd modes (I$ = 28,29,30)

were excited.

In Fig. 15, a semilogarithmicscale was used,

in accordancewith the expected dependence,16

+=rl?mp/pcrit , (21)

where Bcrit lies at the atochaaticitylimit, Eq.

(20), and~ is of the order of the distance between

re*onancea.14 Actually, for large ~ the experi-

mental data lie on straight lines within the error

limit. However, for emall B there are significant

deviation. We do not know for sure the cauae of

the8e deviation. We can only introducetwo dif-

ferent hypotheses for their explanation.

The first of these links the deviations,

always on the side of large l/T, with other, denser

resonance systems. This leads aimultaneoualyto

decreaae in Pcrit, which la determinedby the inter-

section of the interpolationline in Fig. 15 with

the axia of abaciasae, and to decrea8e in the

slope of the line. Qualitatively,this is also

observed in Fig. 15. ThiiIeffect is seen especi-

ally clearly in the excitationof lower modes,

where beeidee the “baaic” line (I) it is poseible

to draw with confidence a second line (IV). In

other caees, the effect is less evident.

A quantitativecomparisoncan be made by

measuring the elope of the interpolationLines in

Fig. 15. The average value of thie elope for all

the groups besides (IV) givee (n) -.6*1O
-2
, which

more or lees agreea with the expected calculation

fl-n/N*O.l. por line IV: n- 1o-30 This can

be compared with that predicted by the theory of a

denee eyatem of resonance nz (rr/N)3= 10-3. The

theory aleo predicte that in this case 6
crit ‘*)

muet decreaee by ae many timee again. This is

actually confimed in order of magnitude:

n(III)/n(IV)= 25; Bcrit(III)/Pcrit(IV)= 37.

The que8tion ari8ee of the difference, in

such a caee, in the two atochaaticitylimits from

the point of view of the behavior of the system as

a whole. The answer is that the denser sy8tem of

resonancescan be, and in the given case actually

la, not wide enough. Therefore,overlap of the

reeonanceeof such a eyetem generally does not lead

to complete atochasticity;Instead, a more or less

narrow etochaaticband with limited change in the

energy of the interactingmodes is formed,

Apparently, this effect explains the behavior

of the ayetem for the case, represented in Fig. 2,

which ie strange at first glance. Thue, the upper

curve in thie figure clearly indicates local in-

stabilityof the motion. However, thie instability

apparently is not appreciablydeveloped because it

does not appear at all on the lower curve. In

particular,the successivemaxima in Fig. 2b

differ from each other by several percent; however,

this differencedoee not increase exponentially,

ae in Fig. 2a.

There ariaee the still more important question

of whether such a stochastic layer can lead to a

significantredistributionof energy between the

modes after a efficiently long time. Although we

have no experimentaldata on this, we know that,

generally speaking, it la poaaible. It is possible

7



owing to the so-calledArnold diffusion, the mech-

anism of which is related to the crossing of dif-

ferent stochastic layers of a multidimensionalsya-

tem.LO However, this instabilitydevelops ex-

tremely slowly,
10,17

and therefore it is sensible

to consider it separately from the strong insta-

bility caused by overlap of a wide (and less dense)

system of resonances. The term “strong” here means

that the whole disturbance,which is proportional

to B, Eq. (l), behaves aa “accidental,” without

any additionalsmall multiplier whatever. Just such

a stochasticitylimit is representedin Fig. 14.

Comparisonof this atochaaticitywith three

●xperimentalpoints shows that the dependenceof

P~rit on K correspondsto that expected;however,

the absolute value is about three times smaller.

Such a difference cannot be consideredvery serious,

in view of the roughneaaof the calculationof Eq.

(20).2 This roughneaa ia associatednot only with

the indefinitenumericalmultiplier in Eq. (20),

but also with the small number of excited modes.

The latter effect is demonstratedby lines V and

VI in Fig. 15. Thus, for line V ~crit ia approxi-

mately twice aa large aa for line I; the only dif-

ference between them is the total absence of even

modes for V. A still more significantdifference

occurs in the case of excitationof modes of mixed

parity (VI), where Bcrit exceeds the value for the

comparablecase of (I) by almoat an order. It is

difficult to aay why this ia ao. It could be, for

example, the decreaae in the number of modes of the

same parity. In any case, this demon~trateaonce

more the very complex structureof the tranai.tion

zone, but, at the same time, ahowa the coincidence

in order of magnitude of the expected and experi-

mental locationof the atochasticitylimit.

Let us return to the deviation of the experi-

mental data from the Lines in Fig. 15. A completely

different explanationfor this phenomenon ia pos-

sible, which is that the dependenceof l/T on Bcr.t

ia not logarithmic,Eq. (21). It la possible, for

example, to approximatethis dependenceby a power

function. For this, we plot the same experimental

data in a double logarithmicscale (Fig. 16). Un-

fortunately,they alao fit within the limit of

errors on the straight lines. Thus, at present,

the experimentalerrora are too large; to diatin-

guiah between the two hypotheses, further numerical

experiment with greater accuracy are neceseary.

Analytical calculations,to be publinhed

later, show that, depending on the phaae relations

between the resonances,another dependence of

?-1(!3Crit) is actually possible, namely,

(),-L--n&
4/3

.
crit

(22)

From this, in particular, it follow8 that the

slope of the interpolationlines in a double loga-

rithmic scale munt be n = 4/3 ~ 1.33. The ex-

perimentalvalues of the elope are given as aub-

scripta in Fig. 16; the average value (except for

III) is: (n) - 1.2s. All the values except for

III coincidewith the expected value (4/3) within

the Limits of experimentalerror. In the case of

(III), both the slope of the interpolationline

and the overall grouping of the ●xperimental

points differ considerablyfrom the calculation,

Eq. (22). This indicates,apparently,that at

Leaat in this caae the dependence,Eq. (21), occurs.

The stochaaticitylimit in Fig. 16 corre-

sponds to the vertical asymptote of the dependence

T-l(B). Although the experimentaldata in Fig. 16

alao do not exclude such a possibility,a quanti-

tative determinationof Bcrit doea not seem pos-

sible owing to the large errors. Therefore we

were obliged, perhapa without complete justifi-

cation, to use the data of Fig. 15 for this goal.

We have already seen that Local instability

doea not necessarilymean otrong atochasticity

(although,apparently,it necessarily Leada to

real instability). Therefore it is desirable to

use other methods to be convinced that for suf-

ficiently large B and E our Eq. (1) ia actually

atochaatic. Three controls of the calculation

were performed in the limiting time possible under
4

our condition8 t -10.
max

In the first case three odd modes (~ = L5,

17,19) were excited, aa for caae (II) in Fig, 15,

but with synunetrization.The value b ~ 0.0314 was

chosen approximatelytwice aa Large an Scrit in

Fig. 15. The correlation of the 15th mode and

the displacementof the central oscillatorwere

meaaured, as well as the correlationsbetween modes

15 and 17. The results are given in Fig. 11. It

ia seen that the correlationshave an almoat-

periodic nature, and the number of interacting

,
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,

modes remaine practicallyunchanged: N
into =

4*1.

‘l’hisresult does not necessarilycontradict

the data on the locationof the stochasticitylimit

in Fig. 15. First, if the system 1.sclose to the

stochasticitylimit, the energy cannot be spread

over a large number of modee, since thie increaaea

m and stops the stochasticity,Eq. (20). Second,

the conditionsfor the onset of stocha.eticityare

actually determinedby the energy of the inter-
14

acting modes, and not just by the total energy,

as ie assumed for simplicityin Eq. (20). But in

such a caae the energy of each mode cannot decreaae

significantlynear the atochasticitylimit, be-

cauae, again, the conditionsof atochastici.tyare

disrupted. Thie means that only partial exchange

of energy between modes is poeaible, which, in turn,

leads to residual correlation. However, if we

take8 >> Pcrit, we must already obtain “genuine”

stochaaticity.

The eecond control calculationcorresponds

aleo to 13/9crit$Y28 (Fig. 13). Here the energy is

actuallydistributedamong almoet all the modee,

excludingonly the very lowest, for which fulfill-

ment of the criterion for atochaeticity,Eq. (20),

la difficult. It is easy to calculate the critical

value of K to which the stochaaticityreaches:

where we asaume: %=17”%
-3, m*N=32. ‘Ibis

result la also confirmedby the value of P(E~5,E17)

(Fig. 13). Because of large experimentalerrors,

it is possible to calculateonly the lower limit

for the number of interactingmodes: NintO > 8.

From the data of Fig. 13, we alao aee that within

the limits of statisticalerror (@l) correlations

of the 15th mode are lacking. Cerrelationawith x

are related mainly to the fact that the stochasti-

city doea not reach to the firet mode. Note that

the correlationsdie out slowly. It is possible

that this la somehow related to the effect of the

calculationerrors (ace below), but, if so, why do

they not die out in Fig. 11? Another poaaible ex-

planation is that the motion of the first mode,

which is responsiblefor the correlationwith x, la

neverthelessstochastic,but after a significantly

greater time, because this mode lies in the trans-

ition zone (Fig. 12).

Finally, in the laet control calculation,all

the modes were excited with an equal amplitude and,

consequently,substantiallydifferent energy (Fig.

9, curve I). If the calculationof Eq. (20) is

expanded in this case alao, then the critical

value of K will be Kcrit N N~/3BE * 1/2, where

we used the data of Fig. 9, P = 1, E = 96, me N

= 32. The result shows that the lowest modes lie

practicallyat the stochasticitylimit and there-

fore can show some anomaliea. This actually oc-

curs, according to the picture of the energy dis-

tribution (Fig. 9, curve 111) and the correlations

with x (Fig. 10a). At the same time, correlations

of the 13th mode are again lacking within the

limits of statisticalerror, and correlation be-

tween the modes lead to the value Nint 3 7.
.

In aumning up, we can state that all the ex-
14

perimentaldata confirm Jackson’a hypothesis on

the presence of a stochasticitylimit for Eq. (1)

and, moreover, confirm , in order of magnitude,

the calculation,Eq. (20), of the location of this

limit. Our weakest point is the significantcal-

culation error, which was controlled as regards

change in the total energy of the system (see sub-

scripts to figures); in the abaence of errors,

AE sO. ‘Ibisespecially concerns the three control

experiments (Figs. 9 to 13) where AE/E reaches 3%.

Can these errors by themselves cauae stochasticity?

We think not. A confirmationof this la the sig-

nificant residual correlations(Fig. 11) and the

absence of energy exchange (Fig. 12) for small ~.

Another control of the effect of errors was carried

out for an experimentwith Local instability. With

decrease of the step by a factor of 2, &fE de-

creased from 3 to 0.03%; thus exponentialgrowth

curves of the type given in Fig. 8 changed some-

what; however, the value of the parameter of in-

terest, l/T, remained the same as before within

the limits of experimentalerror.

Nonetheless,continuationof numerical ex-

periments with a more accurate nonlinear chain and

a larger number of oscillators eeems useful.

We thank A. Chistiakovfor help in carrying

out the calculationsand E. Krushkall for useful

critical observations.
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Fig. 1. First mode and emall second mode excited at the begin-

ning (E! w 0.0788; E; m 5.3
● 10-’8 ). Above - loga-

rithmic dependence of second mode energy; below - first
mode ●nergy; h = 1/2; B = 8; &am 1s,3000;AE/E M

0.15%.
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Fig. 2. Initial excitationof single 15th mode; a - logarithmic
energy growth of several modes, b - dependence of
energies of modes (K = 14,15,16)on time; figures
indicate number of mode; h= 1/6; ~ 9$0.0314; ha
w 9000; EM 14.1; AE/EW 1.5z.
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Fig. 3. Excited group of five modes (~ - 14,15,16,17,18;m = 5).
The time dependence of the energies of modee with the
numbers K= 16, 18, 19 is given; h= 1/3; ~ ~ 0.0314;
t~u- 11,100; ES 16.1; AE/Ew 1.5%.
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Fig. 4. Energy spectrum for initial excitation of three highest modem
(%J = 28,29,30;m = 3, curve I).
Curve II gives the average energiee of each mode at the moment
tlca 9300; ~1~ - at the moment t2_ 10,500; h= 1/6; B s0.06;

At= 1; Ew35.2;AE/I?w4.3Z.
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la 19 ‘“r
Fig. 5. Correlationsof displacementof oscillator (a) and of

energy of 15th mode (b) for case of Fig. 3. Curve I
correspondsto a calculationtime tl s 3150; curve II -
t2 = 4500; cu~e III - t s 11,1oo; AT- 1L3;At _ 1;

P(E13,E15) i- -(0.24~ O. O) (for t3).
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Fig. 6.

a

b

Correlationsof displacementof the oscillator (a) and of
the energy of the 29th mode (b) for the case of Fig. 4. The
broken lines correspaid to a calculationtime tl ~ 9300: the

.

,

solid lines - t2 FS10,500;AT = 100; At = 1; p(~27,E29)-SS
-(O.15*O.1O) (for t2).

14



.

\

-s ,

/’

r-
-n /’

-M
,

-b

4
ima

0 -.,-----* -----

Fig. 7. Logarithmicgrowth of even modee for initial excitation of odd
modes (~ - 15,17; m - 2).
Figures indicate number of modes” zero on the graph ia machine
zero, corresponding to q- 10-2d; h ss 1/6; 6 * 0.0314; ~u
w 3000; E==’20; AEII!W 3.5%.
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Fig. 8. Characteristicbehavior of even modeo (K = 14,16) for different valuea of the parameter ~;
~-15,17,19;m-3;h=l/3; tm=m 1050; ESU17; (AE/E)m~R1002%0
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Fig. 9. Energy spectrum for initial ●xcitation of all modes (curve I);
curve II- energy spectrum of me.deafor time of calculation
tl = 6750; curve III - for t2 = 11,025;h= 1/12; ~ - 1.0;
At = 1; E=96;LiE/E-2.4Z.

,

Fig. 10. Correlationsfor data of Fig. 9; broken lines correspond to
calculationtime tl, solid lines to time tz;AT = 100;
At - 1; c@13,~15) s -(0 tO 0.14) (for t2).
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Fig. 11. Correlationsfor initial excitationof three odd modes
(~ = 15,17,19;m - 3) vith aynma?trization;h ~ 1/3;
6=0.0314; t ~= 18,300;AT - 100; At - 1; E- 17;
fM/EW3Z; P(!$5,E17)u -(0.30 ?0.07).
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Fig. 12. Energy spectrtnafor initial excitationof three
modes (K = 15,17,19;m = 3) with ●ynxnetrization
(curve I); curve 11 correapondato the average
ener@es of the modes for the data of Fig. 11;
curve III - for the data of Fig. 13.
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Fig. 13. Carrelationefor initial ●xcitation of three odd modes .
(~ = 15,17,19;m = 3) with ●ymnetrization;h SY1/6;
Ei-o.314; t M 16,050;AT = 100; At - 1; EN 24;
AWE-2%; P’?fi5,E17)- -(O tOo.13).
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Fig. 14. Shape of stochasticitylimit from the
criterionof Eq. (20) (etraight lines) and
summary of experimentalresults:
I- Kolmogorov stabilityregion;
II - atochasticityregion.
Points 1, 2, 3, 4, 5, and 6 correspond to
Bcrit obtained from lines I, 11, III, IV,

V, and VI, given in Fig. 15; point a cor-
reaponda to the data of Fig. 11; point b
to the data of Fig. 13.
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Fig. 15.

L?
* -1 -a ● 1 i

Dependenceof rate of local instabilityde-
velopment on parameter ~. Initial conditions:
~-27,29,31 (I), Ess 30; ~_ 15,17,19 (Ii),
~= 17;

9
= 1,3,5 (111) and (IV), EFs O.95;

%=27,2 ,31with symmetrization(V), Es
30; ~ =28,29,30 (VI); Es35. The straight
lines approximatethe dependence,Eq. (21),
and permit determiningPcrit. Values of l/r
are ziven with experimentalerrors. For I:

B’ s 8.7C10
-3 c, flss2.4.~o-2;for II:

crit
P = 1.6*1O

-2, nsz.z.lo-z; for III:
crit
B = 1.7*1O

-2
, nm2.9e10-2;

crit
for IV:

P s 4.6*IO
-2

crit
, 0ss 1.0.10-3;for v:

B M 1.6*1O -2‘2, n= 1.3.10 ; for VI:
crit
P - 5*1O

-2
, n = 4.0.10-2.crit

.

,

.
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Fig. 16. The same aa Fig. 15, but with a double
logarithmicscale. The straight lines
approximatethe dependence,Eq. (22).
Tha arrows show that within the limits of
experimentalerror l/T = O is poosfble;
for I- n = 1.6*0.3; for II- n = 1.5*
0.2; for III- n . 1.9 *0.2; for V-
n= 1.1*0.5; for VI- n=O.9 ~0.4.
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