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NUMERICAL EXPERIMENTS WITH A NONLINEAR CHAIN

by
F, M, Izrailev, A, I. Khisamutdinov, and B. V, Chirikov

ABSTRACT

Results of numerical experiments with a chain of non-
linear coupled oscillators are presented. The experiment
was to check the existence and position of the stochasticity
border, Several methods to detect stochasticity were used,
including energy spectrum, various correlations, and local
instability. The results are in reasonable agreement with
analytical estimates. They also demonstrate a very complex
structure of the intermediate zone separating the region of
stochasticity from that of Kolmogorov'’s stability. In par-
ticular the local instability begins at a considerably smal-
ler B-value than one at which time correlations vanish,

Even under the strongest excitation (B = 1, E = 96), the
lowest modes haven't been completely stochastic. The fluc-
tuations of the system's full energy, due to computational
errors, were relatively large--up to 3%. Although the main
parameters of the motion, such as local instability rate,
haven't been affected by these errors, the trajectory itself

had to be. Therefore further computation with higher ac-
curacy and with a larger number of oscillators in the chain

i8 desirable,

This work is a continuation of numerical ex-
periments by Permi, Pasta, and Ulam1 to study the
statistical properties of a chain of nonlinear
coupled oscillators, The model chosen in Ref. 1
was convenient because it permits, in principle,
any number of degrees of freedom and is relatively
simple for numerical calculation (of course, with a
limited number of degrees of freedom) and analyti-
cal estimates.

Furthermore, our test shows that this model is
even much more convenient for numerical experiments
(especially over a long time) than a first-order
equation in partial derivatives of the Korteweg-
DeVries type.2 In the latter case, the calculating
rate and operative memory of even the best contem-
porary electronic computers, such as the CDC-6600
or BESM=6 clearly is not sufficient. Of course,
the situation can change considerably when the

unique '"Illiac=4," with 109 operations per second
comes into use.3

The problem is interesting in that it throws
light on the physical nature and the mechanism of
appearance of statistical laws in the dynamic
gystem, As Krylova showed, this question {s still
open. The solution to this problem can be still
more important in ite practical applications. The
emergence of statistical rules, or, for brevity,
stochasticity, implies the development of the most
dangerous instability of nonlinear fluctuatioms.
On one hand, this instability develops rapidly
enough, "'/?, as any diffusion process; on the
other hand, it covers a very wide range of values
of parameters and initial conditions.

Even in 1955,1 it was assumed that any none
linearity always leads to stochasticity for a sys-

tem with enough degrees of freedom. In particular,



this followed from Fermi's early wotk.s The evi-
dence in Fermi's paper is unconvincing now, it
seems, and Fermi himself doubted it and therefore
decided to perform a verifying numerical experi-
ment:.1 As is known, the experiment gave a negative
result and showed the presence of a wide region of
stability with almost-periodic movement.

Two other groups of experimental data indicate
the presence of such a stable region. First, the
motion of particles in accelerators, where there are
always small nonlinear perturbations. Most signifi-
cant in this respect are the data of Baconnier et
11.6 which established the stability of vibrations
of protons about the equilibrium orbit during at
least 109 vibration periods during which an addi-
tional nonlinear perturbation was specially intro-
duced. On the other hand, the numerical experiments
undertaken at CERN during planning for the synchro-
tron showed that with a nonlinear perturbation
greater than some critical limit the emergence of
some irregular instability is ponsible.7
this was the first indication of the existence of a
stochasticity limit, dividing the stable and sto-
chastic regions of nonlinear vibrations.

The other group of experimental data is re-
lated to the remarkable stability of the solar sys-
tem. During ~409 vibration periods there are no
signs of development of instability even if there
are significant disruptions of the coplanarity and
circular shape of the orbits, Of course, all these
experiments, both 'real" and calculated, can demon-
strate stability for a finite time interval only.
Stability for any time, or perpetual8 stability, is
proved analytically only for two degrees of free-
dom. 9 However, the invariance of an evenly dense
system of tori revealed in these papers shows that
if even for many degrees of freedom there is also
instability,lo

formal accordance with the Fermi theorems), the rate

leading finally to stochasticity (1n.

of development of this instability must be very
slow, at least for most initial conditions. There-
fore, even with many degrees of freedom it is nat-
ural to expect the presence of some stochasticity
limit, beyond which rapid development of instability
begins,

In its time, the result of Ref. 1 was very
surprising, and evoked a series of theoretical

11-15

papers which attempted to explain the paradox

Apparently,

that had arisen. In particular, Jncksonla intro-
duced a hypothesis of the existence of a sto-
chasticity limit and gave a determination of its
location. Our main problem is the numerical de-
termination of the stochasticity limit for the
simpler case of a cubic nonlinearity, which Jack-
son considered.
1. Calculation Scheme

We consider a chain of N - 1 oscillators
(N = 32) interacting by a definite nonlinear rule.
The equation of motion of each oscillator is

x, = (xe+1 - 2xe + xe-l)

+B (xe+1 - xe)3 - (xe - xe-l)3 ‘ (1

The ends of the chain are rigidly secured: x5 =
= 0. The coefficient B characterizes the
magnitude of the nonlinear perturbation, and x,
is the displacement of the e-th oscillator from
the equilibrium location.

Equation (1) belongs to the type vy o= f(x,¥),
for which it is advantageous to use Scraton's pro-

15 for numerical calculation. The

posed method
advantage of this method compared to the Runge-
Kutta method, for example, is that with the same
accuracy the number of operations is significantly
reduced. Let us present the equations of this
algorithm for application to Eq. (l). We write

Eq. (1) in the form

;Ee - f(xe-f-l’xe'xe-l) (2)

and introduce

where h i{s the step in time and the index § de-
notes the time t at which the values of x are
taken. Let us divide length h into three parts
in the following proportions (if h is taken as
unity):

° a l-a 1 ,
1 1

J

where a is chosen as a = iO = 0,27639320. We

will subsequently omit the index e and show how to



ntl and *n+1 at the moment of

obtain the values x
time n + 1, knowing *" and in. The time axis can

be represented in the form

vhere §1 =n + ha, €& = n + h(l-a), 5_1 = n - ha,

2
E-Z = n - h(l-a), and, correspondingly, §n = n,

n+l .ol
gn_l =n -1, §n+1 =n+ l. Then x and %
are determined by
L R 1—; Fon 4 0.30150283 F°l
+0.11516383 F>2 + 0(h’) , (3)

and

238

T (Fon 4 5oL 4 sF°2 4 FoeHly 4 oy,

The values of Fgl and P2 can be found using

£1

©1 o x™ 4 0.27639320 hi™ + 0.06457768 Fon
- 0.03874353 Fo>-1 4 0.01871643 F°-2

- 0.00635398 Fon-1 4 o(h®)

and @)
%2 = x™ 4 0.72360680 hi™ + 0.29711983 Fol
- 0.12944272 FoR 4 0,10937164 Fo-1

- 0.01574536 F>-2 + 0(h®) .

In addition, for the first step, knowledge of F-a,

a _a-1

Fa-l, and P! 18 necessary; we obtain x =, x ,

and x-l, which correspond as follows.

V2 030 C 12 w0 4 178 B + o(n®) ,

xlax® o ni® 4 176 (0 4 22y poe®y

%% a0 - 0.27639320 hi + 0.02861197 F°

+0.01213107 ¥ /2 - ¢.00254644 F! 4 0(h%),
and (5)

1 2@ - 0.72360680 1 + 0.11805469 F°

+0.16120227 F /2 - 0.01745356 F*! 4+ o(nd),

where 0 and 0 are the initial values, Choice of
the step h was dictated on the one hand by the
smallness of the total energy fluctuations, which
for Eq. (1) must be the constant of motion,

N-1
1 .2 2
E=2 331 ot (Xeyy ~ %)

(xe+1 - xe)a = comnst , (6)
and on the other hand by the possibility of tracing
the behavior of the system over long times. In
each case, it is indicated by E and AE/E. To
engsure that the computing-scheme error does not
affect the final result of the calculation, we
conducted separate control tests with reduced h,
Because the analytical calculations for the be-
havior of Eq. (1) are given in terms of normal
(for the linear case, B = 0) coordinates (modes)
of Qk’ over a certain number of steps, the con-

version from x, to Qk is done according to

N-1
2 ukd
Q1) =\/§T El x(t) Sta =, (D)

and the energy of the modes is calculated,

¢, 4g
E =2+ ’ (8)

where w, is the linear frequency of the k-th mode:

Tk
w, = 2Simy . (9)
As initial conditions, we gave the equal amplitudes

of the modes CO = C, determined by

k
2
max N-lm ’ (10)

where m is the number of excited modes and X ax

(maximum displacement of the oscillator) is



assumed equal to unity. The initial velocities,

Ck, were always chosen as zero: Cﬁ = 0. Then
Ck and ék were converted to xg and *2 by a con-

version that is the converse of Eq, (7). We
periodically printed out and interpreted all the
values of interest.

2, Methods of Studying the Stochasticity

The main problem in analysis of numerical
calculation results is the choice of a clear and
convenient criterion that the movement is actually
stochastic., We used the following methods in
various cases.

1. Visual calculation by curves of the energy
dependences of several modes on the time, as well
as by the shape of the spectrum at different mo-
ments of time, Ek(t). This method gives a clear
enough result if at first only one mode is ex-
cited, as occurred in most cases in Ref. 1. An
example of such a case for our calculations is
given in Fig. 1 at the end of the report. The
lower curve (&) shows the clear almost-pericdic
energy fluctuations of the first mode., Unfor-
tunately, such initial conditions are possible
only for the very lowest modes. A mode k << N can
exchange energy directly only with the modes 3k,
5k, 7k, etc.
single sufficiently high mode, its energy remains

In the case of excitation of a

practically unchanged, Figure 2 shows excitation
of a single mode, K = 15, The small energy fluc-
tuations are related to the interaction through
the higher modes. (The reasons for the intensive
energy exchange after t = 5000 are discussed be-
low.) Therefore, we were forced to excite several
modes at first, Figure 3 shows the time dependence
of the energy of three modes (K = 16, 18, 19) with
an initial excitation of five modes (KD = 14, 15,
16, 17, 18). It is seen that the energy exchange
is fairly intricate because it is difficult to
tell Yby eye' whether a given motion is stochastic
or not,

2. Change in the spectrum of fluctuations
with time, Instead of observing the energy of
some mode during a time t, one can determine the
average energy value during the same time for each
mode and find out how the energy concentrated at
the initial moment t = 0 in certain modes was dis-
tributed. Such a redistribution of energy is

shown in Pig. 4, which corresponds to the case of

an initial excitation of three modes (Ko = 28, 29,
30) (curve I)., The other two curves (II and III)
give the average (during the times tl and tz)

0" 5900

in the calculation, which by this moment approaches

values of Ek. The averaging began at t

a stationary exchange of energy between the modes;
the values of Ek(t) were chosen by At. It is seen
that the energy was somehow redistributed, but
only between adjacent modes; transfer of energy
toward the higher modes (N - K << N) is easier than
toward the lower modes (K << N). Also, we appar-
ently observe an equilibrium state because the two
curves (II and III) nearly coincide,

3, Time correlations were calculated for dis-
placement of a certain oscillator, x,, and for the

energy of a certain mode of fluctuations, Ek’ by

x,(£)°x, (£-T)

p(x,,T) = —J—T=-1— , (11)

xy(t)

and

ELOE(E-D - E(8)

. (12)
Eg(e) - E(0)

o(Ek,T) -

Here the line denotes averaging over t through
equal intervals At, and T is the displacement with
time, In all cases, in Eq. (11) j = 16, which for
the chosen N = 32 corresponds to the middle oscil-
lator of the chain.

The expected form of the correlation function
can be visualized, taking for an example the

Gaussian vibration spectrum:

-(w-wg)z
262

f(w) = e
JIn b

(13)
where 8 is the width of the spectrum, The coef-
ficient of the correlation is calculated directly
and has the form:

-ug? .

e62 + Cos wOT _(é%)

P(E) =77t e .1
1+e%0 /8

For rapid vibrations, where By >> §, the correla-

tion function is damping vibrations:




ﬂ)z

o(T) = e-( 2] cos w,T . (15)

0

In the opposite limiting case, wo << §, we get a
monotonic dependence (neglecting the small vi-
brations in the "tail"):

&)

o(T) ® e , (16)

which 18 the amplitude curve for Eq. (15).
Figure 5 shows the time dependence of the

modulus of the correlation coefficient, The ir-

regular upper curve (wo >> 6) i8 partly explained
by the large interval, AT ( >-w81 ), by which
the values of the function °(x16’T) were calcu-
lated. The lower curve (correlations of mode

K = 15) corresponds, clearly, to the case wo ~ 85,
15,'].‘) rela-

tive to zero 18 clearly seen. The residual vi-

The asymmetry of the vibrations of p(E

brations of o(T) at large T, which are especially
clear in Fig. 5a, can be completely explained by
statistical errors in the calculation of Ap.

These errors are not determined, of course, by the
number of components in the averaging in Eqs, (11)
and (12) because adjacent components are not in-
dependent., However, for a rough calculation one
can simply assume that the sum in Eq. (12) is
broken up into several independent parts, each of
which includes the components inside the interval
of correlation T. Let us denote by the latter
term the time interval during which the correla-
tions are still significant. The value of T is
found from the correlation function itself. For
example, in Pig. 3, T ~ 100, Because the dis-
persion of each of these parts is ~1, then, by

the usual equation,
Ao ~ /T (E-T) , an

where t 18 the total time of the process, t - T
determines the time during which the components
in the calculation of p were accumulated. For

Fig. 6, Ap ~ 0.1, The rapid damping of the cor-
relation function, Eqs. (15) and (16) is charac~
teristic for the continuous spectrum, which cor-
responds to our chosen atochastic movement, Eq.

(13). In the case of almost-periodic movement,

the correlation function can have the form of Egs.
(15) and (16), but only to a certain value of T,
which {8 inversely proportional to the distance be-
tween the lines of the spectrum, after which it
will be repeated. In other words, a quasi-period
Tq appears for it. By numerical calculation, we
can find only the lower limit of Tq. According to
the data of Pig. 5, Tq > 490. To raise this limit,

we calculated p(Ek,T) and o(x,..T) for values of

T up to To = 4900. Por exampt:. for the data of
Fig. 4, the correlations have the form given in
Fig. 6. The correlations substantially exceed the
statistical fluctuations of Ap and have a quasi-
period. This is completely natural because the
energy distribution in Pig. 4 shows that in this
case even the highest modes lie at the stochastic-
ity limit. In other cases, as in Figs, 10 and 13,
the correlations are lacking within the limits of
statistical error to T = 4900, The characteristic
time of energy exchange between the modes is
~1000.

4, Correlations between modes were calculated

by

k
P(E .E 1) = lm , (18)

where the values Ek and Ek: are chosen at the same
moment of time by At, and the line, as in Eqs.
(11) and (12), denotes averaging over t. Because
of the rule of conservation of the total energy
of the system, the corxrelation coefficient of Eq.
(18) differs from zero even for stochastic move-
ment., It is easy to show that in the latter case

it is equal to

p(Ek,Ek/) - - ;1‘—1 . (19)

Thus, knowledge of this coefficient affords the
possibility of determining the effective (average)
number of interacting modes, For example, for the
case in Fig, 5, 9(815,217) ~ -0.24 + 0.1, from
which v =~ Sfi. For the energy spectrum of the
modes represented in Fig. 4, p(E27,E28) gives

v ~ 8, which generally corresponds to the number
of modes between which all the energy was distri-
buted. A rough calculation of the statistical
error of p(Bk,Ek,) gives the value of Ap (Eq. 17),



the same as for p(E,T).

5. Local instability of the vibrations,
which means that almost any trajectories which
are close at first rapidly diverge exponentially
in the process of movement. To study local in-
stability, we used the property of spatial sym-
metry of our system, according to which even modes
cannot appear in the process of movement if they
were not excited at fitst.l Therefore, there is
an exact solution, EZk(t) = 0, and we were able
to adequately trace the energy of the modes if a
very small energy was imparted to them at first,
We detected this unusual instability of the even
modes accidentally. When we studied the excita-
tion of a single mode, we found during calculation
that the energy of the even ("'forbidden") modes
increases from machine zero 0~10-19) to a signif-
icant value and becomes comparable to the energies
of uneven modes. That is, from the very start
there was an asymmetry in xg relative to the mid-
dle of the chain. The '"culprit" turned out to be
the procedure of calculating the sine, which
enters into the conversion equation, which is the
converse of Eq. (7).
conditions, Cz and éo

k
given). We discovered that the sine was calculated

(Recall that, for initial
, and not xg and &2, were

with a certain error, which depends on the number
of the mode, as a result of which there also arose
a weak asymmetry corresponding to some small ex-
citation of even modes, Subsequently, when this
was necessary, we carried out a special symmetri-
zation of x: right after the transition from

Qﬁ and ég and xg and kg.

This effect has also been assumed because of
the so-called method of local instability, which
is generally the most effective method of deter-
mining that the system is in the stochasticity
region, in view of the fact that the most charac-
teristic property of stochasticity is local in-
stability of motion, At the same time, in the
stable region of the phase space, which corresponds
to quasi-periodic motion, small disturbances fluc-
tuate around some average value,

Figure 2b shows the case in which, because of
rapidly developing instability, the energy earlier
concentrated in one mode (Kb = 15) suddenly passes
into the adjacent modes, Figure 2a gives the log-
arithmic time dependence of the energy of the in-

dividual modes, by which one can calculate the rate
of instability development. This method permitted
detecting the weak instability for l&) = 1 also.

The parameters are taken from Ref. 1, whose authors
considered the motion in this case to be quasi-
periodic, Actually, Fig, 1 does not give rise to
doubt about this. Nonetheless, Fig. la shows that
an instability, although weak, exists, and can
affect the overall behavior (for example, of the

In Fig. 7,
the growth of even modes (Kb = 15,17) is once more

first mode) after a long enough time.

demongtrated; it is noticeable that the far (K =
2,30) modes ''grow' later than the closer (K = 14,
18) ones, although the growth rate is approximately
the same for all, Note that the transfer of energy
to the highest modes (K = 30) occurs more rapidly
than that to the lowest (K = 2) ones, This effect
was noted in Ref, 1.

By this method, giving at some moment of time
(to :IZS) an initial disturbance of the even modes
(~10 "'E), we studied the stochasticity limit.

For this, the odd modes were excited in threes,

and the energy growth rate of the adjacent even
modes was determined, Figure 8 gives the charac-
teristic dependences of the energy of the even modes
on the time; using these one can, albeit with some
error, determine the dependence of the rate of de-
velopment of the instability on the nonlinearity
parameter, B.

The method is extremely convenient because of
its use of visual methods and because it does not
require a long calculating time. Further, a single
calculation immediately gives the distance between
two close trajectories, Nonetheless, to be con-
vinced that such a choice of trajectories was not
special, we conducted two experiments, The first
consisted in exciting three uneven modes (Xb = 27,
29,31) at first, but we carried out symmetrization:
i.e., we held the energies of the even modes
rigidly equal to zero for the whole time, and mis-
calculated two variants with differing Qg (6Qg
~ 10-8). Then we determined the acceleration rate
of these two trajectories. In the second case,
we excited both even and odd modes as well (m = 3,
Kb = 28,29,30) and compared two close trajectories
analogously, In all cases (for sufficiently large
8) we observed an exponential acceleration of the

trajectories, indicating local instability of



motion.
3. Basic Results

As already mentioned, our main problem was
the experimental determination of the stochasticity
limit for a chain of nonlinear oscillators, The
analytical calculation for this limit, obtained by

Jackson,la has the form:

YW, pe<N
E . 2 20
8 L
38 it F1 10 (5)s weren »  (20)

where E is the total energy of Eq. (1) and m is
the number of excited modes. The shape of the
border is showm in Fig. 14 (straight lines, m~ 1),

Experimental determination of the stochas-
ticity limit was made by the method of local in-
stability (Sec., 2). The combined data are given in
Fig. 15 in the form of vertical lengths giving the
range of values of the rate of growth, 1/t (cf. Fig.
8). The groups of data, I, IY, III, IV, were ob-
tained by the growth of even modes with an initial
excitation of three adjacent odd modes in different
parts of the spectrum, Groups V and VI were ob-
tained by the acceleration of close trajectories.
In the first case (V), the same modes were excited
as for (I), but with symmetrization, f.e.,, with
total elimination of even modes., In the second
case (VI) both even and odd modes (KD = 28,29,30)
were excited,

In Fig, 15, a semilogarithmic scale was used,

in accordance with the expected dependence,16

1
T AlBA e ’ @n

where ecrit

(20), and Q 18 of the order of the distance between

lies at the stochasticity limit, Eq.
resonances.la Actually, for large B the experi-
mental data lie on straight lines within the error
limit, However, for small B there are significant
deviations. We do not know for sure the cause of
these deviations. We can only introduce two dif-
ferent hypotheses for their explanation,

The first of these links the deviations,
always on the side of large 1/T, with other, denser
resonance systems. This leads simultaneously to
decrease in scrit’ which is determined by the inter-
gection of the interpolation line in Fig., 15 with

the axis of abscissae, and to decrease in the
slope of the line. Qualitatively, this is also
observed in Fig. 15. This effect is seen especi-
ally clearly in the excitation of lower modes,
where besides the ''basic" line (I) it is possible
to draw with confidence a second line (IV). In
other cases, the effect is less evident,

A quantitative comparison can be made by
measuring the slope of the fnterpolation lines in
Fig. 15. The average value of this slope for all
the groups besides (IV) gives () =2.6'10-2, which
more or less agrees with the expected calculation
Q~m/N®™0.1, For line IV: Q= 107>, This can
be compared with that predicted by the theory of a
dense system of resonances (l ~ (ﬂ/N)3 = 10-3. The

crit )
must decrease by as many times again. This s

theory also predicts that in this case B

actually confirmed in order of magnitude:

QCIII)/Q(IV) = 25; B (II1)/B (Iv) ~ 37,

crit crit

The question arises of the difference, in
such a case, in the two stochasticity limits from
the point of view of the behavior of the system as
a whole, The answer is that the denser system of
resonances can be, and in the given case actually
{8, not wide enough., Therefore, overlap of the
resonances of such a system generally does not lead
to complete stochasticity; instead, a more or less
narrow stochastic band with limited change i{n the
energy of the interacting modes is formed,

Apparently, this effect explains the behavior
of the system for the case, represented in Fig. 2,
which 18 strange at first glance, Thus, the upper
curve in this figure clearly indicates local in-
stability of the motion. However, this instability
apparently is not appreciably developed because it
does not appear at all on the lower curve, In
particular, the successive maxima in Fig. 2b
differ from each other by several percent; however,
this difference does not increase exponentially,
as in Pig., 2a.

There arises the still more important question
of whether such a stochastic layer can lead to a
significant redistribution of energy between the
modes after a sufficiently long time., Although we
have no experimental data on this, we know that,

generally speaking, it is possible. It is possible




owing to the so-called Arnold diffusion, the mech-
anism of which is related to the crossing of dif-
ferent stochastic layers of a multidimensional sys-
tem.10 However, this instability develops ex-

10,17 and therefore it is sensible

tremely slowly,
to consider it separately from the strong insta-
bility caused by overlap of a wide (and less dense)
system of resonances, The term 'strong' here means
that the whole disturbance, which is proportional
to B, Eq. (1), behaves as '"accidental," without
any additional small multiplier whatever, Just such
a stochasticity limit is represented in Fig. 14.
Comparison of this stochasticity with three
experimental points shows that the dependence of
Bcrit on K corresponds to that expected; however,
the absolute value {s about three times smaller.
Such a difference cannot be considered very serious,
in view of the roughness of the calculation of Eq.
(20).2 This roughness is associated not only with
the indefinite numerical multiplier in Eq. (20),
but also with the small number of excited modes.
The latter effect is demonstrated by lines V and
VI {n Pig. 15. Thus, for line V Bcrit

mately twice as large as for line I; the only dif-

is approxi-

ference between them is the total absence of even
modes for V., A still more significant difference
occurs in the case of excitation of modes of mixed
parity (VI), where acrit exceeds the value for the
comparable case of (I) by almost an order. It is
difficult to say why this is so. It could be, for
example, the decrease in the number of modes of the
same parity. In any case, this demonstrates once
more the very complex structure of the transition
zone, but, at the same time, shows the coincidence
in order of magnitude of the expected and experi-
mental location of the stochasticity limit.

Let us return to the deviation of the experi-
mental data from the lines in Fig. 15. A completely
different explanation for this phenomenon is pos-
sible, which is that the dependence of 1/T on Bcrit
is not logarithmic, Eq. (21). It is possible, for
example, to approximate this dependence by a power
function. For this, we plot the same experimental
data in a double logarithmic scale (Fig, 16). Un-
fortunately, they also fit within the limit of
errors on the straight lines. Thus, at present,
the experimental errors are too large; to distin-

guish between the two hypotheses, further numerical

experiments with greater accuracy are necessary.
Analytical calculations, to be published

later, show that, depending on the phase relations

between the resonances, another dependence of

-I(B ) is actually possible, namely,

4/3
1o 0<g > . (22)
crit

From this, in particular, it follows that the

crit

slope of the interpolation lines in a double loga-
rithmic scale must be n = 4/3 = 1,33, The ex-
perimental values of the slope are given as sub-
scripts in Fig, 16; the average value (except for
IIT) is:
I11 coincide with the expected value (4/3) within

(n) = 1.28. ALl the values except for
the limits of experimental error. 1In the case of
(I11), both the slope of the interpolation line

and the overall grouping of the experimental

points differ considerably from the calculation,

Eq. (22), This indicates, apparently, that at
least in this case the dependence, Eq. (21), occurs.
The stochasticity limit in Fig. 16 corre-
sponds to the vertical asymptote of the dependence
T-I(B). Although the experimental data {n Fig. 16

also do not exclude such a possibility, a quanti-
tative determination of 8

crit
sible owing to the large errors. Therefore we

does not seem pos-

were obliged, perhaps without complete justifi-
cation, to use the data of Fig. 15 for this goal.
We have already seen that local instability
does not necessarily mean strong stochasticity
(although, apparently, it necessarily leads to
real instability). Theretore it is desirable to
use other methods to be convinced that for suf-
ficiently large B and E our Eq. (1) is actually
stochastfc, Three controls of the calculation
were performed in the limiting time possible under
our conditions tmax “‘104.
In the first case three odd modes (Ko = 15,
17,19) were excited, as for case (II) in Fig., 15,
but with symmetrization. The value B &~ 0.0314 was
chosen approximately twice as large as Bcrit in
Fig. 15. The correlations of the 15th mode and
the displacement of the central oscillator were
measured, as well as the correlations between modes
15 and 17. The results are given in Fig, 1ll. It
is seen that the correlations have an almost-

periodic nature, and the number of interacting




modes remains practically unchanged: Nint. -
4+ 1.

This result does not necessarily contradict
the data on the location of the stochasticity limit
in Pig. 15, First, if the system is close to the
stochasticity limit, the energy cannot be spread
over a large number of modes, since this increases
m and stops the stochasticity, Eq. (20). Second,
the conditions for the onset of stochasticity are
actually determined by the energy of the inter-
acting modes,la and not just by the total energy,
as is assumed for simplicity im Eq. (20), But in
such a case the energy of each mode cannot decrease
significantly near the stochasticity limit, be-
cause, again, the conditions of stochasticity are
disrupted. This means that only partial exchange
of energy between modes is possible, which, in turn,
leads to residual correlations, However, if we
take B > ﬂcrit' we must already obtain ''genuine’
stochasticity.

The second control calculation corresponds
also to B/Bcrit = 28 (Fig. 13). Here the energy is
actually distributed among almost all the modes,
excluding only the very lowest, for which fulfill-
ment of the criterion for stochasticity, Eq. (20),
is difficult, It is easy to calculate the critical
value of K to which the stochasticity reaches:

B
~ m ,  _crit
Krie " % m, 8 2 ’

where we assume: KU = 17, my = 3, m= N = 32, This
result is also confirmed by the value of 9(315,E17)
(Fig. 13). Because of large experimental errors,
it i{8s possible to calculate only the lower limit
for the number of interacting modes: Nint. » 8,
From the data of Fig. 13, we also see that within
the limits of statistical error (+0.l1) correlations
of the 15th mode are lacking. Correlations with x
are related mainly to the fact that the stochasti-
city does not reach to the first mode. Note that
the correlations die out slowly. It is possible
that this is somehow related to the effect of the
calculation errors (see below), but, if so, why do
they not die out in Fig. 11? Another possible ex-
planation is that the motion of the first mode,
which 18 responsible for the correlation with x, is
nevertheless stochastic, but after a significantly

greater time, because this mode lies in the trans-

ition zone (Fig. 12).

Finally, in the last control calculation, all
the modes were excited with an equal amplitude and,
consequently, substantially different energy (Fig.
9, curve I). If the calculation of Eq. (20) is
expanded in this case also, then the critical
value of K will be Korit ~ N /m/3BE ~ 1/2, where
we used the data of Fig. 9, B = 1, E =96, m= N
= 32, The result shows that the lowest modes lie
practically at the stochasticity limit and there-
fore can show some anomalies. This actually oc-
curs, according to the picture of the energy dis-
tribution (Pig. 9, curve III) and the correlations
with x (Fig. 10a). At the same time, correlations
of the 13th mode are again lacking within the
limits of statistical error, and correlations be-
tween the modes lead to the value Nint. 2 7.

In suming up, we can state that all the ex-
perimental data confirm Jackson's hypothesislé on
the presence of a stochasticity limit for Eq. (1)
and, moreover, confirm , in order of magnitude,
the calculation, Eq. (20), of the location of this
limit. Our weakest point is the significant cal-
culation error, which was controlled as regards
change in the total energy of the system (see sub-
scripts to figures); in the absence of errors,

AE = 0. This especially concerns the three control
experiments (Figs., 9 to 13) where AE/E reaches 37%.
Can these errors by themselves cause stochasticity?
We think not. A confirmation of this is the sig-
nificant residual correlations (Fig. 11) and the
absence of energy exchange (Fig. 12) for small 8.
Another control of the effect of errors was carried
out for an experiment with local instability. With
decrease of the step by a factor of 2, AE/E de-
creased from 3 to 0.03%; thus exponential growth
curves of the type given in Fig, 8 changed some-
what; however, the value of the parameter of in-
terest, 1/7, remained the same as before within

the limits of experimental error.

Nonetheless, continuation of numerical ex-
periments with a more accurate nonlinear chain and
a larger number of oscillators seems useful,

We thank A. Chistiakov for help in carrying
out the calculations and E, Krushkal' for useful

critical observations,
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Fig,. 1.

First mode and small second mode excited at the begin-
ning (E ~ 0.,0788; Eg ~ 5.3 » 107'8
rithmic dependence of second mode energy; below - first

mode energy; h = 1/2; B = 8; t_. ® 15,3000; AE/E =
0.15%.

). Above - loga-
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Fig. 2.

Initial excitation of single 15th mode; a - logarithmic
energy growth of several modes, b - dependence of
energies of modes (K = 14,15,16) on time; figures
indicate number of mode; h = 1/6; B = 0,0314; t ..

®» 9000; E™ 14.1; AE/E ™~ 1,5%,
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Fig. 3, Excited group of five modes (¥X; = 14,15,16,17,18; m = 5).
The time dependence of the energies of modes with the
numbers K = 16, 18, 19 is given; h = 1/3; B = 0,0314;
toax © 11,100; E =~ 16,1; AE/E s~ 1,5%.
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Pig. 4. Energy spectrum for initial excitation of three highest modes

(Kg = 28,29,30; m = 3, curve I),
Curve II gives the average energies of each mode at the moment
£~ 9300; III - at the moment t, ®~ 10,500; hws 1/6; B ~ 0.06;

At = 1; Ew~ 35.2; AE/E ™ 4.3%,
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Pigo 5.

r

Correlations of displacement of oscillator (a) and of
energy of 15th mode (b) for case of Fig. 3. Curve X
corresponds to a calculation time ty &~ 3150; curve II -
t2 ® 4500; curve III - t, ™ 11,100; AT = 10; At = 1;
P(Ey3,Eyg) & =(0.24 1 0.30) (for ty).

-0.5
d &,J) /\
0.5 PN M
b ! \\‘ ,/ ‘u
\, ]
4 v/
\
\
o1 -

Pig. 6.

Correlations of displacement of the oscillator (a) and of
the energy of the 29th mode (b) for the case of Fig, 4, The
broken lines correspond to a calculation time t; & 9300; the
solid lines - ty ~ 10,500; AT = 100; At = 1; p(E27,B29) ®
=(0.15 + 0.10) (for tj).



Logarithmic growth of even modes for initial excitation of odd
modes (Kg = 15,17; m = 2),
Figures indicate number of modes; zero on the graph is machine
zero, corresponding to E, ~ 10'26

i b~ 1/6; B ™ 0.0314;
w 30003 E~ 20; AE/E ~ 3.5%. ' ’ b fmax

tE,
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Fig. 8.

Characteristic behavior of even modes (K = 14,16) for different values of the ar
amet H
Kg = 15,17,19; m = 3; h =~ 1/3; trmax © 1050; E’*’ 17; (AE/E)IMx & 0,2%, P e B
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Fig. 9. Energy spectrum for initial excitation of a&ll modes (curve I);
curve II- energy spectrum of modes for time of calculation
t; = 6750; curve IIT - for t2 &~ 11,025; h =~ 1/12; B = 1.0;
At = 1; E=~ 96; AE/E = 2,4%,
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Fig. 10. Correlations for data of Fig. 9; broken lines correspond to
calculation time t1, solid lines to time ty; AT = 100;
At = 1; o(E;3,E ) ™ =(0 to 0.14) (for t,).
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Correlations for initial excitation of three odd modes
(Ko = 15,17,19; m « 3) with symmetrization; h = 1/3;
B~0031ht = 18,300; AT = 100; At = 1; E®= 17;

ARJE = 3%; p(Els, e -(0.30 + 0.07).
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Fig. 12, Energy spectrum for initial excitation of three
modes (K = 15,17,19; m = 3) with symmetxization
(curve I); curve IX corresponds to the average
energies of the modes for the data of Fig. 1l1;
curve II1 - for the data of Fig. 13,
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Fig. 13, Correlations for initial excitation of three odd modes
(Ko = 15,17,19; m = 3) with symmetrization; h &~ 1/6;
B m™0,314; ¢t ® 16,050; AT = 100; At = 1; E ™ 24;
AR/E » 2%; oCB1s5,E17) = ~(0 to 0.13).
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Fig. 14. Shape of stochasticity limit from the

criterion of Eq. (20) (straight lines) and
summary of experimental results:

I - Kolmogorov stability region;

II - stochasticity region.

Points 1, 2, 3, 4, 5, and 6 correspond to

B, pqr Obtained from lines I, II, III, IV,

V, and VI, given in Fig. 15; point a cor-
responds to the data of Fig. 11; point b
to the data of Fig. 13.
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Fig. 15.

Dependence of rate of local instability de-
velopment on parameter B, Initial conditions:
Ky = 27,29,31 (I), E =~ 30; K, = 15,17,19 (II),
Es 17; = 1,3,5 (ITI) and (IV), E ™~ 0.95;
Ko = 27,29,31 with symmetrization (V), E =
30; Ky = 28,29,30 (VI); E = 35, The straight
lines approximate the dependence, Eq. (21),
and permit determining B.ri.. Values of 1/
are given with experimental errors. For I:

' 3 2

Berte ™ 8.7'10:2, Qw~ 2.4o10:2; for II:
ﬁctit 5 1,5o1o-2, Q= 2.2-10-2; for III:
Bcrit ~ 1,7-10-2, Qw~ 2.9-10_3; for 1V:
acrit ] 1.,5-10-2, Qw 1.0-10_2; for V:
Bcrit ns 1.6-1.(2) , O 1.3--1:(2) ; for VI:
Bcrit: ® 5010 ©, Qm 4,0°10 °,
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Fig. 16.

The same as Fig. 15, but with a double
logarithmic scale. The straight lines
approximate the dependence, Eq. (22).
The arrows show that within the limits of
experimental error 1/T = 0 is possible;
for I- n = 1.6 4 0.3; for II- n = 1,5 +
0.2; for III- n = 1.9 4 0.2; for V-
ne=l.140,5; for VI- n = 0,9 £ 0.4.
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