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HOW FAST IS THE ARNOLD DIFFUSION?

B.V. Chirikov and. V.V. Vecheslavov
Institute of Nuclear Physics
630090 Novosibirsk, USSR

Abstract

A review of the current understanding of the
Arnold diffusion—a universal instability of motion in
many- dimensional nonlinear oscillator systems—is
given with the special emphasis on the estimation of the
difiusion rate. Two new phenomena of the fast Arnold
diffusion in systems with strong and with weak nonli-
nearity are discussed. ‘

1. Introduction

The main purpose of this talk is to discuss again
the fascinating mechanism of the so-called Arnold diffu-
sion, a universal instability of motion in many-dimensi-
onal Hamiltonian oscillator systems [1—5]. This fine
phenomenon may play an important role in such diverse
proces=es as the motion of asteroids in the solar system
and the dynamics of a heavy particle in the storage
ring [6]. The first example of such a universal instabi-
lity was constructed and discussed by'Arnold [1]. The

-

diffusion nature of this instability was revealed and

numerically confirmed in Refs [2, 4, 5] while Nekhoro-
shev imposed the rigorous upper bound on its rate [3].
To begin with, consider a many-dimensional Hamil-
tonian - o
itm8 - nfdi}

(1.1)

m,n

H{,8,)y=Ho(l}+¢ Z Ve (1) e

where H, describes an unperturbed completely inte-
grable system, and where small (e-—0) perturbation is
represented by the Fourier series. The action-angle vari-
ables /, © are N-dimensional vectors, and the explicit
quasi-periodic dependence on time is characterized by
M-dimensional frequency vector Q; m, n are integer
vectors of dimensions N and M, respectively (e. g.
m=(m, ..., my). i

The long-term dynamics, we are interested in pri-
marily, is controlled by the resonances, both coupling
(n=0) and driving (ns%0). A first-order, or primary,
resonance is defined by the relation

mo(l)+nQ=0, 0-2)

which determines resonance surface in the action space.
Here mw=m; w; nQ=n,Q, are scalar products and
unperturbed frequencies w;(/) =dH,/dl;. The unpertur-
bed oscillation is called nonlinear if frequencies w;(/)
depend on the actions. Moreover, if ihe oscillation is
nondegenerate, that is if the determinant

am,»l | 8*H,

131, éli&l.ly&o

(1.3)
there is one-to-one correspondence beiween the action
space and the frequency space. The latter is more con-

- venient for a graphical picture of the resonance struc-

ture where each resonance surface (1.2) is-simply a.

plane.
Under a weak perturbation (££0) the nonlinear

resonance acquires a finite width [4, 5]:

eVmn f1/2 - 44,

Zun T Tml

~w{eav)'’?,

(Am),.:l—:l—l | (1.4)
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Here 1/um=mi(0wi/dl) me~Im|*a|w|/|I]; |m|=
=) Imil; a is dimensionless nonlinearity parameter;
and Q, is frequency of the small phase oscillations
about the stable periodic trajectory at the resonance
center. In the last rough estimate v~V,,/H, for the
largest perturbation harmonics. i

For sufficiently small perturbation the KAM theory
guarantees preservation of quasi-periodic motion on
slightly ‘deformed invariant tori for most (but not allt)

initial conditions. The complementary set is just the
region where the Arnold diffusion occurs in a many-di-
mensional system. Before-turning to this main topic of
the present talk we mention. that for a relatively strong
perturbation the resonances overlap produces a global
large-scale chaos with only occasional small islets of
regular motions embedded. The critical perturbation
was roughly estimated in Reis [4, 8, 12] as

~u"_

La+r
=) (1.5)

(Ea)mv(—s— .

where perturbation harmonics are assumed to decay
exponentially Vu.~vHoexp [—o(Im|+nl)]; o<l:
(V*)=Hp;, Q=N+M and F=0 from the simple reso-
nance overlap criterion while the rigorous upper esti-
mate inferred from Moser’s results [8] is F=4.

Thus, for this particular problem both approaches
are reasonably compatible so that estimate (1.5), being
rather crude, seems to be not far from the truth, especi-
ally if (N4M) is large enough. Unfortunately, this is
not the case for Arnold diffusion which is the main
topic of our discussion below. Typically, this diffusion
persists for arbitrarily weak perturbation e<e., and,
in this sense, is universal phenomenon of many-dimensi-
onal nonlinear oscillations. The word «typically» means
that there are exceptional systems, e. g. Toda lattice
[9], which are completely integrable and whose motion
is quasi-periodic for all initial conditions. Unlike those
exceptional cases a typical Hamiltonian system is, for
e>0, only KAM integrable [10] that is up to the
Arnold diffusion. Both the diffusion rate as well as the
measure of chaotic component are very small in e, and,
hence, the KAM integrability is of a fairly good quality.
It is as important as the approximate adiabatic invari-
ance to which KAM integrability is closely related |,
namely, it may be called the inverse adiabaticity [11]
{see also Section 2 below).

Arnold diffusion proceeds along the resonance sur-
faces (1.2), the whole set of which is everywhere dense
in the phase space. If resonance surfaces intersect than
any chaotic trajectory covers the whole invariant surfa-
ce determined by the exact motion integrals, e. g. an
energy surface of a conservative system (Q=0 in
Eqg. (1.1}). Moreover, chaotic trajectory comes arbitra-
rily close to any point on this surface. Yet, the motion
is not ergodic because the measure of chaotic compo-
nent-is smalll From simple geometrical considerations
it is clear that resonances do intersect only if the num-
ber of ireedoms N> 2, i. e. only for N>=3 in a conser-
vative system (Q2=0) or for N=2 and Q0. In this



sense the Arnold diffusion, unlike the global chaos, is a
many-dimensional phenomenon. An example of finite set
of resonances is outlined in Fig. 1.

wy

Fig. 1. A scheme of nonlinear resonances in frequency

space for two freedoms (N=2) driven by an external

perturbation (Q=40) or for a conservative (2=0) system
of N> 2 (projection onto energy surface).

The main problem to be discussed below is the dif-
fusion rate. Even though this rate is very low the diffu-
sion may happen to be decisive in some long-term pro-
cesses like the beam-beam interaction in storage rings
[6]. We give a general review of our present under-
standing of the Arnold diffusion including various (and
very different so far!) estimates as well as some
results of our recent numerical experiments on a simple
model. One new feature which has emerged from these
studies is the existence of a wide perturbation range
where the diffusion rate decreases as a power of per-
turbation & only, i.e. relatively slow. Of course,
asymptotically as g0 the rate drops exponentially in
agreement with all previous results.

2. Strong Nonlinearity, Estimates

We shall call nonlinearity strong if the dimension-
less parameter a0 and does not depend on & (see
Eq. (1.4)). Then, for sufficiently weak perturbation the
resonance width (Al),/I~(Aw),/aw~(ev/a)'/? is rela-
tively small. This substantially simplifies theoretical
analysis of the Arnold diffusion.

The structure of nonlinear resonance in the phase
space is shown in Flg 2 where resonance phase
Y= m®0+n®1, and p is the conjugate momentum (a
linear combination of /s for details see Ref. [4]).
Superscn t «g» 1nd1cates a particular, «guiding», reso-
nance m' m—}-ngQ =0 along which the diffusion goes
on, and T—Qt-l—‘l.’ where 1" is constant phase vector.
The resonance domain of width (Ap),~|/| (ev/a)'/? is
bounded by the unperturbed separatrix surface whose
projection is shown in Fig. 2 by dashed line.

The perturbation destroys (splits) separatrix and
forms a very narrow chaotic layer around. It is preci-
sely this layer where the Arnold diffusion occurs. The
rest of the resonance domain is filled with regular tra-

. jectories, also covering the invariant tori but of a diffe-
rent topology, as compared with the unperturbed ones.
What is still more important, the motion near
resonance acquires a new, very slow, frequency
Qg ~lw| (eav)'’?, that of the ¢ phase oscillation. Thus,

40

Fig. 2. The structure of nonlinear resonance with the cha-

otic .layer between solid lines: f, 2 are the domains of

resonance phase ¢ rotation in opposite senses; 3—same

of ¢ oscillation; 4, 5 are the projections of unstable and

stable periodic trajectories, respectively; arrows at layer

edges indicate the direction of motion; unperturbed sepa-
ratrix is shown by dashed line.

a new set of resonances appears Q;+mw+nQ=0
whose interaction results in both the formation of chao-
tic layer and the. Arnold diffusion therein. Why the cha-
otic layer is always close, as e—0, to the unperturbed
separatrix? Because phase frequency Qg 0 vanishes
here which generally facilitates the chaos.

Consider the resonant Hamiltonian [4]
Eq. (1.4) above):

Hy=

(see
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m—qugcosw, (2.1)
which describes a singlé (guiding) resonance. We are
interested in the vicinity of separatrix [H,=p Q%)
where the motion period T grows indefinitely:

l 32

Here dimensionless quantity w=(H,/u Q%) —1 charac-
terizes the relative distance from the separatrix. The
second term in resonant Hamiltonian (2.1) is one of
perturbation terms in original Hamiltonian (1.1):
Vi =V,. This system is still completely integrable as

.it possesses integral H,=const.

Now we include one more perturbation term with
the phase
(pmn=m6+fl'[z§mn1p+ﬁ)mnt+ﬁmn, (23J
where factor Enn~1; Bmn is a constant phase, and per-
turbation frequency o ,,-—mco- +nQ with resonant
vector ® satisfying m®0® FnQ=0. The interaction
of two resonances (m( % and m) breaks down the integ-
rability and produces a chaotic layer around the unper-
turbed separatrix. The layer width can be estimated as
[4] :

n vy an

F(2|§mn|) Enn Vi

2| &mnl +1 7m12

(22) (2.4)

where ['(x) is the gamma function; v,~1, and the basic
parameter

@mn e\ V2 {mi .
*"‘s‘z;"’”(?) T (2:5)

The latter estimate is rather crude but it shows that in
the region of Arnold diffusion (e<e.) the parameter
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A>1 is big, and chaotic layers are typically exponen-
tially narrow.

With two resonances only the diffusion within the
chaotic layer is restricted by its very small width and,
hence, is of no importance for the global dynamics. To
provide a long-range diffusion, at least one more reso-
nance is required. A rough estimate for the diffusion
rate in the actions is then [4]

D,~i‘§-’1"73, (2.6)

T.Q; M
where 7, is the averaged motion period within the chao-
tic layer: A=T,Q,=Q,;T(w;)+1, see Eq. (2.2). In

" terms of the reduced layer width and diffusion rate

D=L,

~ 4
wﬁ=ws~i; 0
Dj

mn

" P &V
Dj=- 5, (2.7)
where the rate D} corresponds to the global chaos
(e>>e.), we arrive at the important relation

e

b~C o5 (2.8)
between the rate of Arnold diffusion and the width of
the corresponding chaotic layer. In the next Section we
are going to make extensive use of this remarkable
relation. Fortunately, generally unknown factor C only
weakly depends on system’s parameters according to
our experience [10]. All resonances essential for the
Arnold diffusion but the guiding one are called driving
resonances.

We see that both the width of chaotic layer as well
as the rate of Arnold diffusion are exponentially small
and are mainly controlled by the parameter A (2.5), the
ratio of perturbation frequency .. to that ol phase
oscillation Q. in the guiding resonance. Thus, the
Arnold diffusion is associated with a high-frequency
perturbation A>>1. This is just the opposite case as
compared to a slow adiabatic perturbation. It is easy to
see that the difference comes actually to which freedom
is perturbing and which one is perturbed. For this rea-
son we shall speak of the Arnold diffusion as reverse
adiabaticity, and call & the adiabaticity parameter

10, L1]. -

[ I o]nly three primary resonances are operative, i. e.
one can neglect all perturbation terms in Eq. (1.1) but
three, the evaluation of both w as well as D; can be
periormed quite accurately, within a factor of 2 at
worst [4]. However, for sufficiently weak perturbation
this is almost never the case because of the impact of
higher-order resonances which may be not explicitly
present in original Hamiltonian (1.1). Instead, they
appear in higher approximations of perturbation theory.
How to express these higher order effects in terms of
the original Hamiltonian? A hint was given in Nekho-
roshev’s upper estimate [3] which can be represented

in terms of Arnold diffusion as
\/E

D~Dyexp(—Ak") (2.9)
with the most important parameter
E=bym SN 4y (2.10)

for M=0. This upper estimate was later confirmed by
many authors (see e. g., Ref. [13]). It is essential that
A, in Eq. (2.9) is a formal adiabaticity parameter rela-
ted to the primary driving resonances only which are
explicitly present in the original Hamiltonian (1.1), i. e.

A, is immediatly known (see next Section for an
example). ‘ '

A qualitative explanation of the dependence (2.9)
and its relation to higher-order resonances was given in
Ref. [4], yet the quantitative result turned out to be
rather different, as compared to Eq. (2.10)

E=L<Q—1=N+M-1, @211)

where L is the number of linearly independent (incom-
mensurable) unperturbed frequencies whose combina-
tions determine the higher-order resonances. The maxi-
mal value of L=Q—1 is due to relaton m®w+

+nPQ=0, at average, on the guiding resonance.

The difference between L and Eyis not necessarily
a contradiction as Ey is the upper estimate: Yet, the
problem is what is the true value of E, if any, i. e. if
Eq. (2.9) is a good approximation at all? Numerical
experiments to be discussed in the next Section seem to
confirm the value of £= L. However, one is never sure
that the perturbation is weak enough which is one of
the conditions for applicability of Nekhoroshev’s estimate.

Our recent numerical experiments [10] revealed
another interesting feature of Arnold diffusion: even
though E increases with L and the dependence D(A,)
becomes less steep, the factor A in Eq. (2.9) seems
also to increase with L so that two curves D(A, L) for
diiferent L do intersect at some A,(L). In other words,
higher L works at big A, only. This is precisely the rea-
son why a fairly simple 3-resonance approximation,
which corresponds to L=1, is in a good agreement
with numerical data for A,<g4 (see Refs [4, 14]).

A more accurate examination (than in Ref. [4]) of
the estimate for factor A in Eq. (2.9) confirms the con-
jecture in Ref. [10] that actually A=BL where now B
weakly depends on the parameters. Particularly, this
implies that the diffusion rate for some L< L may hap-
pen to be bigger than for the actual L. Such an enhan-
ced diffusion can be caused by the driving resonances
formed by a fewer number (L) of unperturbed frequen-
cies. Therefore, one should find such L(A,) <L, for
each A, which provides the highest diifusion rate. Thus
we arrive at the dependence '

1/L

D(dy) ~Doexp(—BIx,'"), (2.12)

where L(A,) < L. As our estimates are rather crude we
may smooth over such a broken line. To this end we
consider dependence L{(A,) as a continuous one, and
derive it from the local condititon aD(A, L)/dL=0

- whence L=InA, Substituting this into Eq. (2.12) we
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obtain a fairly simple estimate

D~Doi, %, (2.13)

where e=2.7182... We shall call this surprising regime
the poor adiabaticity. It persists while L<L, i.e. for
kp<eL. Subsequently, the exponential dependence is
recovered. Thus, our final estimate for the diffusion
rate becomes

A—Be

EA{ .
Do

exp(—BLAY)

L
oo (2.14)
Notice, that both curves D(A,) are tangent at A,=e".

According to our numerical experiments (see next
Section) B=2.8 which is close to B=n for L=1 (see
Eqs (2.4), (2.6)) and we assume the latter value in
what follows. The exponent in the first Eq. (2.14) then
becomes: Bex~ne~8.5. ‘

The quantity A, in Eq. (2.14) is some formal para-



meter related to the primafy resonances. Instead, we
may introduce a new, «trues, adiabaticity parameter A
by the relation

A=12"", (2.15)

This provides an alternative description for the impact
of higher-order resonances. Notice, that A in Eq. (2.4)
is the true one. '

The estimate (2.13) makes sense if Q is big which
is satisfied, however, for a few freedoms also if the
spectrum of the external quasiperiodic perturbation is
reach enough (M>>1).

3. Strong Nonlinearity, Numerical Experiments

As in earlier studies [2, 4, 14] we made use of a

simple model specified by the Hamiltonian

: {40} 1
H= PR L T8 e ),

(3.1)
where f(f) was some periodic or quasiperiodic function
(for details see Ref. [10]). A peculiar feature of the
unperturbed system (p=e=0) is in that the motion is
almost harmonic x;~a;cos §; in spite of strong nonline-
arity: a=(//0)dw/dI=4/3; 6=w=pa; p~0.85. For
the periodic driving perturbation of basic frequency
Q, and guiding resonance w,=w,, the formal (primary

adiabaticity parameter Ap= |0, /QRg= Q/2B1
(@ =01—nQ; Qg=pp).

- .
e .
o] o
: <
3|
o2
Bp ¥ !
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i !
—o | ARNOLD DIFFUSION
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w w
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R i + +
| &4 a4 a4 & a . center
o
e l
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'0.00 10.00  20.00  30.00  40.00 , _50.00
=10 v
Fig. 3. Diffusion rate - vs adiabaticity parameler

A,,z0.0?/\/u (e/n=0.01) at the guiding resonance cen-

/ ter, -and inside the chaotic layer. The vertical dashed line

marks the transititon from resonance overlap to the
Arnold diffusion [14]. :

Fig. 3, taken from Ref. [14], clearly shows the
transition from a global chaos due to a strong resonan-
ce overlap to Arnold diffusion within a narrow chaotic
layer. The latter is explicitly seen in Fig. 4 [14]. The
results of direct measurements of the diffusion rate in
Ref. [14] confirm estimate (2.9) with the following fit-
ted values of the parameters: E=2; Dy=26; A=79 or
Ba~4 (see Eq. (2.14)). In Ref. [14] the value of
A, 10 only has been reached because of a fast decay
of the diffusion rate. To study much weaker perturba-
tion we turned in Ref. [10] to the measurement of the
chaotic layer width, evaluating the diffusion rate from
Eq. (2.8). Actually, the only quantity to be measured

of
)
Q
Ry
g—
I
Wi
N
i
L . | N A a l"_
’ 4 d x 10 s
Fig. 4. Diffusion rate vs initial conditions: ho~4;

e/n=0.1; 2d=ux,(0) —x3(0); P1(0) ~p2(0) =0; resonance
: center corresponds to d=0 [14].

ra

was the dependence T(w) (see Egq. (2.2)) from which

" both w, (minimal T) as well as the true A=w,/Aw,
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(Awn, the maximal single change in w) were calcula-
ted. In this way we managed to proceed as far as up to
M50 (but to A=z 14 only, see Eq. (2.15), L=2 and
below). .

..4 -
tog ¥
..a_

~12

_16 -

[

I . ‘
2 4 ] /2

Ap

Fig. 5. Arnold diffusion rate vs A, crosses are numerical

data; straight line is estimate (2.9) with F=2: A ="5.60;

Dy=2.0; curve is the same estimate. with F==1; A=n
(primary resonances).

First of all we checked Eq. (2.8) and calculated
unknown factor Ca3.5 from the direct measurement of
diffusion rate in Ref. [14] within the interval
Ap=3.7—8. The main numerical data of Rei. [10] are
presented in Fig. 5 by crosses. They are well fitted by
Eq. (2.9) with the parameters £=2: Dy=2.0, A=5.60
hence, B~2.8. The latter is reasonably close to B=n
for primary resonances (ee Eqs (2.4) and (2.6)).
Fig. 6 demonstrates the building-up of asymptotic value
for the ratio A/2 \/E—q (see¢ Eq. (2.25)).

Finally, in Fig. 7 we present preliminary data
which suggest existence of a region of poor adiabaticity
according to Eq. (2.14). The power law is shown by
the upper straight line while the curves correspond to
the asymptotic exponentials for different L values. The
data from Fig. 5 (crosses) fit the combined dependense
(2.14) as well as the asymptotic law only. Not a very y



conclusive result! However, the rest of data in Fig. 7
give, in our opinion, some preliminary indication in
favor of the poor adiabaticity. They include: (i) linearly

[
- L °
2,/.7;
2 0
[
0
° 00 L]
t O
L ° N
0
04— T T
0 20 40

A

. (4

Fig. 6. Relation between true (A) and primary (&,) adia-
baticity parameters for the data in Fig. 5. Horizontal line
- is Eq. (2.15) with L=2.

dependent irequencies w/Q=11/2 which reduces both
the value of L—1 and the diffusion rate (squares); and
(i) two independent - driving frequencies /1=
=1.2381966... which increases L—3 and the rate (cir-
cle). Of course, the study of this new phenomenon— the
poor adiabaticity — needs to be continued.

15 -

~20

; .
o5 20 59-1;
Fig. 7. Is there a poor adiabaticity? Straight line is power
law, and curves the exponentials in Egq. (2.14) with
L=1, 2, 3 as indicated. Crosses are the data from Fig. 5
(L=2); squares for w/Q=11/2 (L=1); circle for inde-
pendent Q;, Q2(L=3).

4. Weak Instability, Nonresonant Case

If unperturbed Hamiltonian
0)

Ho=(1) { (41)

is linear in the actions with a constant frequency vector
o™ we call the nonlinearity weak. In such a case all
the nonlinearity comes from a weak perturbation
eV([, 8) only. We mention that this situation is typical

for the beam-beam interaction in a storage ring [6]. A

generalized KAM theory [7] is still applicable which
guarantees the motion stability for most initial conditi-
ons provided the linear irequencies mf,‘,)) are incommen-
surable:

@

me +nl£0 (4.2)
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for any ir(l)teger vectors m and n. Actually, for most
vectors 0@ and Q the following lower estimate holds
(see Ref. {7}) :

) Gm|

|meo " +nQl> 75

(4.3)

with some constant G and any v>0;, Q=N+4+M,
g=1Imi+|nl|. ‘

If, however, perturbation is a power series in

xp=(2/¢/0¢) cos 0, and conjugated momenta p. it is

sufficient for Eq. (4.2) to hold for |m|<4 only (see
Ref. [7]), as, generally, the stabilizing nonlinear fre-
quency shift |8w|~Ho. This is just the case near the
center of a typical nonlinear resonance (e<e,) which
is; thus, stable (Section 2). Notice, that the beam-beam
interaction is generally not of this type.

Coming back to the general case of weak nonlinea-
rity consider, first, a single resonance perturbation
~cgv, and the nonlinear frequency shift dw~ev. The
system remains integrable but, in contrast to the strong

nonlinearity, the resonance width Al~I(e/a)'/*~I
would be much bigger while the phase frequency
Q~ow(eav)'/*~ewv much lower as oa~ev (cf.

Eq. (1.4)). Other estimates remain essentially unchan-
ged and we may use the results of Section 2 with adia-
baticity parameter A,~1/¢ rather than )»p~l/x/s— for
strong nonlinearity (see Eq. (2.5)). Particularly, we
expect the diffusion rate to be given by Eq. (2.14). This
may be compared to a recent estimate in Rei. [15]
where the principal parameter L= N3 which is reaso-
nably close to our L=N—1 (see Eq. (2.11), M=0).

However, this agreement is not well justified. The
essential difference is in that we consider one -resonant
term in the perturbation, i. e. a violation of eq. (4.2)
for one couple of vectors m, n while in Rei. [13] all
resonances are excluded. For a strong nonlinearity it
makes no difference as resonances depend on initial
conditions. In the case of weak nonlinearity such a
dependence takes place for high-order resonances only:
qze_'/qu,, (see Eq. (4.3)). Only these resonances
can work as guiding ones with a very big (true) adia- '
baticity parameter ‘

A~ge el ~—InD, (4.4)

which corresponds to an enormously slow difiusion.
Here we assumed the phase irequency Q/,Q~g~v,,'{2~
~ee ~% and made use of Eq. (2.15): A~h, ~Q;”Q.
Estimate (4.4). is very rough, of course, but it gives
an idea of the crucial dependence on the guiding reso-
nance.

~ In Rel. [13] the efiect of considerable decrease in
the diffusion rate has been predicted, for the weak non-
linearity, namely:

—InD=gNling;, (4.5)

‘where Ingg=—Ine/4N—1)~Ing. and M=0. This

rate is much less than for the strong nonlinearity (see
Eq. (2.9)) but greatly in excess of Eq. (4.4). Again,
there is no contradiction but a big diiference, even
bigger than for strong nonlinearity (cl. Egs (2.10),
(2.11)).

To conclude, the weak nonlinearity is more difficult
to study but it provides much better stability in the
nonresonant case.




5. Weak Nonlinearity, Resonant Case

In the previous section we have already mentioned
the effect of a single resonance which is very similar to
that for the strong nonlinearity. That is not the case at
all for two or more linear resonances (4.2). To see this
we may change variables in such a way to remove the
unperturbed Hamiltonian (4.1) (a simple example of
this procedure will be given below). Then, the small
perturbation parameter e does no longer affect the
motion structure, the degree of chaos, for instance, but
determines the motion time scale only. To put it in
other way, with a new time t=ef there is no more any
small parameter in the problem, and hence the motion
would be generally strongly chaotic provided the num-
ber of freedoms is, at least, two. The latter is equal to
the numbe‘r of  independent resonance phases
Ye=m" 6+n(k)r with different vectors m® in Eq. (4.2)
(see Ref. [4]). This interesting nonlinear phenomenon
had been discovered in Ref. [16] and further studied in
Ref. [17].

Until recently the Arnold dlffusmn has been under-
stood as the difiusion along nonlinear resonances (cha-
otic layers) in a many-dimensional phase space. In case
of weak nonlinearity, however, a qualitatively different
resonance structure is possible which has been discove-
red and studied in detail by Sagdeev, Zaslavsky and
coworkers [18]. We consider here a simple example fol-
lowing Ref. [18]. The Hamiltonian is -

p2+o)3x2
f="—3

+ecos{x— Q) =wol +ecos{acos—Q¢ , (5.1)

where a= (2//wo)'/* is the amplitude of unperturbed
oscillation, and /, 6 are the action-angle variables.

This model has been widely used in the studies of
plasma heating via the particle-wave interaction. We
wonder if it has any relevance to the particle dynamics
in accelerators, and, particularly, to the beam-beam
interaction. ,

If we put wo=0 the model describes a single nonli-

near resonance’ and is completely integrable with no-:

trace of chaos. The quantity x is phase variable, and p
is the action while nonlinearity is strong. Yet, for any
woz=0 (in particular, arbitrarily small) the nonlinearity
becomes weak, and the motion drastically changes. To
remove linear term in Hamiltonian (5.1) we transform
to- new phase ¢p= 9 wol:

ul —cos[acos(q;+mot) —Qt| =1Iqa) cos(nq)+ ) +

+ }: Ie(a) cos[kw—(g—kmo)w "?] (5.2)

k=00

where J.(a) is the Bessel {unction, and we assume the
resonance condition: Q=nw,. The sum represents a
high-frequency perturbation as eé—0 since p~e. Neglec-
ting this perturbation we arrive at the time averaged

Hamiltonian
—>e—\/— cosA cos®.

where A=a—nn/2—n/4;, O =np+nn/2 and the last
simplified expression holds for big a>> 1.

The most remarkable peculiarity of this model is in
that a single resonance (nwo=E) .generates an infinite
grid of stable (sinA=sin®=0) and unstable
(cos A=cos ®=0) fixed points on: the surface (A, ®)

H=¢l,(a) cos n(p+ (5.3)
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Fig. 8. An example of the single resonance grid for weak
nonlinearity in model (5.1) on plane (4, ®): A1,
unstable fixed points are connected by separatrices
(straight lines). Arrows show the direction of motion."
/

as outlined in Fig. 8. This should be contrasted with
the resonance picture for strong nonlinearity when, as
is well known, there is an one-dimensional chain of
fixed points only, which extends in the direction of the
phase variable. This difference drastically changes the
motion. While strong nonlinearity absolutely bounds the
oscillation in action, the weak nonlinearity allows, in
this model, indefinite motion over the resonance grid. It
is true, in approximation (5.3) the oscillation is con-
fined within an individual cell of the grid. However, the
high-frequency perturbation produces a connected chao-
tic web along separatrices which allows a trajectory to
wander indefinitely. The size of a resonance cell
(AMA=n; (Al).=nwea) does not depend on & but the
oscillation frequency in the cell does:

~ 2 en
Go=\7 e (54
near the center, and
< G G @B '
&~ T ~ % = v (5:5)

in chaotic layer of width w, (In ws~—2X) where adiaba-
ticity parameter A=0o/Qo (see Section 2).

The diffusion is caused by tranmsition of the trajec-
tory from one cell to a next one when it crosses the
central line of a chaotic layer (the unperturbed separat-
rix) ~which is the border between neighbouring cells.
The average time between successive crossings of the
central line, or the recurrence time to this line, was
evaluated in Ref. [19] and is equal to

OJo

TR~3}~QT~QO. (5.6)
Hence, the diffusion rate in chaotlc web of a single
resonance is
(AD® _(@ADE Dy (en)?
Dy S5 = S e~ e 7

The rate drops only as the cube of perturbation,
and as a power of particle’s energy. Nevertheless, the
diffusion over the grid rapidly stops as it is obvious
from the existense of the steady-state distribution
fs~ws~exp (—nA/2) [18]. Hence, particle’s energy
rapidly _approaches a rather small, for A>1, limiting
value E. Notice that if the initial energy Eo> E the
oscillation is «damping» (Eo—>E inside the chaotic web)



even though the system is Hamiltonian. The damping
time is of the order of Tp~A%/wo.

The discovery of the resonance grid was really dra-
matic. Model (5.1) has been studied by many plasma
physicists as early as in 1977 (see References in [18]).
But it took about 10 years to understand the phenome-
non. Moreover, in book [5] the resonance grid is now
(1) obvious in Fig. 2.11 (ci. with our Fig. 8) but was
missed by the authors as well as by the translators of
this book into Russian.

‘In a many-dimensional system of weak nonlinearity
the resonance grid takes shape of something like honey-
comb. The important distinction of the weak-nonlinea-
rity diffusion is in that it can occur in the minimal
dimension N> 1 when the chaos is possible at all [18].

6. Concluding Remarks

For sufficiently small perturbation a typical nonli-
near oscillator system (I.1) is KAM integrable, i. e. its
motion is regular and stable for most initial conditions
(Section 2). The Arnold diffusion violating complete
integrabilily, is not only very slow but, moreover, is
confined within narrow chaotic layers of a negligible
measure. Hence, at first glance, it seems to be of no
importance. This is the case, indeed, in a purely ‘dyna-
mical system. However, the presence of any additional,
external, noise drastically changes the motion as the
Arnold diffusion may greatly enhance the effect oi noise
independent of the initial conditions. The enhancement
is the bigger the weaker is the noise as it is described
in some detail in Ref. [4]. The average rate of Arnold
diffusion drops to
w!

ik 6.1)

(Dya~DZ <
as compared to the noise-free diffusion (2.8).

With the presence of dissipation (the radiation dam-
ping of electrons, for example) a qualitatively new
mechanism of particle transport along resonances
comes into play. It had been predicted by Tennyson
[21] and studied in detail by Geragimov [22].

Still another instability of motion—the modulatio-
nal diffusion—occurs under a low frequency modula-
tion, external or internal [23, 24]. It leads, for a not-
-too-weak perturbation (ezem, em< e, ), to the formati-
on of the modulational layers of relatively large width
Aom. Within the layer the motion is chaotic due to the
overlap of close resonances in a modulational multiplet.
Critical €, decreases with modulation frequency but
remains finite unlike the Arnold diffusion. Width Aw,
depends on the modulation depth (amplitude) and is
equal approximately to the width of the motion Fourier
spectrum. In a chaotic layer around separatrix the lat-
ter is of the order of phase oscillation frequency Q,.
Hence, it is no surprise that estimate (2.14) [or the rate
of Arnold diffusion can be applied, roughly, also to the
modulational diffusion upon substituting Aw. for Q.
More accurate evaluations are presented in Rei. [23]
but for the primary resonances only (L=1). The efiect
of high-order resonances on modulational diffusion was
apparently observed in numerical experiments in
Ref. [25] (see Fig. 3 there). )

The most important difference from the Arnold dii-
fusion is in the measure of the chaotic component which

is bigger by the factor ~w; ' for the modulational dii-
fusion. Particularly, the average diffusion rate (D).~
~Du/r> (D)4 is also much bigger (ci. Eq. (6.1)).

Our final remark is of a different nature, very
important though. It concerns the problem of error esti-
mation for computation, in general, and in numerical
simulation, particularly. If the equations in question are
Hamiltonian and the numerical algorithm is znnserva-
tive, or canonical one [26], which seems to be most
efficient, we put forward the following conjecture: the
growth of computational errors is determined by the
artificial Arnold diffusion due to numierical discretiza-
tion in time; moreover an external, although artificial,
noise is present as a result of round-off and other
numerical errors.

We are grateful
comrments.

to G.M. Zaslavsky for useful
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