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1. Introduction: universal nonlinear instabilityOne of the most interesting phenomena in Hamiltonian dynamics is the so-called Arnolddi�usion (AD), a peculiar universal instability of many-dimensional nonlinear oscillations[1,2]. This global instability had been predicted by Arnold [3] while its chaotic naturewas discovered in Refs.[4,5,1] and further studied in detail in Refs.[6-11,14,15,17].First, we brie
y remind, following Ref.[17], the di�usion mechanism which is relatedto the interaction of nonlinear resonances. Consider a general Hamiltonian of many{dimensional oscillations:H(I; �; t) = H0(I) + "Xn;m Vnm(I) exp(in � � + itm � 
) (1:1)where I; � are N -dimensional vectors of the action-angle variables; 
 is M -dimensionalvector of driving frequencies; n;m are integer vectors ofN andM dimensions, respectively,and " stands for a small perturbation parameter. The dot in expressions like n � � denotesthe scalar product. Below we shall consider a simpler case of the completely integrableand nondegenerate unperturbed system whose HamiltonianH0(I) depends on the full setof N actions only.Hamiltonian (nondissipative) dynamics is always determined by resonances (see, e.g.,Refs.[1,2]) corresponding to particular terms in perturbation (1.1). The condition for aprimary resonance with unperturbed frequencies (1.3) reads:!nm � n � !(I) +m � 
 � 0 (1:2)In case of linear oscillations all the frequencies are �xed as parameters of the system whichis either in or o� resonance independent of initial conditions. However, for nonlinearoscillations with the action{dependent frequencies!(I) = @H0(I)@I (1:3)condition (1.2) determines resonance surfaces (zones) in the phase space that is the sys-tem is always in resonance for some initial conditions. On the other hand, nonlinearitystabilizes the impact of a (su�ciently weak) perturbation providing bounded oscillations3



even for resonant initial conditions. This is precisely due to non{isochronous oscillations(1.3). In one freedom such a nonlinearity is necessary and su�cient to destroy oscilla-tion isochronism. A many{freedom generalization of that is the necessary condition fordeterminant �����@2H0@I2 ����� 6= 0 (1:4)to be nonzero everywhere. In this case the system is called nongenerated which allows,particularly, the transformation from action to frequency space. In the latter, the reso-nance structure is especially simple and transparent as resonance surfaces (1.2) becomeplanes.Another condition for the nonlinear stabilization is the requirement for quadratic formof matrix @2H0=@I2 to be sign{de�nite or, geometrically, for surfaces H0(I) =const tobe convex [10]. The latter condition is a weaker one as it may include higher polyno-mial forms. Both conditions are su�cient only [10,11] but in physical applications it isunimportant restriction.The above conditions ensure also the absence of the strong instability (� "), due toa quasilinear (isochronous) resonance [1], especially when several (r) independent reso-nance conditions (1.2) are simultaneously satis�ed. The latter is called multiple (r{fold)nonlinear resonance. However, a weak instability caused by nonresonant (!nm 6= 0 forgiven initial conditions) terms in perturbation series (1.1) is possible, and it is just ADwe are going to discuss in detail. Moreover, this weak instability is a typical phenomenonof nonlinear oscillations as it occurs under almost any, particularly arbitrarily weak, per-turbation of a completely integrable system. The only restriction is the action spacedimension da which must be larger than that of invariant torus (da > dt = 1) [3]. Thetorus is absolute barrier for the motion trajectory which can only bypass it but never gothrough. For a driving perturbation (M > 0 in Eq.(1.1)) the minimal number of freedomsis, thus, Nmin = 2 but in conservative case (M = 0)Nmin = 3 as the trajectory is boundto follow an energy surface.Even these minimal restrictions are not absolute being related to the strong nonlinearityonly (1.4) when the e�ect of resonant perturbation is small (�I=I � p"� 1). In case oflinear H0(I) (harmonic oscillator) Nmin is less by one [12].At least 3 perturbation terms in series (1.1) are necessary for AD. We shall call eachof these terms a resonance (for the appropriate initial conditions of the motion). A singleresonance retains the complete integrability of the unperturbed system. The interactionof 2 resonances already results in the formation of narrow chaotic layers around theunperturbed separatrices of both resonances [13{15]. Yet, the chaotic motion remainscon�ned within a small domain of the layer. Only the combined e�ect of at least 2driving resonances provides the di�usion along the layer of the �rst, guiding, resonance ifN � Nmin (see Ref.[1] for details).In the �rst approximation (1.2) the driving perturbation terms are nonresonant (!nm 6=0). Yet, the �nal e�ect is due to the secondary resonances between the driving pertur-4



bation and the slow phase oscillation on the guiding resonance. This is a particular caseof the general rule that all the long-term e�ects in nonlinear oscillations are due to someresonances. For the problem in question the principal parameter is the ratio� = j !nm j!g (1:5)where !g � (" j Vg j)1=2 is the frequency of small phase oscillations at the center of guidingresonance, and where Vg is the Fourier amplitude of the corresponding perturbation term.For a weak perturbation (" ! 0) parameter � � 1 is big, and thus the driving pertur-bation is a high-frequency one. In e�ect, this is equivalent to a low-frequency (adiabatic)perturbation. Hence the term inversed adiabaticity we use [14]. The symmetry betweenthe standard and inversed adiabaticity is especially clear in a conservative system that isfor the interaction of coupling resonances. Indeed, in this case the resonance interactionresults in the energy exchange between the guiding and driving resonances. While for theformer the perturbation is a high{frequency one (inversed adiabaticity), for the latter itis low{frequency (standard adiabaticity).For an analytic perturbation the e�ect in both cases is exponentially small in adia-baticity parameter � (1.5), namely [1,14]:D � e��� � w2s (1:6)where D is the local dimensionless di�usion rate in actions I within a chaotic layer andwhere ws � j�H0j="Vg stands for the dimensionless layer width. Notice that e�ect (1.6)is of a nonperturbative nature as � � "�1=2.This is the simplest resonant mechanism of AD. In particular models the accuracyof such a 3-resonance approximation was found to be within a factor of 2 provided theperturbation was not too weak that is adiabaticity parameter � is not very big [1] (seealso Section 3 below).As � ! 1 the higher-order resonances with j n j; j m j! 1 come into play. Eventhough their amplitudes Vnm � exp[��(j n j + j m j)] drop exponentially the detuningsj !nm j also rapidly decrease. The operative resonances which control the di�usion hasbeen roughly singled out in Refs.[1,15] by minimizing the expression� lnD � E � k + �(k) >��1=L0 (1:7)with respect to k =j n j + j m j; where �0 = !0=!g, !0 stands for a characteristicoscillation frequency, and the following diophantine estimate was used:!nm � !0kL�1 (1:8)The most important parameter hereL = N +M � r (1:9)5



is the number of linearly independent (incommensurate) unperturbed frequencies on anr-fold resonance. We shall call L the resonance dimension (in frequency space). Actually,Eq.(1.9) gives the maximal dimension when all L independent frequencies do contributeto the driving resonances which may be termed the full resonances. There are also partialresonances which depend on a smaller number of frequencies ~L < L. Even though thelatter are just a few they are crucially important for the new AD regime which is themain subject of this paper (Section 5).Estimate (1.7), which represents another ADmechanism, seems to agree with numericaldata [7,14]. On the other hand, Nekhoroshev rigorously proved the upper bound of type(1.7) but with a di�erent exponent [10] (M = r = 0):L � LN = 3(N � 1)N4 + 2 (1:10)Even for the minimal dimensions N = 3 this upper bound Lmax = 6:5 considerablyexceeds estimate (1.9): L = 2 (r = 1). The di�erence becomes increasingly large asN ! 1. Even though this discrepancy is not a direct contradiction as Eq.(1.10) is theupper bound it constitutes a problem: what would be the origin of the di�erence betweenthe two estimates?Recently, this problem has been resolved by Lochak [11] who rigorously proved a moree�cient Nekhoroshev-type estimate with exponent (1.9) (forM = 0 but any r). The pointis that Lochak assumed convexity of the unperturbed HamiltonianH0(I) explained abovewhereas Nekhoroshev's proof holds under a weaker condition of the so-called steepness ofH0. From the physical point of view this di�erence appears to be insigni�cant. At least,we are not aware of any example of a steep but non-convex H0.Both the di�usion rate as well as the measure of chaotic component (� ws, see Eq.(1.6))are exponentially small in perturbation " ! 0. Hence the term KAM integrability [14]referring to the Kolmogorov{Arnold{Moser theory which proves the complete integrabilityfor most initial conditions as "! 0. Such a partial integrability, or better to say almostintegrability, is as good as the approximate adiabatic invariance. Notice, however, thatthe complementary set of the initial conditions supporting AD - the so{called Arnold web- is everywhere dense as is the set of all resonances (1.2) anyone of which can be a guidingresonance. Also, the di�usion is exponentially slow in actions I only while the changein oscillation phase � variation is much faster, with a characteristic time of the inversedLyapunov exponent, namely: (� _�) � !g=j lnwsj � T�1w where Tw is the oscillation periodin chaotic layer (see Eq.(2.2) below).Both rigorous estimates are valid asymptotically, for su�ciently small " only. Forexample, Lochak requires [11] (L� 1):" < "L �  �2L !2L2 (1:11)This is very small perturbation, and the problem arises to estimate the di�usion rate inthe intermediate asimptotics: "L � " � 1, or 1 � �0 � �L. This problem was �rst6



addressed in Refs.[14] where a new regime of di�usion, called the fast Arnold di�usion(FAD), was conjectured from some preliminary results of numerical experiments. Twopeculiar characteristics of the new regime as contrasted to the far{asymptotic AD (1.11)are as follows:(i) the dependence of the di�usion rate on adiabaticity (perturbation) parameter �0(1.7) is a power law rather than exponential, and(ii) the di�usion rate does not depend on resonance dimension L, particularly, on thenumber of freedoms N (cf. Eq.(1.7)).Precisely these regularities have been observed in numerical experiments with anothermany{dimensional model [16]. However, the authors [16] have given a di�erent interpre-tation of their numerical results. Instead, we tryed to agree the same results with ournew di�usion mechanism [17]. Unfortunately, both interpretations remained somewhatambiguous because the perturbation in those numerical experiments was not su�cientlysmall to reach any asymptotic behavior where the theoretical estimates were expected tohold true. To resolve this ambiguity we continued numerical and theoretical studies withthe same model but at a much weaker perturbation. In this paper we report on our �rstresults and present their theoretical explanation.2. Model and numerical experimentsFollowing Refs.[16,17] we make use here of the same model with HamiltonianH(x; p; t) = j p j22 � K N+1Xi=1 cos (xi+1 � xi) �1(t) (2:1)and periodic boundary conditions (xN+2 = x1; pN+2 = p1) where p; x are action{anglevariables, �1(t) stands for the �{function of period 1, and K ! 0 is small perturbationparameter. Notice that the number of freedoms in this model can be reduced to N due tothe additional motion integralP pi = const. Unperturbed frequencies !i = pi equal to theaction variables, and energy surfaces H0(p) = jpj2=2 =const are spheres, hence, strictlyconvex with unity determinant (1.4). The driving perturbation in the form of periodic"kicks" is not important for the di�usion but greatly simpli�es numerical experimentsas it allows to make use of a (many{dimensional) map rather than of di�erential motionequations.Even though this model does not immediately represent by itself a physical system itis very convenient for the studies into subtle nonlinear phenomena like AD. The emergingtheory can, then, be applied to some real physical problems, such as the stability of theSolar system [18] or of charged particles in magnetic �elds of plasma devices, acceleratorsand colliding beams [15,19].In previous works the di�usion in many{dimensionalmodels like (2.1) was studied downto K � 0:1 only [16,9]. At such perturbation and large N a considerable part of phase7



space becomes globally chaotic which shadows the AD e�ect. Even though a combinedaction of AD and global di�usion is an interesting problem important for applications[1,15], here we wanted to understand, �rst of all, the mechanism of the proper AD. Tothis end we went down as far as to K � 10�6 with number of freedoms up to N = 15.Realization of this program has required essentional modi�cation of the problem itself.The point is that the direct computation of the di�usion rate quickly becomes prohibitivelylong as K ! 0, especially as a multiple computation precision is required for such a smallK. To overcome this technical di�culty we have taken a di�erent approach [14], namely,computing the chaotic layer width ws and recalculating the di�usion rate from the relationlike (1.6). Of course, this make any sence for the number of model's freedoms N � Nmin(Section 1). In this way we have managed to reach (for another model) the adiabaticityparameter value up to �0 � 50 with a routine computer as compared to �0 � 10 only forthe direct di�usion calculation on CRAY supercomputer [7]. In model (2.1) this wouldroughly correspond to K � ��2 � 4 � 10�4 and 10�2, respectively, and N = 2 only.In the present work we go further, and give up the calculation of di�usion rate alto-gether. Instead, we are studying numerically and developing the theory of the chaoticlayer only. This proved to be su�cient to understand the mechanism of AD as well sinceboth are essentially determined by the same higher{order adiabaticity parameter (1.5),and exponent in Eq.(1.7). Then, all we need in numerical experiments is computing theoscillation period T (ws) inside the chaotic layer of a guiding resonance, and recalculatinglayer width ws using simple relations [1]:!gTmin = ln 32ws ; !gTav = ln 32ws + 1 (2:2)where Tmin; Tav are the shortest and average periods, respectively. Both values are in areasonable agreement: < ln(wmin=wav) >= 0:31 within the rms 
uctuations � ln(wmin=wav) =�0:39, and both underestimate the full layer width. This is because the di�usion at thelayer edge is very slow, so that 100 oscillation periods used in numerical experimentswere insu�cient to reveal the whole layer. A crude estimate [14] leads to the expectedcorrection factor of the order of 2. No such correction was introduced into numerical databut it will be discussed below in Section 3.A primary coupling resonance !1 � !2 with phase oscillation frequency !g = p2K hasbeen chosen as the guiding resonance. Correspondingly, p1 � p2 � pg while other pi (i =3; :::; N +1) were taken at random (mod 2�). For the trajectory to be inside the layer theinitial value of the guiding resonance phase was taken approximately  1 = x1 � x2 � �.However, for smallK the exact position of the layer had to be located numerically prior tows computation by a special searching part of the code. The computation was performedfor 7 values of N = 2; 3; 4; 5; 7; 9; 15 at the same initial conditions of a single trajectory.The summary of results is presented in Figs.1 and 2. The lower bound of ws � 10�22was determined by computation accuracy (about 30 decimal places). The values of theprincipal model parameter { the number of independent unperturbed frequencies, or theresonance dimension L = N+M�r = N are also indicated. Notice that under particular8



Figure 1: Summary of numerical data for model (2.1). Broken solid lines connectingvarious symbols show computed values of ws as a function of adiabaticity parameter� � 1=pK and of resonance dimension L = N indicated by numbers. Dotted linesrepresent the theory: (a) small{� limit, 1 �tting parameter, Eq.(3.5); (b2) large{� limit forL = 2, 2 �tting parameters, Eq.(4.9); (c) intermediate asymptotics, 3 �tting parameters,Eq.(5.8).

Figure 2: The same data as in Fig.1 with respect to theoretical dependence wth(�),Eq.(5.8) (curve c in Fig.1). Thin solid curves b~L represent �rst 3 members of the familyws(�; ~L), Eq.(4.9) (cf. Fig.3). Two dashed lines show rms ws 
uctuations (5.11).9



conditions of numerical experiments the resonance dimension is equal to the number ofmodel's freedoms because the driving perturbation is periodic (M = 1), and guidingresonance is simple (r = 1).The most striking feature of the empirical data is a qualitatively di�erent behaviorin case of L = 2 which was observed already in Refs.[16]. The rest of data show nosystematical dependence on L but rather big 
uctuations which rapidly increase with �.3. Small{� limit: a simple dynamical theoryIn the �rst approximation with respect to a small perturbation parameter K we canconsider the primary driving resonances only which are explicitly present in the originalHamiltonian (2.1). Then, the problem is very similar to one studied in Ref.[1] apart from adi�erent expression for the kinetic energy. First, we change variables for the two freedomswhich determine the guiding resonance: x1; x2; p1; p2 !  1;  2; I1; I2 where 1 = x1 � x2 ;  2 = x1 + x2 ; p1 = I1 + I2 ; p2 = I2 � I1 ; (3:1)In this approximation the momentum I2 � _ 2, and all pi � _xi for i � 3 are constantand determine the frequencies of driving resonances. The unperturbed motion on theseparatrix of the guiding resonance is given by 1(t) = 4 arctan (e!gt) � � (3:2)where the frequency of phase oscillation !g = p2K. As the interaction in the originalHamiltonian (2.1) is local, only 2 freedoms directly coupled to the guiding resonancecontribute to the driving perturbation in the chaotic layer. Still, the full set of drivingresonances remains formally in�nite because of the external perturbation �1(t) of frequency
 = 2� but the e�ect from most of them is exponentially small due to large detuning!nm (see Eqs. (1.5) and (1.6)). So, one can retain a single driving resonance only withminimal detuning: !d = min jpg � pd + q
j (3:3)where pd = p3 ; pN+1 and q = 0;�1. In this 2{resonance approximation the Hamiltoniantakes the form: H = H0(I1;  1) + V ( 1; t) whereH0 = I21 � K cos 1 ; V � �K cos  12 � !dt + �! (3:4)and � is some constant phase.Now, we can apply the standard method for deriving separatrix map and the layerwidth (see Refs.[1,13] for details):ws = �H0K � 4�f �20 e���0=2 (3:5)10



where �H0 is the layer width in energy, �0 = !d=!g = �!d=p2, and � � 1=pK. Besidesusual approximations for such evaluations an additional factor f � 1 shows up for model(2.1) because the relative perturbation jV=H0j � 1 is not small. In a particular caseN = 1, which reduces to the well studied standard map, this factor f � 2:15 was found innumerical experiments [1], and later con�rmed with a much better accuracy in Ref.[20]:f = 2:255::: The best theoretical value recently derived is f � 2:14 [21]. Uncertaintyin this factor limits the theoretical accuracy of relation (3.5). Partly, it is balanced byan underestimated layer width, also by a factor of 2 [14] as discussed above. So, factorf = fth=fn in Eq.(3.5) is actually the ratio of theoretical fth to the correction fn = w1=wsof empirical ws value (for 100 oscillation periods in our case) to obtain the true value w1for in�nitely many periods.In this small{� region the width ws does not depend on N (Fig.1) because the originalinteraction is local. However, the size of this region is rather narrow. Comparison ofnumerical data for L = 2 with theory (3.5) (dotted line a) is presented in Fig.1. Thevalue of f = 0:64 was obtained from 3 leftmost points in Fig.1 (ln� = 1:5 � 2:5) withrms deviation from theory (3.5) � lnws = �0:53. Assuming empirical correction fn = 2[14] gives fth = 1:3 which is rather di�erent from that in the standard map.4. Large{� limit: statistical estimatesFor large � the layer width, as well as AD rate, progressively exceeds a simple 2{resonance estimate (3.5) (Fig.1). This was noticed already in �rst numerical experimentson AD [1]. Apparently, it is some strange, on the �rst glance, e�ect of higher{harmonicdriving resonances even though they are much weaker. Generally, such resonances arepresent in the original Hamiltonian (1.1), and their amplitudes Vnm are explicitly given.However, in model (2.1) under consideration here it is not the case, and the higher per-turbation harmonics show up only in higher orders of the perturbation expansion withrespect to small perturbation parameter K � 1. The mechanism of generating higher{harmonic terms is related to modulation of any unperturbed frequency pi by any otherfreedom. Particularly, this general mechanism transforms the original local interfree-dom interaction in the system into a global one. Roughly, the higher{order amplitudesVn � Kn = exp (n lnK), and their decay rate � (per freedom) can be assumed in theform [17]: � = ln AK (4:1)with some constant A depending on a particular shape of the perturbation. In our model(2.1) the leading higher terms approximately correspond to A � 2 which we shall usebelow. Notice that the amplitudes do not depend on the external perturbation harmonicm as it is a �{function.A counterbalance to weaker higher perturbation terms is smaller � (1.5) due to smallerdetuning !nm (1.2). Generally, dependence !nm(n;m; !) is very complicated, with wild
uctuations, and exact evaluation of a higher{order perturbation is practically impossible11



and even useless beyond a few �rst terms [21]. However, the leading dependence can besingled out as follows (see, e.g., Refs.[22,23]):!nm = 
nL�1 Fnm(!) (4:2)where new function Fnm describes now the 
uctuations only. The latter are quite big whichis the main obstacle for reliable estimates. In some special cases function Fnm = F0 issimply a constant For example, in case of L = 2 and frequency ratio R = !=
 = (p5�1)=2("the most irrational" real number): 1=F0 = R + 1=R = p5. Generally, only a sort ofstatistical estimates is possible by setting Fnm(!) � Ff � const to some average or "mostlike" value to be �tted from numerical data.Now, a particular term of the higher{order perturbation takes a form similar to Eq.(3.4):Vn � e�n�(L�1) cos n 12 � !nmt + �nm! (4:3)Here n is modulus of a single component of the integer vector, hence factor (L� 1) whichis less by one than the full number of frequencies because of �{function in Hamiltonian(2.1) as discussed above. Assuming again that term (4.3) provides the main contributionto the formation of chaotic layer, which seems to be plausible owing to big detuning
uctuations, we arrive, similar to Eq.(3.5), at the following estimate for the layer width:ws �  2e�nn !n exp (�E(n)) (4:4)Here the principal exponent (cf. Eq.(1.7))E(n) = n�(L� 1) + ��n2 ; �n = !nm=!g � �0 FfnL�1 (4:5)where �0 = 
!g = �
=p2, and � � 1=pK (Fig.1).The minimum of E(n) equals toEmin = �p L�1=L ; � = �2p2 Ff � ; p = 1 � 1L (4:6)and is reached at n � n0 where nL0 � �� ; �nn0 � 2�� (4:7)The latter relation shows that the factor in Eq.(4.4) approximately reduces to a constantwhich renormalizes the amplitude decay rate: �! �L where(L � 1)�L � (L � 1)� � ln� � ln 4� � 1 > 0 (4:8)The latter inequality is a necessary condition for validity of these approximate relations.This condition is satis�ed for su�ciently large original �, or small K (see Eq.(4.1)).12



Finally, the approximate relation for the layer width in this limit reads:lnws � Af � b(L)�pL L�1=L (4:9)This theoretical dependence is also shown in Fig.1 (curve b2) for L = 2 and �tted valuesAf = 5:42, and Ff = 0:34 for the detuning parameter in Eq.(4.6). The rms deviation for5 points (ln� = 2 � 4) is � lnws = �0:71. While average detuning Ff has a reasonablevalue, the factor Af seems too big (see next Section). Apparently, this discrepancy char-acterizes the accuracy of our statistical estimates. The additional parameter b(L) = 1was set to unity for L = 2, and will be discussed in detail in Section 5 below.For bigger L the behavior is completely di�erent, and this is our most interesting resultto be described in the next Section.5. Intermediate asymptotics: Fast Arnold di�usionThe origin of a crucial change in dependence ws(�) is related to factor L�1 in expressionfor exponent E(n) (4.5). The e�ect of this factor was previously missed in Refs.[1,15] (cf.Eq.(1.7)). Indeed, it leads to a nonmonotonic dependence ws(L) according to Eq.(4.9).The latter was derived from optimization with respect to harmonic number n among thedriving resonances with the maximal dimension L = N only. Meanwhile, there are alsoresonances of lower dimension with ~L < L. So, we need the second optimization, nowwith respect to ~L, as was �rst done in Ref.[14] (see also Ref.[17]). First, we explain theidea of optimization for a simple example (cf. Eq.(4.9))ws = exp (�L�1=L) (5:1)The new factor L decreases the layer width as L grows, and thus counteracts the increasein ws due to dependence �1=L. For any pair L1 < L2 there is a certain value of � = �� atwhich both ws values coincide. Namely:�� = �L2L1� L1 L2L2�L1 (5:2)If � < �� the value ws(L1) > ws(L2) and vice versa. Thus, for a given � the particular~L(�) should be found which provides maximal ws. In this way we would obtain a brokenline which is the envelope of the family of curves ws(�; ~L). Interestingly, the existence ofsuch a family of intersecting curves could be inferred already (but was missed) from thevalidity of the 2-resonance approximation [1,2,6,7] which corresponds to ~L = 1.For L� 1 a smooth approximation to the envelope is found from the local conditiondwsd~L = �ws �1=L  1 � ln�~L ! = 0 (5:3)Whence optimal ~L0(�) = ln� (5:4)13



and wmax(�) = ws(~L0) = ��e (5:5)where e = exp (1). Thus, the dependence of the layer width on adiabaticity parameterbecomes a power law provided ~L0 � L, or� � �L = eL (5:6)that is for a not-too-weak perturbation. This border is, of course, much higher (in ")than that in the rigorous theory (cf. Eq.(1.11)). We term region (5.6) the intermediateasymptotics as contrasted to the far asymptotics for the reversed inequality. The formeris always bounded from above but rapidly grows with L, and may be arbitrarily large asL!1.We call this regime the fast Arnold di�usion (FAD). Within domain (5.6) the layerwidth (and di�usion rate) does not depend on L but asymptotically, for any �xed L and�!1, the Nekhoroshev-like dependence (4.9) is recovered.In Fig.3 the power{law mechanism is illustrated, for a simple example (5.1), by plottinga family of curves ln (ws(�; ~L)=wmax) which are touching the line of maximalwmax(�) (5.5)up to the largest ~L = L = 5.

Figure 3: A scheme of the family ws(�; ~L), Eq.(5.1), for ~L = 1 � 5 as indicated, withmaximal ~L = L = 5 which form a smooth power{law dependence (5.5) shown by dottedstraight line.For a more realistic asymptotic relation (4.9) the optimization is more complicatedbecause of the additional dependence on L via �pL. Partly, that can be removed byapproximate renormalization: �0 ! �0=�. For L � 1 the remaining dependence (4.8)14



is weak and can be neglected, at least in evaluating optimal ~L0, which now becomes (cf.Eq.(5.4)): ~L0(�) � ln ��! (5:7)However, we retain a more accurate �L (4.8) in the �nal expression:lnws � Af � bf e "� ln ��! � ln�4�� � � 1# (5:8)which is the main result of our studies. It is compared with numerical data in Fig.1 (curvec, see also Fig.2). Besides two �tting parameters previously used in Eq.(4.9) (curve b2 inFig.1), which now take somewhat di�erent values: Af = �1:05, and Ff = 0:4, we have tointroduce the third one: bf = 0:29. The �tting of empirical data has been performed forN = 5; 7; 9; 15 only. We excluded data for N = 3; 4 as they seem to violate condition(cf. Eq.(5.6)) � � �L = �2p2 Ff �L � � eL (5:9)for ln� >� 5 (see Figs.1 and 2). Using the above �tted value for Ff = 0:4, and Eq.(4.1)for � = ln (2=K) = ln (2�2) we obtain from Eq.(5.9): ln�3 � 4:2, and ln�4 � 5:5.While the �rst value is close to empirical one, the second is too large. The origin of thisdiscrepancy is not completely clear but it might be caused by 
uctuations. Apparently,the latter are mainly related to detuning function Fnm(!) which 
uctuates with boththe harmonic numbers and the set of frequencies for di�erent L. Interestingly, whilethe optimal harmonic number n0 increases with � > �L (4.7) it remains approximatelyconstant n0 � e � 3 (5:10)in the whole FAD region (5.9). This follows directly from Eqs.(4.7) and (5.7). Surprisingly,the above asymptotic relations remain reasonably good in spite of a relatively small n0value (Figs.1 and 2). Notice, however, that the number of resonances � n~L00 = �=� stillincreases with �.Detuning 
uctuations in Ff were calculated from the numerical data using the relation(see Eq.(5.8)): d lnwsd lnFf = �bfe�L � �bfe (0:7 + 2 ln�) (5:11)which gives for the rms dispersion:< �lnFf >4= 0:18 ; and < �lnFf >6= 0:25 (5:12)The �rst value is the average over 4 cases with N = 5; 7; 9; 15 as in the main �tting;for the second N = 3; 4 are also included. The latter value is used in Fig.2 for rms
uctuations � lnws according to Eq.(5.11).The accuracy of our theory does not allow for a reasonable estimate of factor Af � �1in the main relation (5.8) whose value is considerably smaller as compared to Af � 515



in Eq.(4.9). However, the value of a new �tting parameter bf = 0:29, which we had tointroduce in Eq.(5.8) instead of b(2) = 1 in Eq.(4.9), is a problem for the theory. It isimpossible to �t the data for large L with the latter value nor vice versa that is withb(2) = 0:3, as in Eq.(5.8) but for L = 2, unless one assumes in Eq.(4.9) the value Ff = 3instead of 0:3 which seems too big. In any event, something happens upon transition fromL = 2 to L � 3 which is obvious from the data in Fig.1. To reconcile these data withthe above theory one needs to assume a jump either in parameter b from 1 to 0.3 (withapproximately the same Ff � 0:4) or in parameter Ff from 3 to 0.4 (with approximatelythe same b � 0:3 still to be explained anyway). Actually, the value Ff = 3 for L = 2would contradict the rigorous upper bound Ff � 1 [22]. So, we have to understand the�rst possibility above.In Ref.[17], using a somewhat di�erent approach, the following expression has beenderived for parameter b in the relation (2.11) similar to Eq.(5.8) above: b � 1=�pe =0:19. This value is close to the present empirical one: bf = 0:29. However, the formerdoes not �t the far asymptotics (4.9) for L = 2 as discussed above.A qualitative explanation of the decrease in b(L) with L could be related to someunderestimation of perturbation Fourier amplitudes in Eq.(4.3). Indeed, we assumed theindependent decay of amplitudes for each freedom (factor L � 1). However, the higherharmonics may arise in the perturbation series not separately from each other but in somegroups, thus decreasing an e�ective parameter L or �. The former possibility is excludedby the assumed expression for detuning (4.2). Hence, we guess the e�ective amplitudedecay rate in the form: �! b � with empirical b � bf � 0:3.A di�erent value of b = 1 for L = 2 is also explained in this way because in that casethere remains a single oscillation frequency only. However, another important questionarises: is the new factor b(L) a constant for L � 3 or does it change still further withL? In other words, is FAD really independent of N? Our empirical data seem to con�rmsuch independence. Even though there are quite big 
uctuations for large � they do notreveal any systematic variation of ws with L. This is especially clear from Fig.2 wherethe di�erence between numerical data and the theory is shown. Moreover, the theoryexplains even a small dip in the dependence ws(�) around ln� = 3. This results from adeviation of the approximate smoothed envelope (5.8) from the family of curves ws(�; ~L),three of which are shown in Fig.2 (for ~L = 2; 3; 4, cf. Fig.3) as calculated from Eq.(4.9)with factor b(2) = 1, and b(3) = 0:29.If the above hypothesis is true a new �tting is required as renormalization � ! b �would result in more complicated expressions than just a single factor in Eqs.(5.8) and(4.9). By doing so we have found that the change in dependence ws(�) according toEq.(5.8) was negligible at the expense of some changes in the �tting parameters: Af =�0:88; bf = 0:28; Ff = 0:21 which appear to be reasonable also. A larger change�Af � 1 occurs in the family of curves, Eq.(4.9), for ~L > 2, and their agreement withsmooth envelope (5.8) becomes more poor owing to approximate relation (5.7). To keepthe above estimates more self{consistent we neglect all these minor changes, and retain16



the above relations with a single parameter bf = 0:29 for L > 2. In any event, therelations, being approximate any way, are much simpler in this form.Interestingly, a half of the data in Fig.1 (ln� � 4; L > 2) �ts also a simple powerlaw with exponent 6.3 which is very close to the value 6.6 obtained in Refs.[16,17] aroundln� � 2. However, for larger ln� > 4 the deviation from such a simple dependence (itwould be a straight line in Fig.1) progressively increases in accordance with theory (5.8).6. DiscussionWe have performed detailed studies into a new regime of AD - the fast Arnold di�usion- when the di�usion rate depends on the perturbation strength " = K, for model (1.1)and (2.1) respectively, or on the adiabaticity parameter � � 1=p" � 1=pK as a powerlaw (5.8) rather than an exponential like Eq.(4.9).We made use of a speci�c model (2.1) which is relatively simple and very convenientfor numerical experiments with arbitrary number of freedoms N but, at the same time, israther di�cult for theoretical analysis. This is because the model represents the limitingcase of the local interfreedom interaction. And not only 2{freedom one, which wouldmodel a pair interaction in a broad class of physical systems, but is even further re-stricted to the coupling with two nearest neighbor freedoms in a chain only. Moreover,the coupling is harmonic, so that only 3{frequency primary resonances (those for the twofreedoms and for the driving perturbation) with harmonic numbers n = �1 show up inthe original Hamiltonian (2.1) independent of N . As a result, the higher{harmonic multi-frequency resonances, which make the principal contribution to AD, arise in higher{orderperturbation terms only which makes the theory very di�cult from the beginning. Wecirqumvented this di�culty by a plausible and simple conjecture (4.1) for the decay rateof the high{order perturbation amplitudes. However, to agree the empirical data withthe theory we had, later on, to father modify this conjecture by introducing additionalfactor b(L) in our main relations (4.9) and (5.8). Even though we suggest in Section 5 aqualitative explanation for b(L) 6= 1, the origin of this additional dependence remains asyet not completely clear, and it constitutes an open question in our theory. Apparently,this is related to a speci�c Hamiltonian (2.1) as discussed above.Factor b = 0:29, assumed to be constant for L = N > 2, is one of the three �ttingparameters in our main theoretical relation (5.8) for the FAD. As explained in Section 2we actually computed and calculated the chaotic layer width ws related to the di�usionrate via estimate (1.6). The second �tting parameter Ff = 0:4, which describes detuning
uctuations !nm (1.2), also cannot be evaluated in the present state of the theory butwas found numerically to be of a plausible value. Finally, the third �tting parameterAf remains completely out of the theoretical reach, and it simply characterizes a globalaccuracy of the theory developed. We remind that all our estimates but the simplest one(3.5) are of a statistical nature owing to large detuning 
uctuations. Within this accuracy17



and 
uctuations the agreement between empirical data and the theory as presented inFigs.1 and 2 can be considered as satisfactory, especially taking into account a big rangeof ws variation which comprises almost 22 orders of magnitude!Surprisingly, all this huge range correspond to the intermediate asymptotics (1� ���L, see Eq.(5.9)) with FAD, starting already from a relatively small L = N � 5. Even forL = 3 and 4 the FAD range is apparently of a comparable size, and only for the minimalL = 2 the far (exponential) asymptotics (�� �L) clearly shows up. As already discussedin Section 5 a sharp change in dependence ws(�) from L = 2 to L = 3 is precisely dueto "misterious" factor b which drops by a factor of 3. Unfortunately, this does not allowto reach the far asymptotics, and to con�rm the exponential dependence on N (4.9)for � > �L beyond minimal L = 2. Meanwhile, this would be important to decide ona di�erent interpretation of N{independent di�usion for large N in Ref.[16]. The latterauthors conjectured that such an independence is a result of the local interaction in model(2.1). This is contrary to our theory but not as yet to the direct empirical evidence. Atthe moment we can only remark that their reference to Wayne's theory [24] for the samemodel is irrelevant. Indeed, Wayne proved a long N{independent stability for very special,nonresonant, initial conditions (theorem 1.1) while AD occurs within chaotic layers only,that is also for highly speci�c but resonant initial conditions. Thus, the former theory isrelated to a global chaos rather than to KAM integrability with its peculiar Arnold webof chaotic layers.In case of a global interaction (1.1) with strong nonlinearitry (1.4) and uniform am-plitude decay rate our theory remains valid, and even becomes simpler as � = const.However, the numerical experiments would be much more di�cult for large N . On theother hand, both the FAD range (5.9) as well as the di�usion rate there depends generallyon the number of incommensurate unperturbed frequencies L = N +M � r (1.9) whichmay be large at the expense of large M , the number of driving perturbation frequencies.Fast Arnold di�usion should not be confused with even much faster di�usion in degen-erate systems or those with nonconvex energy surfaces (Section 1). In the latter case thedi�usion mechanism is of a completely di�erent nature. Apparently, this sort of di�usionwas recently observed in numerical experiments with the classical model of the Hydrogenatom in crossed electric and magnetic �elds [25].In the present study we have chosen one of the strongest primary resonance as guiding,with amplitude Vg = V1 � K (Section 2). In case of a high{harmonic guiding resonance(Vg = Vn; n� 1) the main e�ect would be tremendous drop in the di�usion rate due toexponential rise of the adiabaticity parameter with n (see Eq.(4.5)):�(n) � exp��2Ln� � exp��2L�1=L� (6:1)where �(n) � nL is the density of the guiding resonances in the Arnold web with harmonicnumbers up to n (cf. Eq.(4.2)). Hence, the di�usion rate in the intermediate asymptoticsdrops exponentially with n or �, Eq.(5.8), and even as a double exponential in the farasymptotics! 18
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