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.
Many years ago Shnirelman had announced [1] and recently proved [2] the theorem onasymptotic multiplicity of the quantum spectrum in a classically KAM{integrable system.Here is a few �rst lines from Ref.[1]:"Let an arbitrary smooth Riemannien metrics, su�ciently close to the Euclidian one,be given on a 2D torus M , and let � be the Laplace operator of the former metrics,�̂ = p��; u1; u2::: the eigenfunctions of �̂ with eigenvalues �1 � �2 � :::Theorem. 8N 9CN > 0; 8n > 1 min (�n+1 � �n; �n � �n�1) < CNn�N...Thus, the asymptotic multiplicity of the spectrum is a stable phenomenon whichdoes not necessarily require the presence of any symmetry of the manifold. As a matterof fact the symmetry of the geodesic ow is of importance which is always present."In Ref.[2] this theorem was formulated (and proved) in a more modest way:AD.2.7. Theorem. If M is a 2D torus, and Condition AD.2.6 is valid, then thespectrum of �̂ is asymptotically multiple, i.e. for each N > 0 there exists CN > 0 suchthat min (�n+1 � �n; �n � �n�1) < CN��NThe principal di�erence is in omitting the statement 8n > 1 (see above) even though inan informal explanation of the latter theorem Shnirelman still insists [2]: "...the wholesequence of eigenfunctions is asymptotically multiple. (We guess that in fact, in thegeneric case, this sequence is asymptotically double)."Recently there were many discussions on a possible physical interpretation of this, lessknown, Shnirelman theorem. The correct interpretation is important for the attempts toextend its implications from a very speci�c Shnirelman's example onto a more broad classof quantum systems.Two possible mechanisms were considered:(i) the e�ect of the classical KAM structure of everywhere dense set of resonances, and(ii) the quantum tunneling which transforms the exact degeneracy in the classical limitinto a quasidegeneracy that is a splitting of the energy levels, relatively small com-pared to the mean level spacing. 3



The implications of the �rst mechanism are still vague but, most likely, that can providethe quasidegeneracy for a relatively small number of levels only [3].Unlike this, the tunneling quasidegeneracy is well known from the beginning of quan-tum mechanics (a standard example is the spatially symmetric double{well potential).However, in theShnirelman theorem a di�erent symmetry is only required, one with respect to the timereversal. The corresponding quasidegeneracy, produced by the tunneling in momentumspace was also studied recently [4{6] but for the accidental degeneracy in the frame of thetheory of avoided energy level crossings.The tunneling mechanism of the global quasidegeneracy, predicted by Shnirelman, waschecked and received a preliminary con�rmation [7] by computation of the level spacingdistribution following a suggestion in Ref.[8]. Simple analytical estimates were also derivedwhich further support such an interpretation [7]. The mechanismwas conjectured to workin some completely integrable systems as well.Here we analyze the latter case in some detail taking the approach similar to that inRef.[5]. It is based on the reduction of the problem of tunneling through a nonlinearresonance to the Mathieu equation [7]. Two critical remarks on this approach in the �rstRef.[4] seem to us irrelevant.The �rst remark is: "It is unlikely that the approximations used by Uzer et al involvingquantizing the Birkho� { Gustavson e�ective Hamiltonian are valid in the limit �h! 0."To the contrary, just in the quasiclassical region the classical canonical transformations,which form a basis of this approach, acquire unambiguous quantum counterpart, thecorresponding unitary transformations [9,10].The second remark: "Another di�culty with their approach is that it is the rationaltori which are destroyed by perturbations in a generic system; thus their theory describesthe quantization of tori which do not exist" is apparently a misunderstanding. Indeed,su�ciently weak perturbation does not destroy the resonance torus but only modi�es it,particularly producing an exponentially narrow chaotic layer along the resonance separa-trix. The accuracy of this approximation is the same as that for the adiabatic invariance(see, e.g., Refs.[11,12]).1. Tunneling asymptotics of the Mathieu equationIn Refs.[5,6] the tunneling and quasidegeneracy were considered for weakly nonlinearresonances that is for a perturbed linear oscillator. The structure of such resonances isgenerally rather complicated and, moreover, essentially depends on a particular model.Here we consider a simpler case of the strongly nonlinear resonance when the unperturbedfrequencies are energy{dependent. As is well known (see, e.g., Ref.[11]) such a resonanceadmits, for su�ciently weak perturbation � ! 0, a universal description by the pendu-lum resonance Hamiltonian (including many{dimensional oscillations). After appropriate4



canonical transformations this Hamiltonian can be written in the form:H = n22 + � � cos (2�) (1:1)where n; � are the action{angle variables, n being the angular momentum of free (� = 0)rotation in �.In quantum case n; � become operators, particularly in quasiclassical region (n!1)n̂ = �i@=@� (�h = 1). The Schr�odinger equation for eigenfunctions of system (1.1) is theMathieu equation d2 d�2 + (a � 2q � cos (2�)) = 0 (1:2)with a = 2En(�) and q = � where integer n enumerates energy levels identi�ed in theunperturbed limit as E(0)n = n2=2. The family En(�) of periodic solutions to the Mathieuequation forms a well{known picture of the parametric resonance 'tongues' (see, e.g.,Fig.8A in Ref.[13]).Tunneling in momentum space, or the above{barrier backscattering. Theresonance separatrix at energy Es = � corresponds to the parameterg = 2qa = �E = 1 (1:3)Consider the region g < 1 outside the resonance where the classical motion is a nonuniformrotation in �. In model (1.1) there are two symmetric rotations in opposite senses whichare exchanged under the exact discrete symmetry with respect to the time reversal. Inquantum mechanics each rotation is represented by a wave propagating in one direction.Neither of these two waves can be eigenstate of Hamiltonian (1.1) because of the above{barrier backscattering for any � > 0 that is for any violation of the continuous symmetryof the free homogeneous rotation. In the latter case there is exact (double) degeneracyof each eigenstate. If � > 0 the eigenstates are formed by symmetric and antisymmetricsuperpositions of both rotations with di�erent energies E+ � E� = �. As n ! 1 theenergy splitting �! 0 which is called quasidegeneracy.Equation (1.2) for the quantum eigenfunctions can be also viewed as the motion equa-tion for a classical linear oscillator with unperturbed (q = 0) frequency !0 = pa under theparametric perturbation, phase � playing the role of time. Quasiclassical region (n!1)corresponds here to the adiabatic perturbation with respect to the unperturbed motion (0)(�) � exp (in�). Nevertheless, parametric resonances occur for arbitrarily large nsatisfying n � pa (1:4)The instability band has a �nite width �a � 4n�0 proportional to the maximal instabilityrate �0 at the exact resonance [14,15,12]. On both edges of the band � = 0, and the motionis periodic. These solutions correspond to a splitted quantum eigenstate with� = �a2 = 2n�0 = 2 jV�r;rj (1:5)5



where V�r;r is the matrix element of the adiabatic perturbation between the two statesof a nonuniform rotation. If the unperturbed energies of the two states di�er by �0 therelation (1.5) takes the form (see, e.g., Ref.[16])�2 = �20 + 4 jV�k;k j2 (1:6)and describes the so{called avoided crossing of the two energy levels.The width of the instability band for the Mathieu equation with g � 1 was calculatedin Ref.[14] (see also Refs.[18,19]):�n � qn(2n�1 (n � 1)! )2 ! 2n�  e2 q4n2!n � 2n�  e28 g!n (1:7)The latter, asymptotic, relation has a reasonable accuracy even for n = 1 (!). This resultwas con�rmed in Ref.[15] by a di�erent method using the asymptotic resonance theory.The same result is obtained employing the standard quasiclassical relation for thetunneling energy splitting (see, e.g., Ref.[16], and Appendix A below):�n � 2!(g)� exp (�Sn) (1:8)Here !(g) = �2 p1 + gK(k) pa � n (1:9)is the mean rotation frequency,K(k) is the complete elliptic integral of the �rst kind withk2 = 2g=(1 + g), and the tunneling action in nSn = Z n�n j�(n)j dn (1:10)is given by the integral over a classically forbidden � path.Since g = �=E in Eq.(1.7) is a classical parameter the dependence of �=A on quantumparameter n (and, hence, on �h) is the simple exponential in agreement with Ref.[4].However, the prefactor A = 2n=�E � �h (in units of Ref.[4]) is di�erent (A � �h3=2).Apparently, the prefactor is not universal. Also, I wonder if it was really possible todiscern the dependence � �h3=2 from that � �h numerically (see Fig.2 in second Ref.[4]).Notice that dependence (1.7) holds true for a completely integrable system (1.1) inagreement with a conjecture in Ref.[7] (see also Ref.[6]) but contrary to the conclusion inRef.[4]. We remind that a single resonance is integrable, including a many{dimensionalcase, in spite of broken continuous symmetry in �. The perturbation parameter � inthis case does not introduce any chaos but only switches from continuous to a discretesymmetry. What is really necessary for quasidegeneracy is a violation of the continuoussymmetry.For a �xed n the dependence of the energy splitting on symmetry{breaking parameter� is a power law with integer exponent (1.7) as was numerically found in Ref.[4]. However,this exponent is not always integer either (see below).6



The quasidegeneracy can be distinguished from the level uctuations if � � �, themean level spacing. The latter depends on the number of freedoms F , roughly as � �n2�F . Hence, the condition for quasidegeneracy takes the form�� <� nF�1 gn (1:11)and is always ful�lled, as n ! 1, for any g < 1 that is for any rotational state but notonly for g � 1 [6].Tunneling in �{space. Consider now the region g > 1 inside the resonance separatrixwith bounded oscillations in �. Here, there is also quasidegeneracy, for g � 1, which isexplained by the tunneling through a potential barrier. Asymptotic relation En(�) inthis region is derived by the standard quasiclassical quantization (see, e.g., Ref.[16] andAppendix B). In the simplest approximation[13] it is given byEn � � � + 2p� �n + 12� (1:12)which is reasonably good in the lower half of the potential well: �� < En < 0 (for exactrelation and a better approximation in the whole range jEnj < � see Appendix B). Integern = 0; 1; 2::: enumerates the energy levels from the bottom of the potential well andcorresponds to that of symmetric (with respect to � = 0) eigenfunctions of En(0).The quasiclassical energy splitting is described by the standard relation (1.8) withoscillation frequency !(g) = �p�K(k) � 2p�  1 � 1 + f8 ! (1:13)where f = 1=g < 1; k2 = (1 + f)=2, and with tunneling action (f > 0):S� � �2 p� (1 � f) � � (nW � n) � �nW (1:14)Here nW � 4p�=� (B.3) is the total number of states within each of the two potentialwells.Multiplicity of quasidegeneracy. Energy splitting outside the resonance (g < 1)in 1D approximation (1.1) is double independent of m (in Eq.(A.1)) because there areonly two classically separated symmetric domains on both sides of the resonance. Insideresonance (g > 1) the situation is more complicated. For the standard Mathieu equation(1.2) the splitting here is also double because the second{harmonic perturbation producestwo classically separated and symmetric potential wells. In case of the �rst{harmonicresonance (V (�) = cos �) the tunneling into a single barrier results in a slight shift ofeigenvalues without any splitting. In the classical picture (1.1) the parametric resonanceoccurs here for any half{integer n. However, in quantum mechanics n must be integerif the physical perturbation is 2�{periodic. Hence, half of periodic solutions disappeartogether with the energy splitting for large q while the splitting for small q persists.In case of the perturbation with arbitrary harmonic (V (�) = cos (m�), see AppendicesA and B) the splitting is generally multiple because there are additional periodic solutions7



inside each stable region. The simplest example is the Mathieu equation itself which hasboth 2�{ and �{periodic solutions, hence the multiplicityMsp = 2. GenerallyMsp is equalto the number of linearly independent solutions with a period T� such that both mT�=2�and 2�=T� are integer. This is equivalent to a decomposition of harmonic number m intothe product of two integers: m = m1 �m2. If, for example, m = p > 1 is a prime numberthere are only two such decompositions: m = 1 � p = p � 1. This implies two solutionsof periods T� = 2�=p and 2�, respectively, hence Msp(p) = 2 (doublet). Since the totalnumber of solutions is p, p� 1 of them (with period 2�) are exactly degenerated in spiteof perturbation. These are the solutions shifted by 2�=p in �. Altogether, there are psuch solutions but only p � 1 of them are independent as the sum of the former is zero.Particular case of m = 3 was considered in detail in Refs.[17]. Another simple example ism = pk for which Msp = k + 1. Apparently, the upper limit Msp(m) = m is reached form = 1 and 2 only.In a many{dimensional system of F freedoms perturbed by a single resonance thereare additional F � 1 exact motion integrals Ir (r = 2; 3; :::; F ) beside the resonance one,the energy or the corresponding pendulum action I1 [11]. Transitions Ir ! �Ir increasethe multiplicity of quasidegeneracy both outside and inside the resonance provided de-pendence of the perturbation on other phases �r. This is only possible in the presence ofadditional resonances when the motion is no longer completely integrable. The maximalmultiplicity in this case is Msp = 2F . This simple consideration gives some support on arich quasidegeneracy structure in many freedoms [7]. In other words, the simple backscat-tering turns into a multidimensional scattering in the action space, the quasidegeneracycorresponding to some rational scattering angles on the lattice of quantum numbers.Multidimensional tunneling was recently considered in Ref.[25].2. The Hill equation: distorted resonanceThe Mathieu equation posseses both temporal, or time{reversal, (n ! �n) as well asspatial (�! �+2�=m; �!��) discrete symmetries. In light of the Shnirelman theorem,discussed in the Introduction above, it is interesting to consider a model with only time{reversal symmetry left. To this end we need a more general periodic perturbation inresonance Hamiltonian (1.1):V (�) = mfXm6=0 Vm cos (m� + �m) (2:1)represented by a �nite or in�nite (mf =1) Fourier series. The corresponding Schr�odingerEq.(1.2) is known as Hill's equation.For a particular harmonic m the rotation energy splitting is given by (see AppendixA): �n � mn� � (CgVm)2n=m (2:2)with factor C � 1. 8



Critical perturbation harmonic. Asymptotically (n!1), the main contributionto �n comes from a certain critical harmonic m = mc which, depending on the rate ofVm decay and other parameters, may be the lowest one (mc = 1), the highest (mc = mf)or intermediate (1 < mc < mf , see Appendix C). In case of in�nite Fourier series (2.1)the value of m in Eq.(2.2) is bounded from above by the �rst instability zone (the mainparametric resonance): m � 2n.To the best of my knowledge the intermediate regime has not been considered asyet. On the contrary, there are various assertions in the literature that such regimedoes not exist at all. For example, in the second Ref.[18] there is a brief remark (withoutreference): "For a general Hill's equation (with arbitrary coe�cient V (�) [in our notations,see Eq.(2.1)]) the situation is completely di�erent; the width of any zone decreases fortypical V (�) as the �rst power of �". Apparently, the (implicit) formulation of the latterproblem is di�erent, namely, to study the asymptotic behavior of a resonance zone as� ! 0 for a �xed n. Then, mc increases and eventually reaches the upper limit mc = 2nbelow which (in �) Eq.(2.2) gives �n � 2� C g n2V2n (2:3)so that the splitting is indeed simply proportional to the perturbation strength g = �=En.Here we consider also the intermediate asymptotics: 1 � � � �c where �c is determinedby the condition: mc(�c) = 2n (see Eq.(C.7)). This is only possible for a su�ciently fastdecay of perturbation Fourier harmonics. Apparently, the critical decay is approximatelythe simple exponential: Vm � exp (��m).The same is true for the �nite Fourier series as well. In this case the critical �c isfound from the equation mc(�c) = mf . Again, there is an apparent contradiction with therigorous results in Ref.[18] that mc = mf always that is for arbitrary V (�) but only, asfar as I understand, in the limit �! 0.3. Statistics of quasidegeneraciesA global characteristic of quantum degeneracy is the statistics of energy splittings �recently studied in Ref.[7] in an attempt to clarify the physical meaning of the Shnirelmantheorem. The model used was somewhat di�erent from Eq.(1.1), namely, the kickedrotator on a torus speci�ed by the Hamiltonian:H = n22 + k � V (�) � �T (t) (3:1)where �T is the �{function of period T , and the following perturbationV (�) = cos � � 12 sin (2 �) (3:2)was chosen to completely destroy the spatial symmetry. For a su�ciently small classicalperturbation parameter K = kT � 0:2 � 1 we may expect the global behavior, partic-ularly, degeneracy to be close to that for integrable system (1.1) with perturbation (2.1)9



and mf = 2 (see also below). There is, of course, a chaotic component of the motion butit is relatively small.Circumference of the torus N (in n) is equal to the total number of quantum states.There are r = NT=2� = 2 identical resonances at n = 0 and n = N=2. Each of them ischaracterized by the potential well (3.2) with jV (�)j � 3p3=4 � V0.The �{statistics is described by integral probabilityP (s) = 12 � 2nN (3:3)where s = �=� = 2� is the quasienergy splitting normalized to the mean level spacing� = 2�=TN = 1=r = 1=2. The minimal s � 0 is reached at n = N=4 (because of the tworesonances present), and the total number of splitted states cannot exceed N=2.According to the above theory the splitting is determined, for su�ciently small s, bythe second harmonic of perturbation (3.2) with � = k=T and the classical parameterg = k=Tn2=2 = K8�2 �Nn �2 (3:4)Using Eq.(2.2) we obtainln s = ln�4��+ lnn+ 2n (L � lnn); L = ln pCK N4� ! (3:5)The dependence of I = NP on ln s was found in a certain range of s to be close to linearone (Fig.1). Indeed, Eq.(3.5) implies (n� 1):d ln sd I � 1l = 1� 12n � L+ lnn � 1 + lsp > 1; lsp = �12 ln�Cg2 � (3:6)where l is the empirical slope of function I(ln s), and lsp is the slope for a �xed classicalparameter n=N , or g (see Eqs.(2.2) and (3.4)). The former is always less than 1 contraryto empirical result l � 1:8 [7]. The di�erence is clearly seen in Fig.1.To understand the origin of discrepancy the derivative dI=d lns is shown in Fig.2together with theoretical dependence (3.6). In case of a single harmonic (Mathieu's equa-tion) the factor C � 1 with renormalized ~g = gVm = g=2 in Eq.(3.6) (see Eq.(2.2) andAppendix A). For Hill's equation a plausible approximation would be renormalization tothe full amplitude of the perturbation: ~g = g V0 (3:7)Then, C � 2V0 = 3p3=2 � 2:6 in Eq.(3.6). The best �t, shown in Fig.1, gives areasonably close value of C = 3:1 (�tting parameter C0 = C�1=2 = 0:57). Beside a poortheoretical approximation for C used, apparently s is not small enough owing to numericalerrors in computing eigenvalues for s <�10�9. I think this is the main cause of the abovediscrepancy. 10



Figure 1: Statistics of quasidegeneracies in model (3.1): k = 6 � 10; K � 0:15 �0:25; N = 501 (after Ref.[7]). Solid line is the best �t of numerical data[7] to theoreticaldependence (3.5) with C = 1=C20 .

Figure 2: Derivative of the distribution function in Fig.1. Solid line shows dependence(3.6) with the same �tting parameter C0 = 0:57.11



Instead of the integrable approximation we may use Eq.(1.5) with matrix element forthe direct one{kick transition �n! n of approximate kick operator [7]V̂ = exp i k2 � sin (2�)!Then, jV�n;nj = 1p2�n � � e�2 � g nN �n � �2 (3:8)which di�ers from Eq.(2.2) used above by a small classical factor n=N , thus giving negligi-ble � for g � 1. Nevertheless, this approach provides a correct estimate for lsp [7] but notfor �. The main reason for underestimating � is apparently in that the uniform{rotationeigenfunctions are used in evaluating Eq.(3.8) instead the nonuniform ones (cf. Eq.(1.5)).The region inside the resonance does not contribute to quasidegeneracy because of thebroken spatial symmetry [7]. Apparently, the second (later) formulation of the Shnirelmantheorem (see Introduction above) is more accurate or, perhaps, more general.4. Two symmetric resonancesHamiltonian (1.1) describes a nonlinear resonance to some approximation only. Nextterms, e.g., � n3 would generally destroy the symmetry of states �n leaving behind onlyaccidental degeneracy with some avoided level crossings. In case of exact time{reversalsymmetry the only exclusion corresponds to the resonance exactly at n0 = 0. We remindthat in model (1.1) variable n is generally the di�erence (n� n0).However, under time{reversal symmetry to each resonance shifted from zero (n0 6= 0)there is symmetric resonance at �n0. This restores the global tunneling and quasidegen-eracy.Consider Hamiltonian H = n22 + 2 � � cos (m�) � cos (
t)= n22 + � � cos (m� � 
t) + � � cos (m� + 
t) (4:1)which describes two resonances at n0 = �
=m. This system is no longer completelyintegrable but for a large adiabaticity parameter � = n0=p2� = pf0 chaotic componentis of exponentially small measure in � [11] (the so{called KAM integrability). For theproblem in question it is unimportant (cf. Section 3).There are three regions di�erent with respect to the tunneling in momentum space:(i) outside resonances where the tunneling goes through both of them and the regioninbetween,(ii) between resonances with tunneling away from both, and12



(iii) inside resonances where the energy splitting is caused by the tunneling inmomentumspace between two resonances but not inside them which is negligible for m = 1 (seeSection 1).In evaluating the energy splitting under condition �� 1 the combined action of bothresonances can be neglected. Then, by a change of variables the problem is reduced to asingle resonance with E = (n � n0)22 ; g = 2 �(n � n0)2 (4:2)In the simplest case g � 1 we can use expression (2.2) to obtain, assuming C = 1, thefollowing rough estimates (see Appendix A). In regions (ii) and (iii), de�ned above, thetunneling action is given by Eq.(A.5), and we have:�n � m� jn � n0j g 2n0m0 ; 0 < n <� n0 (4:3)where g0(n) = g(0). In region (i) the tunneling is generally more complicated. If n >� 2n0the tunneling through each resonance is incomplete at one side: 0 < n < n0. Then, usingEq.(A.6) we obtain: �n � m� jn � n0j g 2nm ; n >�n0 (4:4)In the interval n0 <�n <� 2n0 there is a competition of two tunnelings, one between theresonances, Eq.(4.3), and another through both of them. If the latter is decisive that isproviding less �n then �n � m� jn � n0j g 4(n�n0)m (4:5)otherwise estimate (4.3) holds. The transition between both tunnelings is roughly atn � 3n0=2. In all regions the energy splitting �n ! 0 as quantum parameter n!1.For a time dependent Hamiltonian like (4.1) the mean quasienergy level spacing� = 
N (4:6)where N is the total number of states (cf. Section 3). As N !1 mean spacing �! 0.However, in a conservative system with compact energy surfaces � is always �nite and,for two freedoms, is independent of quantum parameter n.5. Conclusion: a new time scale of quantum chaosHow simple and speci�c the model of a single (1.1) or even double (4.1) resonancemay seem it actually represent, at least qualitatively, a rather general picture of the bulkquantum quasidegeneracy. Indeed, the principal condition for the latter is the existence ofa discrete and only discrete symmetry between some well separated domains in phase space[7]. The present results provide additional con�rmation to the physical interpretation ofthe Shnirelman theorem in Ref.[7]. 13



The models discussed above do not include chaotic motion where the global quasidegen-eracy may also occur [20,8,7] (see also Ref.[23] where a similar dual problem in symmetricrandom potential is considered). The main condition for the chaotic quasidegeneracy is astrong quantum localization which separates symmetric domains. For example, in model(3.1) this condition takes the form ls � N (5:1)where ls � D is the localization length ( in the number of states) of the quantum steadystate [21], D stands for the classical di�usion rate, and N is the total number of states.The quasienergy splitting is given by the estimate [22] (see also Ref.[8]):� � A � exp � 2nlsp ! (5:2)where n is the distance of a localized state from the center of symmetry (n = 0, seeSection 3), lsp � ls, and A is some constant.In a sense, the tunneling counteracts quantum localization. It is characterized by thetunneling time scale tt � 1� � exp 2nlsp! (5:3)This is the third principal time scale in addition to random (tr) and relaxation (or local-ization) (tR) time scales which, for model (3.1), are given by the estimates [21]:tr � ln k; tR � 1� � ls � k2 (5:4)The quasidegeneracy can be observed only if (cf. Section 1)tttR � �� >� 1 (5:5)Unlike two scales (5.4) which inde�nitely grow with quantum parameter k the scale ttdecreases (5.3) until the quasidegeneracy gets lost (5.5) within level uctuations.The �rst, to my knowledge, direct observation of the tunneling time scale was reportedin Ref.[20] (see Fig.2 there): a narrow wave packet was shown numerically to oscillate.1Due to dispersion of tunneling frequences (5.2) in the quantum steady state which weassume in the form fs(n) = j s(n)j2 = 4=� lse2m=ls + e�2m=ls (5:6)where m = n � n0, the oscillation decays, roughly as (see Appendix D)< n >n0 � cos� � cos�� q2 �� � exp�� � sin�� q2 �� (5:7)with parameter q = ls=lsp, and � = �0t; �0 = �(n0) (5.2). From a single example oftunneling relaxation in Ref.[20] it is di�cult to judge whether the variation of < n > shows1The tunneling through chaos between regular domains was studied much before in many papers (see [26] and referencestherein). 14



some residual oscillation or just a uctuation. In the latter case ls = lsp as expected [8],and the relaxation (5.7) would be a pure exponential. In any case the tunneling relaxationleads to a new, "double{hump", steady state with two symmetric "humps" at n = �n0.The uctuation of < n > in this steady state can be roughly estimated in the same wayas that for energy [24] (see also Ref.[8]): � < n > =n0 � k�0:6 � 0:4, which does notcontradict with numerical data in Ref.[20].Acknowledgments. I appreciate interesting and stimulating discussions with J.Bellissard,O.Bohigas, G.Casati, F.M.Izrailev, M.Robnik, D.L.Shepelyansky, Ya.G.Sinai.Appendix A: tunneling in momentum spaceConsider a slightly di�erent form of Hamiltonian (1.1), namelyH(I; �) = I22 + � � cos (m�) (A:1)Then, in classically forbidden domain of � including resonance (I2 < 2�(f � 1) = I21)cos (m�) = f � I22� = emj�j + e�mj�j2 � F (I) � 1whence j�j = 1m ln (F + pF 2 � 1) � ln (2F )m (A:2)if f � 1. The action integralS = 2 Z I10 j�(I)j dI � 2m Z I10 ln (2F (I))dI � � 2Im ln (Cg) (A:3)where F (I1) = 1 and g = 1=f = 2�=I2. Asymptotic value of factor C = e2=8 = 0:92 (g �1) while C ! 1 as g ! 1. Using Eq.(1.8) with prefactor m!(g)=� we arrive at Eq.(1.7) form = 2 (standard Mathieu equation), and I � n. Multiplier m accounts for the coherentbackscattering from m barriers of the potential in Eq.(A.1).Notice also that approximations (1.4) and (1.9) are fairly good for small g:a � n2  1 + g28 ! ; !(g) � n  1 � g216! (A:4)There is also a classically forbidden domain in � outside resonance (I2 > 2�(f+1) = I22)where Eq.(A.2) holds as well with F = I2=2� � f > 1. Here the action integralS = 2 Z I0I2 j�(I)j dI � 2m Z I0I2 ln (2F (I))dI � � 2 I0m ln e22 g0! (A:5)if I0 � I = q2�=g, and g0 = 2�=I20 � 1. In this approximation Eq.(A.5) remainsunchanged upon substitution of any I > 0 instead of I2 that is by starting integrationinside the resonance. Relations (A.5) and (A.3) are similar, in both S is determined by15



the larger value of I on the integration path. However, asymptotic value of C = e2=2 in(A.5) is larger than in (A.3).Finally, consider the incomplete tunneling through half of a resonance (cf. Eq.(A.3)):S = Z I00 j�(I)j dI � � I0m ln�g02 � (A:6)where I0 < I = q2�=g. Again, the result is similar to Eqs.(A.3) and (A.5) with a di�erentfactor C = 1=2. For rough estimates to logarithmic accuracy we can use in all cases C = 1.Appendix B: �{tunneling within the resonanceThe quasiclassical asymptotics of the spectrum for Hamiltonian (A.1) at f = 1=g =En=� < 1 is given by the action integral (see, e.g., Ref.[16]):Sa = I I(�) d� = 4p2�m Z x00 qf + cosx dx =16p�m "E(k) � 1 � f2 K(k)# = 2� (n + 12) � 7:23 p�m � 1 + f��2 � f�0:15 ; (B:1)where E(k) is the complete elliptic integral of the second kind, and k2 = (1 + f)=2. Thelast simple expression in (B.1) provides a fairly good approximation to Sa in the wholerange jf j � 1. At the bottom of the potential well Eq.(B.1) gives the spectrum of a linearoscillator with frequency mp�:En = � � + mp� �n + 12� (B:2)which is also well known asymptotics of the Mathieu equation [13]. Near the separatrixwe obtain the total number of states within each of m wells:nW � 8p��m (B:3)which is very close to the total number of rotating states up to separatrix energy Es =� � n2R2 (1 + g2=8) = 9n2R=16 (see Eq.(A.4)). In this approximation we have (m = 2)nW =nR � 3=� = 0:95.The tunneling action in � is given by the integral (cf. Eq.(B.1)):S�(f) = Z jI(�)j d� = 2p2�m Z x00 qcosx � f dx = Sa(� f)2 (B:4)In the upper half of the potential barrier f > 0 (and in the lower half of the well) wecan neglect a slight variation of denominator in approximate relation (B.1) to obtain stillsimpler expression S� � � p�m (1 � f) � � (nW � n): (B:5)It corresponds to the harmonic oscillator approximation for Sa.16



Appendix C: intermediate critical harmonic in the Hill equationRewrite the contribution of m-th harmonic (2.2) in the formln�(m) = ln�n�� + lnm � 2n �G(m); G(m) = ln f + v(m)m (C:1)where f = n2=2� = 1=g > 1, and v(m) = � lnVm. Asymptotically, as n !1, the maincontribution comes from the harmonic m = mc which minimizes G(m), whenceln f + v(mc) = mv0(mc) � �c v(mc) (C:2)Then, �n � �(mc) � nmc� � g 2nmc � �c�c�1 (C:3)provided mc > 1 and mc < min(mf; 2n) (see Section 2).For example, if Vm � exp (��m) Eq.(C.2) has no solution, and the critical harmonicmc = min(mf ; 2n) is as large as possible. Another example is a faster exponential decayof Vm with v(m) = �m� (C:4)Then, �c = � > 1, and mc =  ln f� (� � 1)!1=� (C:5)The above inequality mc > 1 implies g < e��(��1) (C:6)otherwise mc = 1, and Eq.(2.2) should be used instead of Eq.(C.3). Another conditionmc < ml where ml = min(mf ; 2n) leads tog > e��(��1)m�l (C:7)otherwise mc = ml in Eq.(2.2).A more interesting example is the perturbationV (�) = sin (� sin �) = 2 1Xm=1 Jm(�) sin (m�) (C:8)where Jm(�) are the Bessel functions, and all m are odd. For su�ciently large mv(m) = (m + 1=2) lnm � m ln (�e=2) + 12 ln (�=2)and mc � ln ~f + ln ln ~f2 � ln ~f ; �c � 1 + 1ln �2mc�e � (C:9)17



where ~f = f �q �2e . For � � 1 the distortion of resonance (1.1) with V (�) = cos(�) byperturbation (C.8) is very small, yet its e�ect on the energy splitting may be quite big:�(mc) � [�(1)]P ; P � ln �2mc� �m � 1 (C:10)if g � �; (mc � 1).Appendix D: tunneling relaxationFor each degeneracy doublet the state initially localized in one of two symmetric do-mains, e.g., at n = n0 (for model (3.1)) will oscillate so that�(t) � < n >n0 = cos (� � t) (D:1)where < n > denotes the quantum averaging in an instantaneous state, and� = �0 � exp � 2mlsp ! (D:2)is the energy splitting with m = n � n0 and �0 = �(n0) in Eq.(5.2). The relaxation� ! 0 as t ! 1 is determined by the spectrum w(�) which, in turn, depends on thequantum steady state assumed in the formfs(m) = j s(m)j2 = 4=� lse2m=ls + e�2m=ls (D:3)Combining Eqs.(D.2) and (D.3) we obtain for the spectrumw(!) = fs(m) �����dmd! ����� = 2 p� � !p�11 + !2p (D:4)where ! = �=�0 is dimensionless freguency, and p = lsp=ls stands for the ratio of splittingand localization scales. Assuming decoherence of chaotic eigenstates, the relaxation isgiven by the integral�(� ) = Z 10 �1 + mn0� � cos (! � )w(!) d! � Z 10 cos (! � )w(!) d! (D:5)neglecting a small term with m=n0 � ls=n0 in the latter expression, � = �0t. In aparticular case p = 1 (lsp = ls) the relaxation is a pure exponential� = exp (� � ) (D:6)Otherwise the oscillation arises due to the singularity at ! = iq. Asymptotically as � !1�(� ) � cos � � � cos�� q2 � � � exp �� � sin�� q2 �� (D:7)where q = 1=p. 18
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