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RESONANCE PROCESSES IN MAGNETIC TRAPS* 
E. V. CHIRIKOV 

Abstract-Consideration is given to resonances between the Larmor rotation of charged particles and their 
slow oscillations along the lines of force. Under certain conditions these resonances can result in a complete 
exchange of energy among the degrees of freedom of the particle, so that the particle escapes from the trap. 
The influence of resonances on adiabatic processes associated with a time variation of the magnetic field is 
also examined. 

1. I N T R O D U C T I O N  

ONE of the methods for thermally insulating a plasma 
in order to realize a controlled thermonuclear reaction 
is the use of so-called adiabatic traps, or traps with 
magnetic mirrors, proposed and calculated by 
BUDKER.‘~) Similar systems have been proposed by 
 YORK'^) and calculated by JUDD, MCDONALD and 
ROSENBLUTH.(’) Recently. considerable developments 
in this direction have occurred and therefore it is of 
interest t o  study further similar systems. 

The action of an  adiabatic trap is based‘l) on  the 
conservation of orbital magnetic moment of a charged 
particle in a magnetic field (p = MuL2/(2H) where 
uL is the component of the particle velocity in a 
direction perpendicular to the magnetic field H).  It 
is a necessary, but of course not a sufficient condition 
for the usefulness of a trap that it can entrap a single 
charged particle. Generally speaking the lifetime of 
such a particle in the trap is not infinite because the 
magnetic moment is only an  adiabatic invariant, i.e. 
it can change slowly and so allow a redistribution of 
energy among the longitudinal and transverse degrees 
of freedom of the particle and consequent escape from 
the trap. 

The question of the time variation of a n  adiabatic 
invariant has been considered in a number of 
papers.(6-8) However, only KULSRUD‘7’ takes his 
calculations as far as concrete results for a harmonic 
oscillator, obtaining 

A I  2 A(q)  _ -  -- . cos (24, - y )  (1.1) I (2w0)”1 
Here I is the adiabatic invariant, A(u) is the discon- 
tinuity in the qth derivative of uJ(t), 0, and coo are the 
phase and the frequency of the oscillator a t  the time 
of the discontinuity in the derivative. The basically 
unsatisfactory feature of the above expression is its 
asymptotic nature. This means that it is correct only 
if 1 / (oJT)  + 0 ( T  being the characteristic time for the 

* Translated by N. KEMMER from Atonrr tnp  Efiergiyn 6 ,  630 
(1959). 

variation oj(t). For finite values of the adiabaticity 
parameter l / ( w T )  equation (1.1) is not always correct. 
(The conditions for its applicability are given in the 
Appendix.) In  the particular case where w(t) is a n  
analytic function, equation (1.1) gives AZ/I = 0. This 
means that when l/(wT) -+ 0 the quantity AI11 tends 
to zero faster than any power of the parameter l / ( w T )  
(for instance as exp (-COT)), but it remains unknown 
how exactly it behaves. For this reason the normally 
used methods of asymptotic expansion in powers 
of a small parameter such as ( l / w T )  are not applicable 
in this case. 

In  the present paper we consider a different approach 
to this problem. It  is based on the simple physical 
model of resonances between the Larmor rotation 
of the charged particle and slow oscillations of the 
particle along the magnetic lines of force.? Such 
resonances are possible in spite of the differences in 
frequency if the slow oscillations of the particle are 
anharmonic and contain high harmonics of their 
basic frequency. The action of the resonances leads 
in particular to a change in the magnetic moment of 
an individual particle (ignoring collisions). 

2. BASIC E Q U A T I O N S  
The present paper does not aim to produce formulae 

for computation. The main attention is directed to  
the physical processes taking place when a charged 
particle moves in a magnetic trap. We therefore 
confine ourselves to the study of the simple Hamil- 
tonian used by FIRSOW ( M  = 1) 

Here s and y are the co-ordinates along and across the 
magnetic line of force respectively and w is the Larmor 
frequency. The equations of motion have the form 

t T h e  importance of resonances for the change of adiabatic 
invariants has been pointed out by ANDRONOV, LEONTOVICH and 
MANUEL’SHTAM.(~I 
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Since the oscillations along the x-axis are slow 
(R < U )  the solution for y can be stated in the form 

Here p is the Larmor radius of the particle and 
y = cos 0; e = J dt i- p. (2.3) 

dw p2 
dx 2 

x = - - ( I  + cos 2 4 .  

Since wp2/2 = I, where I is the adiabatic invariant 
in which we are interested and which is connected to 
the magnetic moment by the relation Z = c,u/e, we 
obtain 

dw do., 
2 + z- = -I- cos 20. dx dx (2.4) 

Thus the motion along the x-axis is oscillatory with 
a potential energy Iw(x) = pH(x)  and superimposed 
on it a fast periodic perturbation of frequency 2tu. 
This perturbation is usually neglected because w > Q. 
However, if the oscillations along the x-axis contain 
high harmonics of the basic frequency, a resonance 
is possible between the high frequency perturbation 
Z(dw/dx) cos 20 and one of these harmonics. 

The effect described can also be approached from a 
different direction. Let us consider the equation 
j j  + w2(t)y = 0 in which the dependence of eo on 
time is related to the oscillations along the x-axis. 
The period of the function w(t) is much greater than 
l /w,  but if o ( t )  contains high frequencies right up to 
o, one of these may produce a parametric resonance. 

Since H, the total energy of the particle, is con- 
served, both the resonances mentioned lead to a 
redistribution of the particle energy among its degrees 
of freedom. To investigate these resonances, we 
shall use a method described elsewhere by the 
author.(lO) First we introduce the Hamiltonian 
which describes the motion along the y-axis 

Then d X , / d t  = a.X?,/at =  COL;)^^. For the variation 
of the adiabatic invariant I = .@",/cv we find 

where the bar denotes an average over the phase 
which changes with the frequency w. Considering 0) 
as a parameter, we obtain a correction to the frequency 
as @ where p is given by (2.3)(1°) 

dJ 
2w 

- _ - -  sin 20. (2.7) 

We also introduce the Hamiltonian X', which 
describes the motion along the x-axis as given by (2 .4)  

(2.8) 

Putting 
(2.9) 

and taking into account that the quantity W, = 
ps2/2 + Zw, is equal to the total Hamiltonian 2 and 
is conserved, we get 

Pa2 = - + ItO(1 -+ cos 20). 

x = x(1,B); 0 = J Q(Z) dt + y~ 

2 

. aw, CkCU w, = - t [ w,, x,] = i cu  - .? - I COS 20 = 0, 
at  dx 

Here [,I denotes a Poisson bracket. Hence 
ti) t =  I - C C O S ~ O ,  (2 .10)  
0) 

in agreement with (2.6). 
obtain for the 9 of (2.9)(1°) 

In analogy with (2 .7)  we 

We note that the equations (2 .7) ,  (2.10) and (2.1 1) 
are exact for the particular Hamiltonian (2 .1)  we have 
chosen. 

3. FIRST ORDER R E S O N A N C E S  

We integrate (2. IO) by expanding the right-hand 
side into a Fourier series. The function cos 20 
expresses the frequency modulated oscillation 

e = 0) + 9' = (? + (j - 2 eoqz cos 2/18, 
I1 

Here, and in the following, the bar denotes an average 
over phases which change with the frequency a. 
Performing some simple transformations we find 

COS 20 = 2 (FlrL I F,,,) COS 2(~; j t  1 p & 178). (3.2) 
I1 

Here we sum over the two sign combinations, with 
the upper and the lower signs taken together. The 
fact that we expand o ( t )  only in cosines is related to 
the symmetry of the process with respect to the two 
points of reversal (i = 0). The factor 2 in (3.1) 
characterizes the symmetry of cu(x) relative to the 
median plane of the magnetic field. The Fourier 
coefficients F1,, and F2,, are determined by the equa- 
tions 

) (3.3) 

J 
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Now let 

(3.4) 

Multiplying (3.2) and (3.4) we obtain the equation 

(3.5) 

The condition (7 m I Q  shows that of the whole sum 
one should keep only the one term whose frequency is 
close to zero. This is just the resonance term which 
gives the greatest contribution to the variation of I. 

~1 = 2((5I - pl. - IO): 911 = ~1 - ~ / 4 ,  (3.6) 

4p, = - 2 Ql,JFln + E2n) 
l l i  -1<=l 

4- L: Ql,lL(~lll + F2u) (3.7) 

- 2 QldL - FZn). 
I1 -111 = I  

11. A , 1 = 1  

Equation (3.5) must be supplemented by an equation 
for the q j L  of (2 .7 )  and (2.11) 

take into account exactly. However, an  examination 
of particular cases has shown that higher order 
resonances are described by equations similar to 
(3.5) and (3.9) with the replacements 63 -+ kG;  
P, +Pi(/,') N PLxk and Q, --*. e,(') e Q,x, where clg 

is taken to be equal to the greater of the quantities 
(p/R)2(7c-1) and ( QL/Qk-l (R is the radius of curvature 
of the magnetic line of force). I n  the first case, in 
which p/R is involved, both integral and half-integral 
values of k are possible, while in the second case, 
involving QJco, only integral values are allowed. Of 
course, the rule just formulated is only valid for 
rough estimates and the whole question requires 
further study. 

5 .  T H E  STATIONARY CASE 

We shall call conditions stationary if in (2.1) w is 
not explicitly dependent on time ( a o / a t  = 0), while 
in the non-stationary case we have OJ = o(x , t ) . *  The 
stationary case corresponds to a magnetic field which 
is constant in time and axially symmetric. Non- 
stationary conditions arise both a s  a result of azimu- 
thal inhomogeneitiest (owing to particle drift) and 
also when the magnetic field depends explicitly on 
time. 

I t  is well known (see for instance BOGOLYUBOV 
and MITROPOL'SKII(~~) that in the present case equa- 
tions (3.5) and (3.9) determine regions of instability at  
(3 = I s 2  whose widths are A,((> - I Q )  - Q,. As will 

Cl?/ , be shown below there is no  need to investigate these 
r l t  Z*)l!? (3.9) regions in detail. It is important merely to note that 

Taking 
no, Q 

21 - - - = x Q,,,, COS 2/?78, (3.8) ar A- 
we obtain 

- _  ~- 2((; - /a) - 2 Q,, sin y,,, 

they do not overlap, i.e. that their width QL is less than 
the distance 2C2 between them. This follows directly 
from the estimate (1.2): for (I, which gives Q/sl < 

2 (Fill - - (3.10) Higher-order resonances do not change this last 

where Ql,  I S  determined by the expression 

-4P,, = 2 ( L I  - E2,?)(%l - c21,,&) 
0 1  - l l  = / 7  \/(sz/fi) < 1. 

, I  - , I ,  - 1 ,  
inequality, since the total resonance width is 

-- 2 (Fl,,, - F,,,)(Q,,,, 7- Q,,,,). 
-2 kQz(") - Pi 2 k~,- PI; (ak< 1)-  Ill ll=ll 

4. H I G H E R - O R D E R  R E S O N A N C E S  

The equations (3.5) and (3.9), which we will discuss 
further below, are approximate not only because we 
have discarded non-resonance terms in then1 (these 
only lead to small oscillations of T) but mainly because 
not all resonances have been taken into account. 
In deriving (3.5) and (3.9) we started from (3.1) and 
(3.2) assuming p and y to be constant, while i n  fact 
these quantities contain small periodic components 
as shown by (2.7) and (2.11). It can be shown that 
this leads to additional resonances determined by the 
condition k(5 = I C 2  (k 3 2). (We shall call k the order 
of the resonance.) There are also other effects which 
lead to resonances of higher orders, which we shall not 

k h' 

(See Section 4). 
However in that case the regions of instability play 

no  part at all because of the non-linearity of the 
oscillations, or more precisely because of the depend- 
ence of the frequencies (3 and Q on I .  Even for 
particles which fall into the unstable regions, I will 
not change monotonically, but will perform oscil- 
lations round its resonance value.(lO) In  the following 

* The time dependence ~ ( f )  which occurred above was not  explicit 
in x. 

i Strictly speaking the Hamiltonian (2.1) is only correct in the 
axially-symmetric field. However, if change in the magnetic field 
due to  particle drift is small in a time ljs! one can retain the form 
(2.:) with an explicitly time-dependent OA 

(l,l)-(l.3) are the formulae of the Appendix. 
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ADh(6 - I Q )  N 2 ZPL- (05 - la) J/ :z 

we shall call such oscillations phase oscillations in 
analogy with the phase oscillations of charged particles 
in accelerators. They can be investigated with the 
aid of the equation which is obtained from (3.5) and 
(3.9) by elimination of I :  

3 (5.2) 

a -  a 
dt2 at az d?!? = 2 -(U - la) + 2ZPz - (W - la) cos y ~ ~ .  (5.1) 

Here and in the following, we neglect terms in Qz 
which is permissible under the condition Qz2 < 
IIP, a(6 - la)/aIl which is always satisfied.(lo) The 
amplitude of the frequency change in phase oscillations 
is 

while the frequency of the phase oscillations is given by 
a 

QPh2 N 21PL- (W - lC2) . (5.3) I ar 
The case requiring further special discussion is 

when the amplitude (5.2) becomes comparable or 
exceeds the distance between the resonances 2 0  (see 
Section 7). 

6.  THE NON-STATIONARY CASE 
(FAST PASSAGE THROUGH RESONANCES) 

If the frequencies W and C2 are explicitly time- 
dependent and if the difference 6 - la varies, a 
resonance is crossed and thus a change of Z occurs. 
We first consider a fast passage through resonance, 
in which the rate of change of (r, and due to the 
change in Z can be neglected in comparison with the 
rate of change due to the explicit dependence on time. 

- ((5 - In) I a", 
In this case the equations (3.5) and (3.9) can be 

integrated immediately and in first approximation 
(in AZ/Z) we have 

Here yoL is the value of the phase yz at  the instants of 
resonance, (ye = 0). If the distribution of the phases 
yoz in the different passages through resonance is 
random we have z= 0, and 

Here the summation extends over all resonances 
crossed and the bar denotes an average over the 
phases yoz. In the next approximation we have 

- i a -  
2 a i  AZ = -- (AZ)' + 

(6.4) 

The first moment (6.4) characterizes the systematic 
change of I while the second moment (6.3) charac- 
terizes its spread. Knowledge of the two moments 
is sufficient to establish Fokker-Planck type equations 
which can be solved to find the flux of particles into 
the forbidden cone.(l) However, as is shown by the 
expressions for the moments, this equation proves 
very complicated. We therefore consider a simpler 
method for estimating the change in I .  

It  follows from (6.4) that ~ / Z - ~ / Z 2 ,  If 
AI/I  < 1 the influence of the first moment may be 
completely neglected ([(ar>z/Zz]l/z > ATjI). If 4 Z  2 Z 
the influence of the two moments is of equal order of 
magnitude. For estimates it is therefore sufficient to 
investigate only the change of (AZ)z. The condition 
for escape from the trap then has the form 
(Z, - IJ2 ,  where Io is the initial value of I and I, its 
value on the surface of the forbidded cone. 

Since the number of resonances crossed in unit time 
is @/Cl) l a (6  - lR)/atl we get, in view of (6.3) 

- 

- 

d- 77 kZ*(P("')2 
-(AZ)2 = - 
dt 2 Q 2 '  (6.5) 

This ordinary differential equation is easy to solve 
either numerically or by approximate methods. Of 
course, for (6.5) to be valid it is necessary that the 
change of Z in crossing a single resonance should be 
small compared to I itself. 

The coefficient k in (6.5) denotes the order of the 
resonance crossed and is determined by the range of 
the variation of c? - 1Q due to the explicit time 
dependence. 

(6.6) 
In particular, if the magnetic field has some azimuthal 
inhomogeneity we may estimate IC according to the 
formula IC m (Q/G) (AH/H) ,  which is obtained from 

k = C2/At(G - I Q ) .  

A,(d - IQ)/G CY AH/H." 

* I t  may appear that  the azimuthal inhomogeneity does not lead 
to a change of the frequencics W and bccause the particle drift is 
perpendicular t o  V H .  However, if one takes into account the motion 
of the particlcs along the lines of force, it is no t  difficult t o  see that 
H will change along the particle orbit, in fact 111 such a way that one 
has  to take for AH/H the maximum valuc of the inhomogeneity 
along the line of force. 
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As an example we give a comparison of the estimates 
obtained with the asymptotic formula (1, We 
find the expression (2.3) for P and from (6.5) that 
h r / I N  A(Q)(rSZ)1/2n-1/2(2w)-(~-1) or, in a time At = 
~ 1 ( 2 Q ) ,  corresponding to the monotonic change of 
w(t )  in one direction that was assumed by KULSRUD,(') 
(AI /I ) ,  N A(pj2-1/2 (2 ~ ) - ( * - - ~ j  which agrees with (1.1) 
in order of magnitude. 

7. C R I T E R I A  O F  STOCHASTICITY 
The equations (6.3)- (6.5) are based on the assump- 

tion of stochasticity, i.e. on the randomness of the 
phases vol. We now attempt to elucidate under what 
conditions this assumption may be justified. 

For simplicity we discuss a periodic crossing of a 
single first-order resonance at equally spaced instants 
T/2. According to (6.2) we have AI--cos yn, 

where the y n  are the phases at theinstants of resonance. 
If the frequencies c? and SZ do not depend on I, we 
have 

1 )  

((7 - la) dt = constant 6"' Y n + l  - Y n  = Yo = 2. 

and therefore 

AI N 2 cos ny0 < I/sin i-y0. (7.1) 
I1 

In this case AI is bounded and there is no stochasticity. 
We now take into account the non-linear nature of the 
oscillations. After each passage through resonance the 
frequency (3 - IQ will be changed by the quantity 
( ~ c o ) ,  = (41),) x a((> - lQ)/aI  and in the next 
passage through resonance this will lead to an addi- 
tional change of phase by the amount y ln  = T(Aw),,.  
If v <  1 we come back to the previous case. If 
however, y1 > 1 then y1 also determines the phase 
change y,,. Unlike (7.1) this phase change will not 
be uniform but will depend on the previous phase 
(y l , ,  - (AOJ))~ - (AI,?) -cos y,J and a slight change 
of the previous phase will give rise to a change 
of 2n in the following one. It is evident that in this 
case the sequence of phases y,, will be near to random. 
However, a rigorous proof of this statement does not 
at present exist and we accept it as a hypothesis. 
The criterion of stochasticity then has the form 

Similar criteria have been obtained by GO WARD(^^) 
and H I N E ( ~ ~ )  by means of numerical calculations on 
the motion of a non-linear oscillator under the action 

of short periodic impulses. The authors derive Y, as 
the criterion for instability. Its connexion with 
stochasticity is not examined. According to these 
papers instability begins at y1 = W ,  

We shall give this criterion a somewhat different 
physical interpretation. If w(x, t )  is periodic in t then 
each harmonic in (3.5) and (3.9) will be modulated 
with a certain frequency R, = 2 r / T  and can be 
expanded into new harmonic components of fre- 
quencies 2(z - 13) h p Q 2 ,  (z  denotes an average 
over phases varying with the frequencies R and Rd, 
and a is averaged over phases varying with the 
frequency Q,). The coefficients of this expansion are 
P,, N P,(Qd/(2A,(0 - lR))1/2 (see Appendix, para- 
graph 1). 

Inserting the last expression into (7.2) and putting 

we obtain 

(7.3) 

square of the frequency of the phase oscillations for the 
new system of resonances (5.3) and ad is the distance 
between them. 

We apply the criterion (7.3) to the stationary case 
(see Section 5). Using (5.3) and taking into account 
that the distance between resonances is 2C2 we obtain 

If (7.4) is satisfied, the variation of f is stochastic. 
Apparently this effect was observed by GARREN 

et al.(14) who used numerical methods to investigate 
the motion of a charged particle in an adiabatic trap. 
They discovered that near the forbidden cone there 
exists a region of 'unstable' orbits which escape from 
the trap stochastically. Let us apply criterion (7.4) 
to the data of this paper. We determine P, from 
(3.5) in the same way as this was done in the example 
of Section 6. 

(AI/Ol,Z 'v nP,/Q, 
where (AI / I ) l , 2  is the relative change of I in a half 
period (7r/R) of the slow oscillation. This quantity 
was also evaluated by GARREN et al.(14) Putting 
la((> - l S Z ) / a Z l  N G/Z, we find from (7.4) that insta- 
bility begins at (A1/1)l/2 2 0.1, while from the data 
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of GARREN et al. it follows that (41/Z)1,2 2 0.02. 
The discrepancy should not be considered as very 
great, remembering that the estimates are very rough. 

8. NON-STATIONARY CASE 
(SLOW PASSAGE T H R O U G H  R E S O N A N C E )  
Evidently the condition for the slow passage through 

a resonance is A > 1 where A is defined in (6.1). 
As was shown by the author elsewhere(lO) there are two 
basic regimes for the slow passage through a 
resonance : trapping and single passage. An important 
characteristic of the second regime is that AZ is 
independent of the phase of the oscillations and, 
related to this, that the process is reversible even when 
the stochasticity condition (7.2) is satisfied. Therefore, 
if one and the same resonance is passed through 
periodically and slowly, in both directions, I will 
experience only small oscillations. 

The trapping regime is characterized by the fact 
that when the frequencies G and R change I changes 
automatically owing to the explicit time dependence, 
in such a way that the condition of resonance G m ZR 
always remains satisfied. It is evident that if the 
frequencies W and R vary periodically the process 
will also be completely reversible. 

Trapping may however exert an essential influence 
on the adiabatic processes when there is a con- 
siderable change of magnetic field with time, because 
the additional condition G/!2 = constant must be 
satisfied. The main difficulty in utilizing this influence 
is connected with the fact that the region of trapping 
is small. Its width across each reSonance is approxi- 
mately equal to(1) 2A,,(0 - 1Q) - Qllh where a,,,, is 
given by (5.2). If I has a uniform distribution among 
the particles and if therefore the frequencies are also 
uniformly distributed, the proportion of particles 
captured is R,,/Q. But this is just the ratio which 

must be small according to  the stochastic criterion 
(7.4). 

9. C O M P A R I S O N  W I T H  E X P E R I M E N T  
As far as we know, the only work in which quantita- 

tive data on the variation of the adiabatic invariant 
have been obtained is that of S. N. RODIONOV.(~~) 
His comparison of experimental data with the 
theoretical results obtained above was performed for 
three magnetic field configurations (see Table 1). To 
find the Fourier coefficients ,Cl,,, the magnetic field on 
the axis of the system (H(x)  - (~(s)) was approxi- 
mated by a function of the form I/(s 4- 6)2 where x 
is the distance from the turning point of the path 
(k = 0) and b was so chosen as to obtain the best 
agreement. The accuracy of the approximation was 
20-50 per cent. The following numerical values were 
assumed: mean distance of the particles from the 
axis of symmetry in the median plane of the magnetic 
field : r1 = 2 cni ; radius of curvature of the magnetic 
line of force R = 2/17 cm; index of the fall-off of 
magnetic field IZ = ( y  - 1)/640; here y = H,,,/H,, 
where H ,  is the maximum field on the axis of the 
system (the magnetic mirror) and H, the minimum 
field on the axis.* 

The variation of I was found from equation (6.5). 
I, was so chosen that vI - cl,. Initially (for I - To) 
the change of 1 was at its slowest both because of the 
higher order of the resonances passed through (large n, 
see (6.6)) and because of the smallness of P, (smoother 
function d j /w  smaller ,Cl,,,). It was assumed that it 
was sufficient to determine the number N of reflections 
on the magnetic mirrors which led to a change 
(AI,,,) of I such that the order of the resonances 

* For a more accurate description of the experiment see 
RODIONOV. '~~)  

TABLE 1 .-COMPARISON OF THEORETICAL A N D  EXPERIMENTAL DATA 

NO. 1 Y I pIR  1 aff/H(%) k A 1' K 1 N(calc) N ( e x p )  
__ _ _ _ _ ~  ____-___ 

-1- ~ 2.5 I - < 2 >' 10-6 2 Y 10-8 1 03 >6 IOG 
__ ____-__ I <4 

1 13 1 6 x i 
3.5 i - <2 x lo-' 2 x I to 1 >6 i, loG 

~~ -~ 
1 -  3 Y 10-3 0 4  m 10' 

l 3  I 
I 

2 40 



Resonance processes in magnetic traps 259 

passed through decreased by a factor 4,” because after 
this the rate of change of I increases. It was assumed 
that AIl,2/Z N Ak 4 1 where k is given by (6.6). Using 
the relation dt = dN(.r/n) we obtain from (6.5) 

The coefficient P was estimated according to  the 
formula (l.l), the criteria A ,  Y and K according to  
(6.1), (7.2) and (7.4) and it was assumed that 

The drift frequency of the particles Qd = U&/Y was 
estimated according to the formula‘ll) 

The results of the calculation are given in Table 1. 
The data of the last column are taken from RODIO- 
N O V . ( ~ ~ )  In fact a comparison can only be performed 
for his field For A H / H  = 9 and 
15 per cent we find satisfactory agreement with 
experiment. A sharp discrepancy for AHIH < 4 per 
cent can apparently be explained by the large value 
of K (for absence of stochastic changes of I it is 
necessary that K < 1. For K 9 1 the number of 
oscillations would be only about 1000). 

10. C O N C L U S I O N  
The resonance exchange of energy among the 

degrees of freedom of a charged particle that has been 
considered in this paper certainly takes place in any 
magnetic trap. However, it represents a danger, 
(allowing particles to escape,) only in systems which 
have ‘forbidden’ directions for the particle velocities. 
In  addition to systems with magnetic mirrors some 
systems with compensation of the toroidal drift(4) are 
in this class. The most unfavourable conditions 
from the point of view of resonance exchange exist 
in traps with ‘corrugated’ magnetic fields.(16) In 
such fields the amplitudes of the resonance harmonics 
of the slow oscillations (Q,,) are considerably greater 
than in a monotonically changing field. 

We note finally that similar resonance phenomena 
can occur in devices to contain plasma by means of 

high-frequency fields.(17,1s) In  such cases one has not 
an  exchange of energy, but a change of energy due to 
the action of the high-frequency oscillations. 
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A P P E N D I X  
~~ ~~~ 

* Naturally in the general casc one can have both or 1 according 
to the ratio of the quantities p / R  and Q/n (see Section 4). 

t Special experiments for the verification of the present theory 
were not performed because at the beginning of the calculations 
(autumn 1958) thc expcrimcnts of S. N. R o u ~ o ~ o v  wcre already 
completed and his apparatus dismantled. 

Estimate of the coeficients P and Q 
1. We assume that al , ,& - Q22,,r and that their signs 

are random. We assume also that the F, are all of the 
same order for o,/Q < ti < cu,,/a and that F, = 0 
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outside this interval, while the signs of the F, are 
random. (Am = w2 - w1 is the range of variation 
ofw). Such a shape of spectrum is a good approxi- 
mation in the case of harmonic frequency modulation 
and can also be utilized for estimates in other cases. 
Then, by Parseval’s inequality IF,[ c-’ ( Q / A W ) ~ ’ ~  and 

IQ,[ dF(p,I . (Al . l )  

Applying Parseval’s equality to the sum under the 
the root, we find that it does not exceed Q2 (see 
(3.4), ch/w - 0). Assuming also that Aco - (;j we 
obtain from (Al.l) 

Q/Q G d R 7 .  (A1.2) 

2. If w(t)  has a discontinuityA(*) in its qth derivative, 
so that its ( q  + 1)th derivative contains a &function, 
direct calculation gives 

Inserting this into (Al.l) we get 

(A1.3) 

It is easy to see that for (A1.3) to be valid, it is not 
at all necessary that there should be a mathematical 
discontinuity in w(t). It is only necessary that (a) 
at a certain instant the derivative of w(t) should change 
by A(g) during a time =@/a, and (b) at all other 
times it should only change during times %l/o. 
This is just the condition that (Al . l )  be applicable. 


