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The author discusses the conditions for stability of a partially compensated electron beam in relation 
to deflection ("snaking"). It is shown that, with a continuous spectrum of perturbation wave vectors, 

there is always a region of strong instability (with relatively large increments). With a discrete 

spectrum (e.g., with a beam of finite length in an accelerator), instability occurs only at beam cur- 

rents greater than a certain cri t ical  value. Landau damping and radiation friction do not e l iminate  
the instability. A weak dissipative instability is discovered, caused by radiation friction. In some 
cases Landau damping stabilizes this instability, but can also increase it. 

The investigation is based on a model beam in the form of two pinches, electron and ion, with 

constant dimensions and uniform densities. 

Studies of the stability of a particle beam in an accelerator are usually l imited to the single-part icle approxi- 
mations, i .e . ,  they discuss the motion of a single particle in the external fields. In this case the stability problem 
can practically be solved unambigously and reduces to a suitable choice of external fields.* To a first approxima- 

tion, the interaction between particles can be regarded as the electrostatic repulsion, and hence we can estimate the 

l imit ing current. In actual fact, partly or wholly compensated beams in an accelerator form an unusual kind of 
plasma. It is well-known that in a plasma ther can be a number of instabilities due to the interactions of a large 
number of charged particles. The question arises: How far can these instabilities arise in accelerators? This prob- 

lem was first dealt with by Budker [3] for a so-cal led stabilized electron beam. One of the most deleterious plasma 

instabilit ies was found to be beam deflection ("snaking"). In [3] is was shown that polarization of the beam, i.e.,  
relative displacement of electrons and ions, el iminates this instabili ty for sufficiently shortwave ini t ial  perturbations; 

it was suggested that long-wave perturbations might also be stabilized by external fields. This type of instability 
was further discussed in [4, 5], The authors concluded that full stability can only be attained in a strong-focusing ex- 

ternal magnetic  field, and not by eddy currents or weak focusing. These results were obtained by treating separately 
stabil ization by the external field and by polarization, the assumption being made that, to get stabilization, it is 

enough for these two stability regions to overlap. This t reatment is in general incorrect, because new effects may 
arise from the simultaneous action of both forces. In this paper it will be shown that the simultaneous action of 

polarization and external forces always leads to instability for a certain range of wavelengths. 

1. D i s p e r s i o n  E q u a t i o n  

Following [3-5], we shall begin by examining the stability of the simplest model: the electrons and ions are 
regarded as forming two cylindrical  pinches of the same radius a, with constant densities n e and n i, for which we 
shall use the dimensionless values 

V e - -  ~ a 2 e 2 n e  g a 2 e 2 n  i 
r ~ c 2  " 'V i rrl~c 2 

(1) 

* However, in systems with no damping (e.g., in proton storage rings), it  is possible for delicate nonlinear effects to 
arise, of the stochastic-instabili ty [1] or separatrix-splitting [2] type: these are difficult to calculate. 
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where m is the mass of an electron.  The two pinches can move  re l a t ive  to each  other, and polar iza t ion  forces act  

be tween  them:  for one e lec t ron  these are 

(2) 

where y is the transverse d i sp lacement  of the corresponding pinch from its equ i l ib r ium position. Act ing on the e l e c -  

trons there are also ex te rna l  forces proport ional  to the deviat ion from the equ i l ib r ium position: 

] e  x i  = - -  ~,'mL2!t~, (3 )  

where 7 = (W/mcz)  is the re la t iv i ty  factor  for electrons,  

The f luctuations are assumed to be so sma l l  that the forces can be taken as pore transverse,  so that  the r e l a -  

t iv i s t ic  effects  in the equations of mot ion reduce  to the substitution m ~ ym.  We shall  ignore  the magne t i c  forces 

(the magne t i c  "mass" of the current); this is permissible  [3] because  

Y ))  l ,  (4) 
v e In R / a  

where R is the orbi tal  radius of the beam.  Finally,  we shall  assume that  the ions execu t e  only transverse vibrat ions 

(vibrations of the ion pinch), and that  their  longi tudinal  ve loc i t y  is equal  to zero, On these assumptions, the equa -  

tions of mot ion take the form [3] 

~ 1 7 6  

Ye : "/<'-Y,, = .q2 (Y i  - -  y o); (a) 

where 

,: , 2  vi . (6) 
9."-=2 ( ' J  i; ' 

= (Tm/c~M) is the rat io of the e lec t ron  to the ion mass of the b e a m  (c~ = [ u i / U e ]  being the compensa t ion  coe f f i -  

c ien t  of tile e l ec t ron  beam);  dots indicate  to ta l  der ivat ives  with respect  to t ime ,  (d /d t )  = [(0/0t)  . ( v 0 / 0 x ) ] ;  v = 8c is 

the l inear  ve loc i t y  of the electrons in the posit ive x-d i rec t ion .  We shall  consider the s tabi l i ty  problem in the l inear  

approximat ion  for a perturbation of the form y ~ exp i (kx-cot) .  Substi tution of y in (5) leads to the dispersion equa -  

t ion der ived in [3], which, however ,  is conven ien t ly  wri t ten in another  form [6]: 

F (o~) = .~9." + ~..~ .)W (~_kv) . a ._L  2 = 1, (7) 

2.  r n s t a b i l i t y  

Cer ta in  properties of the funct ion F(co) are ve ry  helpful  in the qua l i t a t i ve  anatysis of  s tabi l i ty  by means of the 

dispersion Eq, (7), There are c lear ly  two possible shapes for the curves of F(co); they are shown schema t i ca l l y  in the 

d iagram,  for the case when kv > 0 (the case when kv < 0 reduces to changing the sign of co), If kv < k al l  four roots 

are real  (stability).  On the other hand, if  kv > X, there are always values of k for which the l ine  F = 1 fails exac t ly  

in the "gap"  be tween  the m a x i m u m  and m i n i m u m  of F(co), corresponding to a pair of  comp lex  conjuga te  roots, and 

heiice to instabil i ty.  In fact,  as kv goes from X to ~, the m i n i m u m  of F(w) goes from ~ to 0, and for some va lue  

k z it is equal  to unity. On the other  hand, the m a x i m u m  of F(w) goes from some va lue  F(co 1) at kv ---, k to - f22/X 2 at 

kv --, m. If F(cot) < 1 ( smal l  ~), the wave  vectors  of  unstable perturbations l ie  in the range ( k / v )  < k < k2; whereas if  

F(w I) > 1 ( large ~ ), these wave  vectors  l ie  in the in terva l  k 1 < k < k z, where k I is the va lue  of k for which the m a x i -  

m u m  of F(w) is equal  to unity. Clear ly  k z > kp since i f  this were not so (if  there  were  not "gap") ,  (7) would have two 

extra roots. We thus infer that there is always a range of tu~stable perturbation wavelengths.  This result differs qua l i -  

t a t ive ly  from the results of [4, 5], and has the fol lowing physical  mean ing :  when both s tabi l iz ing  factors act  together ,  

they interfere  with each  other  so that  there  is always a residual range of instabi l i ty.  The in te r fe rence  e f fec t  is due to 

the fact  that  the externa l  forces which reduce the v ibra t ion  ampl i tude  of the electrons also reduce  the separat ion of 

the pinches,  i . e . ,  weaken the polar iza t ion  forces. 
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Frequency dependence of F(co). a) kv < X (stability); b) kv > k (instability). 

3. Z o n e s  of I n s t a b i l i t y  a n d  I n c r e m e n t s  

Let us first consider the case g << 1, which is the case with relatively small compensation, r >> ? 'm/M << 1. 

As remarked above, the zone of instability is then (X/v) < k < ka, since the maximum of F(w) is less than zero for 
all  k > (X/v), Calculating k 2, we find the region of instabili ty to be 

(8) 

which becomes smaller but does not vanish when g2 < X, corresponding to overlapping of the regions of stabilization 
by polarization and by the external field. 

The complex roots in the instabil i ty zone are 

r - kv'q4 (9) O) ~ ~ [_Q2_}_~2__(kv)212 Z~ i ~ 2  (frY) 2 - ~ ' 2  (.~2_~_ ~2 _ (kv)2 �9 

Hence it is seen that the increment  is relatively small (~ 4T) and the instability is almost aperiodic (Rew << Imw). 
The most unfavorable part of the zone of instability is its right hand edge, (kv) 2 -+ fa 2 + k 2. IJ~ this case the approxi- 

mate expression (9) is inapplicable and must be replaced by 

,,, .~ ~ , . . ~ V ~ .  ) ( l  _+_ O. (lO) 

In practice, however, the maximum increment  can be determined from the frequency scatter Ag2.* To make an 

exact allowance for these fluctuations, we must abandon our simple model. We can make a rough estimate of their 
effect if we assume that the min imum difference 

A.o. 
~Q2 @ ) 2  (kv)2 = 2~26,where 6 = 9. 

From gq. (9) we get 

* It is important that there is a continuous frequency spectrum, i.e.,  a spectrum of random fluctuations of frequency 

g}, which is just so for a beam which is usually located in a highly nonequil ibrium state. On the contrary, a spatial 
and slowly changing inhomogeneity of the external fields leads only to displacement of the frequency X and does not 
impose limits on w. Exceptions to this are external forces caused by eddy currents, since these fluctuate proportional- 
ly to the beam current. 
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o ) ~  462 •  " (11) 

Let us now consider the opposite l imit ing case, g >> 1, which corresponds to very weak compensation of the 
beam [c~ << (ym/M)],  and can be reaiized only by taking special precautions to free the beam from ions, Both 

boundaries of the instability region now correspond to the case when F(co) touches F = 1 (see diagram). If the value 

of kv in the instability region is characterized by the parameter p ( -1  _< p _< 1), 

the complex conjugate roots are 

(12) 

 _3p +_ - -  

0);~,0) 0 [ I ~ 2 ~' %~ -2- V (O0(i-p'2) ] (13) 

4. S t a b l e  C a s e  

In some of the cases discussed in Section 2 there is nevertheless no "universal" instability. This is due to the 

finite length 27rR of the beam in a ring-shaped accelerator, and the resultant discrete spectrum of perturbations, 

k 1 = lR -1 (where l is an integer), Hence there are two possible ways of avoiding instability: 1) if the least value of 
k = R -1.  is greater than k 2 (the right-hand edge of the instability region); 2) if the whole instability region lies be-  

tween possible values of k r 

For g << 1. both possibilites are, generally speaking, important, The first leads to the requirement that co~ > 

Xz + f~2 [here co H = (v/R)]. If we consider the driving field of the accelerator as the external force, then X = WHQ, 
where Q is the number of betatron oscillations per revolution. Then we get (2/WH) 2 < 1 - Q  2. 

Note that this expression, like all its consequences, is also valid for strong focusing (Q > 1), where it corres- 
ponds to the so-called smoothed approximation. The higher harmonics, characterizing "deviations" of the trajec-  

tory, are always immobile,  do not affect the local vibration frequency co of the beam, and therefore do not alter the 

stability conditions.'~ From the above inequality it is seen that the first stabilization mechanism is realized onty 
with weak focusing and leads to the following l imitat ion on the beam current: 

Tl~ 2 ( a ) 2 . Q 2 .  (14) 
v~ ~ 2U - f f  

The second possibility is realized if 

fractional part of the argument, 

The l imit ing current 

1/ - (  "? 027-  \ [ 0 H j  - -  O < t - -  {0}, where the symbol {} implies the 

The difference from the case just now considered clearly arises for strong focusing. 

ve < -2~-  -~ o - -  {Q})" - Q2I, (15) 

which is approximately Q times greater than for weak focusing, and is less than the estimate in [5] by the same factor. 

For g >> 1 it is sufficient to consider only the second stabilization mechanism, in view of the relatively narrow 

region of instability. For this case we get 

1,/ O) 0 a (16) 2 
(OH ~ o }  t / ,  " 

The most favorable conditions correspond to a choice of working point for which the term in brackets is equal to zero. 

Then the l imit ing current 

* We shall not consider the value l = 0, which always satisfies the stability condition kv < X (cf. Section 2). 

I" Hence, in particular, the first stabilization mechanism suggested in [5] does not work. 
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~ -  (17) 

This value, though less than Eq. (16) [(~ >> 1)], is still very large, owing to the smallness of a << (ym/M).  

5. F r i c t i o n a l  F o r c e s  

Let us consider the effect of friction. By this we mean any force directed against the electron velocity. Re- 

membering that Ye ~ exp i (kx - cot), we can write (k 1 > 0) 

/ ,  = - -  yrn;~y~ = - -  i ( k v  - -~o)  ~,jy~ynz. (18) 

The frictional force is equivalent to an imaginary term added to the external force: 

k 2 --> k 2 @ iX l ( k V -  o1). (19) 

Assuming that this added term is sufficiently small (k 1 ~ 0), we can find a correction Aw in the formula 

OF 0~. ~((~ E'~) A)~2 q OF (co,0o) ~2) A~o n t- 02F 0(o~((~ ~2) (Ac0)2~ = 0, (20) 

where AX 2 = iX t (kv - co), and for w we are substituting the roots of the dispersion Eq. (7). 

Let us consider the expression for the correction to the frequency in the linear approximation (20): 

A(o = - -  ik 1 (kU - -  Ca)) OF/O~'2 
OF/Oo 

(21) 

OF 9__~ 
Since 0)~ 2 = [(kv--o)2--X2p ~ 0, the sign of Im(Aw) is determined by the signs of kv - w and OF/Ow and can 

be either negative (damping) or positive (instability). Since Im (Aco) ~ (OF/Ow) -1, it is clear that the strongest effect 
of friction corresponds exactly to the maximum and min imum of F(w). In this case, by gq. (20), 

Ao~ = + ] / / - -  i)~ (kv - -  oJ) 
OF/d)t 2 ( 2 2 )  

- -  021/ / do32 �9 

Radiation friction, which is most important for electrons, is unfortunately too weak to suppress the type of instability 

under consideration. However, appreciable instability may arise under the action of frictional forces. 

The physical significance of this dissipative instability is that the velocity of the electrons (Y ~ kv - w) may be 
directed in a sense contrary to the local wave velocity [(Oy/Ot) ~ -w] .  Then the frictional force coincides in direc- 

tion with the wave velocity and may lead to oscillation. The mechanism of the oscillation is associated with scatter- 
ing of electrons in the field of the ion pinch, which vibrates with a certain phase difference from the electron pinch. 

Hence, it is clear that dissipative instabili ty based on frictional forces is possible only in the presence of ions. 

6. L a n d a u  D a m p i n g  

Let us now consider the scatter of the longitudinal velocities of electrons and ions,* which is known to cause 

damping of the vibrations [7]. We shall confine ourselves to the discussion of a simplified dispersion equation [8]. 

This equation can be derived from the expression for the polarization force Eq. (2), in which Ye and Yi must be re- 
placed by the electron and ion displacements averaged over the distribution function. This calculation yields 

~ 2  I ]idu a2 I ]edv (23) 
(o~_ku)2 JU ((t)__kv)2__~2 ---~ t .  

The exact theory [7] shows that the integration in Eq. (23) must be carried out in the complex plane of the variables 
v, u, bypassing the zero denominators (v0, u 0) by a circuit from below. The ionic and electronic Landau damping are 

* We regard the ions as nonmagnetic .  
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proportional to fi(u 0) and fe(v0), respective!y. If they are negligible, we return to the original disper- 
sion Eq. (7). 

Since we are interested in the boundary of the instability, we must take w in Eq. (23) to be real. If ~ << 1, 

this quantity is small in the region of instabitity~ and therefore fe(v0) = fe[(co i X)/k] can be neglected.* Thus only 
the ion temperature is important. To make co real. we shall choose it so that the imaginary part of the integral 

( iTr /k  2) �9 [ O f i ( w / k ) / O u  ] vanishes. Assume that the maximum of fi(u) corresponds to u = 0, so that co = 0. It is con- 

venient  to express the real part of the integral in terms of the distribution function ~(x) of the dimensionless velocity 
x = u / A u ,  where Au has the scatter 

h du 1 ~ q)' (x) d x  __ , I~ (24) 
(o~--ku)2 - -  (k Au)2 3 z (k ku)2 

I ~ > 0 ( ~  1): 

Substituting this value in Eq. (23), we find the stability l imit  in the form 

l i ~ 2  __ 9-2@L2__(kv)2 (25) 
(k Au)2 (kv)2-- '~  

This expression is meaningful only in the zone of instability Eq. (8). In the stable region of k, Eq. (8) cannot be 

satisfied by real co, which indicates the presence of Landau damping, of which, in the region near Eq. (8), the de- 
crement is approximately equal to (keXu)/4-I i [cf. Eqs. (25) and (9)]. From Eq. (25) it is seen that the region of un- 
stable values of (kv) is somewhat restricted, 

< (h'v) 2 < )v 2 -}- Off, (26) 

(k 5u) "a 

but does not vanish. The shortening of the region is considerable fo r small values of 

~Q~I~ 9. 7 : 7 )  " I~ ~tmv 2 (27) 
{k Au) 2 - -  ( a M (Au)~ 

Since the stable case corresponds to f~ ~ kv (cf. Section 4), it follows from Eq. (7) that the contraction of the region 

is small. 

When ~ >> 1, co v kv - X v coo is large, so that fi(u0) = fi(v - X/k) can be neglected. The dispersion equation 

becomes 

~.q2 ~q2/2 L Q2 ! [e dv - -  I .  (28) 
co2 - -  m - -  kv - -  ~, @ 2L ~o - -  kv  + ~ 

D~ contrast to the preceding case, the imaginary part of the integral does not vanish for any value of co: 

0.2 I 1edv  a 9-" f~o--L '~  (29) 
- l e  " 

This means that there is no bom~dary of the stable region, i .e. ,  scatter of the electron velocities leads to increase of 

the increment. In fact the correction to the frequency can be found from Eq. (20), by replacing its first term by Eq. 

(29) multiplied by i. For the extra increment due to Landau damping, we get 

a ~_.~ ( m - .  h (3o) 
Im~m,/A x_  20 ~kL , e \  k j > O .  

The extra damping may equal the main damping Eq. (13). Since the quantity Eq. (29) is always negative, 
Landau damping leads to instability for (0F/0co) < 0 Eq, (20), In practice this instability is important only when 

* Assuming that kv * X. 
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co ~ kv ~ X, as the ve loc i ty  distribution of the electrons is usually fairly narrow. The physical  meaning of the in-  

s tabil i ty is the same as that discussed in Section 5, as in the u l t imate  analysis Landau damping is due to par t ic le  
collisions, i .e . ,  i t  is a special  kind of friction. The importance of the collisions follows from the assumption [7] that 
the distribution function is constant. The part played by collisions was demonstrated c lear ly  in [9, 10]. Instability 
due to Landau damping is evidently s imilar  in its mechanism to the so-ca l led  universal instabil i ty in a p!asma [11]. 

We take this opportunity to thank G. I. Budker, V. /vL Galitskii ,  V. L Karpman, S. S. Moiseev, R. Z. Sagdeev, 
V. V. Sokolov, A. M. Stefanovskii,  and I. B. Khriplovich for helpful discussions. 
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Al l  a b b r e v i a t i o n s  of  p e r i o d i c a l s  in the  a b o v e  b i b l i o g r a p h y  are  l e t t e r - b y - l e t t e r  t r a n s l i t e r -  

a t i o n s  o f  the  a b b r e v i a t i o n s  a s  g i v e n  in the  o r i g i n a l  R u s s i a n  journal .  S o m e  or  aH of  th is  peri-  

od ica l  l i t e ra ture  may wel l  be  a v a i l a b l e  in En$Iish translat ion.  A c o m p l e t e  l i s t  o f  the  c o v e r - t o .  

c o v e r  E n g l i s h  t r a n s l a t i o n s  a p p e a r s  at the  b a c k  o f  t h i s  i s s u e .  
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