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INTRODUCTION

The proposed monograph is devoted mainly to many-dimensional non-linear oscillaticons
of a conservative mechanical system studied in a complete way, i.e. in an unlimited pericd
of time and for arbitrary initial conditions, This problem, of which the famous three-body
problem in astronomy is a particular example, is probably the most complex and at the same
time the most beautiful in classical mechanics. The point is that in the case of finite
moticn (which is equivalent to oscillations in the broad sense of the term) in the absence
of damping, repeated interactions occur in the system, so that very subtle cumlative ef-
fects become important (Section 2.12). The complete soluticn of this problem is still a
long way off, Nevertheless, at the present time, particularly as a result of the numerous
papers of the last 10~15 years, the general picture of the moticn of such a system is al-
ready beginning to emerge more and more clearly through the thick fog of inmumerable details
and the particularity of specific problems.

There are two important reasons for constructing a gemeral theory of non-linear oscil-
lations. On the cne hand, in specially interesting cases it is not always possible to re-
nain in the linear oscillation region, i.e. to keep within sufficiently small amplitudes,

On the other, the linear region is too narrow and therefore relatively poor in phencmena,
Of course, it is difficult to guarantee that qualitatively new processes will not be dis-
covered in this region, particularly if it is remembered that quite recently such interest-
ing and important phenomena as the Kapitsa pendulum'’?) or the stromg focusing of particles
in an accelerator'’?) were discovered in this region. Nevertheless, it seems safe to assert
that the linear oscillation region has been exhausted to a large extent and for subsequent
significant progress, both in understanding and applying oscillatory processes, we shall
have to switch to the non-linear region. An attempt to limit investigations to linear
oscillations is often very artificial, wnduly reduces the possibilities of practical appli-
cation and resembles the notorious attempt to restrict the search to the area directly in
the spotlight. This latter method is certainly a good idea, since the beautifully worked
out comprehensive theory of linear oscillations is in sharp contrast to the disconnected
descriptions of separate non-linear processes. However, it is becoming increasingly dif-
ficult to find anything new "in the spotlight" and the development of a theory of non-linear
oscillations can be considered as an attenpt to light, albeit a little, the general mass of
streets of a large town in addition to the brightly-1it main avenue.

At present, there are two main approaches to the problem. The first is connected with
the search for stable periodic or almost periodic motion, This is related to the classical
theory of non-linear oscillations (Poincaré, Lyapunov, Mandelstam and others), the basic
disadvantage of which -- that the cases of motion considered are too special -- was over-
come recently in the famous works of Kolmogorov, Arnold and Moser (KAM theory, Sectiom 2.2},
Another approach, the ergodic theory, deals on the contrary with the case of extremely m-
stable wotion, leading up to a statistical description (Birkhoff, Hopf, Anosov, Sinai and
others, Sections 2.1, 2.3 and 2.4). Both approaches, in particular recently, have given a
series of brilliant results which form a reliable basis for further research in this field.
However, on account of the extraordinary mathematical complexity of the problem, they
nevertheless remain only special or, rather, limiting cases of motion. It is not even known
under what conditions the transition from one approach to the other, i.e. from stable to
unstable motion, takes place.



In these circumstances it appears advisable to reject the purely deductive method come
pulsory in mathematics and adopt the semi-empirical methed more usual in physics, which in
the present instance means a system of models, analytical estimates and experiments, mumeri-
cal or "real" (Section 3.1). To a certain extent the Mandelstam school carried out such
research with the aim of combining theory and experiment as applied to the special problems
of non-linear oscillations. A similar approach to the general problem cutlined above was
started by Krylov®?), nany of whose ideas are used and developed in this paper. The main
difference in our approach is that we are interested not so much in the macroscopic molecu-
lar systems of statistical physics, the nature of whose motion has in any event been cor-
rectly established, as in systems with a few degrees of freedom, where this problem is far
from trivial and is not of merely theoretical interest, Bearing in mind the given approach,
we shall speak of constructive physics, since the main task here is to construct an approxi-
mate system of notions and laws in a region where, in principle (but not in practice!}, the
exact laws are known., It should be noted that, at present, constructive physics, besides
being related to cscillation thecry, is connected with such large branches of science as,
for instance, statistical physics and chemistry, and in the not too distant future probably
also biclogy. It should be stressed that the centre of gravity of constructive oscillation
theory (and this also applies to a certain extent to other regions of constructive physics)
does not lie in formulating any new laws of nature, but in applying well-knewn and firmly
established laws of mechanics to the explanation (analysis) and comstructien (synthesis)
of new mechanical systems and processes with the desired characteristics (Section 3.1).

The basis of our analysis of non-linear oscillatiens is the notion of non-linear
resonance {Chapter 1), which first arose apparently in celestial mechanics in connection
with the librational motion of the planets (Lagrange) and in a clearer form in accelerator
theory in connection with the phase stability mechanism (Veksler, McMillan). The most
significant and, as far as we know, new process proves to be the interaction of several

resonances, always taking place in a non-linear system.

A large part of the paper (Chapters 2 and 3) is devoted to the study of this interac-
tion.

A system of models was constructed (see diagram on next page) beginning with a cne-
dimensional non-linear oscillator, The downward-pointing arrows show the simplification of
the model down to the elementary one, which is studied in detail analytically (Chapter 2)
and by means of mumerical experiments (Chapter 3). The results ohtained are applied to a
series of increasingly complicated models, finishing with a many-dimensional non-linear
oscillator (upward-pointing arrows). For the analytical investigation wide use is made of
the Krylov-Bogolyubov-Mitropol'sky asymptotic averaging method [KE'J theory®)] on the basis
of Hamiltonian formalism., We were naturally obliged to limit ocurselves to the case of small
(or slow} perturbation (parameter ¢ << 1), assuming that the motion of the unperturbed sys-
tem is known in one form or another. Since, however, the basic results of the work are
estimates in order of magnitude, their range of application can be extended to g ~ 1.

Let us note here two of the results cbtained, in our opinion the most interesting,
Firstly, a study was made of stochastic instability, which from a practical point of view
is the most dangerous instability of non-linear oscillations (Section 2.5) (and at the same
time a peculiar method of particle acceleration, Section 4.1), but from a theoretical point
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of view gives a model of statistical laws applied, as distinct from the model of COTL T empo-
Tary statistical mechanics, to a system with a few degrees of freedom N 2 2 (Section 2.13)")
secondly, a study was made of Arnold diffusion, which proved to be a peculiar wmiversal
instability of non-linear oscillations in cases where there was no stochastic instabilicy

(Section 2.12),

Furthermore, the studies made seem to us to give a rather detailed general picture of
many-dimensional non-linear oscillations, and particularly the rather complicated structure
of their phase space. With the above-mentioned limitation on the perturbation strength,
the transition from the Kolmogorov region of maximum stability to the region of maxdimm in-
stability of the ergodic theory can be traced, and it can thus be shown that in the general
case both regions interpenetrate deeply in a rather complicated way, forming a system with
divided phase space. The latter fact is also an important cbstacle to the construction of
a rigorous mathematical theory.

In spite of some indistinctness in this picture and some doubt about certain of the
details, giving rise to natural dissatisfaction, it can nevertheless serve as a guide line
for future research and current applications in this unexplored region. The work can,
therefore, be looked upon as a kind of reconnaissance in depth (although perhaps including
some superficial observations), intended to facilitate subsequent more accurate investiga-

tions.
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small perturbation parameter (Section 1.1)

non-linearity parameter (Section 1.3].

parameter of the overlapping of resonances;

{im}}i: non-linear width of resonance;

& : distance between resonances (Section 2.13.

parameter of destruction of non-linear resonance separatrix
(Section 2.6);

&, ¢ frequency of phase oscillations (Section 1.4);

wy i perturbation frequency (Section 2.6).

stochasticity parameter (s,5;) for re-normalized rescnance
(Section 2.6].

exponentially small parameter of destruction of non-linear resonance
separatrix;

c v 1l: constant (Section 2.6).

fraction of stochastic component in the region of Kolmogorov sta—
bility (Section 2.6).

mumber of degrees of freedom (Section 2.12).

multiplicity of interaction (Section 2.12).

sign of equivalence in order of magnitude (with correct dimension-
ality).

sign of proportionality (dimensionality not maintained).

The above symbols are valid throughout the text, with the exception
of special cases in which changes in the symbols are specifically
mentioned.

[ypist's Note: In the handwritten formulae the sign e has been used.




CHAPTER 1

NOW-LINEAR RESCMANCE

This short chapter is an introduction. It sets out the basic ideas connected with a
single resonance of non-linear oscillations, or, let us say, non-linear rescnance. Although,
as we shall see later, the difference between resonant and non-resonant motion is not as

great for a non-linear system as for a linear one, the main features of the motion are
nevertheless determined by the non-linear resonance, which is an "elementary" non-linear
oscillation process.

1.1 Formulation of the problem |

Let us begin our investigation with a one-dimensional non-linear oscillator, subject
to various perturbations. Let us assume that the Hamiltonian of the system is:

W=, (p0.)) +sH, (p9., N, D, ¢)

% L. e b
ANNGE); A= AT Pty fioe); 42w 2 ()

Here T = €t is the "slow" time, and the parameters define: ) as the adiabatic processes, d
as the resonant processes, including those with variable frequency, A as the perturbation,
depending on the dynamical variables p, q and their derivatives; Hy is the unperturbed
Hamiltonian; eM; is the small perturbation (e << 1).

Let us explain the idea of introducing the parameter A by the following example.
Supposing we want to consider the frictional force -- kfj. The direct introduction into the
Hamiltonian of the term kqp/m "“spoils" the second equation: § # (3H/3p) = (p/m) + (ka/m).
But if we do the same thing through the parameter: gi(p) where A(p) = kp/m the equaticns
remain canonical, since differentiation with respect to p, q is carried out with a constant
A. The dependence of A on p should be understood in this case as an explicit dependence
on time, so that the Hamiltonian is not conserved. This simple method of taking into ac-
count unusual perturbations in the frame of Hamiltonian formalism is equivalent, essentially,
to using the generalized Hamilton principle for obtaining Lagrange equatiuns*] *}. A
similar problem was studied by Volosov?). '

In spite of the apparent limitation of the problem, the Hamiltonian of the form of
(1.1.1) covers a fairly wide range of non-linear oscillatory processes, mainly on account of
the diversity of the perturbations. In a sense system (1.1.1) may be called an "elementary"
non=linear oscillator, which enables us to introduce, investigate and "sound" the basic
ideas and regularities of this region. In particular, some many-dimensional problems (see
Section 4.5) can be reduced to the form of (1.1.1}.

*) However, it should be borne in mind that the said method should be used with cautiom.
Thus, for instance, frictional forces change the phase space volume of the system
{violation of Liouville's theorem), while in the case of "real" explicit dependence of
the Hamiltonian on time the phase space volume is conserved.
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Let us suppose, for instance, that there is a many-dimensional system, which in a
approximaticn- (e = 0) splits into independent one-dimensional oscillators. The perturbed
Hamiltonian of such a system depends, generally speaking, on varisbles of all decrses of
freedom. However, by calculating these variables in a zero approximation as explicit time
finctions and substituting them into the perturbation, the system can again be divided [in
a first approximation) into separate oscillators of the form of (1.1.1), whose dependence
on variables of other degrees of freedom is replaced by an explicit dependence on time. It
should nevertheless be stressed that the one-dimensionality of the original medel (1.1.1)

may sometimes lead to qualitative anomalies (see Section 2.12).

We consider the parameter € as fairly small, i.e. the perturbation is weak (or slow).
This assumption tums out to be correct in a series of cases and is due to the practical
need to use 3 kind of perturbation theory for analytical investigation. Under the conditien
of small perturbation, resonance, i.e. cumulative perturbatien, is the most significant
process for the oscillatory system. Thus our problem can be defined as the study of non-
linear resonance in a one-dimensional system of the form of (1.1.17.

1.2 Transformation to slow variables

Since the perturbation is small, it is advisable to choose dynamical variables in which
the smallness will be expressed explicitly. In other words, it is useful to exclude the
"fast" wnperturbed motion from the equations. Let the solution of the unperturbed equations
take the form:

G=a2(1,8,7); b= [wl,1)dt+ ¢
- 4
q= “’?f/aé; .f-g_jgﬁa'? (1.2.1)

where 2m/w is the period of the motion and I is the action canonically conjugated to the
angular variable @. Although the frequency of the wnperturbed motion is constant, it is
placed under the integral in order to preserve the fimctional form of the solution also for
the perturbed motion. In this case the constants of the umperturbed motion (I,4) will vary
with time, but slowly. We shall choose them as new variables.

In the wvariables 1,0 the Hamiltonian {1.1.1) takes the form:
P T
W= K, r AW (3,8,0)+eH (16,48, ¢)

where i { is an additional temm to the unperturbed Hamiltonian because of its explicit de-
pendence on time. In order to find H we will write the total derivative of I:

.

s (p,q,0) /202 _ 912 )
2, Sa— t{9q 9p p g/
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and thus is equal to 3/36. But from (1.2.2) ia= ‘dH,.',,..., equating with (1.2 ,:.] we find:

jm( ) /JJ(A ) -

The latter expression is obtained if a similar procedure is carried out with the function
]. When calculating the integral it is necessary to express p,q through I,8 in

B(p,q,i}
accordance with (1.2.1).
In slow variables (I,) the equations take the fomm
.I. = ): _*_é{_ € a_&
?“é; 2 1.2.5
23, Lnfa?)

Since the differentiation with respect to both @,§ is equivalent, system (1.2.5) is cano-

nical.

Let us transform 3H/36 = (3 L-'El}p using the relation:

?.EM._._L " I A) L.M (1.2.6)
2w w 7 2 M - o

where W = ty(p,q,A), and the bar signifies averaging over the unperturbed motion with con-

stant A. We have:

i
aj{r,A)+ 22U (%)) W@ped) o
W 2 A '

2K Ay W
25,
= (a1

Whence "
iz i IS : )... < 29y (1.2.8)

L= =L %k

This equation clearly shows the adiabatic invariance of the action and is very convenient
A similar but approximate equation was

for constructing various approximate expressions

*} (1.2.4) gives the interesting identity:
) LA

(% ("a'lf- Pi9 ;g;l (’Jﬂ(
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obtained by Volesovi). It should be polnted out in this connection that all the equations
in this paragraph are exact.

let us mention without proof another form of equation for § °/:

: - o rﬂu r';_}ﬂ' 2 &
o = =X (fgéfi-‘ 'g‘i -+ E;g%'/) E;i% (1.2.9)

At first glance the disagreeable feature of this expression is that the velocity in the
denominator may vanish. In practice, however, this fact can be used to check the correct-
ness of the expression for \.il, since the mmerator, of course, may also vanish aleng with
the denominator.

For solving specific problems one can use any pair of the equa]ly valid equaticns
(1.2.5), (1.2.8) and (1.2.9].

Sometimes it is convenient to use the energy of the unperturbed system W instead of the
action. Calculating the total derivative in the same way as in (1.2.3) and using (1.2.1),
we find:

L 2HMelpigA) _ . 2T,

W= A 20

(1.2.10)

It should be borne in mind, however, that this eguation is not canonically conjugated to
the equation for §. '

1.3 Single resonance

When the perturbation is small, the most important process for the oscillator is reso-
nance. Resonance generally takes place for a mmber of values of the oscillator frequency
w = w,;. In this chapter we shall consider that the w; are rather far apart, so that near
one resonance the influence of the others can be completely neglected. Such single reso-
nance is a kind of "elementary" process for a non-autonomous oscillator. The interaction

of several resonances will be thoroughly examined in the next chapter.

The time dependence of the unperturbed Hamiltonian is assumed to be slow (but not neces-
sarily small): i ~ e (1.1.1}.

Let us re-specify:

ij:}r':‘ E.-,:':j’f; — Eﬁ)ﬂf

and use the parameter A to describe the losses in the system (for instance, frictional forces).
The equations of motion take the form:



_l|:|..

famg 202 g (1,6)

(f; = ¢ °%f (7,8, :2) (1.3.1)
cri

=t

In accordance with (1.1.1) and (1.2.1) H, is a pericdic function of 9,J of peried Im:

(a6 +nl)
M{f;gr‘;r): ‘;Zi %mq(f)te (1.3.2)

The resonance condition takes the form:

prgs qu WAL B e

Here m,n are any positive integers (we assume that w, @ > 0); in contrast to this, in (1.3.2)
m,n may be both positive or negative.

M1 the harmonics that are muitiples of the basic ones contribute to the rescnance:

Mk, HE; N=1,2,; %/¢ x S

Neglecting the non-resonant harmonics in accordance with the averaging method, we cbtain
from (1.3.1), (1.3.2) the so-called first approximation averaged Hamiltonian!®):

TRl 1 = .:_‘.-V’(
& [ 2 ;?’{; M ~we " € s AT = (1.3.4)

L UG, ) Ny s p=ko-09; A= A58

where U is a periodic function of y, of period Zm.

The physical meaning of neglecting the non-resonant harmonics is fully understood; a
detailed mathematical proof of the validity of such an approximation and alse its accuracy, the
limits of its applicability and the construction of the subsequent approximations, form the
subject of the Krylov-Bogolyubov-Mitropol'sky theory (KEM theary]’}. The most important
effect of non-resonant hammonics is that new frequencies arise in the system and cause new
resonances. For the study of a single resonance this has no significance by definition; as
regards the role of higher harmonic resonances for the case of the interaction of several
resonances, this question will be discussed in Section 2.7.

From (1.3.4) we obtain the first approximation equations (v £) of the averaging method
in the form:
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f'=~ﬁ.2—g _ s A(1)

, DU (1.3.5
L= ko(l)-f2+¢ =

s
Ly

n

Let us recall that the dependence A(I) is regarded as an explicit dependence on time and
therefore is not differentiated when obtaining the equation for 4. The parameter A is con-
nected with a more usual quantity -- the loss rate (eP) -- by the relation:

A P (1.3.6)

The system of equations (1.3.5) is canonical with the resonant Hamiltonian:

M:=Jdim~fﬂ)df+ iff(fﬂf’)f—.iﬂyz (1.3.7)

For a constant A (dA/dI = 0) H_ is the integral of motion and if it can be calculated
in explicit form it enables us fully to investigate the behaviour of the oscillator near
the rescnance. This method is widely used (see for instance Refs. 4 and 5) and is specially
suitable (and necessary) when the non-linearity is small (o << 1). Usually just the case
of small non-linearity is studied, often in the hope of simplifying the equations. However,
things turn out to be just the apposite‘]. In the case of strong (but not very strong,
moderate as we shall call it in what follows) non-linearity

¢ < ok 4« /¢ (1.5.8)

the Hamiltonian (1.3.7) is substantially simplified, since the variation of I in this case
proves to be always small. Therefore one can neglect the dependence of U on I, having put

H(I, *ﬁ/:-. tf{(l‘,,,y)—a- Ule) (1.3.9)

and. take into account the dependence w(I) only in first approximation:

! p L P %‘ﬂ('rt’l)
kw-£51 = mk'(f-fp)_, “-‘H‘L Y (1.3.10)

kiq(IF):: 52

where mﬂ{lp] is the constant characterizing the non-linearity of the oscillator.

In the approximation considered, the conditions of application of which will be dis-
cussed in the next paragraph, the resonant Hamiitonian (1.3.7) takes the form:

i@:mi-%ﬂiaf. gf,{(g.;j (1.3.11)



=12 =
and the equations of motion:

i

7
s

[l
i
i

Generally speaking, one could also take the losses into account in this same approximation
by adding the term Eh[In}w to the Hamiltonian (1.3.11); however, it is more convenient to
do this later (Sections 1.5, 1.6).

System (1.3.12) can be reduced to a so-called phase equation®) after eliminating I:

0 L = (1.3.13)
%’+ ¢mk E? e}

The Hamiltenian (1.3.11) describes the oscillations of a certain "particle" with a mass
lfwi in a periodic ﬁutential field eU(y). Thus for moderate non-linearity (1.3.8) the
behaviour of the oscillator near the resonance proves in the first approximation to be
universal (except for the shape of the "potential well" and consequently the shape of the
oscillations). It should be remembered that with weak non-linearity (a £ =), the behavieur
of the system varies qualitatively according to the type of resonance (external, parametric,
etc.)¥sl4s5),

Since the shape of the oscillations, generally speaking, is not important when study-
ing the general laws of non-linear resonance, it will be specified from time to time in
order not to complicate the writing of the formulae unnecessarily. Let us put:

Kz, ¢}= U (f/'ﬂ""f}" (1.3.14)

Then the original system (1.3.5) takes the form:

=—-5 &-55{-‘ g
9;: km*—f.’-‘?. "‘f-lf-fafl‘f‘;-tj“’

(1,3.15)

and the universal Hamiltonian becomes:

A
M e “_Ea (7-7,) = £l F w (1.3.16)

We studied the periodic dependence of the perturbation on the phase #. Extension to
the case of quasi-periodic perturbation presents no difficulty, but neither does it lead to
any new effects. A periodic transient (acting in a finite interval of time) perturbation,
is not of much interest from the point of view of resomant processes. There is also steady
apericdic (with a continuous spectrum) perturbation, which leads to a completely different
pattern of motion. This case will be discussed later (Section 2.11).
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1.4 Phase oscillations

The analogy mentioned in the previous sectlon with the motion of a "particle" in a
5 P

periodic potential enables us to have a visual picture of non-linear rescnance for moderats
non-linearity. Let us limit ourselves to the case of the harmonic potential (1.3.14].

System (1.3.12) has two equilibrium states, I =1, ¢ = z7/Z, one of which is wnstable
[depending on the sign U, m}‘; see (1.3.13)]. The pattern of the phase plane is periedic

in ¢ and has a characteristic "bucket" appearance (Fig. 1.4.1). 'The phase trajectories are

h"‘h\ P, r “'\\‘
I @ @& i)_,,;
2 il s f“““*c;:/“’“\“:_:/

- ¥

Fig. 1.4.1: Fhase trajectories in the vicinity of resonances for moderate

non-linearity: © - stable, or elliptic, points; = - unstable, or hyperbolic
points.  The dotted lines show the first approximation separatrices; in the
subsequent approximations they are destroyed and stochastic layers are

formed in their place (Section Z.6).

determined from the condition H_ = const. When |H_| < |=Us| (inside the "potential well")
the phase trajectories are closed, i.e. the phase Eﬁnd energy ]] of the oscillator varies
within restricted limits. These oscillations are generally called phase oscillations.

This name is fully justified, since the behaviour of the oscillator near the rescnance is
determined by its phase conditions, namely phase shift law. The frequency of small phase

oscillations is equal to (1.3.13):

*)  From time to time we shall speak of the energy of the oscillator, which depends on the
action variable momotonically dW/dI = w > 0. This is shorter and more usual.
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_Q,;,: Efﬂl'.,'--ﬂf_e-, (1.4.1)

When |H}r| > |eUy| (outside the "potential well") the phase shifts to an unlimited extent
and the energy oscillations decrease in proportion to their distance from the resonance (to
the increase of |H_|). The equation for the separatrix (the upper edge of the "potential
well'") takes the fom: |H},| = |eKq| or:

CI-TF}?-: E‘:-’-iﬂ (...fu.‘i}-' =+ f} (1.4.2)

where the sign in brackets coincides with the sign U"L‘*fc‘

The physical meaning of phase oscillations is that the non-linear oscillator deviates
from the exact resonance (kw = £) as a result of the variation of its frequency w(I).
Alternatively it can be said that the non-linearity stabilizes the resonance, since the un-
limited increase of the energy in the case of a linear resonance is replaced by the re-
stricted oscillations. Thus moderate non-linearity always stabilizes the resonance.

The region inside the separatrix is generally called the capture or phase stability
region. This means that although the oscillator deviates from the exact resonance as a
result of non-linearity, it does not deviate much. Moreover, if, say, the frequency of the
external force varies slowly, the energy of the oscillator also varies so that the approxi-
mate equality kw = 20 is fulfilled all the time.

The size of the capture region is characterized by the width of the separatrix in the
direction of I (Fig. 1.4.1):

(aI),= 4{/} ’ Lmu) 4,/}55{ ©i|=42, a3

*+ These relations determine the non-linear width of the resonance.

From the above-menticned analysis of the resonance it can be seen that the essential
characteristic of a non-linear oscillator is the derivative w', i.e. the dependence of the
frequency on I (or the energy). In what follows, therefore, the term 'non-linear oscillator"
will be equivalent to the term "oscillator whose frequency depends on the energy" or "non-
isochronous oscillator". The oscillations may be of any shape and generally speaking their
shape has nothing to do with the non-linearity. Thus the rotation of a relativistic par-
ticle in a magnetic field is an example of a non-linear but harmonic oscillator, and an
ultra-relativistic particle in a square potential well represents an anharmonic oscillator
with constant frequency.

The conditions of applicability of the umiversal Hamiltonian are connected with the
requirement for small variation of its parameters U, (I), mi'{(l] and depend on the specific
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form of these functions. In order to obtain a general estimate we shall assume that in the
typical case: U§ ~ Uy/I and o ~ aw'/I. It is then sufficient to require small variation of

the quantities I,w:

£ U, / (1.4.4)
—— =~ << ,L Eol --JL L= i
(I f';, A kol /n 4 I

Hence the conditions of (1.3.8) are cobtained, if the parameter ¢ is chosen so that
%)
Ug v wl .

Let us point out that for moderate non-linearity the real expansion parameter is not
£ but v£. The universal equations (1.3.12) prove in this case to be of the first order in
¥t and the original equations (1.3.5) of the second. This also explains the possibility of
simplifying the original equations.

Let us note that the behaviour of a non-linear system near to a resonance has been re-
investigated many times since the days of Poincaré®®). A simple picture of phase oscilla-
tions and phase stability was set out in the classical papers by Veksler’) and McMillan®)
which had such a great influence on contemporary accelerator technique. Nevertheless it
seems to us that so far due attention has not been paid to the umiversality of the phase
oscillation process and the decisive part it plays for the understanding of non-linear
phenomena.

1.5 Crossing the resonance

Let us assume that the value Ip explicitly depends on time, and so the difference
I-1, and thus also kw - 2, change sign. This may occur both as a result of the action
of perturbation with variable frequency #i(1) and as a result of the variation of the fre-
quency of the oscillator w, if the unperturbed Hamiltonian depends on the paramester A
(1.1.1). Unlike other more usual adiabatic processes, in which one can use the conserva-
tion of the adiabatic invariant J = (1/2r)#Idy, the crossing of the rescnance is a more
complex process, since here, generally speaking, J changes considerably independently of
the rate of crossing (see Section 1.6).

It is convenient to study the crossing of the resonance graphically, by analogy with
the motion of the "particle" in a periodic potential, mentioned at the end of Section 1.3 €,
Let us first find the variation of the total energy of the "particle" (1.3.11):

"_f_ér-_;{:i = ?_i;—{} = ._..(...‘.li_ (I'IF)"Z:P = y::_z; (1.5.1)

d- 2

When the perturbation is small, the width of the resonance is relatively small ['u vE,
[1.4.3}]; therefore ip can be treated as a constant, and we obtain:

*} In other words, all the dimensionless parameters of the problem except €, « are of the
order of unity.
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By inserting this expression in (1.3.16) we find '

L %
Y. = V(t;«-%'),,- Joy, - Ly (1.5.3)
J93
where the coefficient V characterizes the rate of crossing the rescnance:
: 2o _ p 22
Y = L4 . k & . & (1.5.4)

2¢ o2

and the phase s is taken at the moment of exact resonance (kw.= ).

If we now represent graphically the quantity proportional to the potential energy of
the "particle": sin ¢, then analysis of the motion is made in the usual way according to its
intersection with the line of the total energy, namely with a horizontal line in the steady
case (i = 0, Section 1.4), with a slanting line V({ - §y) + sin 4, when ip is constant, and
with a curve f£(}) obtained from (1.5.1) in the general case (Fig. 1.5.1).

Fig. 1.5.1: Graphical investigation of the crossing of a resonance:
a - fast crossing; b - slow crossing; c - phase stability; this region is
hatched and limited by a separatrix (thin line).

In the Fig. 1.5.1 it can be seen that there are two qualitatively different regimes as
for crossing through the resonance. The first is characterized by the existence of two
points of intersection (“particle" stops), by restricted phase oscillations and consequently
by repeated crossing of the resonance (line c). This regime has been well studied for a
special case (charged particle accelerators) and is generally called capture or phase sta-
bility?+®). Capture is possible only when |V| < 1 and for specific initial conditions shown
in the Fig. 1.5.1 by hatching. When |V| « 1, capture takes place for almost any initial
phase of the oscillations (when detuning is sufficiently small). Under capture conditions
the energy of the oscillator automatically varies in such a way that kw = 1. The accuracy
of this equality is determined by the depth of the "potential well" and is of the order of
a2, (1.4.3).

*) Limiting ourselves to the special case of (1.3.14).
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Anocther regime (lines a, b in Fig. 1.5.1) is characterized by 2 single crossing of the
resonance. When |V| » 1 crossing is possible for any phase 4y, but for |V| < 1 only for
some Pg. It is the last regime that is a real crossing of the rescnance, since when

values.

Let us consider two limiting cases in which the solution (1.5.3) in the last regime can
be represented a.nalyt.ically“}. We will suppose that the values (i, _.1; and Uy are positive.
If f!l < 0, it is necessary to change the sign of the time in the solution (the resonance is
crossed in the opposite direction) and also to make a phase shift (Yy - 7 - ¢3) on account
of the changing of the sign of V, as is easy to see from Fig. 1.5.1. If U, _,,; <0, It is
necessary to shift the phase by m ($a + o + ) (1.5.3). Finally, if both the values {;

Uq mf( < 0, it is necessary to perform both transformations successively, which is equivalent
to changing the sign of the time and to the transformation @y + -yq.

i) Fast, or linear, crossing of
the rescnance (V >* 1)

In this case non-linearity can be neglected in the first approximation and then the
phase equation (1.5.3) or (1.3.12) is at once integrated:

. f r
5,0 = U o T, - (1.5.5)
and the equation for I (1.3.12) comes to the Fresnel integral [see for example Ref. 9)]:

a2

slks) == ) F 2 Cos (B4 %)

yi slf, G O ?"/) Rree)
ol = - Vog =2 5+
v, -

Let us give the next term of the expansion in powers of the small parameter V-', char-
acterizing the weak effect of non-linearity for the fast resonance cmssing‘:}:

e -1
A(&u}' ==, %5*5?*' [rf'if-f’* EE“ [1 +{E'f)(£‘zf + ﬁ'ﬁ?‘l’,)];

_ 24/ o) |2
bt s 4ol ), g gye

(1.5.7)

The upper sign corresponds to the motion after the resonance, and the lower to that before
the resonance. Since the expression in square brackets > 0, the sign of the non-linear con-
tribution to A(kw) is the opposite of the sign ;. In other words, the non-linear frequency
change for the fast resonance crossing is directed to the opposite side with respect to the
external change of frequency, as in the capture; it is as if the non-linearity somewhat
slowed down the crossing of the resonance.
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The variation of the frequency and energy upon crossing the resonance increases with
the reduction of the rate of transit, but in contrast to the purely linear case it is limited
by the condition V >> 1 and does not exceed: |a(kw)! % M, << w; [AI] S 0, o/ B ’Tﬁ: << I
(1.4.4). '

ii) Slow, or reversible, crossing of
the resonance (V << I

It can be seen from Fig. 1.5.1 (line b) that in this case the phase at the moment of
exact resonance is enclosed in a narrow interval around n/Z:

‘ﬁ.=%‘f“§} -V < ¢ < JY4iV (1.5.8)

The rest of the phases correspond to capture.

An approximate integration of equation (1.5.3) gives®):

Alkw) = 2VRy Cu(Ves)(1:V-£%) +

” (1.5.9)
3_(,'14. kf’f-"zl?"i"—- ?/-f

The first term is important only in an exponentially small region on the edges of the inter-
val (1.5.8), where it leads to unlimited variation of w (and I). The physical meaning of
this variation is connected with the very slow motion (almost a halt) of the phase near the
value (n/2) - V (1.3.12). The sign of 4(kw) is the opposite of the sign of f, as in capture,
i.e. the crossing of the resonance is slowed down. This result is fully understoed, since
the edges of the interval (1.5.8) are directly adjacent to the separatrix.

The main term in (1.5.9) is the second. In the limit V + 0 it depends neither on the
phase yy (and consequently also on the initial conditions), nor on the rate of crossing the

resonance &

als < i-!"t. (1.5.10)

Thus under these conditions there is no continuous transition to the steady case (&, = 0):
this transition takes place only in the capture region.

The sign of A(kw) for slow crossing agrees with the sign of ﬁl, i.e. non-linearity speeds

‘up the crossing of the resonance. Because (1.5.10) is independent of the phase the slow

crossing process is reversible. In particular, when there is periodic crossing of the reso-
nance in both directions, the energy of the oscillator is subjected only to the limited
[and small (1.4.4)] oscillations in approximation (1.5.10). A more accurate expression
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(1.5.9) already depends on ¢, and therefore may lead to certain cumulative effscts. This

-~

question will be dealt with in more detail in Section 2.9.

Let us note that the wniform change (1.5.10) agrees in order of magnitude with the maxi-
mm possible fast crossing of the rescnance.

Comparatively little is lmown about the process of slow crossing of a resonance.
Apparently it was first mentioned in a paper by Symon and Sessler!!), where it was called
the phase displacement mechanism*) and was proposed as a method of acceleration in addition
to the usual phase stability. A qualitative study of slow crossing of a rescnance was made
by Sturrock®), but the criterion of slowness in his paper is incorrect:

.
(_f_—_'__-‘}_:' e (1.5.11)
24

In this form it has no sense at all, since it depends on arbitrary detuning (w - ). However,
as far as can be understocd from the text of Ref. 9 the author takes as the width of the
resonance the linear expression: w - 0 eUj [see (1.6.17)], whereas in order to obtain the
correct criterion one should take the non-linear ome: w - 4~ f, (1.5.4).

Let us now consider the effect of losses. In the first approximation to vE it is neces-
sary to add to the universal Hamiltonian (1.3.11) the term eiy, where A = ﬂ[lp] = COnst.
like the other coefficients. The result can be regarded either as a change of the "potential
well" U(y) (its "slope"), or as some effective change of the speed of crossing through the
previous resonance by the value (1.5.1):

ASi, =g Ny (1.5.12)

In the latter case the parameter of the rate of “crossing" the resonance takes the form
(1.3.6):

V= -‘if"iﬂ"’j& o S ' (1.5.13)
o L1 w o

In particular, with constant frequencies (i, = 0) capture is possible only under the condi-
tion P < wlly. In the capture region the energy of the oscillator on the average does not
change, since the losses are compensated for by the action of the perturbation. Outside the
separatrix the energy of the oscillator decreases, and it goes away from the resonance.

If o = Ehmi, an interesting "steady" case (V = 0) occurs with variable frequencies.
Unlike the true steady case [ﬁl = A = 0), the amplitude of the phase oscillations may vary
(Section 1.6).

*) Displacement in phase space.
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1.6 Second approximation effects

The effects of the second approximation (namelv ~ =, Section 1.4) in the non-linear
resonance are related to the effects due to the variation of the coefficients of the

al Hamiltonian (Section 1.3): Uu{l}mi[lj, A(I), which in the first approximarion to s
taken to be constant. These effects can be divided into two categories: oscillating (at the

frequency of the phase oscillations) and cumulative. According to the estimate of Section 1.4

the oscillating effects in the region of moderate non-linearity are always small (% /%),

and we shall not write out the corresponding corrections in explicit form. On the cther hand,

the cumulative effects can be regarded as slow; the simplest way of studying them is to use
the adiabatic invariant of the phase oscillations:

(1.6.1)

J=d Srap =L b (az)ay

The latter expression is valid for limited phase oscillations, when § dw = 0. Far away from
the resonance J + I, i.e. the adiabatic invariant of the phase oscillations changes over to
the adiabatic invariant of the oscillator itself.

In order to calculate the variation of J let us return to the resonance Hamiltonian
(1.3.7) and use the general formula (1.2.8). The variable parameters here are the frequen-
cies ;(t) and the loss parameter A(t). We have:

F)

2u \ L € / =N

i__; N PS 'Djrg B %i"‘: f]_f_ E/‘nf(‘f-’-@_}'l" (1.6.2)

where T, is the period of the phase oscillations and the explicit dependence on time is due
to the frequency variation (&;).
When there is sufficiently slow and smooth frequency variation the first term, as is

known (Section 4.4), makes an exponentially small contribution to AJ, i.e. J scarcely
Varies*} so that it is sufficient to examine only the second term, connected with losses.

r

For the integration of (1.6.2) let us limit ourselves to small phase oscillations:

le(=|¥-—¢F] <@, <1 (1.6.3)

where ¥, is the amplitude of the phase oscillations. In this case one can put

g & s - F4
. : Ny
RS NI A A A - S

*} Provided the trajectory does not cross the separatrix of the steady-state phase oscil-
lations, for which Ty =y and the adiabatic invariant always changes independently of
the rate of transit, as is in fact calculated in Section 1.5.
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It is easy to verify that the relative accuracy of these expressions ~ 2. In order
to obtain J with the same accuracy it is sufficient to use the universal Hamiltonian
2
2 & (1.6.5)

1% =

By inserting the expressions (1.6.4) and (1.6.5) in (1.6.2) and averaging over the period
of the phase oscillations, we find:

i ’
= g4 (1.6.6)

or

. .
- it N7
Fe= Fug '{{ ) (1.6.7)

In the general case the parameter ﬁ’{lp} may depend on time because of the variation of Ip'
The direction of the variation of J and consequently also of the amplitude of the phase
oscillations (damping or increase) depends on the sign of the derivative A" = (P/w) ’ (1.3.6).

The application of the averaging method to equation (1.6.2) in order to cbtain (1.6.06)
is permissible under the condition that:

s A’ < 32 (1.6.8)

In the steady-state case (i, = 0) the only important effect of the second approximation
is the damping (or growth) of the amplitude of the phase oscillations with a constant decre-
ment -EA’{IPJ (1.6.7); other effects lead only to small oscillating corrections ™ /e,

With sufficiently slow crossing of the resonance under capture conditions, the ampli-
tude of the phase oscillations varies adiabatically according te (1.6.5) and (1.6.7). The
expression for the adiabatic invariant of the phase oscillations is universal in the same
sense as the Hamiltonian (1.3.11), i.e. it does not depend on the type of resonance (except
for the shape of the oscillations).

This result, mentioned for the special case of synchrotron escillations in an accelerator
by Kolomensky and Lﬂbedev5}, is completely natural, since the expression for J can be obtained
with an accuracy of ~ v& from the universal Hamiltonian. In the case of small phase oscil-
lations expression (1.6.5) is entirely umiversal.

The independence of the adiabatic processes of phase oscillation on the type of pertur-
bation can be considered from another point of view. If the phase of the perturbation & de-
pends only on time (1.1.1), the phase plane of the resonance (I,)) differs from the original
phase plane of the oscillator (I,8) only by a twmning of the co-ordinate axes and by the
constant transformation of the scale [y = k& - 28(t)]. In this case the integral (1.6.1) is
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proportional to the phase area of the unperturbed oscillator, spanned by the trajectory of

the phase oscillations. According to Liouville's theorem this area (defined by the metion

of the ensemble of ail the points inside the phase trajectory) is always strictly conserved
(also when there is perturbation). This corresponds to the approximate conservation of the
area spamned by the steady-state trajectory of the phase oscillations, in those cases in

which its intersection with the actual trajectories of neighbouring particles can be neglected.
The resonance itself determines only the shape of the region, for example, for small phase

o~

oscillations: G, * B0~ w' + AL (1.3.12).

In the special case of a harmonic potential (1.3.14), under the condition that
V << 1 (1.5.13) and in the absence of losses we obtain:

(1.6.9)

which agrees with the result of the theory of synchrotron oscillations in accelerators®).
From the last expression it can be seen that damping of the phase oscillations can be ensured
both when the energy of the oscillator increases and when it decreases, owing both to the
special non-linear characteristic of the oscillator and to the variation of the parameters

of the resonance in time. This gives the possibility of using the non-linear resonance for
regulating the amplitude of the oscillations, within the limits compatible with Licuville's
theoremn.

Let us consider the influence of second approximation effects on slow crossing of the
resonance™ . The most important influence is comnected with the possihility of changing
over from one regime of crossing to another, i.e. with capture (transition to limited phase
oscillations) or, on the contrary, with moving out of the resonance. It is evident that
moving out of the resonance will necessarily take place sooner or later, if the amplitude of
the phase oscillations increases. In the case of damping of the phase oscillations capture
is possible (but does not necessarily take place). The point is that with slow crossing of
the rescnance there is only one phase oscillation intersecting the steady-state separatrix
(see Fig. 1.5.1, line b), and therefore the damping may not have time to change the para-
meters of the phase oscillations so much that capture takes place. However, when V + 0
capture necessarily occurs, because the aforementioned phase oscillation in this case ap-
proaches the separatrix and an arbitrarily small change is sufficient for capture. Moreover,
as will be shown in Section 2.6, near the separatrix there is always a more or less wide
stochastic layer which facilitates the capture process.

Let us estimate the critical value of the rate of crossing. Let us return to the com-
plete equation for v (1.3.15), which we will write in the form:

z

* - - #- *
gzl (I-1,) + (Ii,__.fﬂ)m;-— el Fuy (1.6.10)

*) For fast crossing this influence is always small (v vE).
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The first term is the main one, the second always being small for moderate non-linearity;
capture may take place owing to the last term, if i vanishes after crossing the rescnance
near sin ¢ = 1, where ; has a minimun value according to the first approximation (Fig. 1.3.1).
For capture it is also necessary that | # 0 before the crossing of the rescnance; in the op-
posite case all investigation is transferred to the next phase region (one ¢ period to the
right, Fig. 1.5.1). This happens to be possible, since the first tem (1.6.10) changes sign
after the crossing of the resonance, and the last one dees not change.

The minimm value of { in a first approximation is of the order of (1.5.3):

F:m-..‘ = -Q;P /4.??7' (1.6.11)

Capture is possible under the condition of @, 47 V < |eUf]:

I

7 U, @i

Z

a2 &
V< & o :E(_* F Rl 5.0 (1.6.12)

The last inequality is the condition for the signs of the terms of (1.6.10).

For stable capture it is necessary for the amplitude of the phase oscillations to de-
crease after capture; in the opposite case only short-term capture is possible. In the
absence of an explicit dependence on time and the condition U, > 0 the oscillations die down,
. *)

T 5

AL .
( Mﬂ)'_f?f > q (1.6.13)

This is compatible with the capture condition (1.6.12) when

&
ri '{"‘}f
&, & = . (1.6.14)
s

In the opposite case stable capture, as a rule, is not possible except for an exponentially
small region of resonant phases on the edges of the interval (1.5.8), for which inequality
(1.6.12) changes sign (Section 1.5).

Capture is also possible owing to the non-uniform rate of crossing of the resonance
(fy # 0), if this leads to the reduction of V by the value AV A V (1.5.3), namely under the
condition:

*) In approximation (1.6.9), which we use as an example.
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T m—— (1.6.15)
Xy 'Qf

However, for this capture to be stable the damping of the phase oscillations must be suf-

ficiently fast. In fact, under condition (1.6.15) V passes through zero in a time of the

order of one phase oscillation and begins to grow again in absolute value, which may lead

to motion out of the resonance.

All the estimates of the second approximation effects in this paragraph were made for
moderate non-linearity (1.3.8). When there is large non-linearity sa 2z 1 it is necessary to
take into account the subsequent expansion terms of the quantity (kw - 10) in the equation for
¥ (1.6.10). In particular, the relation of the second term to the first is of the order of
VEG * Yo Hence it can be seen that for sufficiently small oscillations

@, << (Eac)‘f‘/‘" (1.6.16)

all remains as usual. However, the shape of the large oscillations ($q ~ 1), and also the
position of the separatrix, may change substantially depending on the specific form of U(I,y).

When non-linearity decreases [u]‘; =+ 0} we finally arrive at a linear rescnance. In this
case the difference (kw - £2) in the system of equations (1.3.15) is simply constant detuning.
The resonance corresponds to the condition :p = 0, whence the linear width of the resonance

(width of unstable region) is:

,é—*.@m}d = L& fq”; (1.6.17)

The linear approximation is valid as long as the non-linear frequency variation {us]’c « Al) is
much smaller than the linear width of the resomance (1.6.17). In particular, for Al v I we
obtain:

4
Ewﬂ ~ £
Jmi, =

Pt -f (1.6.18)

In the intermediate case of £ » o the motion of the oscillator may be very complex and
depends on the type of resonance. The most important feature of this region is the forma-
tion under certain conditions of a capture region, or, in other words, stabilization of the
resonance by non-linearity. The conditions of such stabilization are usually obtained from
the resonance Hamiltonian (1.3.7). An estimate of the order of magnitude can, however, be
obtained much more simply from the following considerations. Stabilization occurs in the
case when the non-linear frequency variation exceeds the linear width of the resonance and
the oscillator thus begins to move out of resonance. On the other hand, the non-linear de-
tuning can be estimated according to the phase oscillation formula (Section 1.4):
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Gdc..:- gf’.Q_)H il T e (f: U, i g (1.6.18)
Hence we obtain the stabilization condition in the form:
z
’
m‘; S 3 QE_) (1.6.20)

= Uo

As an example, let us consider the resonance for small slightly anharmonic oscillations
described by a Hamiltonian®):

= h-PAIE e =
%(Pﬂfff}= A;Z'Ji (F;f}'zz_,& (m Q). 21{4“"-1 2 sl
sz_ga. o ow [k [

where Hy, is the linear part and the smallness of the perturbation is ensured by the condi-
tion: I £ 1. The non-linearity is determined here by the first non-vanishing term Uppm:
with my > 2 (usually Ugos):

{2

pib

r...ii = -’%— ff,mﬂ*- n‘:_,(;-:_,-,z). ] (1.6.22)

and the value of the perturbation for the resonance of the ko harmenic (k > 0) is (ses

1.3.4):
. ke
[Uo | v 2k e, I™* (1.6.23)
The stabilization condition (1.6.2) takes the form:

&, - & g
—— i

Azl * . Az —— | Lees (1.6.24)

f By “‘1_2_,] ; Ucoiy

For 1 + 0 this inequality is always fulfilled when k > m; (stabilization at small amplitudes)
and not fulfilled when k < m;. In the latter case stabilization is possible only for A £ 1.
and the stabilization boundary is given by the estimate:

2,
i /\ sk (1.6.25)

The stable region corresponds to a sufficiently large amplitude: I > I,. Let us note that
when A 2 1 this region (I 2 I,) becomes unstable for k > m;. When k = m;, the stabilization
condition does not depend on I: 4 51,

For the special case of m), = 4 the estimates obtained agree with the results of the de-
tailed caleulations on a similar problem carried ocut by Schoch!+) (see also Ref. 5) and
Mel'nikov®7?),

g
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CHAPTER 2

STOCHASTICITY

This is the main chapter of the paper, in which the interaction of several rescnances,
due to the non-linearity of the system, will he investigated. The interaction of the reso-
nances is a source of instability of the oscillations, which in turmn leads to one or
another form of stochasticity, i.e. to the appearance of statistical laws in the dynamical
system. At this point, classical oscillation thecry merges with statistical mechanics and
what interests us mainly is the border zone between the two sciences. In contrast to the
more elementary investigations of the previocus chapter, we are obliged in what follows to
turn to a system of simple models and to make greater use of analytical estimates by order
of magnitude. Matural dissatisfaction with such a "non-rigorous" approach may be compen-
sated for to a certain extent by the numerical experiments which will be described in the

next chapter.

2.1 The basic model

The central problem of this paper is that of the interaction of several resonances.
According to the results of the previcus chapter, the size of the region of influence of

each resonance (in frequency) is of the order of (Section 1.4}*}:

(aw), ~ 24 (2.1.1)

around the resonance value w = w_. If there are several resonance values of the frequency
{mi] (several resonances, as we shall say for the sake of brevity), then it is obvious that
the character of the motion will essentially depend, generally speaking, on the ratio:

g = @)y | e (2.1.2)
a A

where A = ]mi+l - mii is the frequency distance between neighbouring resonances. The case

of single rescnance, thoroughly studied in the previous chapter, corresponds to the condi-

tion”

S<< 1 (2.1.3)
The asymptotic validity of this condition is fully evident**], A more accurate criterion
of the applicability of the single resonance approximation will be discussed later
(Sections 2.2 and 2.7).

*] For the case of moderate non-linearity (1.3.8), which will always be understood if no
special reservation is made.

++]) See Section 2.7 though.




In the opposite case
S of (2.1.4)

it is necessary to take into account the interaction of the rescnances, namely the simul-
taneous effect on a non-linear oscillator of several perturbations with different fre-
quencies.

It is not difficult to extend the universal Hamiltonian (1.3.11) to the case of
several resonances. Let us choose one of them as the basic resonance (basis of reference)
and designate the values relating to it by a zero index. Let us insert the phases
$=0- o ¥ = o - ¥, (see Section 1.3, k = 2 = 1), The universal Hamiltonian can now

be written in the form:

;ﬂiﬁ — %51: (if'“.?;*) TEF £ z;f; i;f; JGL, (’%ﬁij 5;::ﬁ} (2.1.5)

whence the equations of motion in a first approximation are

_f = = ,Ei: fQ’; Cos (ﬁﬁb'f’ﬁj'fJ)

. (2.1.6)
'f:' = w,) (I-4o)] ; ¥ = L2,- %2,

One can express the following qualitative considerations about the behaviour of this
system under conditions of interaction of the resonances (2.1.4). Each term defines its
own "centre of attraction" around which the phase oscillations of our "particle" (see
Section 1.3] can take place. In other words, in the oscillator phase plane (1,8) instead
of one "potential well" {or rather one 'bucket", Fig. 1.4.1) there are a number of
"potential wells" around I,. Under condition (2.1.4) these "wells" everlap, which makes
it possible for the "particle" to cross over from one well to another. The transition
conditions depend on the phase relation ¢ + ¥;, and generally speaking, vary continuously,
since the "wells" shift with respect to each other along © on account of the difference

of the frequencies ;.

The law governing the migration of the "particle” from one "well" to another depends
on the specific form of the perturbation and in particular on the phase relations. Later
we shall give examples of the various types of migration (Section 2.4). However, it can
be considered that in the limiting case of very large overlapping of the resomant zones

"§5> 1 2.1.7)

the law of migration will be almost random. The reason is the very intricate variation of
I in this case (2.1.6), especially if one takes into account that the phases ¢ + Y3 deter-
mining this variation themselves depend on I by virtue of the non-linearity of the

s W
oscillator }.

*) This conclusion is not trivial, see Section 2.8.
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It would seem that the motion cannot be "completely' random since it satisfies the
dynamic equation. However, the imitation of all the known properties of a random process
is possible and is sometimes so good that the question arises as to whether a "real"
random process is only a clever "imitation". Discussion of this question will be postponed
wntil Section 2.13.

Motion of such a quasi-random type will henceforth be called stochastic, on the under-
standing that this covers all the features of a random process at present known (Section
2.3). The study of the stochastic motion of a mechanical system, begun mainly in con-
nection with the problem of the foundation of statistical mechanics [Section 2.13; see,
for instance Ref. 16], has now become a whole new branch of mathematics -- the metric
theory of dynamical systems -- which we shall refer to in the rest of the paper by a shorter
though less felicitous term, the ergodic theory*}‘ Unfortunately this theory, as a rule,
is too abstract and is not easy to apply to specific physical problems. It should be
stated at once that the most recent and most important results of the theory!’:!?»2%»*1)
are better in this sense and will be widely used in this paper.

Our basic task is to validate inequality (2.1.4) as a criterion of stochasticity,
namely as the border separating the stable and stochastic regions, for the special case
of a mechanical system of the form (1.1.1), and also to calculate the specific parameters
of stochastic motion.

The study of the general case of the interaction of resonances (2.1.6) encounters con-
siderable difficulties, the meaning of which will be clear in what follows. Therefore we
shall first simplify the model (1.2.5) chosen in the previcus chapter, assuming that the
perturbation acts on the oscillator periodically (peried T = 2n/Q), each time for a very
short interval of time t + 0 (approximation of short kicks). Equation (1.2.5) in this case
takes the form:

_f:-ELLH(I,E')
{F.;: El'l-rI (ngzi

(2.1.8)

The phase ¢ dependence of the perturbation (§ = 1) reveals itself by the fact that the
Hamiltonian h(I,®) is different from zero only at intervals of t; the indices 6, denote

partial differentiation with respect to the corresponding argument:

By integrating the system over the interval T we obtain as a first approximaticn :
al= -(ET)hy (1,,0.) + O (% (Ew)v)
ap= () hp(L,8,)+ O (<% @o)™)

(2.1.9)

«] The present state of the theory is presented rather completely in a paper by Sinail?}.

See also Refs. 41 and 42.
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where I,,%; are the initial wvalues. In the interval betwsen kicks I = const., and the
phase varies by the value 48 = (T - 1) * w(Iy), where I, iz the value after the kick. The
total phase shift during the period is:

80= (T-2) o (I )+ jiaé +E2) 4 (1., 8, )=
= T w(Z,)+ET) h, (5,8,) +Ofc® @u)™)

We can now describe the motion of the model by means of a system of difference

(2.1.10)

equations:

|

T g By B (e, Bi)
Brure = Out Tollr)+sh (1, 0,)

(Z.1.11)

where T = 1, and the index '"n" denctes the mumber of the kick (step), the new discrete
time of our dynamical system. Let us recall that the Hamiltonian h{I,®) is a periedic
function of @ with a period of 2Zm.

Equations (2.1.11) are written to first approximation in € and can be put down more
accurately if necessary, using (2.1.8). In particular, let us write the expression for
Al with an accuracy ~ &?, which we shall need later on:

- .
415 _@?)'45' N %‘il Aaf '49 - 4”' 4y 7~

. (2.1.12)
-
_ €7 3 - 3
e aa*o(i;(ﬁf-:')j
Since the original system (2.1.8) is canonical, the Jacobian of the transformation
(2.1.11) is equal to unity with the corresponding accuracy:

M

=1+ 0 (<2 £2i1.1%)
>(1,, 6.) J

which is easy to verify also by direct calculation.

Equations (2.1.11) determine the basic model.of the interaction of the resonances.
It will sometimes be convenient to simplify it even further. As in the case of a single
resonance, the behaviour of the system to a certain degree does not depend on the specific
form of the function h[I,B]* , and therefore we shall choose the two most simple cases
[(2.1.14) and (2.1.15)]. Further, one can neglect in the first v& approximation (see Section
1.4) the last term in the second equation (2.1.11), which represents a linear correctiom
to the frequency [Section 1.6 [1.6.1?}]+ Finally, instead of the action variable I, one
can directly use the frequency of the oscillator w. As a result we shall obtain the

*) See Section 2.7.
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following most simple model equations describing the phenomenon of the interaction of the

TEesOonances:

Opea = W, + £ (')"’L,“‘/z)

'*/’n-hr = {f‘f, + T @Wupe §

(2.1.14)

or

"‘Ju-r-l = A g Cos 27""?”'-1.
= : (2.1.15)
Frrs II% T }1;}- mhf-ij

Here the curly brackets represent the fractional part of the argument -- a convenient way
of specifying the periodic dependence. The coefficients of the model equations (2.1.14)
and (2.1.15) are selected so that the Jacobian |'&{wn+1, u:n+1]fa(%, ¢-n]|- 1 exactly. The
reasons for the choice of two forms of dependence on { will be clear from what follows
(see Section 2.4).

We chose for our basic model (2.1.11) a perturbation in the form of short kicks,

essentially in the form of a &-function. This choice is not very special or exceptional;

on the contrary, it is typical, since the sum in the right-hand part (2.1.6), when there

are a large number of terms, actually represents either a short kick (or series of kicks)

or frequency-modulated perturbation. In the latter case periodic crossing of the resonance
takes place, which according to the results of Section 1.5 is also equivalent to some kick
[[1.5.?] and [1+5.9}]. Thus it can be expected that the properties of model (2.1.11) will
be in a sense typical for the problem of the interaction of the resonances and stochasticity.

The transition to the difference equation (2.1.11) or, as they say, to the transform-
ation, means essentially the integration of the original system of differential equations
over the period of the perturbation, integration which becomes trivial for the special
case considered. We thus obtain some information about the behaviour of the system in a
finite, and characteristic, interval of time. This is really a reason for simplifying the
original system.

The true significance of the basic model is explained in Section 2.6, where it will be
shown that it describes the motion near the non-linear resonance separatrix and in particu-
lar the stochastic layer. The latter turns out to be the origin of any instability of non-
linear oscillations. Thus it appears possible to study the general case of the interaction
of resonances, using the basic model only.

2.2 Kolmogorov stability

Let us return to Eq. (2.1.11). If the perturbation is sufficiently small (¢ + 0) and
Tw = 2rk (k is an integer), i.e. if the system is near to the resonance, the difference
equations can again be replaced by the differential ones:



1=._ h, (1,6)
8= (wf?}"‘"ﬂ) + ‘-;é-‘ iy (7,6)

where mb is the resonance value of the oscillator frequency w.

Let us study the nature of the moticn in this case. First of all let us note that
the Egs. (2.2.1), of course, are not identical to the original ones (2.1.8), in spite of
some resemblance. The derivatives (2.1.8) relate to the interval of time << 1 (time of
action of the perturbation), whereas the characteristic time for the derivatives (2.2.1)
should be »» T (period of action of the perturbation). This means that both the differen-
tial equations (2.2.1) and the difference equations (2.1.11) contain some information about
the solution of the original system (2.1.8) during the perturbation period, as noted above.

Let us further point out that Egs. (2.2.1) agree exactly with the equations (1.3.53) in
Section 1.3, describing single rescnance. Consequently, in the approximation under con-
sideration there is no interaction of resonances and the motion has the character of limited
phase oscillations (Section 1.4).

Let us consider these phase oscillations more thoroughly for model (2.1.15). The dif-
ferential equations in this case take the form:

;,:} = —g—_- Con -?J.r"rrb
o L (2.2.2)
v oz T T

where k is an integer. The universal Hamiltonian (see Section 1.3} is equal to:

H, u;% (‘-‘4-*'* 2?&) . R 27 @ (2.2.3)

J

]

The most important characteristic of a non-linear rescnance is the width of the sepa-
ratrix determining the region of influence of the resopance. In the present case it is

(Section 1.4):
sl '/_i_
@"’)H = T (2.2.4)

The approximate replacement of the difference equations by the differential ones
(2.2.1) is thus equivalent to taking into account a single rescnance. Let us show this
directly. For this let us return to the original equations (2.1.8) which for model
(2.1.15) take the form:

o = £ ‘;Ef, Cr{if-lt Tf;?: Cas 250

Fergl (2.2.5)

& =it
25

&
s
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Now by expanding the periodic é-function inte a Fourier series, singling cut, as usual,
the resonant harmonic, for which Tw = 2rk and inserting ¢ = 8 - kt/T, we obtain exactly
system (2.2.2).

Let us consider more accurate conditions under which the difference equations (2.1.11)
can be replaced by the differential equations (2.2.1). For this it is evident that the
following inequalities must be satisfied:

J;

LER)

-I, =al<«<1; Ay << 1 (2.2.6)

In order to satisfy these inequalities it is necessary first of all for the parameter
€ << 1. This is not, however, an additional limitation, since we always consider the per-
turbation to be small. Further, the value Tw must be near to a multiple of Im:

['l’“m-i.rrkj << 1 | (2.2,

(8]
(5 ]
|
p—

This condition in its turn can be broken down into two: firstly, the initial de-
mming must be small:

| To. - 27k | << 1 (2.2.7")
and secondly, the variation of w in the process of motion must also be sufficiently small:

'T-(_dm)H << 1 (2.2.8)

Let us show in example (2.1.15) that condition (2.2.7') is wmimportant. Since it is
not connected with non-linearity, let us assume that the system is linear, i.e. that
w = wy = const. In this case the second equation (2.1.15) gives R ndy/in:

By = Tuwy, whence:
o

= i

O, = W, + £ &,4(.?3-% + KB, ) (2.2.9)
k=4 '

. The latter sum permits a simple estimate:

J et'fh-f)&, (2.2.10)

= i

R apty, + kb,
2. e X3 -5
k =4 i- e “
Its value is always small except for the resonance regions, where condition (2.2.7") is
fulfilled.

Ju,‘~m“|=21&

In the general case thig force f(y) in a transformation of type (2.1.15) has all the
harmonics: £(y) = quq »32'1'”":11Ill and then the sum (2.2.10) diverges for any rational @./2w.
But this simply means that, besides the main rescnances wT/2rm = k (integer) in (2.2.2)
generally speaking the resonances of the higher harmonics wT/2w = r/q (rational) should
also be taken into accoumt. This question will be discussed in Section 2.7. Going on
ahead, let us note that for a sufficiently rapid decrease in the amplitude of the harmonics
£ 4 with the growth of q, the resonances of the higher hammonics can be neglected.
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There thus remains one important condition for the validity of the approximation hy
a single resonance, and precisely condition (2.2.8) which agrees in order of magnitude
with inequality (2.1.3), since in the present case the distance between the resonances
b= 2n/T.

So far we have restricted ourselves to the first approximation only, taking into
account some rough effects of the second approximation. Naturally the gquestion arises as
to whether some fine effects of the higher approximations qualitatively change the solution
after a sufficiently long time; in other words, are there not seme kind of cumilative cor-
rections of the higher approximations?

The ¥BM theory enables us to construct a solution in the form of an asymptotic
series in powers of the small parameter e, the residual term of which is of the order of
Ry v gl o !]. Such series, as is known, diverge and therefore there is no guarantee
against exponentially small error, say ~ t -« E-AHE. It is true that if the system has
finite damping the asymptotic solution remains valid for any t when there is a sufficiently
small fixed e ’]. However, for conservative systems the question remains open*}+

The practical construction of asymptotic series is a highly laborious task. Apparently
the best technique for such construction was devised by Kruska1®).

8
], a new

Only relatively recently, in papers by Kulnngurvvlg}, Arnoldnu} and Moser
technique for constructing convergent series was developed, which makes it possible in some
cases to solve the problem of the stability of the motion of a conservative system in an
infinite interval of time“'}. This progress was possible because the problem was formulated
in a different way. The perturbed trajectory is generally calculated for given initial con-
ditions. In the averaging mgthodsj the calculation of the variation of the frequencies of
the motion in each successive approximation plays an important part; this makes it possible
to avoid trivial secular terms®). Instead of this in the KAM theory the perturbed trajec-
tory, or rather the invariant surface (torus), is calculated for given frequencies and the
torus shifts a little and becomes deformed in the phase space in each successive approxi-
matien. In other words, in the KAM theory a different principle of splitting up the phase
space into trajectories is applied. It turns out that in order to conserve such tori in
the presence of perturbation it is necessary, firstly, for the system to be non-linear and,
secondly, so that the frequencies of the motion on the torus shall have some special arith-
metical properties, roughly speaking, it is necessary for their quotients not to be too
close to rational numbers (see Section 2.1.2). The change in the formulation of the prob-
lem and the success in solving it are connected with precisely this latter condition. How-
ever, this condition is of a rather specific nature, it is not physical. Although the in-
variant surface of the unperturbed system has "good" frequencies with a probability of
unity, arbitrarily near to it are surfaces with "bad" frequencies which are destroved by
the perturbation. In a real system it is not possible to distinguish between these two
kinds of invariant tori. Thus real conclusions on the stability of the motion can be drawn
only for a two-dimensional autonomous or a one-dimensional non-autonomous system. In this

*) In the case of small damping some effects may also be missed. See Section 2.10.

**) From now on we will refer to these papers as the KAM theory.
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case the invariant tori are inserted one inside the other and thus the "bad" tori are con-
fined between the '"good"' ones, which ensures general stability of the motion independently
of the mythical arithmetical properties of the freqUEﬂﬂiES.]- For the many-dimensicnal
case the question remains open for the present; there is only an example of instability
constructed by Arnoldzz}. This question will be more thoroughly discussed in Section 2.12.

Thus, in the limiting case of s + 0 (2.1.3) the motion of a system of the form (1.1.1)
actually has the character of limited stable phase oscillations. However, in its present
state the KM theory does not make it possible effectively to estimate the critical value
Eerp The existing Estimﬂteszu} are clearly too low by many orders of magnitude. The
numerical experiments (Chapter III) show that E.p 15 of the same order of magnitude as the
border of stochasticity s ~ 1.

2.3 An elementary example of stochasticity

Let us go over to the sclution of the system of difference equations (2.1.11) in the
case when condition (2.2.8), or inequality (2.1.3) which is eguivalent to it, is violated.

Let us begin with an elementary example. Let us consider model (2.1.14), rewriting
the equations in the form:

Dppg = @t L (g -12)

(2.3.1)
‘;P._*-., = 2] t.-'!‘)Im. + T“-}u+ ETC‘""’-«" {-}‘1-)}
Condition (2.2.8) in the present case may be written in the form [see (2.2.4)]:
eT » 1 (2:3:2)

The second of the equations takes on essentially the character of phase extension with a
coefficient eT. Thus it can be replaced in its turn by a model transformation of the form:

tlbuf-«f = J"{"' b o } (2:3:3]

It is difficult to imagine 2 simpler (and rougher) model of a dynamical system.
Mevertheless, it emables us to trace the most important features of the phenomenon of
stochasticity. Moveover this is the only model whose properties are completely known and
furthermore in the form of rigorous mathematical theorems with all the necessary conditions i
and res.arvations“:'. It can therefore serve as a safe point of departure, from which we
will endeavour to progress further by means of less rigorous methods of qualitative esti-
mates, physical (model} considerations and mumerical experiments.

*) We shall call this case one-dimensicnal.

#*] The main results are in the papers by Rokhlin”] and Pbstnikmf“].
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When k > 1 the motion of the system (2.3.3) has all the attributes of a randem pro-
cess so far known -- ergodicity, mixing and pesitive K-entrcpyzz’ (see below). As men-
tioned above, we shall call such systems stnchastic*j.

The ergodicity of system (2.3.3) means the uniform distribution of the sequence y_ in
the segment (0,1). The mixing is closely connected with the correlations in the system.
Let us consider several different trajectories with initial conditions: wuflj. wu{7]. — ,H[T].
Let us conbine them in one trajectory of an r-dimensional point (3,0, ..., y ). e win1
speak of the absence of r-fold correlations in the original system (2.3.3), if the combined
r-dimensional system possesses ergodicity, i.e. if the trajectory of the point [wntl}, o ;nfrj}
uniformly fills the r-dimensional hypercube when n + =,

What is known as weak mixing means the absence of pair (twofold) currelaticrns"]+
The term “weak' shows that this property is not sufficient for obtaining stochasticity.
It turns out®®) that with weak mixing only, the continuous distribution function (of the
ensemble of the systems) in the phase space even in the steady state undergoes strong,
although also infrequent, variations; this is umsatisfactory from the point of view of
statistical mechanics. Let us recall for purposes of comparisen that when only ergodicity
is present there is no steady state at all, but the distribution fumction varies almost

periodicallyzsj.

Infrequent but strong oscillations of the distribution function when there is weak
mixing are apparently due to the higher correlations (r > 2). If the distribution function
relaxes to a steady-state function (constant), i.e. if the oscillations of the distribution
fuinction decrease infinitely when t + =, one talks of strong mixing or simply mixing. It
is natural to assume that (strong) mixing is equivalent to the absence of correlations of
any multiplicity*}. In order to give a full picture let us mention, going on a little
further ahead, that in the special but very important case when the relaxation process goes
according to an exponential law, one speaks of the positive K-entropy of the system.

By virtue of the ergodicity, the correlations of several trajectories are equivalent
to the correlations of several points taken successively in the same trajectory:
{wh[‘], s Wn[r}] + (bnvkys +++» Ynvk,_ ). However, in this case all shifts in time
between the points [|ki - kj|} must increase infinitely with the growth of n. Correlations
with constant shifts are called autocorrelations. These always exist in a mechanical
system, since its motion is unambiguously determined by reversible dynamical equations.
Thus mixing means asymptotic (i.e. with Iki - kjl + =] dying down of the autocorrelations.

The notion of mixing is also connected with the notion of the completely uniformly
distributed sequence introduced by qunbovia} (see also Ref. 24). This last term means

the absence of autocorrelations of any multiplicity with arbitrary non-zero shifts
(k; # kj # 0). This sequence obviously cannct be given by dynamical equations. However,

*) Another term used in ergodic theory is K-systems, in honour of Kolmogorov who discovered
them.

++) For other definitions of mixing and the connection between them see the book by Halmos?®),

t) This assumption still remains only a more or less plausible hypothesis.



the dynamical sequence is asymptotically completely wniformly distributed when thers is
mixing.

Let us consider pair autocorrelation more thoroughly. We determine the correlation
coefficient by

2T ¢
f-’i”(‘i/,iz‘ 2 b (‘rfi’l"f"?‘?"u)} ’

where averaging can be carried out over y, by virtue of the ergodicity, and q is an integer.
An advantage of this definition of the correlation coefficient for a system of type (2.3.3)

L]
[¥]
Y
—

as compared to the standard
s <(t- <)~ <t>)>
ZRE T 2
B R e VR
is that the integer part of ¢ is autematically excluded, which considerably simplifies the
calculation. At the same time |%1(2] (q)| has the properties of a standard correlation

(2.3.5)

Cﬂefficient*] :
From (2.3.3) and (2.3.4) we have:
2re(k*r g) /
(_1:( € -
i (2.3.8)
P (3) 2y ey )

For integer k the correlation coefficient vanishes, because of the nature of its
definitiun**], for all -q except q = -kK"; in the other remaining cases it is of the order
of:

e bl
2) 1 -
/ﬁu (?,/]/ ~ 1"t q] = (2.3.7)

and -asymptotically decreases exponentially.

From this estimate one can also draw interesting conclusions on the space structure
of the mixing, which is characterized by the parameter q. In fact, expression (Z.3.4) re-
presents the qth Fourier component of the correlation, i.e. it characterizes the correla-
tions in the region of scale 1/q. From estimate (2.3.7) it follows that the correlation
coefficient for a given g does not decrease immediately, but only after some time (number
of steps), when K> q. In other words, the mixing process spreads gradually into increas-
ingly small regions. Assuming that K" ~ g, one can obtain an estimate of the size of the
region up to which the mixing extends in time:

*) The idea of such a definition arises from Weyl'stz] criterion for uniform distribution
of a sequence (see also Ref. 24]§ _%et us note &hﬂt {2.3.4) is the standard correlation
coefficient of the quantities e“TI¥n snd £<™1GW0,

=+] See also Section 2.11.
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C’f/cf)" = E._ 4 Gk (2.3.8)

Thus the size of the region not yet affected by mixing also decreases exponentially with
time.

Let us consider, finally, yet another, probably the most important, property of a
stochastic system -- local instability of motion. This means that trajectories that are
close together at first rapidly diverge. For model (2.3.3) we obtain directly:

(‘{V’)u = (‘r?f’),‘ k"= (¢ ), e _— (2.3.9)

i.e. the instability also develops exponentially at the same rate as the correlations
(2.3.7) decrease and the correlation length (2.3.8) is reduced.

Local instability of motieon is the specific mechanism which ensures mixing and decrease
of the correlations in the mechanical system.

The connection between local instability and stochasticity was first noted, apparently,
by Hupfza] and Ikdlundas], analysed in detail as applied to mechanical systems by Krylav:"],
and rigorously proved for a rather general case in recent papers by rnpsov® ) and Sinai’**'?),
Local instability appears to be a very convenient practical criterion of stochasticity,
since it needs only the investigation of linearized equations. It is also not out of the
question that local instability plays a decisive part in understanding the nature of the
statistical laws (see Section 2.13).

Using relation (2.3.9) the whole mixing process for our model can be visually traced.
At first [n £ In (1/6 ,)/1n k] the segment &p, simply extends until it reaches the size
of the whole region {6¢n w1}, After this begins the mixing of the trajectories emerging
from (80}, throughout the whole region (0,1). At the moment when (4], ~ 1 the correlation
length ~ (§)),, since the trajectories of this segment (&) just begin to mix. This con-

dition leads, of course, to the previous estimate (2.3.8).

The distinctive feature of a stochastic system is just the exponential development of
local instability and the development of the resulting process of mixing and decrease of
the correlations. Exponential law ensures fast transition to "random" motion with a high
degree of accuracy. It will therefore be understood that the characteristic rate of this
exponential process is of the greatest importance for the stochastic system. It was in-
troduced in Ref. 25 and is generally called entropy. In our case:

£ oo Au il (2.3.10)
s _e3%,17)

Sinai established that this definition of entropy was equivalent to the original one
in Ref. 25, which was more complex. This quantity had already actually been widely used
by Krylﬂvin} and may therefore be called Krylov-Kolmogorov entropy, or K-entropy.

The term entropy for the quantity (2.3.10) 22 cannot be regarded as felicitous,
because there is confusion with the usual thermodynamic entropy. In fact these quantities
are completely different even in dimension.
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Thermodynamic entropy characterizes the statistical state of the system and depends

only on the distribution functionzj}:
How:m jf &f ol (2.3.11)

where p is the invariant measure of the region (the volume of the phase space for
Hamiltonian systems). In particular, thermodynamic entropy is constant in a steady state
(f = const.). For the classical system it is defined except for the constant, whose value
is connected with phase space I:[ualm;'1:..&1:1':311”J namely with the fact that the quantum
system cannot occupy a region in the phase space less than some &, . This conditien

leads to the standard expression”];

oo JP 0 (totpue) e oid

For a purely classical system one can also introduce some minimm permissible phase
volume [ﬂ"k.'l.] from the following considerations. In its physical meaning entropy charac-
terizes just the stochastic motion of the system. On the other hand, although in principle
a classical system may also occupy an arbitrarily small volume, its motion will not be
stochastic in the regions smaller than correlation volume ﬁuC[t}, similar to the correla-
tion length 1/q (2.3.8) for model (2.3.3). It is therefore natural to choose fu. as the
minimum permissible volume when calculating the entropy: By v B, As a result we
obtain the relation:

H{t) = “‘_/.7‘-" e (/ dpe, (f,yq’/a (2.3.13)

defining a new entropy which now depends not only on the statistical state (f) but also on
the dynamics of the mixing [&u c[t}]' In this form it is difficult to use, both in statis-
tical and dynamical theory. However, it is easy to obtain from it the gquantity character-
izing mixing dynamics only. For this let us choose any specific statistical state, for
example, steady state (f = const.). Defined, in such a way, the dynamical entropy perma-
nently increases with time (in a state of statistical equilibrium!) for any system with
mixing. In the case of systems with an exponentially decreasing correlation length the
entropy (2.3.13) proves to be asymptotically proportional to time. It is therefore natural
to introduce as a characteristic its mean rate of change:

, :‘ ( Slulap e)) 4
£—eco =

This is precisely K-entropy; it is of the same dimension as the frequency, and is there-

fore sometimes called entropy per time unit (or per one step). We will call it K-entropy.

(2.3.14)

2.4 Stochasticity of the basic model

Let us turn to the more real non-linear resonance model given by the difference
equations (2.1.11). In order to study stochasticity it is most convenient to investipgate
the local stability of the solution.
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For this let us write the linearized equations in the varia:iuns'):
cl,'ﬁ;'”{ = ({- s»’lﬁ)—ﬂ“ ~ Ei”* J',g;_
(2.4.1)
; 3 et o
'5-'_‘9:14-4 = [T‘"‘ @'E éﬂ.r)*d‘f}]‘dfu * ﬁ‘f"éﬁ; Tw” +¢hzy )88

By equating the right-hand sides of the equations obtained to A - éIn and X = éEn, Tespec-
tively, we shall find the characteristic equation for A:

/\1- (-2"';{)/{ +1 =0 2.4.2)

where the coefficient

kx—i?ﬂu’fzﬁ (2.4.3)

We put the last term of the characteristic equation as unity, since it is equal to
the Jacobian of transformation (2.1.11), which in its turn is obtained from the exact
Hamiltonian equations (2.1.8). In fact for this it is necessary to take into account the
subsequent terms of the expansion in € (Section 2.1). In the expression for K there also
appear additional terms of the order of €2, €*Tw’, £'Tw’, ... It is, however, essential
for the factor Tw’!, which may become large, always to participate only in the first power
and therefore the additional terms mentioned are small in comparison to the main one
(2.4.3).

The only coefficient of the characteristic equation (K) is closely connected with the

extension of the phase:

9‘141’
%_é:_ « 1+XK+ EAH; (2.4.4)

The validity condition for the approximation of the single resonance (2.2.8) or (2.1.3),
for system (2.1.11) takes the form:

K << 4 (2.4.5)

In this paragraph we shall deal with the opposite case of K 2 1. Thus the last term in
(2.4.4) can be neglected.

The roots of the characteristic equation are given by the expression:

Nete K2 SR E)

<

Depending on the value of A the sclution may be of two qualitatively different types.
The first corresponds to the complex conjugate roots and takes place under the condition

*) Another name for (2.4.1) common in the ergodic theory is tangent transformation.
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~Y <l <O (2.4.7)

It is easy to verify that in this case |Ay| = |A;| = 1, and consequently the linearized
transformation (2.4.1) represents rotation by an angle of ¢,:

-~} - K
€9 = = /}‘ (1-%4) (2.4.8)
J Te 1+ K/2
which corresponds to the oscillatory nature of the solution of (2.4.1) with a frequency of
$3/T. This is the case of local stability of motion.

The quantity K is a periodic function of ©; let us introduce the amplitude:

K,= wax |K /[~ (2.4.9)

When K, << 1 the solution of (2.4.8) gives well-known phase oscillations (Section 2.2) near
to the stable equilibrium state [he = {; hEGI *w’ >0}, It is important, however, that
such oscillatory solutions are possible, genmerally speaking, for any Ky, including

Ky >> 1, near to the points of weak phase extension (hy, = 0; K= 0; d6 , /de = 1).

Let us discuss this a little more thoroughly.

First of all let us estimate the size of the region of local stability in the phase
space of the system (AI, 48). This can be done using the condition that the parameter K
does not go outside the limit of the interval (2.4.7). We obtain the size of the stable
phase region immediately (2.4.7)

od
K -1
s - 2.4.10
26 < 9 f ea K. (2.4.10)

The latter estimate is valid provided that the function K(8) is sufficiently smooth. The
permissible value of AI is obtained from the second equation (2.1.11), with the requirement
that the phase variation Gn e E}n shall not exceed the value (2.4.10):

Ly
al < 2 (2.4.11)

Thus the phase volume of the region of local stability turns out to be £ Ky~ 2.

Further, let us note that when Ky >> 1 the stability [h]:_)G =z 0) and constancy of I
|:hEI = 0, see (2.1.11)] are mtu‘ally exclusive as a rule. Therefore even in the stable
region I varies. This means that the system leaves the stable region after one step
because of the variation of the term Tw in (2.1.11) and thus the actual size of the stable
region proves to be considerably smaller (see Sections 2.8 and 3.5).

However, a special case is possible, when the variation of Tw is equal to an integral
multiple of Im:

4

eTwlhy = + 27k k> 41 (2.4.12)
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Here a stable process of increasing or decreasing the energy of the oscillator may take
place. 5Such a process is used to accelerate charged particles in a microtron and histori-
cally this was the first proposal for the use of the phencmenon of phase stability in

)

7
accelerators - .

Since the left-hand side of the last equality » K; and the size of the stable regicn
shrinks abruptly with the growth of K,, in practice microtron conditions are essential in
the region Ks ~ 1. More complex pericdic conditions are alse possible, under which the
quantities I,0 pass through several different values before returning to the original ones.
Such conditions are thoroughly studied by Moro:lﬂz], where they are called generalized
microtron regimes. The role of all such stable regions and the related estimates will be
discussed in Section 2.8.

Let us now go over to the solutiocn of (2.4.1) in the case of the real roots of the
characteristic equaticon, that takes place for values of K outside the interval {2.4.7).
At the edges of this interval A = #1. Excluding this trivial case cne of the real roots
is always greater than wnity in absclute value, and the other smaller, because of the con-
dition A; * Xz = 1.

Let us first consider the simplest case, when the roots A1,z and the eigenvectors of
the transformation E{’Eﬁ are constant (do not depend on 8). Then the solution of (2.4.1) can
be written in the form:

L=

-iu= E ‘k-h; s !7,,-;". (2.4.13)

where £,n are the coordinates along the eigenvectors: A = Ay = 1/hs > 1. Model (2.1.14)
has just this property and is an exception in this sense (see below).

The description of the motion by the variables £,n, namely the description of the
relative shifting of the points of the phase plane (not necessarily close), may be called

3"'1?}. In the simplest case which we are discussing the structure of

the transverse flux
the transverse flux is very simple: all the trajectories asymptotically approach the

n axis when n + =, and the £ axis when n + -=, The flux of such a structure will be
called asymptotic. Let us note that the two special trajectories of the transverse flux,
along which either continuous extension (£ = 0) or continuous contraction (n = 0) takes
place, are asymptotes. According to the aforementioned results of the papers by Anosav3=]
and Sinai!h'ITJ. the stochasticity of a Hamiltonian system is equivalent to the existence
of an asymptotic transverse flux in the vicinity of any point of the phase space, or in
other words, to the splitting up of all the phaée space into asymptotic trajectories.

The regular nature of the transverse flux necessarily leads to residual autocorrela-
tions, vanishing only when n + =, Any initial region of the phase plane extends exponen-
tially in the direction of n and contracts along £. The mixing process begins after the
length of the region extended in the direction of n reaches the maximum size permissible
for this systam*}. The initial region is then transformed into a set of increasingly thin

*) Thisdlimitatiﬂn is always fulfilled for systems of the oscillator type, which are being
studied in the present paper, at least for some of the variables (phases). Let us note
that the extension in such systems occurs mainly just in phase (see below).
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(along £) layers crossing the phase plane along the axis n and uniformly filling it like
"flaky pastry’. The initial stage of the mixing process for model (2.1.16) is shown
schematically in Fig. 2.4.1.

Fig. 2.4.1: Schematic picture of the mixing process for model (2.4.16)
with £(§) = ¢ - i.” The initial region is represented by a square; the
figures indicate the number of the step. The direction of the extension
coincides approximately with the diagonal of the phase square, and the
direction of contraction with the axis ¢.

The general character of the mixing process here is the same as for the model of
Section 2.3. However, there are also significant differences due to the fact that we are
now considering a Hamiltonian system, the motion of which is reversible in time, in con-
trast to the model of the previous paragraph.

The first difference is due to the fact that the mixing time (n;) depends now only
on the width of the initial region along n(én,) and increases indefinitely when &n, + 0,
while the region along £ may be any size: ng ~ -In (ing)/In A + «. Let us note, however,
that the area of the initial region also tends towards zero together with fn, for any finite
BEg .

Another more important difference is that the initial region, which generally speaking
is of a very complex structure and has a large quantity of thin layers wniformly covering
the phase plane, can always be chosen such that in the process of motion it will shrink to
a region of simple form. In other words, a process which is the reverse of the mixing
process will take place. For this it is sufficient merely to change the time sign and

i.'-'.\ i
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trace the reverse process. The possibility of such a process appears to be inconsistent
with statistical irreversibility, and this leads to the so-called Loschmidr paradoxazj.
This will be discussed (for the nth time!) in Section 2.13. Let us only note that for any
initial region consisting of layers of finite thickness, or what amounts to the same, for
any non-singular initial distribution function, the shrinking process lasts only for a
finite time, inevitably changing subsequently to a process of extension Ealong the other
eigenvector (2.4.13)] and mixing']. This is easy to verify by again tracing the reverse
process [in time).

Thus in a stochastic system mixing always takes place asymptotically (t -+ #=) for any
direction in time! However, on the other hand one can always so choose the initial state

that the reverse process takes place during any finite interval of time,

Let us return to the general case, when the value of ) and also the eigenvectors
change from step to step. The direction of the eigenvectors can be obtained from (2.4.1)
in the form of the ratio:

¢ h
51 ... ®Ye .. (2.4.18)

§6 ~ A-A- zhy,

For small K; (A = 1 + +K) the eigenvectors can always be orthogonalized and instability
occurs only for K > 0, i.e. roughly speaking for half the phase region. It is easy to see
that this region corresponds to an unstable equilibrium state.

For large K; (% = K) the vectors EE’ Eﬁ. generally speaking, are non-orthogonal (for
K < 0). The direction of the vector En (extension) is almost constant (81766 = 1/Tw') and
forms a small angle with the axis ©@. This shows that the extension, and consequently also
the development of instability (and mixing), goes mainly along the phase.

The direction of the wvector EE {contraction) generally speaking varies considerably
as a result of the dependence of hBEI on @. This can lead, in principle, te the solution
entering sometimes into the extension and sometimes into the contraction region, which
leads to limited oscillations instead of instability. Such a situation may arise when
EE’ En are almost parallel, which corresponds to the phase values of @ near to the stable
region £hﬁe = 0). The size of this region decreases by at least 1/K;. Therefore, when
K, >> 1 entry into this region will take place rather seldom, so that even if the system
enters the contraction region it succeeds in going over to the extension region again.
When K, »> 1 this transition takes place relatively fast (2.4.13) except for an exponen-
tially small region near the vector EE, It may bg considered that frequent entry inte the
latter region is possible only for a very special dynamical system or very special initial
conditions™*). ’

fnother important question concerns the possibility of capture in stable regiomns, or

regions adjoining them, where the vectors EE' En are almost parallel. This is not possible
for an autonomous system by virtue of Poincaré's recurrence theorem, valid for any

*) This process is essentially development and relaxation of a big fluctuation. A bright
demonstration of such a process was given by Orban and Bellemans (see Ref. 180).

**) This question will be more closely studied in Section 2.8.
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Hamiltonian system with limited motion. For a non-autonomous system, which we are now
investigating, in principle capture is possible under microtron conditions with unlimited
energy variation. However, the size of the region of the initial conditions corresponding
to such capture is always small, since according to Liouville's theorem it cammot exceed
the size of the stable region [~ eX,”* (2.4.10) and (2.4.11)]-

Thus we reach the conclusion that when XK; »» 1 our model system is locally umstable
almost everywhere. The term "almost" signifies here the exclusion of a region that is
small but of finite measure, in contrast to the ergodic theory, where it relates to sets
of zero measure. This "negligible" difference unfortunately prevents the rigorous appli-
cation of the latest results of the ergodic theory’r’gl}

Systems of type (2.1.14) are an exception, since they have no stable regions, because of
the special dependence K(2).

For model (2.1.14) with its constant A, EE’ Eﬁ the basic theoremsl?’!l} lead directly
to the conclusion of stochastic motion, provided the parameter K lies in the unstable
region. In fact, the demonstration of stochasticity can be extended also to the more
general case of the variable A, ;E' Eﬂ, with, however, the necessary condition that K(&)
lies entirely (for all @) outside the stable interval (2.4.7). This was recently shown
by Oseledets and S:’Lm&li””}I (see Section 2.8). The proof was based on the existence of an
asymptotic transverse flux (see above). However, the direction of the asymptotes now dis-
agrees, generally speaking, with the local direction of the eigenvectors EE’ En [compare
(2.4.13)].

Since K(9) is a periodic function, the absence of stable regions necessary for the
proof of stochasticity is possible only in the case of discontinuity of K(@) or its deriva-
tive. If this condition is not fulfilled then, according to Sinai's paper!?), in order to
prove stochasticity an independent proof of ergodicity is required, or at least the exis-
tence of an ergodic component. Thus in the general case the question of the stochasticity
of the basic model is still open in the sense of rigorous mathematical proof.

Another difficulty in using the results of the ergodic theory lies in the different
formulation of the problem. Generally, mixing is considered in the whole region accessible
for the dynamical system (for instance on the full energy surface for autonomous systems).
The result of such mixing from the point of view of statistical description is a steady
(statistical) state. In this paper, however, we wish to go further, and in particular
to obtain the kinetic equation enabling us to trace the evolution of the statistical state
of the system (Section 2.10). For this it is necessary to split the motion into "fast",
which represents the mixing process, and "slow", described by the kinetic eguation. For
our model system the motion is fast.in the phase @. Accordingly, we need the mixing only
in phase.

Let us show how the latter difficulty can be overcome by means of a new model, which
will be called elementary. We will base ourselves on model (2.1.15), in which we replace
cos 2my by arbitrary function £(y). Further, let us multiply the first equation of
(2.1.15) by T/2r and introduce a new variable:

Tw
Pu = ?ﬁt"j (2.4.15)

to the problem under consideration.

bt L) Tt s e st i e P bl sl L e o et

PR T e S R T

B



- 45=

The idea of this variable is that the variation u interests us only in so far as it leads
to the variation of the phase y . As a result we obtain a new transformation, describing

the elementary model:

Ywsa ™= {(Pq L ‘é"f?{/ﬁgﬂ "’.;
%H-Ff = g{?{‘:"{_ Iﬂ”“"f;

2.4.16)

with a single parameter

L’ _ E._T.. (2.4.17)
i

The essential difference between the new and the old model is that both the variables (§,¥]

are now periodic, the phase plane is limited (system in a square or on a torus) and for

k = 1 all the vp region, as well as the ¢ region is passed through ih one step, i.e. one

can consider the classical problem of mixing in the whole accessible region of the phase

space of the system.

Model (2.4.16) is the most simple non-trivial model of stochasticity in a Hamiltonian
system. With its aid it is possible to go more or less straight over to the real physical
problems. Therefore in the next paragraphs the behaviour of the elementary model will be
thoroughly studied analytically (Sections 2.7 and 2.8) and by means of mumerical experi-
ments (Chapter 3).

Turning to the question of the K-entropy of the Hamiltonian system, let us first con-
sider again the simplest case. (2.1.14). Since K-entropy (2.3.14) is asymptotic (in time)
like all the other quantities of the ergodic theory, only the asymptotic behaviour of the
transverse flux is essential, i.e. actually, only its asymptote with extension, towards
which all the other trajectories tend when t + =, For model (2.1.14) according to (2.4.13)
the asymptote is characterized by constant extension with a coefficient l+, where the index
+ shows that the eigenvalue is chosen > 1, corresponding to the extension. The asymptotic
motion, in this case, thus coincides with the motion of the model of Section 2.3 and this
means that the K-entropy will also be the same as (2.3.10):

b= 2ul? (2.4.18)

In the general case of the variable A, ;E’ En, tre K-entropy depends on the extension
coefficient on the asymptote of the transverse flux ha' This coefficient, penerally
speaking, will be variable, since the position of the asymptote in relation to the vectors
EE’ En, changes. According to Sinail?] the entropy is equal in this case to

Loom Bl AL S (2.4.19)

where the averaging is done either along the trajectory of the system, or by virtue of the
ergodicity over the phase space, or to be more precise, over the ergedic component in the
presence of stable regions.
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For our basic model (2.1.11) the expression for the K-entropy can be simplified when
Koy *» 1. According to (2.4.6) in this case:

AT k= K, F(&/ (2.4.20)

Further, let us note that l; differs from A" only by the factor depending on the angles
between the direction of the asymptote and the vectors Eﬁ, Eﬁ. From (2.4.19) in this case

we obtain:

h=wBk +C 5 Lk, (2.4.21)

where C is a constant ~ 1, depending on the specific form of the system. The latter ex-
pression becomes valid when In K, >> 1. More accurate estimates of the K-entropy for some

cases will be given in Section 3.4.

2.5 The border of stochasticity

In the previous paragraphs we have thoroughly discussed two limiting cases of very
small (as compared to wnity) and very large values of the parameter of stochasticity K,.
With some reservations, in the first case the motion is stable and in the second it is
stochastic. The question of the position of the border of stochasticity separating the
two cases naturally arises. In other words, it is a question of deciding under what con-
ditions stochasticity arises in the system, or, on the centrary, the motion becomes stable.

Let us point out that stochasticity is the most dangerous instability of a non-linear
oscillator. In fact, stochasticity means a diffusion process which makes the energy of
the oscillations change, roughly speaking = vt (see Section 2.10}. The proportionality
factor is in a sense maximal for a given perturbatiom (Section 2.12). The only faster
process is linear resonance, in which the emergy varies proportionally to t. However, for
a non-linear oscillator such resonance is not possible, because the frequency of the
oscillations changes with the energy. Microtron regimes, considered in the previous para-
graph, are an exception, in which also the energy may vary = t. But such regimes require
very special initial conditions, at least when K, »> 1. But stochasticity takes place in
8 wide parameter region (K, z 1). Hence, the border of stochasticity is at the same time
a criterion for the occurrence of the most dangercus instability of non-linear oscillations.

It is not usual in ergodic theory to formulate the problems of the border of stochas-
ticity. Although there is also in the theory the term "ergodic component" referring to the
situation concerned, the approach generally adopted is to ask whether the -system under con-
sideration is stochastic. In our case, namely for systems of the non-linear oscillator
type (1.1.1), the approach should be different and we should ask what the stochasticity
region of the system concernmed is like. We are first of all concerned with a region of
values of the parameters of the system, such as the parameters of perturbation £, non-
linearity a (Section 1.3), etc. The border of stochasticity defines the critical values
of these parameters, corresponding to the transition from the stable to the stochastic
region. If these parameters are constants, i.e. do not depend on dynamic wvariables, the
problem can be formulated in the classical way: is the system stochastic (in all the
phase space accessible to it) for given values of the parameters?
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Let us note that for an autonomous system it is sufficient to require the parameters
to be constant on the energy surface, and the energy of the system can also be considered
as one of the parameters.

In the general case the parameters determining the border of stochasticity or, as we
shall say for the sake of brevity, the parameters of stochasticity, depend also on the
dynamical variables. FPor instance, the parameter K depends on the phase (2.4.3). This
means that the border of stochasticity divides up the phase space of the system. For
autonomous systems this implies the dividing up of the energy surface, but for the sake
of brevity we shall simply speak of systems with divided phase space.

In the example given above (2.4.3) the stable regions are small when K; >> 1, and in
a certain sense they can simply be ignored. However, cases are possible (see for example
Section 4.1) in which the border of stochasticity divides up the phase space into regions
of the same order of magnitude, so that neither of them can be neglected. This situation
is similar to the action of some weak additional conservation law; wunlike the standard
one it does not single out a subspace of smaller dimension, but part of the phase space of
the same dimension. From the physical point of view it seems completely unsound to renounce
a statistical description in such cases. Consequently the problem arises of extending the
ergodic theory to systems with divided phase space. The difficulties of this problem can
be seen from the following rather plausible hypothesis of Sinai*): for systems of the type
concerned the stable regions of the phase space form an everywhere dense set, which as it
were penetrates (saturates) the ergodic component. Thus in a rigorous formulation of the
problem the shape and even the topology of the border of stochasticity can be very complex.
From the physical point of view, however, such impregnations of the ergodic component by
the stable region are not of essential significance, provided that their dimensions and
over-all volume are sufficiently small. Therefore, the border of stochasticity can be de-
fined (of mecessity approximately) as some intermediate zone of the phase space having a
finite thickness, approximately separating the region of quasi-stability, namely stability
for the majority of the initial conditions, from the region of quasi-stochasticity. Such
a border can probably also be introduced in a rigorous mathematical way, i.e. with all the
necessary conditions and reservations. An example of quasi-stability is discussed in
Section 2.2. This is so-called "Kolmogorov stability', with the region being penetrated
throughout by an everywhere dense system of unstable domains of small but finite measure
(see Ref, 35); the structure of this region will be discussed more completely in Sections
2.6 and 2.7. The term "quasi" here again signifies the exclusion of regions of small but
finite measure in contrast to the classical ergodic theory.

Returning to the basic model (2.1.11), it can be asserted that the border of stochas-
ticity lies somewhere in the neighbourhood

K,~ 1 (2.5.1)

*) For a more thorough discussion of this hypothesis, see Section 2.8.
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This border, obtained for transformation (2.1.11) corresponds in order of magnitude to the
criterion of stochasticity (2.1.4) for the differential equations of motion, i.e. for con-
tinuous time. Indeed, according to (2.4.8), when K, £ 1 the quantity 0% ~ Kof/T?; on the
other hand it is clear that &4 ~ 1/T, whence: d
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Thus the criterion of stochasticity (2.1.4) is confirmed for the special case of model
(2.1.11). It will be extended to the general case of the original model (1.1.1) in the next
section.

The physical border of stochasticity, defined above, in fact represents an intermediate
zone of highly complex structure, as was thoroughly described above. According to the
initial conditions, very different kinds of motion are pessible in it: stable limited
oscillations (Section 2.2), isolated ergodic components unconnected, generally speaking,
with the main quasi-stochastic region (Section 2.6}, and even systematic variations of the
energy of the oscillations similar to linear resonance (microtron regimes, Section 2.4).
The intermediate zome penetrates deeply on both sides, into the stochastic region in the
form of narrow stable regions (Section 2.8) and into the region of Kolmogorov stability in
the form of thin stochastic layers (Section 2.6). Nevertheless, it can be asserted that
estimate (2.5.1) defines some real physical border, the border of strong stochastic in-
stability of non-linear oscillations.

This is the main conclusion of this paper. It is completely confirmed by mumerical
experiments, i.e. by mumerical integration of the equations of motion of very different
systems (Chapters 3 and 4).°

2.6 The stochastic layer in the vicinity of the separatrix

This section will be devoted to a closer study of the structure of the region of
Kolmogorov stability (Section 2.2) and at the same time to extending the criterion of
stochasticity for the basic model (2.5.1) to the general case of overlapping of the reso-
nances. As noted above, the KAM theory (Section 2.2) establishes the stability only of
""good" invariant tori. A "good" torus means one that is non-resonant and located "far
away" from all "bad", i.e. t'vs:Sr:u'mm:"jI tori. The term "far away" may be bewildering, since
the system of rescnant tori, generally speaking, forms an everywhere dense set throughout
the phase space. The answer is that the term "far away" relates to the width of the reso-
nance. The fundamental result of the KAM theory is precisely just that, roughly speaking,
it shows that the total width of all the resonances becomes arbitrarily small when the
perturbation is sufficiently small.

Although the KAM theory does not deal with the behaviour of the system in the vicinity
of the resonant tori (it simply excludes these regions), it enables us to conclude that the
motion in these regions is unstable. This conclusion can be drawn by comparing its results
with Poincaré's thEDTEITI“} a2 The latter maintains that under very general i:vnn':li.I;Jlt:-nsﬂ

*) With the resonance relation of the oscillation frequencies: Ek“kwk =0, n, are integers
(see Section 2.12). )

#*%} See also Ref. 49 (Chapter 14, Section 2).
t}) For example, systems with separable variables are an exception.
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a Hamiltonian system has no other analytical integrals of motion but the emergy (or more
precisely all the additive integrals: energy, momentum and angular momentum). Comparison
shows that non-analytical (in the dynamical variables) integrals of motiocn may exist, which

are destroyed in the vicinity of the resonant tori.

This conclusion may appear strange, since we saw (Sections 1.4 and Z.2) that just near
the resonance there are stable phase oscillations. In fact, the region near the resonance
can be studied by means of the same KﬁM.theory*], applying it to the phase oscillation
equations. It turns out that a large part of this region is stable. Then where are the
unstable regions? Poincaré already nu:n::‘e:n:l“-.J that a likely place was the neighbourhood of
the separatrix (Section 1.4). Apparently the first detailed investigation of the neigh-
bourhood of the separatrix was made hy Hﬁl'nikﬂv!?] who, however, was not able to estimate
the width of the unstable region. Such an estimate was made for the first time for a

special dynamical system by Zaslavsky, Sagdeev and Filonenkuga].

Below, an estimate is given of the width of the stochastic layer in the vicinity of
a non-linear rescnance separatrix under very general conditions. In fact, the only
essential condition is that the separatrix must pass through the hyperbolic fixed peint,
i.e. the point of unstable equilibrium, at which both the velocity and the acceleration
vanish. This condition can be violated only for a singular phase oscillation potential
U(p). When the above condition is fulfilled, the frequency of the phase oscillations
£+ 0 as it approaches the separatrix, and the oscillations become anharmonic and non-
linear. In particular, the velocity of the motion during a great part of the period is
near to zero (the system is almost motionless near the point of umstable equilibrium) and
substantially increases only in an interval of time ~ 01, where n¢ is the frequency of
the small phase oscillations. This means that the effective action of the perturbation on
such oscillations will also be limited by the interval ~ ﬂ;’ and consequently when & + 0

‘the perturbation may be represented as a é-function. Thus the oscillations near the

separatrix are described by our basic model (2.1.11), with the sole difference that it is
now necessary to take the variable half-period of the oscillations w/f as one step of the
transformation. This means that we can directly use the criterion of stochasticity
(2.5.1) or, more conveniently, its equivalent (2.1.4).

Let us assume that the perturbation is characterized by a force ufm with a frequency
w. The system of resonances will now be determined by the spectrum of the oscillations
themselves. This contains frequencies kil and has the form of a d-function's spectrum up
to frequencies ~ §i, , and then decreases exmnantiallyﬂ+ This follows directly from the
uncertainty relation for frequency and time: Aw-+ At~ 1. The amplitude of the velocity
harmonics can most easily be estimated from the normalization condition (Parseval's

equation] : P
L7
v v, .S L 2o
k™ Vg '572"-' g = (2.6.1)
4.P
*) With some modification’”7%+176)
20}

##) Ref. 36, see alse footnote on p. 179 of Armeld's review™ -.
+) For analytical Uy}, see, for example, Ref. 20.
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where v, is the maximm value of the velocity and is approximately constant in the vicinity
of the separatrix; the parameter cy, ~ 1 depends on the form of the separatrix: for
example, for a harmonic potential (1.3.16) we have:

_ Tk
vy = (?LF? . _-:r_z_.) e 22, (see Ref. 21)
29

Let us first consider the case when the perturbation frequency lies in the main part
of the spectrum (2.6.1), i.e. wn n¢. The resonance condition has the form:

Ri.e 2 (2.6.2)
K

The essential difference between this system of resonances and that considered earlier,
for example, for the basic model (2.1.11} is that now the distance between the frequencies
of the spectrum (&) is not equal to the distance between the resonant values of the
frequency (4 =0 -4 , = dii/dk), which enters into the criterion of stochasticity and
which as usual we will call the distance between resonances [see (2.1.2)]. The latter is
considerably smaller:

. 0 _ 2°
AT T w T (2.6.3)

It remains for us to consider the second order phase oscillations, which arise owing
to the action of the perturbation pfm on the main phase oscillations {of first order), and
to estimate the size of their separatrix. The most simple is to use relation (1.4.3),
where ell, is now n ufmlnrkfﬂ, which follows from the definition of U (1.3.4) and from the
fact that the perturbation of the Hamiltonian in our case is equal to: H 1K™ ufm\rkfﬂ. As
a result we obtain an estimate of the border of stochasticity (0 ~ 0 ™ w):

/
o ] [f Tp 2 “"z! s (2.6.4)
| Q4 2
where the derivative 0" is taken with respect to the action. It can be seen that there is
always a stochastic region near the separatrix, since 1 + 0, and ' + = (see below). This
region is situated practically symmetrically on both sides of the separatrix, since by
virtue of the periodicity of the potential U(y) the "extermal" and "internal" phase oscilla-
tions are almost identical near the separatrix. By virtue of the aforementicned approximate
symmetry, the second order resonances lie not only inside the first order resonances, i.e.
inside their separatrix, but also outside it, in the immediate vicinity of the resonance.
For the sake of brevity we will henceforth ‘keep to the term "inside" when referring to the
above situation. Similarly, the third order resonances lie inside the second order reso-

nances and so on. We thus obtain a hierarchy of resonances, also described by Greene"”) .

The formation of a stochastic layer in the vicinity of the separatrix is thus due to
the overlapping of second order resonances, although the parameters of only first order
resonances appear in the final equations (2.6.12) to (2.6.17). The parameters of rescnances
of higher orders may prove to be important when calculating the diffusion rate (see Section
2.10).
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In order to obtain a more definite estimate let us make the natural assumption that
the potential energy of the phase oscillations near the hyperbolic point (v = () has the
form U(y) = - nﬁ{wzfz, where m is a mass, and @) is a constant representing the inverse
time of the exponential drift of the system away from the point of unstablf equilibrium,
*/. It is con-

It is easy to obtain the asymptotic expression (W + 0): 0 = wi;/In|A/W
venient to choose the constant A so that n[w¢3 = ﬂ¢:

7%,
_Q b= ——y - e (2.6.5
Ou |8 + T3x A

Here W is the energy of the oscillations near the separatrix, and W¢ is the energy of the
small oscillations, and both energies are measured from the separatrix. For the non-
linearity of the oscillations we find:

: L S
o? 7R, (= Qé)

¥ B
Qlx =S¢ R0
75, Iv?”
Let us now fix the small perturbation parameter y so that fmv¢ " R¢H¢ v, This means

that when p ~ 1 the energy of the oscillations changes considerably after one period
(R ﬂ¢]. Inserting expression (2.6.6) in (2.6.4) we obtain the following estimate of the
width of the stochastic layer along the separatrix in units of phase oscillation frequency

W< P
o T 524
lu L + ZIa (2.6.7)
s

Here we have preserved the sign for approximate equality (instead of the one for a rough
estimate), since the indeterminate factor (~ 1)} in the criterion of stochasticity (2.6.4)
is found in (2.6.7) under the logarithm.

It is more natural perhaps to take the energy width of the stochastic layer which is
equal to (2.6.7):

1"
e | ~ - i

The width of the stochastic layer in wunits of the action I is also of the same order. Here

we neglect the disparity of the frequencies & " ﬂ¢ " &y ~ w. For the case when w << n¢

see below.

*) We assume that there are two identical hyperbolic peints. In the opposite case one
should put: 1/0: + (1/% + 1/0:)/2; the non-hyperbolic stop point corresponds to
fla = o,

#+) Here and below we assume that the amplitude of the phase oscillations Yo ~ 1.

t) A comparison with Ref. 38 and with the results of the mumerical computation is given
in Section 4.2,
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It is clear that the estimates obtained remain valid for any oscillatoer having a
separatrix. Now, however, we are interested in the non-linear resonance separatrix, for
which we can even further specify the above-mentioned estimates.

If there is a single rescnance, the only perturbation will be the non-rescnant
harmonic (Section 1.3) with a frequency of w DQIJE (Section 1.4). This frequency lies
far away in the "tail"™ of the spectrum (2.6.1) and therefore there appears in (2.6.4) an
additional factor ~ e'cf#E (c ~ 1), which can be included in the parameter u, by putting:

/f-( E_c/@“ (2.6.9)
The pre-exponential factor here is ~ 1, since the parameter is determined by means of (see
2 . iy
abovel: p o f¥v¢fﬂﬁwb o fufg¢ v 1; fm Uigg Ry Ye. As a result we obtain the following
estimate of the size of the stochastic layer caused, if one may so express it, by a self-
perturbation, i.e. by the same perturbation that is responsible for the formation of the
separatrix (e << 1):

§,= 2o o TR Re . AR ST R
T Qe £ L EZ e ¢ ¢ (2.6.10)
Ve R

expressed in terms of frequency or:

S B U
W We (2.6.11)

expressed in terms of energy.

This width is very small and agrees in order of magnitude with the splitting up of
the separatrix (far away from the hyperbolic points) cbtained by Mel’nikuvir} (see also
Ref. 21). Hence it follows that the tongues of the split-up separatrix, the length of
which increase infinitely as they approach the hyperbolic point, spread along the unperturbed
separatrix and the stochastic region splits up into increasingly thin layers. This is a
typical mixing process, similar in structure to that described in Section 2.4 for the
elementary model (see Fig., 2.4.1}.

Our result (2.6.11) agrees with Ref. 37 in the sense that it can be concluded from the
latter that the width of the stochastic layer in any case is not smaller than (2.6.11). From
our estimates it can be concluded that it is also not greater.

Let us now turn to the more interesting case when there are several Tesonances. First
let the system of resonances be determined by the perturbation, the spacing Aw between reso-
nances and their width being of the same order. From the general expansion (1.3.2) it can
be seen that the nearest non-resonant perturbation in this case has a frequency w; = Aw.
Since in estimate (2.6.11) & ~ ﬂ¢,.-"m, we now cbtain a new estimate [see (2.6.1)]:

(_.:.[
- Co L2 .4 (2.6.12)

Sy~ pu~ 2 i
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But the stochasticity criterion (2.1.4) follows directly from this. It is essential, how-
ever, to have two different criteria. The estimate (2.6.12) shows that when the condition
f, vuw is fulfilled the resonant region is almost completely destroyed, both inside and

outside the separatrix, i.e. the width of the stochastic layer becomes of the order of the
width of the rescnance. The criterion (2.1.4) characterizes the overlapping of neighbouring
resonances. When both criteria are simultaneously fulfilled this ensures the formation of

a wide stochastic regicn, determined by all the resonances.

Now let the system of resonances be determined by the oscillator itself as in the
motion near the separatrix which has just been considered. Taking into account that
w =@ (L.3.2); 4= Q/k (2.6.3) and (aw)y ~ 9,/k [(2.1.2), Section 1.4], we find that
both criteria [(2.1.4) and (2.6.12)] again agree: (8] /& néfml.

The two limiting cases considered above are characterized by the presence of a single
perturbation or oscillation harmonic. It is clear that in itself a harmonic (sinuscidal)
form is within some limits unimportant (for further detail see Sections 2.7 and 2.8). What
is important is the structure of the rescnance spectrum, which in both cases can be called
locally equidistant. The essential property of this structure is the finite (non-zero)

distance between resonances. The general case of a discrete spectrum of resonances that
is everywhere dense will be considered in the next section.

Thus, on the basis of the properties of the special model (2.1.11), we validated the
stochasticity criterion (2.1.4) for a system with a locally equidistant spectrum of reso-
nances. The most simple case of such a spectrum is a pair of resonances of the same order
of width. According to the criterion (2.6.12) this is already sufficient for obtaining
the stochastic layer inside the resonant region, i.e. of a width of » /& *J,

Now we can estimate the relative fraction (&) of the stochastic component in the
region of Kolmogorov stability. Since (2.6.12) gives the width of the stochastic layer in
relation to the width of the resonance, in order to obtain the required estimate it is
sufficient to multiply (2.6.12) by s = [am]Hfﬂ; in both the limiting cases considered
above we obtain:

S a7 4
X s meg (2.6.13)

where the stochasticity parameter (2.1.2) s < 1 in the region of Kolmogorov stability.

Let us have a closer look at the simplest case of two resonances, mentioned above.
Let us first of all ascertain how the mutual destruction of the resonances changes if their
width is substantially different. The perturbation parameter u will in this case contain
an additional factor (see p. 52) fpffq'm [ﬁpfﬂqu, where the index p relates to the des-
troying resonance and the index q to the one that is destroyed. The frequency of the
phase oscillations in estimate (2.6.12) characterizes the destroyed resonance: n¢ - nq,
and the minimm perturbation frequency

#) This conclusicn was recently verified by means of a numerical v&r:;cpz::rrime;m:"‘5']I and by
"real" experiments!®!).
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W, = Fax (5, 2, ) (2.6.14)

on the border of overlapping. The special case when a weaker resonance is entirely inside
d stronger one, so that w; is substantially less than {2.6.14), will be considered below.
Estimate (2.6.12) now takes the form:

Z b

:S;,.,? m(%f) v ‘QT (2.6.15)

Taking into account (2.6.14) it will be seen that the most stable is the weak resonance,
for which the (absolute) width of the stochastic layer is exponentially small:

Qv by [nzfnq} . e'cnpfnq; ﬁp > ﬂq, while for the strong resonance {ﬂp < ﬂq):
(nqaw} 4" n‘;nq. It is essential, however, for the destruction of the strong rescnance
also to be only negligible'}.
fraction of the stochastic component proves to be small (v ﬂp{ﬂq] even under conditions
when the resonances overlap. Nevertheless, owing to the overlapping of the stochastic
layers of neighbouring resonances some diffusion from one resonance to another is possible,

although its rate may be very small (Sections 2.7 and 3.3).

Therefore, in the case under consideration the relative

This example shows the difference between the two criteria of stochasticity particu-
larly clearly: the criterion of the overlapping of the rescnances (2.1.4), which determines
the possibility of some diffusion for part of the initial conditions, and the criterion of the
destruction of the resonances (2.6.15), which determines the formation of a continuous or,
moTe precisely, almost continuous (Section 2.8) stochastic region with a maximum diffusion
rate (Section 2.10).

Mow let a few neighbouring resonances almost coincide: wp << @~ 0 . Then we can
consider them as one resonance with slowly changing parameters: U(y,\) and the characteris-
tic time of variation of & is ~ 1/w,. The effectiveness of such perturbation is determined
by the accuracy of conservation of the adiabatic invariant. The latter always breaks down
near the separatrix where the phase oscillation frequency passes through zero. The width
of the stochastic layer in this case may be shown'**) to be of the order

R (2.6.16)
q

We shall call the formation of a single resonance from a group of almost coincident
rescnances renormalization of the resonances. It is seen from (2.6.16) that a continuous
limit transition takes place when w; —+ 0. Stochastic destruction of a narrow group of
resonances as a function of the perturbation reaches the maximm (full destruction) when
5wl '*}. At the same time, when there is strong overlapping of a wide group of reso-
nances (much wider than the renormalized resonance) a system of renormalized resonances

forms, for which the condition: s’ ~ 1 is automatically fulfilled.

*) This effect can be used for stabilization of stochastic instability by an additiomal
strong resonance. The stable region appears inside the separatrix of this resonance.

#+) This and other aspects of stochastic destruction of non-linear resonances have been
investigated in detail experimentally by Kulipanov, Mishnev and Skrinsky'®!),
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The application of the simple estimates of the width of the stochastic layer obtained
above [(2.6.12), (2.6.13), and (2.6.15)] requires some caution. In fact they are based on
estimates for y of the type of (2.6.9), which takes into account only the frequency spectrum
of the perturbation. This is certainly true if there is only one perturbation harmonic (two
resonances). In the case of several harmonics it is necessary to take into account their
phase relations which, in particular, may considerably reduce the value of p as compared to
the above-mentioned estimates. The simplest example is the basic model (2.1.11) when T =+ =,
In spite of the strong overlapping of the resonances in this case (s »>» 1) the motion will
be stable during each of the intervals T between kicks. This occurs precisely owing to the
special phase relation of the resonances. A more complex example of the effect of phase
relations will be considered in Section 2.9.

2.7 Full set of resonances

So far we have considered the interaction of an approximately equidistant set of reso-
nances, formed owing to the anhammonicity of either the perturbation alone (basic model) or
the oscillations themselves (separatrix, Section 2.6). In both cases the stochasticity
criterion had a fully defined sense, since the mean distance between resonances A remained
finite (2.1.2).

In the general case a complete set of resonances is dense in frequency, so that
formally & = 0. Physically it is clear that the amplitudes of the high harmonics, generally
speaking, rapidly decrease with the increase of the harmmonic mumber (for an analytical func-
tion -- exponentially). Therefore a finite number of harmonics actually works and this
means also a finite mumber of resonances. The more accurate result is that the total width
of all the resonances is finite and small (for sufficiently small perturbation). As already
noted above, this is also the main result of the KM theory. However, the technical dif-
ficulties of constructing convergent series in this theory lead to excessive requirements
for smoothness of the functions entering into the equations of motion (smoothness of force,
as we shall say from now on for the sake of brevity). Originally the analyticity of the
force was even assmwd”’“}, although it was perfectly clear that this was simply a
technical requirement"}.

Moser has recently developed a technique for "smoothing' non-analytical fimctions,
namely approximating them by the sequence of analytical ones"]; as a result it turned
out to be sufficient to require the existence of a mumber {[’v:] of continuous derivatives
of the force. The minimum value of L_ obtained by Moser 1s2%):

L, > 2N+ 2 (2.7.1)

where N is the mumber of degrees of freedom of the autonomous Hamiltonian system. For a
non-autonomous system and also for transformations, there are no estimates; as far as can
be understood from Ref. 28, in this case one should put: N~ N + 1. Moser's result gives
essentially the upper (sufficient) limit of smoothness of the force, since it is determined
by smoothing technique.

In this paragraph we will try to give some estimates of the lower limit of smoothness
of the force necessary for Kolmogorov stability. It is assumed that an effective estimate
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of the stability conditicns, taking into account the complate set of resonances, can be given
in first approximation (see below). Going on ahead, let us say that this assumption is

made not only to simplify the task, but alsoc on the basis of the result of mmerical ex-
periments (see Section 3.3).

The value of this hypothesis for obtaining practical estimates is evident, it simply
eliminates the need to calculate higher approximations, not to mention questions of con-
vergence. Let us note that the estimates of this paragraph are not equivalent to the first
approximation of the Eﬁbltheoryzﬂj, since the size and the other characteristics of the
resohances are taken into account and not simply excluded.

We will limit ourselves in the main to the elementary model (2.4.16), which will he
written in the form:

&> = {fn«"“*' E-f(‘ﬁ«);

o

L;/*H'f = {{'f‘}u 2 mn-ﬂ-fjg

(2.7.2)

where £() is a certain fimction ("force'') which we will define more precisely later, and

£ is the small parameter.

The main resonances, to which we have so far restricted ourselves, lie at w = v (v is
an integer) and correspond to the fixed point of transformation (2.7.2). It is not diffi-
cult to see that in the general case the resonance takes place for any rational value of w:

D = (2.7.3)

kL8
¥
Indeed, under this condition the phase | changes by exactly r periods after q steps. These
higher hammonic resonances (q > 1), as they will be called, thus correspond to the periodic
motion of system (2.7.2) with a peried q.

The resonance condition (2.7.3) becomes especially clear if one changes over from
transformation (2.7.2) to the differential equations, i.e. to continuous time:

gw = r <2 (2.7.4)

whers 1 is the basic frequency of the perturbation. Then the resonance (r,q) is the reso-
nance of the rth harmonic of the perturbation with the qth harmonic of the oscillations.

For what follows it is important to understand that the high harmonics occur for two
completely different reasons. First of all, owing to the anharmonicity of the force as a
function of the coordinate:

o=t 2riqy
2(y) = }?__; 751 € (2.7.5)

The rescnances thus arising will be called first approximation resonances or higher
harmonic resonances. Their width is determined by the coefficients fq, which can be
obtained without any fundamental difficulties.




- 87 =

However, there is also another reason for the occurrence of higher rescnances, even
for f(y) = sin 2mp, when £ =0 (q > 1). This is as follows. The resonant frequencies
(2.6.4) are obtained from a Fourier expansion in time, whersas only the Fourier expansion
according to the coordinate (2.6.5) is easy to obtain. But the phase | does not vary
strictly in proportion to time, since the frequency w in its turn varies under the action
of the perturbation, particularly wunder the action of the non-resonant harmonics (Section
1.3). It is easy to see that modulation frequencies w + 1l appear in the first approxima-
tion. This leads to second approximation resonances of the form: 2w = rf, and the ampli-
tude of such resonant terms is ~ e?. Similarly it can be shuwna} that the resonances
qu = 10t are defined by terms ~ £ decreasing expomentially with q. This gives grounds for
hoping that the influence of the higher approximation resonances will be unimportant.

In reality, however, the question is a highly complex one. A more accurate investi-

2°) shows that the tems of the qt approximation ~ qln 9. 9. In the case of a

gation

non-analytical force with a power-law spectrum of the (2.7.6) type, this may lead to

divergence for very high harmonics. In fact, however, divergence does not cccur, as was
z8)

shown by Moser™ -.

It will be assumed that somehow or other the total (actual) width of the resonance
can be estimated in first approximation. In any event we can rely on thus obtaining the
lower limit of smoothness of the force necessary for Kolmogorov stability.

Bearing in mind the comparison with Moser's resultza], let us choose as £(¥) a function
whose (L + ljth derivative undergoes discontinuity of the order of unity. It is easy to see
that the asymptotic (when q »> 1) spectrum of such a function is given by the expression:

o . ,-(lr2) (2.7.6)
¢ 3
Let us consider some rescnance (r,q). Ignoring the non-resonant terms the transforma-

tion (2.7.2) near the resonance (r,q) can be written in the form:

! !
k+4=£mu+iq

’ £ '
ﬁbk+,‘ =~ { Elﬂh + i':"}l-l-!"'\" 5
where we changed the variables: w' = gu; * = qp. In the first approximation transforma-

tion (2.7.7) has a single resonance (basic, q' = 1), the width of which according to (2.2.4)
is [.fm’]H U E . Cl,“[i*l]"'fz or in the variable w:

“€+1) zzly
(7] e S _;

(2.7.7)

_ b

. s

Z 2l
(A:..:)q PR 2 ? (2.7.8)

For a given value of q there are q different resonances, corresponding to r = 1, 2,
evay g (2.7.3). Simple summation of the width of all the resonances gives:
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_ E+1

@.m)zh FE Z ::'? Z (2.7.9)
'-T!:'(

This sum converges if £ > 1 ¢

However, even in the frame of a first approximation simple summation of the width of
the resonances is not really justified. The point is that many resonances coincide or
almost coincide, or rather fall inside one another. The total (renormalized, see Section
2.6) width of such ceincident resonances will, gemerally speaking, be smaller than the sum
of the width of the separate rescnances. The summation rule (renormalizatiom) depends on
the phase relaticns. If all the resonances are "in phase" the (Aw)? proportional to the
amplitude of the perturbation harmonic accumulate; for "random" phases it is necessary to
sum up the {ﬂm}a+ Apparently the latter case is nearer to reality, since the majority of
resonances do not coincide exactly and the phase relations vary with time. It turns out
that the convergence of the resonance sum does not depend on the power of remormalization,
which is demoted by n and left arbitrary for the present (see below).

Thus we estimate the sum width of all the rescnances with q' > q coinciding with one
of the g resonances, i.e. falling inside the resonmant regiom (Mw)_(2.7.8). It is clear
that out of q' resonances of the q*th harmonic only q = [am]q « q' will coincide, on the
average, with the resonance q. We have:

@m’)‘f; (Am}, +Z @*-‘J

.an (4_fJ/L (2.7.10)
{Bc.ﬂf (/-f % VE f
¢ s S -—-%
where {ﬂm]qE is the renormalized width. The sum converges if:
&
éﬂ > -i: - 3 (2.7.11)

Rennrmalization is unimportant when € + 0, q + =, if:
£ = 1 (2:7:12)

In the case of £ < 1, [bm] >> (&w)_, so that it is natural when determining qi to take
() qr instead of {&mj and ignore the value {ﬂm} in the right-hand side of (2.7.10). We
uhtalﬂ

(4w),., x ﬁ

¥ Zf+1

l"l
= (sfi )zn.-{}‘ ‘i_z" Cu€+ R

4

(2.7.13)

#)] A similar estimate was obtained in Ref. 44.
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When summing up expressicn (2.7.13) for all the resonances, the ceoincident ones
should be excluded. For this let us introduce the value G(q) -- the total width of all
the gaps (in frequency) between the resonances with q’' < g. Assuming that the reciprocal
distribution of gaps and rescnances is an uncorrelated ("random') one, we can write the
equation:

G(3+1) = 6:(?}'({“ f‘@""/}g,} (2.7.14)
When £ + 0 the solution takes the form:

qg-4
h / ?
- .- ' (Aw) (2.7.15)
G (q’ ) F { (1-!:; q '?.rr _.Jl
where we put G(1) = 1. Thus the conditions of the overlapping of the resonances are never-
theless determined by the direct sum of (2.7.13) for all the resonances. This converges
when:

i iof (2.7.16)

This is also a necessary condition for the existence of Kolmogorov stability or the lower
limit of the required smoothness of force. Taking into account condition (2.7.12) this
limit is obtained from the most simple sum of (2.7.9).

The value of (2.7.16) is considerably smaller than the upper limit (2.7.1) which In
the present case (N = 2] is: 'Lc > 6. The numerical experiments seem to testify in favour
of a lower limit (see Section 3.3).

Let us investigate the case of & £ 1 when the sum in (2.7.15) diverges and G + 0
when q + =. Nevertheless, exponentially small gaps remain for any finite q. There is
doubt as to whether they really exist, for two reasons. Firstly, for this there must be
a very sharp edge to the resonant region [the destroyed separatrix (Section 2.6)].
According to the KAM theory there exists in fact a border of absolute stability. However,
in the neighbourhood of this border (on the separatrix side) in the general case there is
a very complex transitional layer, characterized in particular by very slow development
of instability (Section 3.3). Secondly, solution (2.7.15) is essentially connected with
the assumption made above concerning the "randonmess' of the gap distribution. This
assumption is admittedly viclated in two cases: if e ~ 1, so that exponentially small
gaps appear already when q ~ 1, or if resonances of one harmonic overlap. In the first
case, the total overlapping of a small number of lower resonances is possible, the condi-
tions of which can easily be cbtained (when g ™ 1) from (2.7.13). In the second case,
total overlapping is possible with anv e, if q - {ﬂm}qz + w when q + =, i.e. if:

{2.7.16)

4
n 2
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This condition new depends on n, which was taken here as four (see above}. Assuming that

q * {ﬁ:ujqF w1, the minimum harmonic mmber that already ensures overlapping and determines
(]

the diffusion rate can be estimated; we have (n = 4}:

.
?1’ " £ f+g? (2.7.11

We used the renormalized width of the resonances (2.7.13). From expression (2.7.10} it can
be seen that this is valid only for sufficiently high harmonics q » q., where
o
£—4 [2.7.18)
Iz # &
It is easy to see that indeed q; > Ay in the region of applicability (2.7.16) of expression
[2.7.17].

Excluding the two special cases considered above, it can nevertheless be expected that
the gap distribution G(q) will be nearly "“random". This is mainly due to the fact that
asymptotically (g + =) the position of the gaps depends essentially on the width of the
resonances determining the gap, and as a rule these will be resonances of different
harmonics having a different width. It is essential also for the distribution of the
resanances (2.7.3) to be asymptotically uniform (see below).

To sum up, we reach the conclusion that it is apparently not possible completely to
exclude the existence in the phase plane of gaps for any q, if

..zi e f <« 4 {2:7:19)

These gaps, in principle, can completely stop diffusion, in spite of the absence of
Kolmogorov stability. The results of the corresponding numerical experiments and the
subsequent discussion are given in Section 3.3.

Let us now verify the criterion of destruction of the resonant regicn, which in the
general case of resonances of a different width can be cbtained from estimate (2.6.15).
First of all let us make this estimate a little more accurate, taking into consideration
the fact that for resonances of different harmonics p and g we have the relation

£/Eq ~ @/p) [ﬂpfﬁqlz, whence:
. A 5y Y ia® 9
LN : (2.7.20)
re " ’F.(.ﬂi) e

Let us note that when £ > =3/2, namely in practice in all cases of interest to us, this
more accurate expression does not change the character of the estimate (2.6.15). Let us
recall that the index p relates to the destroying resonance and g to the one destroyed;
ﬂq iz the width of the resonance, equal to q + (Aw) , and as (Mw) it is necessary to use
expression (2.7.8) or (2.7.13) depending on the value of L.

From estimate (2.7.20) it can be seen that mutual destruction is possible only for
resonances of close harmonics as was thoroughly demonstrated in Section 2.6. In particular,
for the power-law spectrum (2.7.6) the following condition should be fulfilled:
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M

/ﬁ-?/ << f (2.7.21)

When this comdition is fulfilled the criterion of mutual destruction of the resonances can
be written in the Enrm“]:

5, = E’g_i - -&L—-— o (2.7.22)
@ 4 [pe— k]

Here w is the frequency of the system near the destroyed rescnance (r,q), but not

&b |

necessarily exactly equal to r/q, since what interests us is strong destruction of the
rescnance and stochasticity; (k,p) is the destroying rescnance complying with condition
(2731

Let us estimate the denominator (2.7.22). The lower estimate may be taken from

Moser's paperza]:

fjr)m-ff-‘. J % i Bt (2.7.23)

r
Moting further that the minimm value of interest to us w; = pu = ky = {pw}, when p = 1,

s o s . . 33 a
2, ++., Torms a sequence which is ergodic for any irrational w }, we abtain the upper
estimate:

[po-k, ] < %; e d (2.7.24)

Comparing (2.7.23) and (2.7.24) we see that there is an effective estimate:

| peo - ki~ L (2.7.25)
I
and the numbers of p,q can be chosen close together, if they are large enough; this close-

ness enters into the constant ¢; ~ p/lp - gl.

Fulfilment of the criterion (2.7.22) depends now on the asymptotic behaviour of fI

q
when g = =. For both cases (2.7.8) and (2.7.13) 53 ~ q* - () + =, if:

VAP (2.7.26)

Thus for a complete set of rescnances the criterion of destruction of the resonant region
also agrees in order of magnitude with the criterion of their overlapping, if one does not
consider the possible formatien of the gaps mentioned above. For the criterien (2.7.22)
such gaps are completely unimportant, since the value of wy is determined, roughly speaking,
by the distance between the centres of the resonances and not between their separatrices.

The only case in which there is a considerable difference between conditions (2.7.26)

and {2.7.19) corresponds to £ = 1. In this border case the resonances overlap, but the

+) In accordance with the observation in the previous paragraph (Section Z.7) for the re-
normalized set of resonances s; 2 1 always.
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width of the stochastic layers is exponentially small. Consequently the total area of the
stochastic component, and also the diffusion rate, are negligibly small when ¢ + 0.

Assuming that q® - {ag}qz "1, we can £ind the boundary of destruction of the reso-
nances in q, which, it turns out, coincides with the renormalization boumdary q. (2.7.18).
From estimate (2.7.20) it follows that the separatrices of the lower resonanccsu[q < qE]
are negligibly destroyed. Since the total width of the wndestroyed resonances (q < g.) is
just v 1, the stable regions occupy a considerable part of the phase plane. chever:
they are separated from each other by a thick network of interwoven stochastic lavers. The
scale of the mesh of this network is determined by the mean distance between the destroyed

resonances amnd is:
-2 Z
(gu} ~ g ~ € 1-é (2.7.27)

The estimates obtained in this paragraph are also important for the analytical force
f(y) of a special form with sharp (in the section Ay << 1) variation of the (L + 1]th
derivative. In this case the spectrum of £(§) is a power-law one (2.7.6) up to q v 1/,
When & < 1 the previous stochasticity criterion e ~ 1 (2.5.1) changes by

-1 (2.7.28)
£~ G
which is obtained from the condition: Qp v G-

Let us turn in conclusion to continuous time, i.e..to the differential equations
instead of the transformation. The amplitude of the resonance harmonic will depend in
this case not only on q but alsc on r (2.7.3). Let us put [compare with (2.7.6)]:

e I A

when q,r »>> 1. The resonance sum (2.7.9) now takes the form:

.8
+
M

_ FP+3 -

ae 9
(‘“")z_ ~ VEZ.Z, 9 ., ~ E (2.7.30)

q=4 r=4

Convergence, and hence also Kolmogorov stability, takes place under the condition:
£xats Pelte =1 (2.7.31)

In particular, for analytical dependence on t{zt + =) the only essential condition is the
first, which is considerably weaker than the previous one (2.7.16) for the transformation.
The latter is obtained from the second condition {2.7.31) if one assumes: Rt = -7
(§-function).

2.8 Quasi-resonances

Let us now make a more detailed study of the stochastic region. A troublesome
feature of this region for systems of the type of our basic model (2.1.11), a feature which
puts in doubt the possibility of "'real'' stochasticity occurring, is the presence of "islets"
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of stability, which do not vanish even for values of the stochasticity parameter K;, + =
(2.5.1). For the reasens given below we shall call these "islets' guasi-resonances. Our

task, therefore, is to estimate the size and over-all area of these "islets". Let us again
restrict ourselves to the elementary model (2.4.18):

tlph-i-{ e I‘;PH ¥ A'JP(%“’}-}?
¢1+{ = {‘#u + ?n+1ﬂf

which was also used for the numerical experiments (Section 3.5). '

(2.8.1)

The stable regions are situated near the periodic trajectories of the system. The
simplest periodic solution of transformation (2.8.1) -- fixed point (period T = 1 step) --
can be stable only for special values of k (see below and Section 2.4). However, generally
speaking, there exists an innumerable set of other periodic solutions with T + =. More
precisely Sinai®) showed that a stochastic system has an everywhere dense set of periodic
trajectories in the phase space. Of course, the measure of this set is equal to zero and
all the periodic trajectories are unstable. The following estimate follows from Ref. 40:

h (T_""f) 7
o(T)~ e i

where v(T) is the number of periodic trajectories with a period < T; h is the Kwentrﬂpy*].

Our system is not stochastic in the full (classical) sense of this word because of
the presence of regions of stability around part of the periodic trajectories (2.8.2).
Ebwevef, it can be assumed that estimate (2.8.2) does not change essentially, at least if
the fraction of stable regions is sufficiently small.

Before proceeding with the estimates, let us explain the stability mechanism near the
pericdic solutions. As was thoroughly described in Section 2.4, for stochasticity the
existence of a so-called asymptotic transverse flux is required. This means that in the
vicinity of every point of the phase plane the trajectories of the transverse flux should
tend asymptotically towards a particular trajectory (asymptote) any segment of which will
expand exponentially in the process of motion, at least on the average. It is not diffi-
cult to see that the easily proved property of local instability of motion is not sufficient
to fulfil this condition. Indeed, by virtue of the conservation of the phase volume, the
transverse transformation is characterized by two eigenvectors (directions), one of which
corresponds to contraction and the other to extension. As a result of this, in the space
of the directions of the transverse flux there are two cones [for a one-dimensional system
of type (2.8.1) -- two sectors on the ﬁhase plane]: the extension cone and the contraction
cone, depending on the variation of the length of the transverse vector (M,4)). In the
process of motion these cones may overlap, i.e. cross over into each other partly or

*) When h »> 1, expression (2.8.2) also gives the mmber of periodic trajectories with a
period of T, as can easily be verified immediately. It should be noted that we changed
estimate (2.8.2) somewhat as compared to Ref. 40 (T + T - 1) in order to obtain the
right asymptotic form for T = 1; h + =,
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completely, which may lead to limited oscillations of the transverse vector instead of
continucus extension. This may in turn lead to the appearance of stable regions.

Let us first of all show that for model (2.8.1) the contraction and extension cones
do not overlap in the special case when there are no stable regions. This condition can
be written in the form:

/Jff(‘?"/} y R Y (2.8.3)

Mow, ewven the minimm value of the stochasticity parameter Koo= |k » fﬁini > ko increases

infinitely with k.

Using expression (2.4.14) we find for the direction of the eigenvectors (see
Fig. 2.8.1):

t;g F. = Tt _ (2.8.4)

Ll

Fig. 2.8.1: Structure of transversal transformatien for elementary
model (2.8.1) in the absence of stable regions (2.8.3): @, indicate
the direction of extension and contraction eigenvectors; @, B! Te-
present the border between contraction and extension cones {sectors)
before and after transformation, respectively.



- G5 =

where the eigenvalues ) _ are determined by formula (2.4.6). When K; >> 1 the direction of
the vector & is confined to the sector n/4 * 2/K;, and that of the vector &, to the sector:
7/2 £ 1/K;. For what follows the minimm value of the angle between &., Er,Hwhich is
obviously: i /4 - 3/K;, is important. )

On the other hand, it is not difficult to show that under the assumed condition that
K3 *> 1 the border between the contraction and extension cones, i.e. the direction for which
the length of the transverse vector does not change, is at an angle & s 1//7K; to the cen-
traction axis. Under transformation, the border transverse vector swings round {without
any change of length) towards the axis of extension and makes an angle of 8' = 1/vIK, with
it (see Fig. 2.8.1). The minimum angular distance between the latter direction and the new

border is:

. o B 3+v2

aiq = AR e s b (2.8.5)
.f

This is, of course, also the condition that the cones shall not overlap in the process of

motion. This means that no transverse trajectory in the extension cone can ever enter the

contraction cone. It follows that the transverse flux is asymptotic, and the motion of the

system stochastic (Section 2.4).

The stochasticity criterion using the conditiom of overlapping of the cones, was
formulated and applied to model (2.1.14) by Oseledets and Sinai (see also Refs. 42, 150).

Let us now investigate the influence of the regions of stability, not imposing amy
further limitation (2.8.3) on the function £($). In this case part of the periodic soclu-
tions of (2.8.2) may be stable, which leads to the formation of regions ("islets") of
stability in the phase plane, 'i.e. to the appearance of a non-ergodic component.

Let us first consider the special values of the parameter k for the elementary model
(2.8.1). We shall limit ourselves to the case of T = 1 (fixed point) which leads to the
largest islets of stability.

For the fixed point of transformation (2.8.1) we have:

“ =9 }-ﬁ(’%} = (2.8.6)

where r is any integer. The fixed point is stable when (Section 2.4):

o B e &.]f’(g»}c' g (2.8.7)

The special values of k are determined from the compatibility [{Z.E.&] ancl {2.8.?}]. This
condition is fulfilled within the interval

& /
o~ & #ﬂ w s
d!(h'&-f(f)';#('.»u' ; ,ny‘;) (2.8.8)

around the value k, which corresponds to the centre of the stable region (2.8.7) and is:
r 2

g )‘?(5":4) f‘rzf”{;::}- (2.8.9)
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The phase area of the stable region is:
S (k) i) 4
A A?f-’n- é_';’;) J dp~dys 2_?—’ (2.8.10)

It is essential for any dimension of this region to be arbitrarily small when k >> 1.

Let us note that on turning to the basic model (2.1.11) an additional factor
AI/8 = 1/Tw’ = e/k appears, so that the area of the non-ergodic component becomes even
smaller (see Section 2Z.4):

Clk)« £/L* (2.8.11)

Let us now go over to arbitrary values of k. Supposing that:

1, = 2 (2.8.12)
k. f£%Cp.)

is the probability of entering the stable phase region (2.8.7); here it is assumed that
there are two stable regions with identical values of £', Let us further assume that for
T, k »> 1 the periodic trajectories are "randomly" situated in the phase plane. This
assumption is very important for us, since in the opposite case it is very difficult to
obtain any quantitative estimates. It is confirmed intuitively because we are considering
an almost stochastic system.

Further reasons in favour of the above assumption can be found by considering the
mechanism of the formation of a large mumber (2.8.2) of periodic trajectories. When k << 1
the set of first order resonances forms a set of periodic solutions vw(T) ~ T? (according to
a number of resonances ¥ = r/q; q s T). With regard to the periodic solutions connected
with higher order resonances (see Section 2.6), they lie inside the first order resonances.
It is therefore possible not to take them into account up to the border of stochasticity.

In particular, the stochasticity criterion is determined by the first order resonances only.
If k »>> 1, the resonances of different orders intermix and spread more or less uniformly
over the phase plane.

Several mechanisms of formation of stable periodic trajectories in a stochastic region
are possible. The most simple (we shall call it the first) corresponds to the case when all
the T of the points of the trajectory are in the stable phase region (2.8.7). The proba-
bility of this is w? and the number of such trajectories is (2.8.2):

p;”(*r) ~ u-’T. "G ok (u,e “') T (2.8.13)

This estimate is very sensitive to the value of the parameter y = wueh. For a "force"
£(p) = 1/2n sin Zmp (2.1.15), for instance, y = 2/m < 1. However, it is easy to construct
£(Y) so that y > 1 (see Sections 3.2 and 3.5). At first glance it may appear that in the
latter case the fraction of stable regions will be rather considerable, since expression

R R T
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(2.8.13) diverges when T + =, However, experimentaticn shows that this 1s not the case;
moreover, it turns out that for large y the fraction of stable regions is even reduced
[Section 3.5).

Two effects may produce this result which appears strangs at first glance. OCne of
them, apparently secondary, is the fact that estimate (2.8.13) is in reality the upper
boundary. This is due to the fact that the periodic trajectory of the transformation, all
the points of which are elliptical, is not necessarily stable. Possible instability is ex-
plained by the, generally speaking, variable frequency of the phase oscillations around
the periodic trajectory, which may lead to parametric rescnance.

The main effect is probably that when y > 1, considerable overlapping of the stable
regions takes place precisely because of the divergence of expression (2.8.13). But in
this case we can apply the general criterion of stochasticity according to the overlapping
of the resonances (Section 2.1). Indeed, the resonant region of a non-linear system signi-
fies, essentially, a stable region of quasi-periodic motion in the vicinity of the periedic
trajectory. The meaning of the overlapping of resonances as a stochasticity criterion in
this connection is as follows. First of all, when the resonances overlap the trajectory of
motion can cross over from ome resonant region to another, i.e. it is no longer localized
in the wvicinity of the original periedic solution. This feature is alsc conserved in the
case of the overlapping of guasi-resonances, as we shall call the stable regions when
k »» 1.

On the other hand, the interaction of neighbouring resonances leads to the formation
of a stochastic layer in the vicinity of the resonant separatrix, the width of which in-
creases as the rescnances converge and covers the whole of the resonant region at the
mement of overlapping (Section 2.6). Something similar also probably takes place for quasi-
resonances, although at present it is not clear what is the exact form of the second criterion
of stochasticity (2.6.12) and, in particular, what the quantity w, corresponds to in the
case of quasi-resonances. A peculiarity of quasi-resonances is that the stochastic compo-
nent is located among them, and not the invariant Kolmogorov tori as in the case of ordinary
resonances. This, of course, facilitates the destruction of quasi-resonances.

Another stability mechanism (the formation of quasi-resonances) is cormected with the
alternating entry of the transverse vector (Mp,My) into the extension and contraction cones.
Let us recall that the stable case corresponds to the swinging round of the transverse
vector and the unstable (stochastic) one to its extension or contraction.

As shown above, the extension and contraction cones of the elementary model (2.8.1)
do not overlap as long as the trajectory of motiem remains in the unstable region. Hence
it follows that it is impossible for the transverse vector to enter the extension and con-
traction zones alternately. However, it becomes possible when there is even one point of
the periocdic trajectery lying in the stable phase region (2.8.7). In this region the
transverse vector swings round and may therefore change over into the contraction region.

The transverse motion splits into three phases: extension, contraction and rotation.
If the period of the basic motion is T, the duration of the contraction and extension is
(T - 1}/2. During the extension, the angle of the transverse vector to the asymptote
decreases to:
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- 24 (T—fj/a il . :
ﬂ e /Jﬂ e g e / (2.8.14)
where gy ~ 1. It is obvious that the rotation must be carried out with the same accuracy

by order of magnitude, since the motion along the contracting asymptote is symmetrical.
The probability of such rotation ~ w,BT, whence the number of quasi-resonances of the

second type is']:

(<
vV, )(T") ~ w8 Tadfr)as ww (2.8.15)

The total number of quasi-resonances now proves to be infinite independently of the form
of the force, and from Ref. 40 it follows that they are located everywhere densely.

The size of a quasi-resonance can be estimated as A5~ Mp(ar)?, where §,r are the
polar transverse coordinates, M) ~ B, and Ar is determined from the condition of the re-
quired accuracy of rotation: &r ~ B. Consequently, even the maximm size of the stable
Tegion:

- h(T-1
Al ~ & ( ) (2.8.16)

decreases exponentially. The total area of all the T of the stable regions of the quasi-
resonances is:

,S'C”ﬂ, S = Sk (7T1) o, BT
4

and for all quasi-resonances of the type under consideration:

) f =3k (1)
S [k),‘_ L, e (2.8.18)

T=T+

The lower limit of summation for an arbitrary k is determined from the condition that
ugz} (Ty) ~ 1, i.e. that the quasi-resonances really exist:

o (‘E/h’*u) e (2.8.19)

Whence:

Sﬂ;’(;‘/‘} s f_ E—.jfr. (lf a/k"a o J) (2.8.20)

*) This estimate is not very reliable in view of some uncertainty in estimate (2.8.2)
for the number of pericdic trajectories: in particular, it is possible that the ex-
ponents v and B do not fully counterbalance each other. Nevertheless, mumerical ex-
periments confirm the order of magmtlﬂe of estimate (2.8.20) followmg from (2.8.15)
(see Section 3.5).
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For the quasi-resonances just considered, the phase oscillation peried coincides with
the period of the basic motion: T, =T. This comdition is not compulsory, the trajectory
may enter in the stable phase regil::n several times per period T, say N = T/T, times, In
the general case the length of each period of the phase oscillations may be different:

T¢| =Ty; EE;=1 T, =T. If the T, do not differ too greatly from one another, it can be
considered approximately that the accuracy of each rotation will be determined by the
length of its period (2.8.14); 8 ﬂhTf“(Ti‘”. The probability of a specific sequence

i

of stable regions " Hh_l (wpe ] , And the mumber of stable trajectories of this

(third)} type is:
) AL
' (T) »r 7a e T ) (2.8.21)

where C(T,N} is the nurber of different combinations of Ti' Since our estimates are valid
for T T , one can put: C(T,N) ~ nuN, where ng = 'ﬁTm £ T/W (T >> 1; o< 1). Consequent-
1y {ox i} 2 -

’(3} 7] e, Todd & (2.8.22)

The total number of such trajectories and alsc the area of the stable regions diverges for
any y. However, the minimum period from which the divergence begins depends on v:

we i
T e A C"ffj (2.8.23)

By analogy with the ordinary resonances, one can assume that total mutual destruction of
the quasi-resonances takes place only for close frequencies of the phase oscillations (see
Section 2.6). Hence it follows that there remain undamaged quasi-resonances of all types
with T¢ < Tm:i.n; their mumber decreases with the growth of .

The phase area of the stable region around the periedic trajectory con the assumption
that T; = TE is given by the estimate, similar to (2.8.17):

5;'-'31 i e 3 (Te-+) (2.8.24)

and the total area of all the quasi-rescnances of the third type is:

S¥k) ~ 7 T (pT) e~ kET ) aam
-T;

where Ty is again determined from the condition that quasi-rescnances of this type exist
for an arbitrary k: Egil ust3]{Tj ~ 1. When T, = const, N = Tf’T¢ + =, the sum diverges

if T¢ > Tmi.n (2.8.23).

*) This estimate is an upper one, as (2.8.13) for quasi-resonances of the first type, see
explanation on p. 67.
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Let us recall that the conclusion concerning the divergence of the sum (2.8.25), from
which the destruction of the overwhelming majority of quasi-rescnances ensues is not
rigorous, since we can obtain only the upper estimate for S{”{kj (see remark on p. 67).
However, an interesting feature of the problem under comsideration is the fact that the
basic conclusion concerning the stochasticity of motion of model (2.8.1) when k >> 1 does
not even depend on the assumption that the sum of (2.8.25) diverges. Indeed, if the sum
of the areas of the quasi-rescnances converges, it goes to zero when k - =, since the size
of each stable region decreases with the growth of k (2.8.24); if the above-mentioned sum
diverges, mutual destruction of the quasi-resonances takes place, excluding the finite
number determined by condition (2.8.23), and their over-all stable area again goes to zero
when k + «. 0Of course, one cannot exclude the very special case when all the time S5(k) ~ 1
when k + =, in spite of the fact that 5; + 0, but such a situation seems to us highly im-
probable. This result is confirmed by mumerical experiments (Section 3.5).

Thus we can now add a third effect to the two previcus effects of the overlapping of
first order rescnances (unification of stable regions and destruction of the separatrix) --
the formation of a large number of quasi-resonances which completely eliminate the last

centres of stability.

2.9 Periodic crossing of the resonance

Before going over to the final sections of this chapter, devoted to the general case
of the interaction of resonances, let us consider yet another relatively simple system
which can be reduced to the basic model (2.1.11) with discrete time. This is the periodic
crossing through the resonance of a non-linear oscillator.

If the amplitude of the frequency oscillations considerably exceeds the width of the

resonance

a5 > (4w ), ~ R, (2.9.1)

the action of the resonance can be considered as a short kick; accordingly, we have a
system of the type of the basic model, whose border of stochasticity is determined by con-
dition (2.5.1). On the other hand, as follows from the results of Section 2.6, the general
criterion of stochasticity (2.1.4) must be valid.

The system considered in this paragraph is of special interest alsoc because in one of
the writer's early papers on stochasticity!?) an erroneous conclusion was drawn about the
existence of two independent conditions of stochasticity which had to be fulfilled simul-
taneously. This conclusion was drawn precisely on the basis of the process in question.

Let the frequency, say, of the perturbation vary according to the law:

EF w Gk ‘..‘35__2 los Q2.2 (2.9.2)

Under the condition @y << AQ the perturbation has a locally equidistant spectrum with a
distance between resonances of 0, and 2 number of basic resonances ~ AG/Q;. On the basis
of Parseval's equation (normalization condition) we obtain the estimate:

S

s
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i{ju A~ 'EQ,, 1 (2.8.3)

where efg, afk are the amplitudes of the frequency-modulated force and its harmonics, res-
pectively. The general criterion of stochasticity (2.1.4) gives:

2 4 1/,
§t= i?_f_) A iﬁtw‘—:{!({?ﬂ— EM 4 (2.9.4)
52 Z

R,

independently of the rate of crossing the resonance. Here v, is the amplitude of the
velocity, and By fsEkvum‘w is the frequency of the phase oscillations near one of the

harmonics of the force, unlike @, v vefyvyu’ , the frequency of the phase oscillations at

the moment of crossing the resnng;ce (see Section 1.5).

Now let us consider another approach to the problem. When the resenance is crossed
rapidly (V »>> 1, see below) the change of the frequency (and energy) of the oscillator is
given by the expression (1.5.7), which leads to the first of the difference equations of
the type of (2.1.11). The phase equation can also be obtained from (1.5.7) in the follow-
ing way. Removing the brackets we find (k = 1):

. 2
o= oy + %ﬁ * 42.¢ + _(4'3;‘-;2 (2.9.5)

Here the third term gives the ordinary phase change due to the change in the frequency of
the oscillator after crossing the resonance. The factor § is explained by the fact that
this term takes into account only half the frequency change after the moment of exact reso-
nance (see Section 1.5). The other half is included in the second term, which when there
is arbitrary frequency variation @i(t) is replaced by [ (f(t) - wy) dt = F @ dt - w,t, where
wy 1s the value of the frequency of the oscillator at the moment of exact rescnance. The
last term of (2.9.5) is small under condition (2.9.1). In order to obtain the phase of the
next rescnance, it is necessary to sum up expression (2.9.5) after the first resonance
(upper sign} and until the second (lower sign). Taking into account alsc the rules of the
changing of signs when the direction in which the resonance is crossed changes (Section
1.5), we obtain:

ﬂ-f
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where tyy = T/2 = 1/, is the interval of time between two succgssive crossings of the
resonance and it is assumed that w = 2 (2.9.2). Equality toy = T/2 is violated, firstly
as a result of the frequency variation: Aty " (tw)?/%; this effect can be ignored,

like the two last terms in (2.9.6) under condition (2.9.1). Secondly, it is necessary to
take into account the finite amplitude of the phase oscillations, so that the moment of
resonance is determined by the intersection of the straight line and the sinusoid in

Fig. 1.5.1. This leads to additional change of the phase of the rescnance by &) ~ V™!,
This effect becomes considerable when there is slow crossing of the resonance (see below).
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Taking into account the above-mentioned approximations, the crossing of the resonance
can be described by the following transformation:

TP
' @u—/ﬁ'ﬂ?-&ﬁ{%z%)
(7[’“.,..41 5’:’“+9“ <

(2.9.7)
H o

L

where the constant phase @ = fozﬂ dt and the sign is determined by the direction in which
]

the resonance is crossed (see Section 1.5). The stochasticity parameter for (2.9.7) is

found in a similar way to (2.4.9) and (2.4.3):

L emeysng S da ™ 2 2.9.8)

o

The last estimate gives the criterion of stochasticity (2.5.1). Since i v AQ « Q, and

i
n; " n; (A0/8.)%  (2.9.3), then K; ~ {ﬂkfﬂujz n 52 and both forms of the stochasticity

criterion (2.9.4) and (2.9.8) agree.

With slow crossing of the resonance, when

‘V.__ “‘R"’i G "‘R‘R“h fAf | 6% o (2.9.9)
Rf' ﬂ: ..5-?:

the change of the oscillator frequency is given by expression (1.5.9):
so(w,3)=2VR, fn (v+s)(75V-32) +
% 3,
+ 2o, S1+25V= 5%,

(2.9.10)

The phase change is determined, as usual, by relation (2.9.6), but the additional finite
amplitude of the phase oscillations must now be taken into account, as noted above. This
is equivalent to changing over from the continucus phase |y determined by relation (2.9.6)
to the phase £ = ¢ - n/2 limited by the interval: -V < £ < YAV, Since in this interval
cos £~ 1 - £2/2, from (1.5.3) we find (see also Fig. 1.5.1):

V(g-¢.) = 1- I'/a (2.9.11)

In what follows we shall need the derivative:

df o il y’!T (2.9.12)

cf?q 1’*;
where we used the condition dy/df = 1 (Fig. 1.5.1). The latter estimate is also easy to
obtain directly if it is taken into account that the range of variation of ¢ is equal to 2w
and of £ to +Z7V.

'
]
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Now we can approximately describe the slow crossing of the resonance by the transforma-

tion:
Wy ¥ @ 2 A0 (0, F,)
a T (2.9.13)
Yusqg ® f,+0~ ZZaey
) v

Here the function ﬂm{mn,gn} is given by expression (2.9.10), the link between l}'Jn and 5‘1‘1
by equation (2.9.11) and the constant phase 8 is defined above. The stochasticity para-

meter 1s;

fl’{iw-r . ﬁ"?‘(’..;...r JE- A-Q
’}(:_, ﬂfﬁflﬂ.q ";I,?."' J ,E?,R,f ﬂ1s- (2.9.14)

where the first of the derivatives is given by expression (2.9.12) and the second

LT A TEY] ;;ﬂ'u*
Relation (2.9.14) shows that in the approximation of short kicks (2.9.1) K, »> 1,
i.e. slow crossing always leads to stochasticity.

At first glance, criterion (2.9.14) is in no way comnected with the parameter of the
overlapping of the resonances s. However, it should not be forgotten that the condition
of slow crossing (2.9.9) must be fulfilled, from which it follows that s > 1 always when
A2 > @y, If AQ << 0y, the parameter s loses its sense, since in this case there is in fact
a single rescnance @ = &, while the width of the remaining ones is considerably smaller
and they can simply be ignored (see Section 2.7).

We still have to consider the case AR g @, when the short kick approximation is not

valid. Instead of this, let us turn to the phase equation originating from the equations
in slow variables of the form of (1.3.15):

Te-zl, ot

. 5. 75 (2.9.15)
;(, T Ly — =
where $i(t) is the periodic function of (2.9.2). We obtain:
e 2 -
g bRy Loty =~ 2 (¥ (2.9.16)

This system has a separatrix in the vicinity of which a stochastic layer is formed
under the action of the perturbation in the right-hand side of (2.9.16). According to the
results of Section 2.6 the relative width of the stochastic layer in energy is given by
the estimate: ’

~ 52 3
'E"'f“ ‘5?_:11: =V (2.9.17)

under the condition that the perturbation frequency is sufficiently small: £, = ﬂﬁ. In
the opposite case, the width of the layer is exponentially small (2.6.17). The results
of Section 2.6 are applied when there is small perturbation (p << 1), i.e. only for slow
crossing of the resonance. When the crossing is rapid, system (2.9.16) simply does not



_?4_

have a separatrix (Sectiomn 1.5). As regards stochasticity, which accovrding to {2.9.4) is
also possible for rapid crossing, it is comnnected with a completely different mechanism,
namely mixing of the phase from one crossing of the rescnance to the next.

For slow crossing of the resonance there are thus two mechanisms of stochasticity:
one which is the same as for rapid crossing and another connected with the stochastic
layer. The influence of the latter mechanism depends on the ratio between the range of
frequency variation (A1) and the width of the layer: éﬂfﬂ¢5 n ﬂ¢fﬁu+ The maximum influence
corresponds to the condition &, ~ n¢ (when @, > ﬂ¢ the width of the layer decreases exponen-
tially). In this case stochasticity occurs, which is not at variance with the general
criterion according to the parameter s, since A << [y ~ ﬂ¢ and this parameter loses its
sense, as noted above.

If Qy << n¢ (and &0 << ﬂ¢}, the case when Al »>> @, is possible, so that the stochas-
ticity parameter 5= 1 (2.9.9) has its ordinary meaning. From the point of view of equa-
tion (2.9.16} in this case stochasticity may also be expected, since the system passes
through a stochastic layer during approximately one phase oscillation period [(1.5.3) and
(2.9.17)]. Moreover, with slow crossing capture is possible (Section 1.6), which increases
the time the system spends in the stochastic layer and consequently also the over-all
stochasticity of the motion.

Thus the general criterion of stochasticity according to the overlapping of resonances
(2.1.4) also applies to periocdic crossing of the resonance as well as to rapid and slow
crossing. In the latter case stochasticity always occurs, in contradiction to Ref. 10, in
which it was assumed on the contrary that stochasticity is always absent for slow crossing,
on account of the approximate reversibility of the process (see Section 1.5). As we shall
see later this last effect leads only to a reduction of the diffusion rate and the K-entropy

(Section 2.11).

2.10 Kinetic equation

If the motion of a dynamical system becomes stochastic, it no longer makes any physi-
cal sense to describe it in terms of a trajectory, because of local instability. The
changeover to a statistical description, the meaning of which also, in our cpinion, lies
precisely in re-establishing the stability of the description, is usually carried out in
two stages. First of all, as the basic physical quantity, one introduces the distribution
function or phase density f(x,t) (x is the complete set of phase space coordinates) of an
ensemble of identical systems, differing only by the initial conditions. The variation of
f is determined by Liouville's equation: '

;;—f = .éﬂ,f’ (2.10.1)

a)

where L is a linear differential cperator* .

It is customary to emphasize the equivalence of Liouville's equation to the dynamical
equations. However, it should not be forgotten that their solutions are physically iden-
tical only for singular initial conditions: £(x,0) = §(x - x,), since, at least within
the limits of classical mechanics, we are concerned with only one single system of the
statistical ensemble. This fact, which is often underestimated (see for example Ref. 50)
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is of paramownt importance when discussing the nature of statistical laws' " [s2e also
Section 2.153). The use of the continuous density of f(x,t) already means introducing into
the mechanics some random element and, in particular, excluding a set of special zevo-
measure trajectories. These special trajectories should not be regarded as absolutely ex-
cepticnal. For instance, the periodic trajectories of a stochastic system which form an
everywhere dense sat"aj (Section 2.8) are related to them. In addition, the introduction

of continuous density automatically excludes any fluctwation in the limit t + =,

With the above reservations, Liouville's equation is equivalent to the dynamical
equations and its solution for a stochastic system also proves unstable in the following
sense. Let us introduce so-called coarse-grained phase density f(x,t,}), which is obtained
by averaging f(x,t) over the phase space cells, of a size & + 0 o B Only such a density
also has a direct physical sense. Indeed, we always have to do with a finite, although pos-
sibly also very large, number of systems M. Hence it is clear that the density is deter-
mined only for finite cells of the phase space containing many systems: £ix,t) - X oss 1,
If, on the other hand, there is only one system and the density is found according to the
relative time the system stays in the phase space cell, the system must enter the cell
again several times, i.e. the cell must have a finite size for any finite time of motion,

It is evident that the properties and behaviour of the coarse-grained density T depend
to a certain extent on the choice of one or another set of phase space cells. This is why
the notion of subdivision (of the phase space into cells) is cne of the basic notions of
the erpodic theory. In particular, as Sina151} recently showed, special (Markovian) sub-
divisions can be chosen, which enable one to change over rigorously from a dynamical des-
cription to a statistical (random] one in the form of a Markovian process.

Let us assume that

{0, t) = ;-;;(!, £k ) P & L 7/ (2.10.2)

where %[x,t,l} is the fine-grained density with a wave length A. It turns out that how-
ever small & + 0 is, the fine-grained f, generally speaking, has a considerable influence
over the development of the coarse-grained density f according to Liouville's equation.
This follows directly from the qualitative picture of the mixing process given in Section
2.4. -It is obvious that we have to do with the instability of the trajectories of the
stochastic system expressed in other terms. Let us recall that the time of development of
such instability very weakly depends on the scale of A: 7, ~ [In A| (Section 2.4).

In order finally to get rid of this instability, it is necessary to change over from
Liouville's equation to another one, which automatically excludes the fine-grained density.
This equation will be called kinetic*}. In order to exclude the fine-grained density it
is natural to add to Liouville's equation the operation of periodic (for some characteristic

#) This definition is not generally ac?epted. Sometimes, for example, Liouville's
equation®?}, or one related to it%%), is called kinetic. On the other hand, the term
"kinetic equation" is also used, since the work by Bogolyubov®*), in a narrow sense
to designate only the equation for a so-called single-particle distribution fimction.
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interval of time At) averaging of the equation (for f) over all possible fimctions of ]EJ
or more precisely over a complete set of such fimctions. If as the latter one chooses
§-functions in each of the phase space cells [f{x,t] a Ei fi » Gix - :c-l_‘!]‘ this will give
us a clear picture of averaging over the position of the trajectory of the system in a
phase space cell. Moreover, the trajectory distribution inside the cell is considered to
be uniform. This latter hypothesis, necessary for carrying out the averaging operation,
is the basis, explicit or implicit, of all the methods of obtaining a kinetic equation®®).
The "complexity" of the usual systems of statistical mechanics and the "complication" of
their trajectories afford intuitive justification of this hypothesis. These intuitive
considerations are formulated :‘nathe.mati-::ﬂll.‘rfl'“:| by going to the limit N » =, V + =, N/V =
const, where N is the mumber of particles in the system, and V its volume (for further de-
tails of this method see Section 2.13). Other justification can be obtained by means of

modern ergodic theory (see below).

Let us explain the physical meaning of the averaging in terms of trajectories. As
already observed above, in reality we are always concerned with a single trajectory of a
single system (a finite number of systems, interacting or not, equivalent to one system in
the unified phase space -- so-called I'-space)}. The motion along this trajectory can be
split into two processes: mixing in a small section of the phase space (A + 0) in the
immediate vicinity of a given point of the trajectory, and transition from one such section
to another throughout the whole of the accessible region of the phase space. The latter
process is exactly described by the kinetic equation, while the first is equivalent to
averaging in time or, because of the ergodicity, per phase cell. From the physical, or
rather, mechanical point of view, the initial process (in I'-space, see Section 2.12) is
averaging in time (first process).

The instahility of the solutions of Liouville's equation for a stochastic system
generalizes the standard notion of an improper problem for the equation in partial deriva-
tives, a notion introduced by Adamar (see for instance Ref. 58). This means that there is
no continuous dependence of the solution on the initial conditions.

The Cauchy problem for Liouville's equation == the wave type equation == is always
proper in the usual sense, namely for a finite interval of time and with the "distance"
between the functions determined through their difference [for instance, p(f,$) =
max {£(x) - ¢#(x)|, see Ref. 58]. However, the parameter A of fine-grained demsity (2.10.2)
can be taken as the "distance" between the distribution functions. When A + 0 the func-
tions £(x,t), $#(x,t) are considered to be close independently of the values ]'i:"|, i$|,
provided £ + & in the usual sense. It is evident that the distribution functions that are
close in the sense indicated are characterized by an infinitely small trajectory shift;
this is precisely the physical meaning of the new definition of "distance" between the
functions. If, further, the asymptotic solution of Liouville's equation with t + = is
considered, the problem becomes improper and therefore requires special methods of solu-
tion. One of them is precisely the kinetic equation method.

Recently, completely independently of statistical mechanics, various methods of
solving improper problems of a completely different kind have been developed. The most
complete survey of this work is to be found in a report by Lavrent'ev®®). One of the
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methods, using a regularizing operator, proposed by Tikhonov®®’, recalls the kinetic
equation method in its approach. It would be interesting to make a more systematic com-
parison of both classes of improper problems,

In connection with the averaging operation, the notion of the probability of transi-
tion (between phase space cells) naturally arises, and this can be calculated on the basis
of the dynamical equations and the above-mentioned hypothesis concerning the uniform
"spreading" of the trajectory over the cells.

The transition probability enables us not only to obtain a most general kinetic
equation of an integro-differential typesl’hi}, but also to describe the fluctuations
neglected by the standard kinetic equation. Description of the motion of the system in
terms of transition probability is called the Markovian process. Its characteristic
feature is independence from the previeus history of the motion, For arbitrary subdivision
of the phase space the probability of transition between the cells of the subdivision, de-
termined by the measure of the corresponding regions, generally speaking depends on the
previous states. This did not allow of rigorous transition from the dynamical equations
to the Markovian prﬂcesssuj in spite of numerous attempts. Only recently Sinai succeeded
in constructing special subdivisions for which such transition proved pcssiblesz}. These
Markovian subdivisions have, generally speaking, a very complicated structure. Therefore,
in the present paper, we shall restrict ourselves to cobtaining the kinetic equation only,
as the simplest method of describing a stochastic process.

The solutions of the kinetic equation are generally speaking stable and thus again
have the usual physical sense. However, this stability is bought at the cost of part of
the solutions of the original Liouville equation, which are umstable. They describe the
growth of the fluctuations. A priori it is not at all cbvious that the stable solutions
of the kinetic equation (of the type with relaxation to an equilibrium state) generally
exist and, moreover, describe in some sense the overwhelming majority of processes observed.
This is due mainly to the fortunate fact that our world is in a strongly non-equilibrium
state. If we had to describe the miserable phenomena which could still cccur in a state of
statistical equilibrium it would perhaps be just these processes of formation of large
fluctuations that would be the most important. We should be faced with the very difficult
dilemma of nevertheless devising some way of making a stable description of the growth of
the fluctuations, or of generally rejecting the requirement for stability when describing
physical processes. In any case, the statistical physics of such processes would appear
rather unusual from the modern point of view. As an instance, one can cite the present
method of describing the growth of large fluctuations a posteriori, namely under the con-
dition (afterwards) of the formation of fluctuations with given parametersai’al}. Such a
description is made by means of an equation similar to the kinetic onme and is stable. How-
ever, it is clear that the most important feature of the law of physics -- the possibility
of prediction -- will be lost. These questions will be discussed further in Section Z.13.

Since the processes of relaxation and growth of the fluctuations are reciprocally re-
versible in time, the kinetic equation which describes only relaxation is of necessity
irreversible. It is clear that this in no way means the physical disparity of both direc-
tions in time, or the existence of ''the time arrow', the current expression?nj. but is the
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consequence of deliberate exclusion of reverse processes which are in principle possible,
but are unstable (for more detail see Section 2.13). It is interesting to note that this
point of view, which is perfectly natural for present-day ergodic theory (see Section 2.4)
is not shared by many of the physicists (see for example Ref. 70].

As far as we know, so far no-one has attempted to obtain a kinetic equation by means
of ergodic theory. Generally the statistical element when obtaining a kinetic equation is
just to postulate in one form or another, for instance the assumption of the absence of
pair correlations in Boltzmann's first kinetic theory, the Bogolyubov condition of correla-
tion relaxations“’ss} or the random phase hypothesis in the quasi-linear plasma wave

th&ﬂryss}.

In this paragraph the kinetic equation for the basic model (2.1.11) will be obtained
without any a priori statistical hypotheses, on the basis of the results of the ergodic
theory (Sections 2.3 and 2.4). A comparison of our approach to the problem and that of
present-day statistical mechanics will be made in Sections 2.11 and 2.13. Now let us note
only that the kinetic equation which we are just about to obtain is similar to the so-
called master equation of statistical mechanics, since it relates to I-space. This is the
only possibility for a one-dimensional system of the type of the basic model. In the many-
dimensional case a kinetic equation of another type in so-called p-space is possible (see
end of Section 2.12}.

Since for our model the perturbation is small (e + 0), the kinetic equation must have
the form of an FPK diffusion equation (Fokker-Planck-Kolmogorov)''*"*) (2.10.10). It is
determined, as is known, by the two first moments ((AI);), and ((AI)]), where the index 1
signifies that the mean value is taken per unit of time (one step in our case) and averag-

ing is carried out by means of transition probability.

Let us recall that the first moment ((AI);)} describes the systematic variation of the
momentum and is equal to the mean rate of its variation. The diffusion itself is described
by the second moment {{al}f}, which is equal to the mean rate of I "dispersion'. All the
statistical properties of this process are linked just with the latter quantity and it is
only owing to this quantity that the FPK equation becomes kinetic in the sense indicated
above. Hence it can be concluded that for transition to the kinetic equation it is neces-
sary for the quantity (AI)? to increase (on the average) = t.

As noted above, averaging over the transition probability or the phase space cells is
not different from an approximate description of the development in time of one of the
systems of the statistical ensemble determined by a single dynamical trajectory. There-
fore when calculating {[ﬂI]f} the original averaging should be carried out in time. Let
us write the variation I. for one of the systems of the ensemble in the form:

.
" ; = 2 (2.10.3)
-I;+ ‘e 4{; - & Eé%; 129 (f )

where for the sake of simplicity we neglect the dependence of hg on I, which will be taken
into account when calculating {((AI);) (see below). We find




Py
L)
i

= r - < / 7
@I) - Eij'ﬁ% j[ﬁ (Ex} +é ;;& ®,): a, (‘*{:;jjf (2.10.4)

]

In order to obtain the kinetic equation it is necessary for this value to increase (on the
average) in proportion to time (= n), namely it is sufficient to ignore the second sum.

It is precisely that sum which includes all the instability of the stochastic motion and

also its reversibility (and hence the fluctuations), since this sum depends on the correlation
of phases that are successive in time. Accordingly, it is sufficient for us to require

the absence of pair autocorrelations (Section 2.3). If, moreover, the motion is ergodic

in phase, then:

.

@I):‘ = {(df)’f} = -::’A::- (2.10.5)

Let us note that the rejection of the second sum (I;) in [2.10.4] is not a trivial
mathematical operation, since I, is of the order of the first sum {EE h@ [@kj “ hg ¢ vnl.
The rejection is possible only on the average, since E; oscillates. In principle, this
procedure is similar to the averaging method in non-linear mechanicsi}. Moreover, we
simply reject such special initial conditions when the second sum is much larger than the
first for a long time (fluctuations).

It would seem that it is the ergodic theory that provides justification for the re-
jection of I, in (2.10.4), even weak mixing being sufficient (Section 2.3). However, in
reality the situation is more complicated. The point is that according to the ergodic
theory mixing, and in particular the disappearance of pair correlations, takes place only
asymptotically when t + #=, i.e. it takes place parallel to relaxation to statistical
equilibrium. But we wish to describe the relaxation process itself. Another aspect of
this difficulty is that mixing with respect to the phase @, which we should like to regard
as a "simply random” ("microscopic'') parameter, is necessarily accompanied, by virtue of
the equations of motion (2.1.11) by mixing with respect to the mementum I, which should
play the part of a diffusion ("macroscopic") variable. Therefore, at first glance it seems
generally impossible to apply the kinetic equation to inhomogeneous distributions and this
means-th?t it completely loses its sense. These difficulties were thoroughly analysed by
Krylnva°

It seems to us, however, that a solution can be found by using an idea of
Bogulyubuvsqfssj of introducing different time scales into the problem. In the case of
the basic model it is a question of two. kinds of time -- the dynamical mixing time 1
(one step) and the I diffusion time: 1p £ (steps, see below). Asymptotically when
£ = 0 we can thus separate both processes with an arbitrary degree of accuracy* .

who came to a pessimistic conclusion.

Let us make a more accurate formulation of the conditions of such separation of mixing
from diffusion. For this we will calculate (2.10.4), having split it into sub-sums with a

*) A comparison with Bogolyubov's theory, where other time scales are introduced, will be
given in Section 2.13.
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given difference m = k - £ (L = 1,2, ...) and intreducing the pair correlation coefficient
p(m) = {h3 [Sk] . hg {Qk*ng} / {hé Gak}}+ The sum which is of interest to us turns out to
be asymptotically {n + =) equal to: E; =n - {h%} . E:::l g{m), namely proportional te n
like the first sum in (2.10.4). Therefore the (FPK) kinetic equation remains valid also
when the correlation exists (with another diffusion coefficient), provided the sum Ip(m)
converges. In the opposite case I; increases faster than t and the kinetic equation is in-
applicable.

The sum convergence condition can be written in the form:

pl) < &7 A5 4 w— Ao (2.10.5a)

This is the more accurate condition of application of the kinetic equation for systems of
the type under consideration. From this condition it can be seen, in particular, that weak
mixing is insufficient since generally speaking there is no limitation of the rate of de-
crease of the correlations. Stochasticity is a sufficient condition because it includes a
requirement for positive K-entropy (Section 2.3). In the latter case p(m) = e'h'm = g™

(8 <1; h= K-entropy) and for the second moment the following expression is obtained, de-

fining (2.10.5) more exactly:
2 -
{@I)f} ="« La > ({../3) (2.10.5b)

When the K-entropy is sufficiently great (h >> 1) correction is small. If, however, h << 1,
it is necessary to take into account not only the change of the second moment and consequently
also of the diffusion coefficient (2.10.12), but alsc of the dynamical scale of time X T h™t,

It should be noted, finally, that the exponential decrease in the correlations when
h = 0, although not a necessary condition, considerably increases the accuracy of the
statistical description by means of the kinetic equation.

As noted above, the mixing process covers not only the phase @ but also the momentum I,
which on the other hand is an independent variable of the distribution function. In order
to overcome this difficulty let us split I into two parts:

fa Fop & (2.10.6)

a diffusion (I) and a dynamical (I) part, so that the mixing process affects only I and not T.
On the other hand the diffusion is now determined only with an accuracy of the order of the
value I, which must of course be sufficiently small for this whole procedure to have a
physical sense. The value of I can best be estimated from the slope of the extension
eigenvector, i.e. from the slope of the extending asymptote (2.4.14):

(I __?' K e (2.10.7)
A)o-h P -, « LU

Thus there is a minimum size (AI,) of subdivision cell beyond which a kinetic description,
i.e. a description by means of a kinetic equation, becomes inapplicable. The distribution
function f inside the minimal cell should be considered constant.
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The size of the cell (2.10.7) may be decreased if one considers the transformation to
be in N steps. Then e - &R; K =+ Kﬁ (see Section 2.11), but the ratio thTn n N2yl

decreases. The conditicn Ty T determines the maximum permissible length of the dynami-
cal mixing process: Nmax 7 g7%, Whence the absolute minimum size of cell is:

T ~ e ch/e* 2.10.8)

(}: s - (2.10.8)

where h v 1n Ky is the K-entropy and ¢ ~ 1 is a constant depending on the required accuracy
of description.

It should be stressed that the limitation of the size of the phase space cell, and con-
sequently also the permissible subdivision, relates only to the description of the relaxation
process by means of a kinetic equation and does not extend to the asymptotic theorems of the
ergodic theory. In particular, this limitation no longer applies for an equilibrium state.
Let us note, however, that in any case statistical mechanics has to do with finite, although
arbitrarily small, phase space cells, which is equivalent to using a coarse-grained distri-
bution function™). Often it is not specially stipulated [see for instance Ref. 65], but
simply implied that the kinetic equation gives an incomplete descripticn according to part
of the variables (say, according to the momenta), while the remaining variables (the phases)
determine the transition probability. In certain problems these '"random'" variables are out-
wardly camouflaged, as for instance in the Boltzmann type of kinetic equation. Sometimes
imperfections of this kind lead to direct ambiguities, and in particular tu}the eTTonecus
7

x = &
assertion that the "exact" entropy of the clesed system does not increase

Returning to the FPK equation, let us note that the first moment {(AI},) must be cal-
culated with the same accuracy as the second (2.10.5), namely with an accuracy ~ e*. Let
us use expression (2.1.12) for this and take into account that T + 0 (eT = const};

{hy) = 0; (hgy * hg - hgg * hyd = 2 (hyp - hg) = ((hy * hydg) = {{hé}]I’ where we assume
that all the functions are continuous. We obtain:

<@l),> = %.,% < (ap) % (2.10.9)

Taking into account this relation, the FPK equation

-—

D 2 — *31 s
aig e (,P <(aT)y> ) « %ﬁ'ﬂ (;f -c(d..?',!r’}) (2.10.10)

comes as is knﬂhn**}, to the standard diffusion equation

—

»f _ D frey.E 10
5 Sids (é(r)f?_f,) (2.10.11)

#) The recent revival of what is called symbolic dynamicssﬂ} already described by Birkhoff
(Ref. 16, Chapter &, Section 11) is comnected with this.

#v) See for instance Ref. 65.



with a diffusion coefficient
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D(7) = ‘("‘;)f = w g_z_{_«‘f'g > (2.10.12)

The last expression shows, in particular, the validity of the estimate made above of the

diffusion time scale tp ™ i

In what follows we shall omit the bar above the function f and shall consider, if this
has not been done by special reservation, that all the distribution functions are coarse-

grained ones (f + f).

Relation (2.10.9) considerably simplifies obtaining the FPK equation, since for cal-
culating the second moment a first approximation is sufficient. Landau showedss] that re-
lation (2.10.9) follows directly from the principle of detailed balancing, i.e. from the
symmetry of transition probability in relation to the initial and final states. Unfortu-
nately, the principle of detailed balancing is far from always being valid, even when there
is a symmetry condition in relation to time reversal. In the latter case the reversal of
all velocities is implied, which generally speaking is not assumed when formulating the

principle of detailed balancing.

In the general case it is necessary to add to the diffusion equaiiun (2.10.11) the
term =(3/81) Ef {[aI]a}], where {[ﬂI}a} is the additional (anomalous) rate of variation of
the momentum 1. The general relation between the moments in the absence of detailed balanc-
ing was obtained by Belyaevss]. A simple example is the crossing of the resonance by a non-
linear oscillator (Sections 1.5 and 2.9). However, in this case it can also be said that
there is no time reversal, since the process is considered for crossing the resonance in a
given direction. A similar situation arises when charged particles move in a given external
magnetic fieldﬁs]. Even for rapid crossing, generally speaking, a systematic shift appears,
which can be calculated from expression (1.5.7). However, (1.5.7) cannot be averaged simply
over the phase y,, which is no longer, generally speaking, canonically conjugate to the
momentim I. This is due to the fact that the transformation (2.9.7) relates to a variable

interval of time, which itself depends on the dynamical variables. The scale of this effect,
leading to non-uniform mixing in ¢,, is characterized by the value V! << 1 (Section 2.9) and
proves to be of the same order as the constant shift in (1.5.7). Let us note that this effect

is unimportant when calculating the diffusion coefficient.

Dissipation can serve as an even simpler example. Let us go over from the momentum I to
the energy W and put: {[&W]a} = W < 0. Then there is a steady solution of the FPK equation,

which can be written in the form:

: v
()= $(o) ex | ¢ W a0 (2.10.13)
) &g J

This means that there are steady state stochastic oscillations of the energy of the system
under the action of the perturbation, which can be characterized by the effective "tempera-

ture':
D

'ﬁn'r (2.10.14)

Ty (W) = -

-
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The energy spectrum of the system depends on the form of the fumctions D{W), W(W): in par-
ticular, the Maxwellian spectrum is obtained when there is "balanced"” (for the given dis-
sipation) perturbation: -D{W)/W(W) = T = const.

This simple example shows that even when there is damping in a non-linear oscillatory
5ystem processes are possible which are described neither by the classical perturbation

theory nor by the KEM theory (see Section 2.Z).

Let vws note, in conclusion, that when there is an additional condition for the symmetry
of the momenta I, of the system with respect to the sign of the velocities, the principle of
detailed balancing and with it also relation (2.10.9), which for several degrees of freedom

. & 2 65
is written in the form®®):

4D T
efals )5 = {; z "ﬁ.,_{"— I )(ale) > (2.10.15)

directly follows from the time reversibility. As a simple example one can take a system of
weakly coupled oscillators for which the unperturbed canonical momenta depend on the squares
of the velocities. In particular, for the cne-dimensional case this follows directly from
the results of Ref. 38.

2.11 Transition to continugous time, or the general case
of the interaction of resonances

In Section 1.1 we began by studying the motion of a one-dimensional non-linear
oscillator wnder the action of external perturbations. In the special but perhaps more in-
teresting case of stochastic conditions we had to simplify the problem and go over to the
basic model (2.1.11). The most important feature of the latter is discrete time. Although
in itself the transition to the transformation in place of the differential equations does
not 1imit the generality of the problem, since such a transition can always be carried out
by means of an ordinary S—operator*}, the specific form of the basic model (2.1.11) is un-
doubtedly a certain special case of the original problem.

In this paragraph we shall endeavour to extend the results concerning the stochasticity
of the basic model to the general case of the interaction of resonances (Section 2.1),
namely to a one-dimensional non-autonomous non-linear oscillator of type (1.1.1). What con-
cerns us mainly are the three basic parameters of a stochastic system -- the criteria of
stochésticity, K-entropy and the diffusion coefficient.

For the starting point for our argument we will take the elementary model (2.8.1)
which is almost stochastic when k >» 1. The term "almost” implies the existence, generally
speaking, of small "islets" of stability for any k g (Section 2.8). This fact has so far
prevented a rigorous study of the stochastic properties of the elementary model (see
Section 2.4). Let us point out that our idea of its stochasticity is based not only on
physical intuition but also on the results of various numerical experiments, which will be
described in the following chapter.

With regard to extending the stochasticity criterion to the case of a arbitrary non-
linear oscillator (1.1.1) or to the case of continuous time, as we shall say henceforth

*] See for example Ref. 55.
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for the sake of brevity, this has in fact already heen done in Section 2.6. Let us merely
recall briefly that this extension was possible because the mechanism of stochasticity is
connected with the expansion and overlapping of the stochastic layers of resonances, which
always exist in one form or another, the motion inside which, in the final analysis, amounts

to the elementary model.

From the point of view of the set of resocnances [continuous time) the basic model re-
presents a special case in the sense that there are completely defined phase relations he-
tween the different resonances. The possibility of directly transferring the stochasticity
criterion for the basic model (2.5.1) and {2.5.2) to the general case of the interaction of
resonances shows that the stochasticity criterion dees not depend on phase relations. This
conclusion is also confirmed, in particular, for the very special case of periedic crossing
of the resonance (Section 2.9). Unfortunately the same camnnot be said of the two other
characteristics of stochasticity -- K-entropy and the diffusion coefficient.

Let us begin with the entropy, considering a transformation of the basic model type:
= Pt Lﬁ,f(l;#)
ﬁﬁ'f = et L2 jgﬁ,ffiﬁﬁuj

where £{§) is a function that is periodic according to | with a period of one. In what
follows we shall call the transformation a cascade, in order to stress the discreteness of
the time*?), We shall give the description of the motion in terms of continuous time the

standard name of flux. What now interests us is the transition from the flux to the cas-
cade, the stochastic parameters of which we know how to calculate.

(2.11.1)

It is not difficult to verify that in the general case the cascade will not have the
form of the basic model. For this let us consider transformation (2.11.1) in two steps:

P, = @+ I{ﬁqu)-f- .{Cf(?j’f‘ ‘ip*‘é?g("{"*")
b o= g r _g((fp.p kEce)) + k€leroekfle))

(2.11.2)
In the general case it does not amount to [2.11.1), especially as this concerns a trans-
formation with an arbitrary number of steps -- N. In the special case of k >> 1 the last
term plays the main role in (2.11.2) so that the effective value of the stochasticity para-
meter is K, ~ k*. In the same way, for a transformation with N steps KN u kN. This result
could also have been obtained directly from the expression for the K-entropy of the basic
model (2.4.19), which, of course, should not depend on the interval of the transformation:

h= (1/N) In K, = In k.

The quantity K, o sﬁ is the parameter of stochasticity of the cascade, which thus depends
exponentially on the interval of the transformation. However, if we have a [lux this
stochasticity parameter is given: 5 fﬁ and consequently the expression for the K-en-
tropy of the cascade (2.4.21) cannot in the general case be used for the flux }. However,

#] In other words, it is not clear what is the characteristic interval of time of the cas- ﬁ
cade to which the parameter s* ~ k, of the flux correspends.
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in the special case of short kicks or periodic crossing of the resonance the K-sntropy is
actually determined by expression (2.4.19) with k, ~ 5%, This shows that the K-entropy
essentially depends on the phase relations between the resonances and therefors a general

estimate of it is impossible.

Let us note that this problem does not arise for determining the border of stochas-
ticity, since at the border of stochasticity KN ~ k1. This illustrates the remark made
above concerning the non-dependence of the stochasticity criterion on the resonance phase

relations.

In order to estimate the K-entropy of the flux one can, however, consider a case that
is in a sense "typical', when the phases of various resonances are 'random', i.e. when
there are no special relations between them. Then the only interval of time characterizing
the non-linear interaction of the resonances will be the inverse frequency of the renormal-
ized phase oscillations [ﬂ';} and the renormalizaticn, by virtue of the assumed randomness
of the phases, should be carried out with a power n = 4 (Section 2.7). It is easy to obtain
the law of renormalization of a system of resonances of the same order of width, by analogy
with (2.7.13):

= Ly LS
G 2 95 Qaols, . R,

= I 1
v = > (2.11.3a)
A

where {ﬂu]z, {ﬂmJH are the renormalized and non-renormalized width of the resonance pw = q,
respectively; & is the distance between the resonance values of the frequency w. Here we
used the relation n¢ 4" p{ﬁg}H (Section 1.4). In what follows we shall assume for the sake
of simplicity: p -~ 1. It is easy to see that as a rough estimate of the entropy one can
put:

o
h ae G ma _5?;’{3- 4~ (2.11.3)

There is hardly any sense in making estimate (2.11.3), which we shall call ""typical", more
accurate, because of its dependence on the phase relations. In particular, in the case of

the basic model:

A Q
A = r— é}h f— (2.11.4)

Local instability, characterized by Kfentrapf, determines the process of phase mixing
[for a system of the type of the basic model (2.11.1)]. The latter can also be described
by means of the phase autocorrelations in a similar way to that mentioned in Section 2.3
for the elementary example of stochasticity. For reasons to be explained below we will
slightly generalize the correlation coefficient determined above, putting:

25ilptn + 9/ L.
ﬁf}(f?f?)= s P 9 - (2.11.5)



- Bf -

Let us first consider the special case of the cascade (2.11.1) with £{y) = (1/2m) x
5in 2mp and assume that n = 1. Expressing y; through ¥,y and integrating by virtue of the
ergodicity (k >> 1) over ¢,y, we find:

2%
2) - :{f - . - :
,,Pf (/1?/’— —"——"—‘EF‘_F —'.Z”q{,{’f/"r-’ szt L/;,c—'r (2.11.6)

From this it can already be seen that the laws of correlation relaxation and of the de-
velopment of local instability do not agree, as was the case in the elementary example
(Section 2.3). Moreover, the dependence of the correlation coefficient on q, which occurs
when k £ q (p ~ 1), is of a completely different nature from that described in Section 2.3.
These peculiarities are explained mainly by the fact that the correlation coefficient is
now determined primarily by the region near the stable phases (2.8.7): M~ kE.

Let us now calculate pr'izj (p,q). For this let us express ¥, through the previous
phases wn-l’ «vay ¥ by applying (2.11.1) successively:

G = frnpr K fﬂfr’:f«hffr-f)f"@f ‘..
¢ P (i) f = fraps £ S )

When k >> 1 the successive phases can be considered to be random*). Therefore the random
quantity Sn[t!-'] when n »» 1 is distributed normally with the parameters:

» 3
RS =0 <5":=-:_—52::¢,fz --;L (2.11.8)

(2.11.7)

bhen calculating pTEZ}, integration over y can now replace integration over 5, having

-52 2
assumed that di/dS v e st/ » Since dy is proportional to the measure in phase. Assuming
that q = -p to eliminate the term with ¢ in the exponent (2.11.5), we obtain the estimate:

a :?-—q..z. 3 = 3
_P.,}(/’;"f}*-ava [‘ -—J’;ﬂ'«t’f SRVATE (2.11.9)
‘The characteristic relaxation time of the correlations proves to be of the order of:

-2/3
T M~ k (2.11.10)
which agrees with the "typical" estimate for the inverse K-entropy (2.11.3) [0 v k; 4 =12n
for discrete time (2.11.1)]. Meanwhile, in the case under consideration ("atypical") the
K-entropy is defined by expression (2.11.4) or, in discrete time h =1n k.

This difference is probably explained by the fact that the K-entropy is determined by
the behaviour of the system only on the asymptote, while the correlation coefficient is
some integral quantity. From the point of view of the mixing process the correlation

=] The small residual correlations (2.11.6) can be taken into account in the following
approximation, as was done in the previous paragraph (2.10.5b).
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coefficient is a more direct characteristic, so that it enhances the role of the "tvpical”
estimate (2.11.3) and (2.11.10). It should, however, be remembered that for a cascade of
type (2.11.1) with k >> 1 the difference between the X-entropy and the correlations can have
real value only for some very fine details of the mixing structure (g »» 1) which will not
be discussed here. For q £ k the residual correlations are small, even after one step
(2.11.6). '

Returning to the flux, it can be concluded that the characteristic damping time of
the correlations, and hence also the mixing, will be determined by the "typical" estimate:
A el B

Let us take as an example yet another model, which can serve as a link between a
cascade of type (2.11.1) and a flux. The model is given by the transformation:

Pori= P+ K F 2z (g v 0:)
ﬁ#1¢f 4 = ﬁﬂic + ﬁﬁﬁ, 1 |

where Bi is the sequence of T random phases, which then recur periodically. We shall from
now on call this model quasi-random, On the one hand it recalls the basic model, since

it is given by a transformation and the perturbation has a period T. On the other hand,
when 1, + 0, where the interval 1, corresponds to one step, the quasi-random model changes
over to the “typical" flux with a random discrete perturbation spectrum and the distance
between the lines of the spectrum is & = 2n/T. Bearing in mind the transition menticned,
it is assumed that k << 1.

(2.11.11)

F(t)

pitl

Fig. 2.11.1: Time dependence of the perturbation F(t) for the quasi-
random model: Tip is the duration of the interaction; T is the
perturbation period.
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Figure 2.11.1 is a schematic diagram of the time dependence of the perturbation for
the quasi-random model. The model has been further extended by introducing variable (in
particular randem) distances between the kicks Ti[?i = 14] and a finite width of the
kick Tigr keeping a constant period T. Transformation (2.11.11) correspends to the case

of Tyl 1; Ty ™ 0. A flux results when Ty v Tin®

Using the results of Section 2.4 one can find the eigenvalues of transformation
(2.11.11}:

A medk SE Z:"é*a"’zﬁ‘(%*é’c'/ (2.11.12)

and the directions of the eigenvectors (Fig. 2.8.1):

Z{j 0, % + '/;Z—:* (2.11.13)

If transformation (2.11.11) were unstable (K;>0) in each step, then the K-entropy would be:
he ki {/Cos Zmj). However, in reality in roughly half the cases K; < 0, i.e. the trans-
verse vector turns, and hence it can change over from the extension cone to the contraction
cone (Section 2.8). When k << 1, the difference between the two cones is insignificant and
itself depends on k. We can therefore write: h ~ km, where m > }. For what follows it is
significant that h cannot depend on T, since under conditions of stochasticity (in a period

T) all the phases (wi + Bi] are random.

Let us now turn to estimates in terms of continuous time, having formally represented
the cascade (2.11.1) as a flux with a §-functien in time. By virtue of the periodicity,
the spectrum of the flux is equidistant: w_ =n - 4 = 2m/T. Taking into account further
that the sum of E? sin 2w ai 4" T!, we obtain the following estimate for the amplitude of

the perturbation harmmonic and the non-renormalized frequency of the phase oscillaticns:

1.

b

B Enl
e a0

Since the value @, depends on T, it cannot determine the characteristic time for the de-

velopment of stochasticity, and that implies also K-entropy (see above). Renormalization

with a power of n gives: ﬂzt u n: . {ﬂﬁzfﬂ], or:

FA
e 5-2‘? (2.11.14)

1

£ s [(k) : Tf_ !‘!’-/ n—t (2.11.15)
+= *L 2

The dependence on T disappears when n = 4 and we thus arrive at a 'typical" estimate
{2.11.3) for a special case of the quasi-random moedel (2.11.11).

Let us find the phase correlations for this model. It is not difficult to find out
that they are given by the same estimate of (2.11.10) as for the basic model (2.11.1).
The sole difference lies in the fact that for the quasi-random model this estimate is
valid for any k, and also when k + 0 (changeover to flux). In reality the only require-
ment in order to obtain (2.11.9) and (2.11.10) is that the quantity 5n{¢] be the sum of
the random finctions (2.11.7). However, this is automatically provided for in the quasi-
random model for any k (2.11.11), provided the stochasticity criterion is satisfied in a
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3
period T [kT 2 > 1; see (2.11.14)]. Using (2.11.10) and (2.11.14] we again arrive at a
"typical'' estimate (2.11.3).
Let us now turn to the calculation of the diffusion coefficient of the flux. As shown
in the previous paragraph, for this it is sufficient to find the second mement ((4I)i).
Let the variation of I be given by the equation:

_d’_{ _ ;3_‘ . @[j@:_, de + B Gl ] (2.11.16)

{
dE s
where the guantities mn[t}. Gn{t] slowly vary under the action of the perturbation during
a time " ¥t Since w_ in fact signifies the differences of rescnance frequencies, it

will be convenient for us to consider that they may be both positive and negative:

-y < W < fiy. In what follows we shall assume for the sake of simplicity that the basic
part of the spectrum is situated symmetrically to the resomance: @ %@ ~uw . The
stochasticity of the flux (2.11.16) corresponds to the conditien t

i Ay £ 1, where A,
is the mean distance between the lines of the spectrum w .

When t << t_ . the spectrum can be considered to be discrete. We find:

A s .
% Fis Z _:i:*: [}aﬁ {mﬂf-;- ;f%"_‘)w Ji, zg,..J (2.11.17)
[ ™

whence

z

v
(53}1% Z; “‘%ﬂl) e u” d"’{———- 'f"f?*r)_"'
(2.11.18)

S Ml g 0ot :
T A A & ALY Ty
Let us first of all consider the most simple case of a discrete spectrum -- an

equidistant spectrum Gun = #n + Ay), corresponding to periodic motion with a period of

T = Zn/hy. Let us further assume that in the limit N + = (4, + 0) the phases G, are dis-
tributed in a circle "randomly", uniformly and independently of Fn‘ The last condition is
fulfilled, in particular, for sufficiently continucus dependence of F, on n. Then the
second sum (I;) in (2.11.18) is equal to zero and (cos® [(w t/2) + 8.1y = §.

The first sum is transformed in the usual way into an integral (see for example
Ref. 49):

(al) =4 5 Foe 2= ofin = T Lo f (2.11.19)
- QJH Aﬂ#

whence the diffusion coefficient

S0 = G J(&) (2.11.20)
e

where
j(m) = fe (2.11.21)
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is the spectral density of the perturbation. Let us note that the value J{w] remains
approximately constant when there is local transformaticn of the form of the spectrum, for
instance upen transition from a discrete to a continuous spectrum, provided the frequency
variation is not very big. Hence it follows, in particular, that expression (2.11.20) for
the diffusion coefficient is wuniversal. The other relaticns scmetimes mentioned in the
literature in the final analysis can be transformed into the form of (2.11.20). For
instance, in Ref. 74 the diffusion coefficient is determined by the sum (in our symbols):
D~ E F? V(w,), where V(w) is the spectrum of the correlation function. In this case,
however, Fn defines a spectral line of finite width ~ T;;r, so that the sum i F; . ”{“hj g
~ J(0) is simply the renormalization of the spectnum.

Another example is connected with the extension of expressions (2.11.20) and (2.11.21)
to the case of a complete set of resonances (Section 2.7), when the amplitudes an are of a
different order for different values of m, although the corresponding frequencies w  may
be very near. In this case one can divide the components of the sum (2.11.19) (this time
over m,n) into groups, in which the an functions are fairly smooth. Relation (2.11.1%9)
is valid for each of such groups, but the general result is given by the sum"ﬁj:

7(‘-—’,’ = z.'._":' ) _ (2.11.21a)

'ﬂ".tf_.‘
-..‘-ll-l

which as usual signifies the spectral density of the perturbation.

The result (2.11.20) was first obtained, apparently, by BUgulyuvale. Strictly

speaking it is valid only in the limit N + =, but it can also be used approximately for
finite, sufficiently large N. However, in the latter case there is a limitation on the

maximm permissible time:

e < F = ga, (2.11.22)

where Woin ™ doe For greater times (t -« &; >> 1) expression (2.11.19) becomes invalid, but
from (2.11.17) it can be seen that the motion is in that case periodic {mn = 4nhy}, so that

the kinetic equation is of course inapplicable.

In order to complete the picture a lower limit was added to (2.11.22); in the present
case (2.11.19) Tondn ™ m;;x, where - is the width of the perturbation spectrum, connected
by the uncertainty relation [”max L T 1) to the duration of the interaction v, -- cne
of the characteristic time scales introduced by Bognlyubovsu} i 3 For our basic model
i ™ 0. When t £ 1., expression (2.11.19) is determined by the whole perturbation
spectrum and not only by the value Fy. This leads to the diffusion coefficient depending
on time, i.e. dyvnamic correlations make their appearance and the FPK equation is no longer

valid.

#) In the general case this scale is determined by the correlation time T (see below).
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The requirements for the phases 9, formilated above ares essential, at least the un-
iformity. The elementary model (2.11.1) with k << 1 (Kolmogorov stability) will serve as
a most simple example. Whatever the length of the interval (perturbatiocn period} of T = =,
the kinetic equation will not be applicable to this system, since it is not stochastic.
Even in the stochastic case the value of the diffusion coefficient, generally speaking,
depends considerably on the phase relaticns between the resonances, as will be directly

seen from the examples given below.

The requirement for "randommess" of the phases 8, can be replaced, changing over to
the general case of a discrete spectrum, by a requirement for "randommess” of the frequen-
cles w . Let Mw_characterize the order of the "random” displacement of the line of the
equidistant spectrum. Then the additional phase displacements 49, v t ﬂr' and for
t > m;*, the phases become “randem'. It is evident that in this case the lower limit
of the kinetic interval (2.11.22) is:

-7 :
T imcn ™~ AW, (2.11.22a)

In particular, in order to obtain the maximm interval it is necessary that L

On the other hand, for any fw_ the phases become random asymptotically when t + =,
5 . 72 A .
The interesting theorem of Kac ) relates to this case; it states that the sum

_ i
-‘é _ ;}é Z; Ces a2 (2.11.23)

is an asymptotically (N + =, t + =) random quantity, distributed normally with the parameters
(0,1) (mean and dispersion), provided the frequencies w, are linearly independent, i.e. if
LAy e, FO; A #0are integers. In this connection it should be noted that the measure
of the linearly dependent frequencies is equal to zem“}+

For the kinetic equation to be valid it is necessary, however, for the following con-
dition to be fulfilled (also when going to the limit N + =):

AW > A, (2.11.24)

i
It would be natural to call just such a spectrum (in the limit A, + () continuous. It
is a sligthly stronger property than weak mixing (Section 2.3). The latter is equivalent
to a continuous spectmum in the sense that there is no eigenfumction of Liouville's
equationas] *]. From the results of this paragraph it follows that a continuous spectrum
with condition (2.11.24) leads not only to a decrease of pair auto-correlations but also
to integrability of the correlation coefficient, i.e. it ensures the validity of the
kinetic equation (see below). In what follows, the term continuous spectrum should be
understood to mean with condition (2.11.24).

+) Apparently this is equivalent also to the general notion of a continuous spectrum
(8 + 0) without additional conditions imposed in the phases or frequencies.
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By virtue of the foregoing, inequality (2.11.24) can be called the continuity con-
dition of the sequence e The latter iz alsoc equivalent to the notion of a completely
uniformly distributed sequence (Section 2.3).

Thus, for the kinetic equation to be applicable in a discrete spectrum the set of
frequencies w (or phases © ) must be "continuous'. Let us see what this conditiom means
in terms of the time dependence of the perturbation F(t) = dI/dt (2.11.16). We require
the quantity (aI)? = (JF dt)? = fF(t)F(t’)dt dt’ to vary approximately in proportion to
time in some interval (2.11.22). Let us introduce the autocorrelation cuefficient'}

4+t
P, (s ) ::[%_- Ja’f F¢+ea) F{f/}t/@' e (2.11.25)

1

by means of which the second moment can be presented, as usual, in the form:

= =4
EEEy e F?j'ﬂ b (2.11.26)

As in the case of discrete time (Section 2.10) the latter integral should converge and
should not depend on t, t [in the interval (2.11.22)]. In the special case:

= HAE (2.11.27)

_PA (u) =

we obtain

z =
. P = (a I)-f = F 2, (2.11.28)

where the bar, as usual, means averaging in time, The latter expression is valid when
i **) and thus the lower boundary of interval (2.11.22) is now determined by the
correlation time:

txT

f&ﬂ‘:“q’ de ,E"-A << W (2.11.29)

This inequality is a necessary and sufficient condition for the validity of the
kinetic equation for a discrete spectrum; it simply means that the interval (Z.11.22) is
non-null. For "typical' perturbation with "random' phases 8 the correlation time becomes

P . -1
Ny " y
minimal; Ty W Tin®

*)} The index "A" signifies the linear model. The correlation coefficient for a flux is
usually called the correlation function; we retain the term 'correlation coefficient”,
however, because it is convenient to have a single designation.

*#) For continuously acting perturbation. For example, for a quasi-random medel with a
kick duration of Tjpn and an interval between kicks of 1, we obviously have tmin ™ Tu,
although tq ~ Tijp << Te. However, in this case also the correlation time can be con-
sidered to be Vv Tq, since during this time the perturbation is equal to zero; the
correlation coefficient (2.11.23), however, vanishes for 14 > u > 1in by virtue of the
peculiarity of its definition.
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By comparing expressions (2.11.29) and (2.11.22a) we arrive at the interesting
estimate:

o s
o dw, ~ f 2.11.30)

which shows that the "random' displacement of the line &wr fills the Tole of its effective
width (in the discrete spectrum!).

So far we have considered the discrete spectrum, i.e. perturbation (2.11.16) with

constant frequencies w
system, say in a system of linear oscillators with linear coupling. Such a system is

and phases - Such a case occurs, for example, in a pure linear

certainly non-ergodic, since it can be transformed into normal coordinates, i.e. into a
system of independent oscillators. MNevertheless, it is possible for such a system to have
the statistical behaviour described by the kinetic equation, in the interval (2.11.21).
For the reasons given, the case of a discrete spectrum will be called the linear
(statistical) model. As already noted, such a model was first introduced by Bogolwbmr”}
and at present is the most widespread in statistical mechanics (see for instance Ref. 49).
This model will be more thoroughly discussed in Section Z.13 and we will do no more than
note in passing that it bears no relation to the ergodic theory and its main drawback is
an upper time limit (2.11.22).

The upper limit of the interval (2.11.22) is often called the Poincarg cycle and is
believed to be comnected with his recurrence theorem. This conclusion is valid, however,
as we shall see, only in the case of a discrete spectrum, i.e. for a linear model. Taking
into account the non-linearity and the resulting stochasticity, the spectrum becomes con-
tinuous and the upper time limit (2.11.22) no longer exists.

Let us make a more detailed study of the foregoing case. Let us represent the
perturbation F(t) in the form

Ft) = £CE). v(¢) (2.11.31)

where f(t) is the given external force (divided by the frequency) having a discrete
(in particular equidistant) spectrum with a mean distance between lines of &; w(t) is the
velocity of the oscillator. It is cbvious that the formation of a continuous spectrum is
comnected precisely with the last quantity v(t) = vy(t) * cos ¢(t) and is the result of
the mixing process in the phase $(t).

Taking into account the fact that for small perturbation v, (t) varies insignificantly

as compared to the phase, the velocity correlation can be expressed through the phase
correlation (2.11.5):

vt ) UrE) cz) '
P(w) = L ~ P Cpig) (2.11.32)
e
An explicit estimate of the latter correlation coefficient camnmot be given in the general
form, but frem the consideration menticned at the beginning of this section it follows that

pl'iz} decreases with u exponentially with a characteristic time, determined by the "'typical"
estimate of the K-entropy (2.11.3).
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The perturbation correlaticns F(t) depend, generally speaking, in a complicated way
on the linear correlations (2.11.25) of the force £(t) and the non-linear correlation of
the velocity v(t) (2.11.32). Let us consider the two limiting cases.

First let

iy b << o (2.11.33)

We will call this case quasi-linear by analogy with the corresponding approximation in
plasma wave theorysﬁ]. In this approximation the correlations are determined by the ex-
temal force: po(F,F') = p(f,£") when u ¢ T[f = £(t); ' = f(t + u)] and decrease with a
characteristic time T (see above). When u z T the linear correlations p(f,f’) increase
again on account of the quasi-periodicity of f(t). In the simple case of a periodic force
f(t), the correlation coefficient p(f,f') is also periodic. This leads to a strong in-
crease in linear correlations in the intervals: kT < u < kT + Tyh ke B usne s
here that the velocity correlation: a(F,F') = p(v,0') becomes significant with a charac-
terestic time B ™ h™' (2,11.3). The schematic variation of the total correlation co-
efficient is shown in Fig. 2.11.2 as a continuous line; the dotted line represents the

non-linear correlations p(v,v'].

It can be said that in the quasi-linear case there is a region of applicability of
the linear model, confirmed for t > T by the non-linear model.

In the opposite limiting case

g B gl (2.11.34)
the linear model is not applicable at all, but the decrease of the correlations is charac-
terized by the dotted line in Fig. 2.11.2, provided the following additional condition is
fulfilled

% z h ~ £

-5

= {2.11.35)
The physical meaning of this condition is that there must be several renormalized reso-
nancés which destroy each other. In the opposite case only one renormalized resonance is
formed and the maximun perturbation frequency B K Q¢E* so that only a narrow
stochastic layer forms near the separatrix of this resonance (2.6.16).

Let us note that conditions (2.11.35), (2.11.33) and (2.11.34), are generally
speaking independent, since rHl N b % weo . But for "typical" ("random'') initial phases
'E}n we have: Lo, w50 that the developed stochasticity corresponds only to the quasi-
linear case (2.11.33).

In conclusion, let us consider a few examples of calculating the diffusion coefficient.

Let us begin with the basic model (2.1.11) which was thoroughly studied in the previous
Section. Let us express the diffusion coefficient for it through the continuous time (flux)
parameters, introducing the d-function inte the transformation. Let us assume hB{G] = cos @
= cos wt to be definite, then Fl'l = gfT, and from (2.11.20} we obtain:
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Fig. 2.11.2: Schematic diagram of the autocorrelations of the perturba-
tion F(t) in the gquasi-linear case. The dotted curve represents the non-
linear correlations p(v,v') with a characteristic time ~ h™! & g,=Y? 'ﬂqyﬁ;
the continuous curve represents the total correlations p(F,F'), determined
in the interval of applicability of the linear model (t < T} by the linear
correlations p(f,f') with a characteristic time Ty v bm;‘+

2
(2.11.36)

£
3 = AT

which agrees exactly with (2.10.12), if it is taken into accoumt that T characterizes the
duration of one step.

The diffusion coefficient can be estimated in another way, which can be useful in
some cases. Keeping in mind the picture of "touching" renormalized rescnances, we can
write:

2 3 14 2
- . 2-
Dy~ (A0) 2 Dy~ Q. ~ _._.i"' 5 fr__.(c.,u’) (2.11.37)

The index w shows that the diffusion coefficient is obtained according to the frequency.
The latter expression shows that it agrees in order of magnitude with (2.11.36).

The first of the estimates (2.11.37) is valid for any '"typical" system, and the
second only for resonances in the first hammonic: pw = q; p = 1. Comparing it with the
"typical" estimate of K-entropy (2.11.3), we arrive in this case at an interesting relation:

ER e i (2.11.37a)
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Let us note that if w is not a canonical variable it is necessary to change over to
the I diffusicn coefficient: DI = DD, v (dI/dw)?, before inserting it in the kinetic

equation.

Let us consider the quasi-random model
el gt ¢

modified so as to obtain the resonances of the pth harmemic: pw = g, where w = Imp/T;
0= 2n/T. The distance between rescnances, i.e. between the values of the perturbation
frequency: &, = 2n/T. In terms of continuous time [compare with (2.11.14)] we have:
ﬁ; w pF, % kT {bﬁ}ﬁ n k/pvT. Renormalization gives (2.11.3a): Ry [pk}ﬁi;
(), v k %.p" "3, Using the general estimate (2.11.37) we find: I {&u}% iy " K2,
which agrees in order of magnitude with the general formulae [[(2.11.20) and (2.11.21)]:
Do~ Fi/ay ~ K2

Let us now study the diffusion by periodic crossing of the rescnance,

The simplest case is fast crossing of the resonance, which is described by transforma-
tion (2.9.7) of the basic model type. From expression (2.10.12) we find directly (for
symbols see Section 2.9}):

- z
< r d
D= —c‘ij'l"’—-*.f?t, = S, 2 (2.11.38)
7 F
or in the flux parameters:
oF Lok
'zh,,'“ St S = .(mf)’“ (2.11.39)

S2.; 2.

The latter estimate agrees with the general expression (2.11.20). However, the region
of applicability of this expression, as for the previous example, is determined by the con-
dition t > T = 2n/0y, s0 that the quasi-linear region in the present case is completely
ahsent because of the special phase relations between the resonances.

. For slow crossing of the rescnance the frequency change is almost constant and almost
reversible (Section 1.5). Let us therefore consider the total frequency change Aw, per
modulation period, i.e. after two crossings (there and back). From expression (2.9.10) we
find

Wy x 2Vig Ou (VH*' s _;@V+ ‘3*)—51_-1' (3 - 51)
Vi Viav -7 oV i a4 ! -(2 11.40)

Since the £ distribution is now already completely non-uniform (see Section 2.9), without
further calculation ¢ne can ocbtain only the estimate:
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(}5L3 ) 1.2 5 zﬂ_
D, = S'g: S.~1652.V J:EF’ I Ou 'V }
"“'."6 L.E 2 ;’f‘!(’? Vf; i{j:(:yf/;.{\ o)"f”t ;z
K+ 2 feFea’/

(2.11.41)
Here the mumerical factor takes into account the mumber of combinations from the logarith-
mic terms in (2.11.40).

Let us note that for slow crossing the dependence of the diffusion coefficient on the
parameters (2.11.41) is roughly the inverse of what it is for fast crossing (2.11.3%9). In
particular there is the seemingly paradoxical result that the diffusion coefficient de-
creases with the increase of the perturbation. The explanation is that the parameter V
decreases simultaneously (with a given 1), and with it also the phase interval £, in which
a difference effect (2.11.40) ensues.

Thus for periodic crossing of the resonance the diffusion rate as a function of

ﬂ; v F (the perturbation) or V (rate of crossing) has its maximum in the region of V 1,

Above, we ignored the possibility of capture upon slow crossing of the resonance. In
fact, when V + 0 capture plays a considerable part (Section 1.6) and the diffusion process
becomes extremely complicated. On the one hand, as a result of the decrease in the phase
oscillations the process is found to be partly reversible and this leads to a reduction of
the diffusion. On the other hand, stable capture is possible only for one direction of
resonance crossing, and this causes a systematic frequency displacement. The biggest
possible value of the diffusion coefficient can, apparently, be estimated as:

: @ha“ e (,_._52_) 2. (2.11.42)

It does not depend on the perturbation at all.

2.12 Many-dimensional non-linear oscillator. Amold diffusion

In this section we shall try to extend the results obtained above to a many-dimensional
autonomous system consisting of a number (N) of weakly coupled non-linear oscillators. As
noted in Section 1.1, a many-dimensicnal oscillator can be reduced in a first approximation
to g one-dimensional non-autonomous oscillator of type (1.1.1). Since, as Anﬂsuv!lj showed,
a stochastic system is coarse'], the higher approximations cannot jeopardize the stochas-
ticity or even substantially change its parameters. However, such a conclusion does not
apply to the region of the Kolmogorov stability, where the many-dimensional system is con-

siderably different from a one-dimensional onezu};

Let us first consider a more accurate transition to a one-dimensional oscillator in a
first approximation. The essential difference from the given external perturbation is that
the perturbation frequencies now are not constant, since they represent a combination of
the frequencies of other non-linear oscillators.

#) i.e. structurally stable; a notion introduced by Andronov and Puntryagin‘ﬁ}. See also

Ref. 8S.
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The main rescnance of a many-dimensional oscillator is the so-called simple reso-
nance, or resonance with a multiplicity of one, i.e. simply one resonant relation between
all the frequencies:

A
2onw (1) =(n,0)=0 (2.12.1)

This relation defines the series of intersecting surfaces (for arbitrary integers n;) in
the momentum space or a beam of planes intersecting at the origin in the frequency space.
In what follows, frequency space should always be understood, unless a special reservation
is made.

Let us write the equations of motion in the form

I,=-¢ "a:'éj'“fi / =~ f Z; h, H(;. e’ €48
. k (n) ) (2.12.2)
C= W, (—I_,')'r g OH(L,,8;)
_ LEP
where H = E{n} ﬁ{n] - e2:9) g the Hamiltonian; all the quantities without indices and
in brackets represent N-dimensional vectors, and k, j =1, 2, ..., N. Ignoring in the

first approximation the term with 3H/31, (Sectien 2.3) and intreducing the resenance phase:

Yy = (n; 8/ (2.12.3)

we can write near one of the rescnances in the absence of overlapping:
~ .
) i)
e r ' (L8|
_rk--n.-"' ﬁ-‘ihk ;Tr@rj E-
3 (2.12.4)

lf-}hj = L)
and the phase equation is:

*

P

z 5 . 20 i :
b ! . E— 1 i g- 5'!}"
Yoy ® (‘i iy He 21, T s )E’ ., e (2.12.5)

N '

where 0 (n) is the phase oscillation frequency of the resonance concerned, which is deter-
mined by a certain mean non-linearity for all the oscillators. The phase oscillations
change the plane (2.12.1) into a rescnant layer with a thickness of

: i
Acs) O i, o | (2.12.6)
C =L J Jon|
where | (n)| is the modulus of the vector (n). The latter expression generalizes the
notion of the width of a one-dimensional resonance (Section 1.4).

A resonance with a multiplicity k occurs when there is simultaneous fulfilment of k
resonant conditions (2.12.1), which occurs in the region of intersection of k resonant
layers. The motion near the multiple resonance is described by a system of k phase equa-
tions of type (2.12.5):

Ve
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v
where the indices 1, j =1, 2, ..., k signify the number of the vector (n), and the phase
frequencies are given by the expressions:
. —
2 :
2 = z ﬁg_g. ?._'::'_}f.w“*r- {
o el T T e "
/] c k L #
- g 5wl e 2.12.8)
Ik = —-¢t 7 ﬂ.ﬁ; “H e

ﬁl‘/g.—. (&{"-’)

In particular, for small oscillations e'¥J = 347 (the sign depends on the choice of a
stable or unstable fixed point respectively, see Section 1.4) and a system of linear equa=
tions is obtained.

As already noted, in the stochastic case there is no reason to expect any new effects,
but it is of interest to obtain many-dimensional estimates in a more explicit form.

First let us consider the total set of resonances and determine the critical value of
the smoothness parameter of the %~ (Section 2.7). As in the one-dimensional case it depends
on the convergence of the sum B E{n} L’flv.u]{n] W E[nJ ﬁ{n],-"f[n}l. As usual we shall con-
sider only first order resonances and moreover restrict ourselves to non-renormalized reso-
nances. As explained in Section 2.7, in this way we obtain the lower estimate for L
which supplements Moser's upper estimate’®). ihat follows depends on the type of perturba-
tion chosen. Let us study two cases. In the first we put:

H@] .-..ﬂ n, C 4 (2.12.9)

[
This expression generalizes the one-dimensicnal (2.7.6) and means that the smoothness of
the perturbation is characterized independently for each degree of freedom by its own para=
meter %;. Inserting (2.12.9) in (2.12.6) and using (2.12.5) we find:

5 o s miPaein e
5 Ba 2 (:L byl L 4 " (2.12.10)
I TR J o boea]

where only the quantities on which the convergence of I_ depends are left. The CONVeTgence
o i E iy KO

is determined by the limit n. + =. For a given (w) all n. = T [(n)|. Therefore the sum
n, - (45+3)/2 2 :

I, =T @ " canverges, if;

Fw ,_ﬂmk 5 5 it (2.12.11)

which agrees with the result of Section 2.7 for continuous time {2.7.31).

However, the perturbation can also be determined otherwise:
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.‘:m ~ MI"{&”) (2:12.12)

. g z . 2 28 -
where |n| = I;|n;|. Moser accepted just this determination’ "’ (see also Ref. 20). It
signifies that the combined derivatives of the force are continuous only up to number £ in-
clusive. The sum in which we are interested now takes the form:

-0-3 .1 ~ f3
5y 2 (G Yy = 2
and converges under the condition:
P > Lafm=3 (2.12.13)
28)

Comparing this value with Moser's result™"’, we find that the critical value of the smooth-
ness of the perturbation lies in the interval:

M= & 4_ < AN+ 2 (2.12.14)

Let us note that the width of the interval for Rc' which is five if 2 is a real rumber, and
four if L is an integer, agrees with the width for the one-dimensional transformation:
1<4g, <6 (Section 2.7). This guestion will be further discussed in the section devoted
to mmerical experiments (Section 3.3).

Let us now make a more accurate estimate of the border of stochasticity according to
the overlapping of the first order resonances. We shall limit ourselves to the case of
almost harmonic escillations, i.e. we shall assume that in a zero approximation there is
only the basic hammonic w, for each degree of freedom, and the amplitude of the higher

. i=1
harmonics N, are of the order of i~

Let us further assume that an m-fold interaction takes plaCE’]. When calculating the
number of frequencies of the perturbation (and of the resonances) only those combinaticns
of oscillators which include the one whose motion interests us should be taken into account.
Then in a first approximation over e the quantity of resonances is:

_ ] : -
N B i 2 Kt SEV (2.12.15)
- —_ {‘- /
.m--f},
This expression is easily extended to the case when there are n, first hammonics of com-
parable amplitude:

-

= -
My = C;’; (-?‘fnz'; 5.3 Cz“»ﬁf_._:f__ (2.12.15a)
z (s—1) 7
In the second approximation (e?) the number of resonances increases considerably for two
reasons: firstly on account of the higher harmonics, and secondly on account of the
appearance in each of the oscillators of the basic hamonic of all the rest.

«) i.e. direct interaction only between m degrees of freedom.
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The first effect can be ignored when 2m vZ < 1. Indeed, it increases the number of
resonances Zm-fold, but in return the width of the resonance is reduced by ¢ times. In
the opposite case (Im /& »> 1) the total width of the rescnances increases the maximum by
2m! emfz v (mvE)™ « @™ rimes independently of N. This effect is neglected in what
follows.

The second effect is the main one and it leads to an increase of the number of reso-
nances by m » g1 #n‘lf{m - 1)! ~ Ny times, so that N; ~ Ni. Similarly it can be shown
that N m_N¥. It is not difficult to verify that the position of the border of stochas-
ticity by order of magnitude is the same in any approximation. Indeed, Iék] a zkfl Nk =
(Ve Ni)¥ @ 1. The latter estimate follows from the fact that v Ny is a dimensionless
quantity (for further details, see below). It is true that this cannot be said of the
stochasticity parameter s{k] = iék}, which diverges when k + =, if v& Ny » 1. However,
this divergence is fictitious since it is necessary to renormalize the resonances (see
below).

Thus it is sufficient for us to determine the border of stochasticity in the first
approximation. In the subsequent estimates we shall encounter sums of the form:
Iy = E? n.f., where n, = £1 and f. are some quantities. For such sums we shall take a
"typical" estimate, corresponding to a ”randomz set n, : Ly n fvm, where f is a certain
mean value of fi‘ By putting: 8w/31 ~ ow/I, H i wl, we Dbtaiq for an m-fold interac-
tion: Q) v w (em)? (2.12.5); |(m)| ~ v and (W) g~ 6(e)?; 0 v W v whi s the
frequency interval of the quantity E? n.w. occupied by N resonances. The border of

i
stochasticity is determined by the relation: s BNy - Eéu][n]fn | ur*]

Fl
toiz) e 4 _"_?__f.fi‘_‘fij__ff.. (2.12.16)
Ty 3 -A{f.i'. (JM)EH-l

Thus the critical value of the perturbation decreases, at least = N2 (m = 2). Hence it is
clear that macroscopic molecular systems =-- typical objects of statistical mechanics =-- are
always far inside the region of stochasticity. In particular the size of the non-ergodic
component decreases, at least = N°® (Section 2.8).

Let us note that for the normalization used above fﬁ{n] n wl) the small parameter ¢
characterizes only one resonance. Since the total number of rescnances with Np >> 1
(2.12.15} is very great, the following additional condition must be fulfilled:

2z
T om 2t o 4 (2.12.17)

#»} It is interesting to note that the value (ea)_ is here m times greater than in Ref. 76
(see also Ref. 13). This difference can be e§plained by the fact that in Ref. 13 and
76 the border of stochasticity was determined from the overlapping of the resonant
layers in N-dimensional space. However, this condition is not sufficient, since the
phase oscillations inside the layer take place in a fully determined direction (Aw, -]
(2.12.4), while the moticn along the layer is, generally speaking, slow (see belawﬁ?]
Therefore for stochasticity it is necessary for the chain of vectors (Aw(n)) correspond-
ing to the various resonances, to be closed or, in other words, for the cne-dimensional
widths of the resonances to overlap (2.12.6].
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where the new parameter £ characterizes the total perturbation, written by means of
Parseval's equality.

Let us now find the renormalized width of the rescnance [_...]l[njE = (&w)y which,
according to the results of Section 2.1l determines e the dynamical time scale L {local
instability, correlations, m1x1ng}; Renu{ﬂﬂllzlng in the "typical' case with a power
n =4, we obtain: {am}z 4" {&m}(n} B 'y /s (2.11.3). But according to our previous esti-
mates (fw) Gy ™ wvEa and:

Qo e - —-W (2.12.18)
Whence we find:
_~-1s 2/q (2.12.19)
(Aw), ~ w-& T (LF)

Let us verify that the renormalized width of the resonance does not diverge in the
higher approximations: {ﬁm](kj A" Easz ) % v EZRIE, but according to conditiom (2.12.17)
E << 1 and this series rapldly converges.

-
} are

According to the results of Section 2.11 the entropy and diffusion coefficient

expressed in the "typical" case through the renormalized width of the rescnance [2.11.3}'}";“}I

2 3 3 z
o b )} 2 )t a2z

The diffusion coefficient depends only on the square of the total perturbation (£2), which
acts as if it were completely random. In Section 2.5 it was said precisely in this sense
that stochastic instability leads to the most rapid diffusion possible for the given
perturbation.

Let us now go over to the region of Kolmogorov stability. As already noted (Section
2.2) the situation in this region is essentially different from the one-dimensional case.
The most important difference is that the invariant tori, whose dimensionality is obviously
equal to N, do not divide the (2N - 1)-dimensional energy surface in the phase space of the
systemiu} *'*]. In the momentum (frequency) space, the invariant tori are represented
siiply by points distributed among the everywhere dense web of interwoven and intersecting
resonant surfaces (planes) (2.12.1).

Each of the resonant surfaces represents, as we know, a layer of thickness (2.12.6)
inside which are invariant tori similar to the ones outside (this already follows from the
results of Arnold's paper?r} and has been thoroughly investigated by Mbser’a}], but outside
is the stochastic layer (Section 2.6). It is precisely these mumercus intersecting

*) In the general case we have the diffusion tensor (2.10.15); the following estimate
relates to the diffusion along one of the axes: {[ﬂuji} = 20, *+ t; for the total
N-dimensional vector: {|[ﬁﬂ]?*} - =

**) When n; ~ 1 (2.11.3a).
#x+) Let us recall that the case we call one-dimensional is that where N = 2 for an auto-
nomous system (Section 2.2).

[i.b



stochastic layers which form an unstable [ergodic) component of the motion in the region
of Kolmogorov stability. The first example of such instabiliry was studied by AInUleIJ
and subsequently it was learnt that a similar instability mechanism is very general for
many-dimensional nmtiﬂn’a] {see also Section 2.6). It leads to a peculiar diffusion along
the system of intersecting resonances, which we shall henceforth call Arneld diffusion.

In order to understand the mechanism of Arnold diffusion let us return to the basic
equations of the many-dimensional resonance (2.12.1) to (2.12Z.5). Let us note first of
all that for each given rescnant temm the phase factor ¢t (M9 < jdentical for all the
components of the vector (I) and therefore the variation (AI) is directed along the vector
(n). For the main resonance, which we will call guiding resonance henceforth th%@ gives
the direction of the phase oscillations, and the phase factor takes the form: e [“],
where *{n] is the resonance phase (2.12.3). Each of the remaining terms in (2.12.2)
characterizes the perturbation of the resonant torus directed parallel to its vector (n).
The phase factor for each of these perturbing resonances can be written in the form:
et ¥(n}) hove 4o = (An,w) is the detuning of the frequency in relation to the guiding
resonance. If the system is inside the guiding rescnance, the perturbation of the neigh-
bouring rescnances leads only to the deformation of the resonant torus. However, at the
edge of the rescnance, inside the stochastic layer, the increments of the integral:
fde et@rt*i(n)) o, My QE;}; e e-cﬁsn; g n[n}fm' for each half-period of the phase
oscillations with a frequency of ﬂ[n}’ form a random sequence on account of the random
phase shift of the phase oscillation with respect to the perturbation. A thorough analysis
of this stochasticity mechanism was made in Section 2.6. The momentum perturbation is of
the order of

il
Ja ) e~ € M Sty (2.12.21)

where the vectors (n), (n') relate to the guiding and perturbing resonance respectively;
€,V E ﬁ{n,].

As already mentioned above, the direction of the vector [aI]nn. is along (n') and
generally speaking this is not identical to the direction of the stochastic layer. Diffu-
sion (2.12.21) is therefore possible only over a small distance of the order of the thick-
ness of the stochastic layer. For long-distance diffusion at least two perturbing reso-
nances with non-parallel (n');, (n'); are necessary. Then one of them will certainly have
a component along the stochastic layer, which is the one that gives Arnold diffusion proper,
and the other will have a component across the layer, which ensures reflection from the
border of the layer. The diffusion will thus go along the line of intersection of the
stochastic layer with the plane of the vectors (n');, (n);. For the diffusion to go in
any direction along the (M - 1)-dimensional resonant surface, there must obviously be N
linearly independent perturbing resonances.

This is possible only for a non-autcnomous system, 1.e. under externmal perturbation.
If the system in question is closed there are (N - 1) perturbing rescnances only since they
form, together with the guiding resonance, the full set of N linearly independent resonances.
Thus, for a closed system Armnold diffusion can go only along some (N - 2)-dimensional surface
which must be, obviously, the intersection of the stochastic layer with the energy surface of
the system. MNo other limitations of the Arnold diffusion seem to exist. At least we can
assume it as a hypothesis which is in accordance with Poincaré's theoremja] on the absence,
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in the general case, of analytical integrals of motion except the energy (see alse Ref. 152
and Section 2.6). In the light of the KAM theory it is natural to assume that the destruc-
tion of all the other integrals occurs precisely in the stochastic layers of the rescnances
as a result of Arnold diffusion.

The diffusion coefficient can be roughly estimated as: D, " |e:J§I2 IR (myr °F taking

into account (2.12.5) and (2.12.21):

by
MO E

In order to obtain more explicit estimates of the diffusion rate let us put:

g ~2¢/5,,
. e (2.12.22)

Dy~ 1 -

o E-E_EH/EH"’ (2.12.23)
where n is now the maximum harmenic mmber. We consider that for each degree of freedom
the amplitude of the perturbation hammonic decreases as e‘“fn“, the interaction being m-fold
(Section 2.12}. It would be more accurate to write: exp {'£T¥1 ini|fnuj; but for our rough
estimates we shall put: ET n; = mn * mn/2, whence (2.12.23) also follows ). In fact the
parameter m now characterizes the mumber of frequencies for which harmonics are taken. The

diffusion coefficient is determined, mainly by the exponent, which has the fornf*]:
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The argument of the exponent reaches a maximum when:
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The latter inequality is necessary for the validity of the approximation used (Section Z.6].
It is violated in a certain interval n, which can be determined from the condition:
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Here we used estimate (2.12.20a) for €, - If EIES is not too small, the unknown interval

is:

g = == gz WB ; o (2.12.25a)
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When /e < (/€)% always n’ > n. In the interval (2.12.25a) optimal n! = n (Section 2.6)
and in the exponent only the first term may remain. Indeed the second term in the exponent
is always small in comparison with the first, and the relation of the third to the first is:
n'/n)/(N - 1). On the border, when n' = n, the third term gives the correction factor
[N/(N - 1)]. With only the first term remaining in the exponent, we obtain:

#) This estimate makes sense if different frequencies and n; are of the same order of
magnitude.

+x] Here we use estimate (2.12.28) for wy, see below.
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From the validity condition of this expression (2.12.25) it is seen that always Di <D0,
(2.12.29). This estimate on both borders of interval (2.12.23a) changes approximately in-

to estimate (2.12.29), which is easy to verify, using (2.12.25).

Let us now turn to the region n > n, (or n < néj. It should be explained that in the
majority of problems one is required to estimate the rate of Arnold diffusion due to the
resonances with a given n, or more precisely an n of less than a certain value. The last
condition determines the mean distance between rescnances 4. The specific form of the
function 4 (n) depends on the form of the interaction, see for example formulae (2.12.15a)
and (2.12.18) which are valid for m << N.

Now let us consider the opposite limiting case m = N. A rough estimate can be made
as follows. The total number of different combinations of the components of the vector (n)
is [ZH}N, since each component can assume values from -n to n.” Assuming that for large n
the distribution of the vectors (n) and (w) is on the average isotropic, one can estimate
the mean distance between resonances as*}:

[ %]

(2.12.27
h_"‘)

4, ~

The main error of this estimate is due to the non-uniform density of the resonances (see
Fig. 4.3.1), which can be taken into account in (2.12.27) by introducing a special factor:
W+ K.

Expression (2.12.27) gives, in particular, the estimate of the perturbation frequency
wy, which we used above:

Ly e iy e (2.12.28)

The mean "gap" between the resonances A determines the density of the network of
stochastic layers along which the Arnold diffusion spreads. From estimate (2.12.22),
taking into account (2.12.23) and (2.12.24) we obtain

2 £
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o (2.12.29]

| Y s L 2=
“f g 2 :_' B 70 el O - T I .
et -5 e )5 )

A (= 1] { Taax™

where the critical value £ is determined from the expression:

~ Zh. L -~
@Rt UF i {u( -u.) (2.12.29a)
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In the latter estimate we used the effective value of the parameter n,, which follows from

the appearance of the exponential factor (2.12.23) e—mannﬂ

*] We omit here the mmerical factor since it depends greatly on particular specification
of the set of rescnances in question.
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Thus the rate of Amold diffusion decreases with the growth of n according to the
double exponent law. This clearly characterizes the degree of Kolmogorov stability in the

many-dimensional case. Let us recall that in the one-dimensional case the stability is
eternal (Section 2.2). In practice a dependence of type (2.12.29) determines a limit:

i, = a . L f (2.12.28h)

beyond which the rate of Amold diffusion becomes unobservably small. It should be noted
that this limit corresponds just to the condition n n. {see above). This means that
estimate (2.12.29) can in practice be used only near the border (2.12.20b).

It turns out, however, that in some cases more rapid diffusion along the set of re-
sonances is also possible. The appearance of the double exponment in (2.12.29) is due, as
we saw, to the fact that the value S ﬂ[n]fﬁn in estimate (2.12.22) itself becomes ex-
ponentially small, since nn decreases with the growth of n exponentially, and &n only as
o (2.12.27). But this does not apply to resonances with a multiplicity of two, i.e. at
the intersection of two resonant surfaces. In this case 8, 1 always and the exponent
disappears from the estimate (2.12.22). Furthermore, since the majority of rescnances
with a multiplicity of two consists of resonances of the same order of n (n~n__ J, total
destruction of the rescnance takes place, i.e. the width of the stochastic layer becomes of
the same order as the width of the resonance itself. Thus there forms a relatively wide
channel along which the diffusion spreads at a comparatively high rate. In order to
distinguish this special kind of diffusion we shall call it streamer diffusion. This name
is connected with the fact that for the minimal dimensionality, when this diffusion is

possible, the stochastic layer of a resonance with a multiplicity of two in the frequency
space has the shape of a narrow tube (streamer) along which comparatively fast diffusion
spreads, a picture which recalls streamer breakdown in gas.

Streamer diffusicn is possible only when resonances with a multiplicity of two form
an intersecting network in the frequency space. From gecmetrical considerations it is clear
that this is possible under the condition:

Wl BE Y Ay 23 (2.12.30)

where Na, hh is the mumber of degrees of freedom (of the dynamical frequencies) for an
autonomous and non-autonomous system respectively. Thus for streamer diffusion one more
degree of freedom is required than for ordinary Arnold diffusion.

An estimate of the velocity of streamer diffusien is obtained from (2.12.22) and (2.12.23),

taking into account that s 1; n ~ n';

L (2.12.31)
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The quantity Dc’ of course, also decreases rapidly with the increase of the harmonic mmber
of the resonance, but not as catastrophically as DA' Except for a numerical factor ~ 1 in
the exponent, D’: is identical with D,J: (2.12.26). Both mechanisms give roughly the same
diffusion rate when n ~ 1, provided it comes within the region (2.12.25). In the opposite
case streamer diffusion proves to be even slower in this region. It is significant, however,
that the law (2.12.31) is valid with any n, whereas in ordinary Arnold diffusion a double
exponent appears for large n. Therefore streamer diffusion plays an important part only in

the rvegion n 2 n. (2.12.25a).

Let us note that for streamer diffusion two resonances are sufficient, instead of three
as for ordinary Arnold diffusion (see above). This is due to the fact that both resonances
now coincide in space and their vectors (n) are always non-parallel. Hoewever, in the present
case the requirement for a component of the vector (Al) {or [n}] along the streamer is non-
trivial. In particular, this condition does not apply when (aI), (Mw) are parallel:
(AL} || (&w}. Since (AI)||(n) (2.12.2), from the rescnance condition (2.12.1) it follows
that: (&w,w) = 0, i.e. the vector (Aw) is perpendicular to the resonant plane, and that
means also to the streamer, so that diffusion does not occur. Since the non-linearity
matrix amifalk = BaHjaIiﬁIk is symmetrical and can be transformed to the principal axes,
the condition for non-parallelism of the vectors (AI), (&w), which is necessary for streamer
diffusion, amounts to a requirement for the eigenvalues of the non-linearity matrix to be
different.

Resonances with a multiplicity » 2 do not lead to qualitatively new effects.

The diffusion coefficient (2.12.29), like (2.12.31), does not yet determine real
diffusion in the momenta space. Indeed, Arnold diffusion spreads along the resonant sur-
faces, which in the general case form a very complicated system; in places where the sur-
faces intersect, "random'" (on account of the stochasticity of the motion) transition from
one surface to another will take place, so that, as a whole, Arnold diffusion represents a
combination of two random processes: diffusion along the stochastic layer and transition
from one layer to another. If the mean length between two intersections EI is sufficiently
small, the total length of the diffusion trajectory L aleng the system of intersecting
layers.can be estimated by the ordinary formulae of the random walk theory*?):

L~ (a1)°/p, (2.12.32)

where AI is the total variation of the momentum in the diffusion process. Then the diffusion
time can be estimated according to the formula:

- 3
¥ 5/
Zf e 4 ~ .i‘;.(éf/._ﬁ__z. (2.12.33)
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where we put iI LY ﬁnjm =y I/ow.
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Let us note that the law of this "double diffusion' is wunusual, since the diffusion

time t, is proportional not to the square but to the fourth power of "spacing" AI. Let us

introduce the "double diffusion" coefficient:

3/,
A i)y A TV AL £ AL (2.12.34)
By By @IS e Tivw e

The relations cbtained remain valid also for streamer diffusion, substituting
DJﬂl + Dc'

The rate of Arnold diffusion (2.12.29) decreases exponentially with the decrease of
the stochasticity parameter s® ~ sfzs. Moreover, the diffusion takes place only for special
initial conditions, the relative measure of which v & << 1 (when 5 < 1; Section 2.6)].
However, the total system of resonances, and that means also the stochastic layers, is
everywhere dense. Therefore the problem of the motion in the region of Koelmogorov stability
is asymptotically (when t + =) improper, since any arbitrarily small variation in the initial
conditions displaces the trajectory from the stable component to the stochastic one and
vice versa. Let us note that in the present case we cannot simply average over a small
volume of phase space, as was done when solving the kinetic equation. This is due to the
fact that in a large part of the phase space the system is stable and therefore such aver-
aging does not correspond to any real process in the system, and reference to the "practical"

uncertainty of the initial conditions is insufficient in mechanics.

It is possible, however, to regularize the problem as follows. Let us add to the
dynamical system some "external" diffusion process with a diffusion coefficient Dy. For
example, in the case of the motion of a particle in a magnetic trap (Section 4.4) the scat-
tering always present in residual gas is such a process. This additional diffusion eliminates
the singularity of the initial conditions and, moreover, enables us to neglect the resonances
of very high harmonics, leaving only a finite number of resonances. However, contrary to
the behaviour in a stochastic region, the motion will now substantially depend on the

additional diffusien, also in the limit Dy = 0.

The diffusion process will take place in two stages. In the first there occurs
"external' diffusion with a coefficient Dy up to the nearest resonant surface, i.e. over a
distance " EI. In the second stage the "external'diffusion occurs "parallel" to the
Arnold diffusion. In the most simple-case, when the mmber of resonances is not great, so
that EI “ (Al), one can neglect the “double diffusion' and assume that the diffusion along
the stochastic layers with a coefficient Dﬂ is roughly the same as the diffusion in I. Then
the total diffusion coefficient in the second stage of the process is Dy + IJA « w, where
w< 1 is a reduction factor of the diffusion rate, because the system spends only a small
part of the time inside the stochastic layer. If n’ % n, estimate (2.6.13) gives
A 5 E“CfSn. Comparing this with estimate (2.12.22) one can conclude that the reduction
factor w is equivalent to some change of numerical coefficient in the first exponent of

the expression for QA‘
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Let us note that the total diffusion coefficient depends essentially in any case on
the "auxiliary' parameter Dy. The latter should not be toc large, otherwise the stochastic
layers stop functioning at all. The critical value of Dy is determined from the condition
of leaving the layer in a time of the order of one phase cscillation, which is just the
order of the diffusion rate in the stochastic layer (Section 2.10). Hence the conditions
for the existence of Armold diffusion:

2. = D, (2.12.35)
However, an observable effect of this diffusion takes place for considerably smaller

Dy = DA s

Let us note that the dependence of the diffusion time on the perturbation parameter
will have the characteristic shape of a transition curve with two plateaux for small and
large perturbation. In fact, in both limits the diffusion coefficiént is equal to D,, but
the diffusion distance is different: (AI) and EI’ respectively. The ratio of the diffusion

é £ (f?‘{)z (2.12.36)
¥y

Let us now consider the more interesting case of a large mumber of resonances:

i'.I << (AI), when “double diffusion" takes place £[2,12.33_‘,| \ [2&2,34]]. This means that the

kinetic equation takes on a more complex form than usual (2.10.10). In view of the roughness

times at the plateaux is therefore:

of the estimates relating to "double diffusion", we shall not solve this equation but will
use the simple estimate for ordinary diffusion: d(AaI)%/dt ~ Dy and for "double diffusion':
d(aI)*/dt DD (2.12.34). Hence the total diffusion rate is:

| :
A;.a;}f " {/f"" (:j_jt) .y %2-51’“ (2.12.37)

By integrating this equation in the most simple case w = const, we obtain the total

diffusion time:

{4—“ "f[(df)- y €n (“f'*' @iJ- 4—//_ (2.12.38)

which apain depends essentially on Dg.
Some experimental data on Armold diffusion will be given in Sections 3.6 and 4.4.

For streamer diffusion the picture remains qualitatively the same, but the effective

diffusion coefficient UE =D, w decreases not so much:
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as DA (see above). In the latter estimate we used relatiom (2.12.31) and the expression

for s_:
1
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The ratio of the diffusion times on the plateaux will be smaller than (2.12.36), since
instead of the "absorbent' resonance surfaces which are necessarily intersected in the
diffusion process Dy, there are now "absorbent" tubes (streamers), which may be by-passed
("missed'). However, the increase in the lifetime is slight, since the probability of a

miss rapidly decreases as the streamer is approached.

As a model, one can examine the diffusion between two concentric cylinders with absorp-
tion only on the inner one. Simple calculations show that the diffusion time is proportional
only to the logarithm of the ratio of the cylinder radii. In our case this relation ~ S
since the mean distance between streamers is of the same order as that between the resonance
surfaces. Thus, instead of (2.12.36) we find:

ks (;:.’:f./)z/j s | (2.12.41)

In conclusion, let us make a few remarks about the kinetic equation in the many-
dimensional case. If the number of degrees of freedom is not great, the distribution
function as usual describes the ensemble of identical N-dimensional systems in the
IM-dimensional T-space. The equation for such a distribution function is called the

master equatiun“ﬁj. However, as a rule the complex systems of statistical mechanics consist

of a very large number (n + =) of identical elements ("particles'"), interacting with each
other. In this case a new possibility appears: besides the master equation one can write
the equation for a so-called single particle distribution function describing the density
of "particles'" in the phase space of one "particle", which is called u-space. Since the
total mmber of particles n is always finite, then in u-space (as in [-space) only a coarse-
grained distribution function has direct physical meaning (Section 2.10).

In a similar way one can introduce the kinetic equation for s-particle phase density

(s << n), describing the distribution of the subsystem of s "particles'.

For a many-dimensional oscillator a "particle" is a one-dimensicnal cscillator, weakly
coupled to the others, for instance a phonon in a crystal lattice. If such a one-dimen-
sional oscillator is considered to be non-autonomous with a given external perturbation, we
arrive at the master equation in the most simple I-space (Section 2.10). But if the same
one-dimensional oscillator is assumed to be a "typical" representative of the system of
interacting oscillators, we obtain the kinetic equation in p-space. In both cases cne of
course obtains the same equation (Section Z.10) and the only difference is the physical

meaning of the phase density.
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2.13 Bemarks on the nature of statistical laws

Since we have to do with statistical mechanics and in particular kinetic equations, it
is difficult to resist the temptation to make a few peneral remarks on the nature of
statistical laws, irreversibility and other such problems that are still somewhat mysterious,
It is hoped that these remarks will not prove to be a mere repetition of well-lmown argu-
ments. [In this question we have the advantage of the detailed investigation made in this
paper into the transition from dynamical to statistical behaviour for a very simple,
probably the simplest, mechanical system -- the elementary model, which represents a one-
dimensional non-linear oscillator under the action of given pericdic perturbation.

To the main question of whether the motion of such a system is a "true" random process
we reply in the affirmative, unlike mamy other authors engaged in investigating this problem.
Among them is Krylov*“}, whose peint of view in other respects is very close to ours and
whose ideas are in fact extended and developed in the present paper.

If this assertion is accepted, it opens the way to a general explanation of the statis-
tical laws of nature on the basis of the classical mechanical model. In this case the
statistical laws are valid in a dynamical system, in so far as the motion of the system is
stochastic in the sense given to this term in the present paper (Section 2.3). This point
of view is perfectly natural at present for mathematicians with their ergodic theory (see,
for example Ref. 42) but, strangely enough, apparently alien to physicists, in any case in
current statistical mechanics2?»"%) in which the so-called linear model exercises completely

sway (see Section 2.11 and below).

The most unexpected result of the above point of view proved to be the possibility of
statistical behavieur of extremely simple systems right down to the elementary model, which
has only one degree of freedom. However, for the ergodic theory this was not unexpected.
Hopf”] already pointed cut this possibility for a system with two degrees of freedom,
although it was only recently that Sinai succeeded in demonstrating the stochasticity of the
motion of a real mechanical system -- a system of hard balls in a box, which in the simplest
case has only two degrees of freedom!'®), This result sharply contradicts the idea which
iz of very leng standing in physics, that the statistical laws are valid only in a very
complex system with an enormous number of degrees of freedom N -+ =,

Let us now turn to the basic assertion made above, that the statistical laws correspond
to a certain special case of motion of a classical mechanical system, namely stochastic

motion.

There are two kinds of possible objection to this assertion. One of them, the less
important, is comnnected with the "islets" of stability which always exist in the stochastic
region of the elementary model (Section 2.8). This means that as a rule one always finds
special initial conditions of finite, even though very small, measure, for which the motion
is not stochastic. With regard to this objection it can be said only that such stable
regions, generally speaking, really exist and can be observed for simple systems (Section 3.5).
Let us note, however, that such "islets' of stability are characteristic just for oscillatory
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systems, for instance, for a crystal lattice, if one turns to the typical macroscopic
molecular objects of statistical physics. At the same time there are no stable regions at
all in gas, and probably in liquid. At least this was demonstrated by Sinai for the gas
model as a system of hard balls, mentioned above!"®) . Furthermore, even for oscillatory
molecular macroscopic systems the stable regions are extremely small (Sections 2.8, 2.12):

L G e (2.13.1)

Ta_
At this point one is tempted to use phase space quantization to prove that very small A
are completely impossible®®), Such a proof is not possible, however, as explained by
Krylov®®). Roughly speaking, it is a question of the type of description of the motien
changing similtaneously with the quantization, namely it is necessary to change over from
the phase space of classical mechanics to the Hilbert space of the wave functions, in which
the motion of the quantum system is described, as uwsual, by a trajectory.

Finally, and this is our main argument, both types of statistical physics system (with
and without stable regions) always interact with each other through molecular collisions,
and also through electromagnetic (thermal) radiation. Under these conditions the stable
regions can remain only for very simple macroscopic or molecular systems with a small number
of degrees of freedom (2.13.1), and during a short interval of time as compared to the time
of relaxation with the surrounding medium. Similar effects are actually observed, in
particular, in so-called unimolecular reactions, for instance themrmal dissociation, if the
number of atoms in the molecule is greater than 2. At present there are two contradictory
theories on such reactions, one of which [that of Landau'®*) and Kassel'**)] is based on
the unlimited stochasticity of intramolecular motion, whereas the other [that of Slat9r155}],
on the contrary, assumes the existence of a full set of integrals of motion. In reality,
as confirmed by direct experiments and numerical calculations'®®), when collisions are rare
a certain intermediate case occurs that is typical for a system with divided phase space
(Section 2.5). In order to aveid confusion, let us point out once again that divergences
from statistical behaviour are limited in this example by the very short interval of time

between two successive collisions.

The second considerably more profound objection to our general conception of the
statistical laws is comnected with the very nature of mechanical motion as motion along a
trajectory reversible in time. This problem haslbeen most thoroughly studied by Krylovi®),
It is also closely comnected with the Loschmidt paradox, arising from the contradiction
between the dynamical reversibility ;nd the statistical irreversibility of the motion.

Krylov's main objection to the classical mechanical model of the statistical laws
amounts to the following. Since dynamical motion is reversible, its irreversible statistical
properties (for instance the increase or decrease of the entropy) will wholly depend on the
initial conditions. Let us further consider the usual organization of a statistical ex-
periment as a multiple repetition of a process under given macroscopic initial conditions.
Then in order to obtain statistical behaviour the distribution fumction of the microscopic

initial conditions for a given macroscopic state must be uniform in sufficiently small
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regions of the phase space. Mearnwhile the evelution of the distribution with time leads
on the other hand, to an increasingly singular state which is easy to verify by investigating
the inverse motion. Thus we find it virtually impossible not only to prove, but even to

introeduce a postulate concerning the initial microscopic conditions.

Sometimes this objection is "developed" still further and it is asserted that from the
point of view of the dynamical model the probability of the entropy increasing or decreasing
is generally identical, since by virtus of Liouville's theorem the phase volume of the two
states with different entropy through which the system passes in the process of motion is
identical. It will be easy for us to begin by refuting this explicitly incorrect assertion,
which is in fact based on a misunderstanding. The point is that if the term 'phase space
volume' is interpreted literally, in any real situation it is equal to zero, since we always
have a finite number of systems (and of particles in a system), and also a finite mumber of
repetitions of the experiment (see Section 2.10). If some indefinite phase volume is
introduced, determined approximately according te a finite mumber of points in phase space,
it is not conserved in the process of motion.

Let us examine this latter case more thoroughly, using as an example a system of
N >> 1 oscillators of the type of the elementary model, weakly interacting with each other.
We shall describe the state of this system in p space (Section 2.12), which in the present
case is identical with the phase square of the elementary model. The state of the system
is represented by N points in this square. Let them be distributed statistically uniformly
and independently so that the system initially occupies "all" the phase space. This does
not prevent it, however, from congregating in the process of motion in a very small
region £ of the phase square. Let us estimate the probability of this, assuming that the
region £ has a simple form. Let us consider the inverse process of mixing, when the
region £ is transformed into a system of narrow strips with an over-all area of £, uni-
formly distributed over the square (Fig. 2.4.1). It is evident that all the N points must
lie on one of the strips of this system: the probability of this is mE = EN or, if we are
interested in the congregation in any small region £ (decrease of the entropy): w = EN'l.
But this is exactly the probability corresponding to the fluctuation. Thus Liouville's
theorem does not contradict the smallness of the fluctuations, which lead, in particular,

precisely to a decrease of the entropy.

The example taken is also the answer to Krylov's second objection regarding the evolution
of the distribution fumction. Undoubtedly, the continuous [fine-grained (Section 2.10]]
distribution function tends with time to become singular, as can easily be understood from
the picture of the mixing in Fig. 2.4.1. However, as already noted, such a function does
not correspond to any real experiment, i.e. it is essentially unobservable and should
therefore be excluded from the theory and replaced by a coarse-grained distribution
function (Section 2.10). The latter tends to become wniform according to the ergodic theory.
This gives the possibility not only of eliminating the contradiction peointed cut by Krylov,
i.e. of introducing a postulate concerning the initial microscopic conditions, but also
opens the way to proving this postulate. It is now natural to assume that the initial state

R s e s s . —
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(t = 0) of the process concerned (t > 0) in a system is determined by the finite state of

the previcus process (t < () in the same system.

Here, however, there are two difficulties. The first is due to the fact that unifomm
distribution occurs, according to the ergodic theory, only in the limit t + =, This diffi-
culty is not important, since when there is positive K-entropy the mixing process runs
exponentially fast and in practice is completed in a comparatively short time. However,
there is still the other difficulty, connected with the organization of the statistical
experiment. As noted above, multiple repetition of the process under study is assumed,
with the same macroscopic conditions. This requirement is not very definite, in the sense

that it does not mention the microscopic state. This gives rise at least to the suspicion,
if not the certainty, backed essentially by our somewhat hazy idea of our freedom of will,
that we can "create'" any initial micro-state and so cbtain any course of the process in
contradiction to the statistical experiment. Of course, on the other hand there exists an
intuitive idea that the microscopic co-ordinates are in fact "inaccessible” to the experi-
menter, 50 that in practice it is not in our power to influence the microscopic state of
the macroscopic system. But this does not constitute a proof, and in any event there is
always the chance that we shall somehow learn how to do this in the future, or, to quote a

popular modern catch-phrase: "Mothing is impossible for science!l"

It seems to us that these doubts can be banished on the basis of an analysis of the
most important property of a stochastic system -- the local instability of motion developing
exponentially with time. It is not difficult to verify that owing to this property there
is no system in nature that is clesed in relation to its dynamical motion, except the whole
Universe. As an example lét us consider the motion of gas molecules in a model with hard
balls of radius r, with a mean free path %. Let us study the perturbation of this motion
by the gravitational field of a single proton at the "other end" of the Universe, i.e. at
a distance R ~ 10*" cm. Taking into account the fact that the perturbation is tidal and
that a change in the gravitational field of the proton is esséntial on account of its
displacement, we obtain the additional angular deviation of the gas molecule:

; (a8), ~ .%":Z (,g) * (2.13.2)

where k is the gravitational constant and v the velocity of the molecule. This perturbation

will grow according to the law:
L; .
@8, ~ {’dc?z’.-(;_{} (2.13.3)

where n is the mumber of successive collisions of the molecule and in

L (20,

My~ — ——2
1 £ "ﬁ/r (2.13.4)

collisions becomes (48], " 1, i.e. the trajectory of dynamical motion changes considerably.
If cne takes a gas under normal conditions: m ~ 107%% g; v~ 10° emfsec; & ~ 107° am;
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r % 107* cm, then estimate (2.13.4) gives: m, = 60, which requires only ~ 107® sec. This
limiting example easily shows that from the point of view of molecular dynamics there is
only one closed system -- the Universe as a whole, which narurally also includes the experi-
menter. The latter thus has no control either over his own or any other microscopic state.
This state is determined by the initial conditions of the Universe at t = -=, and not at all
by "creating' the initial state in a specific statistical experiment. The violation of
statistical laws in such a model in an infinite interval of time is possible thercfore only
for initial conditions of zero measure. The fact that the Universe is not in this special
state is the minimal hypothesis of our model.

Being minimal, this hypothesis is not trivial, for the same reasons as those behind
Krylov's second cbjection: when t + +» the phase point of the system tends towards a
certain exceptional position, whereas its initial value (t -+-+=) should not be exceptional.
It seems to us, however, that this difficulty is psychological rather than physical. The
point is that the two exceptional regions (t + t«) are completely different. Formally they
differ only (!) by the change of the sign of all the velocities, and this has a kind of
hypnotising effect. But we know that even negligible variation of the initial conditions
of a stochastic system leads to a complete change in the trajectory of motion. With regard
to the above-mentioned exceptional regions when t + f=, then as can easily be seen from the
picture of mixing in Fig. 2.4.1, they represent two systems of intersecting strips. There-
fore any exceptional region t + += is wniformly distributed over all the exceptional regions
t + -=, in other words it completely loses all its exceptionality when the velocity is

reversed.

It seems to us that in this lies the answer to the Loschmidt paradox concerning irre-
versibility in statistical mechanics.

With regard to the predominant direction of the thermodynamical processes in the
Universe, this is determined by its strongly macroscopic non-uniformity of cosmological
origin. The most important thing here is the dominating role of gravitational interaction
in the Universe. When there is such interaction there is no steady state at all, on account
of so-called collapse (unlimited contraction), which terminates the development of both the
Univérse as a whole and of individual sufficiently massive stars'5?)., Let us note in
passing that the absence of thermodynamical equilibrium makes thermal death of the Universe
impossible. As far as we know, this simple consideration was put forward very recently by
Zel'dovich and Novikov'®?). If singularity does not cease to exist upon the collapse of
the Universe*), a state will occur which could be called the cosmological death of the
Universe. If singularity ceases, as one can, apparently, conclude from the work of Lifshits,
Sudakov and Khalatnikov'*®) **) then the Universe periodically has the chance of starting
life "all over again" (and of course of making a better job of it!l).

*) For the closed model of the Universe, which in our opinion is more probable’®®),

**) See moreover p. 551, of Ref. 157.
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Let us now briefly discuss a few possibilities of eliminating the minimal hypothesis
formilated above. Is such a hypothesis really necessary? C(an one select such special
initial conditions, even of zero measure, that statistical behaviour proves impossible
regardless of the stochasticity of the system? It may turn out that such conditions simply
do not exist independently of their measure. In order to understand this, let us return to
the mumerical experiment with the elementary model and assume that there are absolutely no
stable regicns in it, as in the case of molecular collisicns. Since this relates to real
numbers there are always exceptional initial conditions for which the motion does not chey
any statistical law. The measure of such trajectories is of course equal to zero, but they
exist. However, a numerical experiment is always limited in principle by raticnal numbers
because of the finite number of digits of the computer mantissa, the measure of which is
also equal to zero. But two sets of zero measure and completely different nature certainly
do not intersect. In any event here there is a theoretical possibility of rigorous proof
that all initial conditions lead to stochastic motion. The question arises as to whether
the same effect does not also occur in nature as the result of space-time quantization, if’
the latter really exists. The answer to it is not at all evident, as was seen in the
example of phase-space quantization mentioned above. However, this possibility is not
excluded. It is interesting that in this case even a reversal of the velocity does not
lead to violation of the statistical laws, since the trajectories of the forward and return
motion are not at all identical, on account of "round-off" ("quantization™). It is inter-
esting to note that the motion is nevertheless in a certain sense reversible, since the
dynamical equations including the "round-off" procedure do not change when time is reversed.

It is significant that the absolute value of the space-time quantum in practice is of
no importance, as a result of the exponential development of the local instability of the
stochastic motion. 5o, for example, even though the guantum has an order of gravitational
length (% 107%% em for an electron) its influence on the dynamics of the motion of the gas
under normal conditions (see above example) will be effective already after ~ 16 collisions,

or v 107? sec,

A new peculiar phase-space quantization has been studied by Krylov'®). As noted
above (Section 2.3) the usual quantization (Ap ~ h) does not lead to the expected effect,
as a result of the change in the type of description. In order to avoid this difficulty,
Krylov put forward the hypothesis that macroscopic systems do not have a definite ¥ function,
because of the special complementarity assumed hy Krylov between the microscopic (quantim)
state and its macroscopic (thermodypamical) characteristic. This leads to the quantization
dp »> h and gives the possibility of explaining the statistical behaviour even in the
classical formulation of the problem (see above). This hypothesis cannot be examined more
thoroughly here, since the present paper is restricted exclusively to classical mechanics.
Let us only say that the development of this hypothesis seems to us extremely interesting
and, furthermore, that it means essentially that quantum mechanics is inapplicable to a
macroscopic system and consequently that there is no continuous transition through a quasi-

classical region.
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The other possibility of eliminating the minimal hypothesis is connected with the fact
that the exact dynamical laws of nature may prove to be irreversible in time, Now this is
one of the possible explanations of the anomalous decay of the K-meson'®®), It is again
significant that under conditions of exponential local instability of the stochastic system

arbitrarily small irreversibility of the dynamical equations might be sufficient.

Sonetimes it is assumed that quantum-mechanical motion is essentially irreversible as
a result of the so-called 'reduction" of the ¥ function {wave packet) by measurement, i.e.
by interaction with a macroscopic object, which is not described by the Schroedinger
equation??’). In fact in present-day quantum mechanics there is no clear understanding of
the process of measurement, so that this whole question remains open. However, in our
opinion there is a more plausible hypothesis, which is in a sense the opposite: that the
"reduction'” of the ¥ fumction is itself due to the statistical properties of the macroscopic
measuring apparatus. This hypothesis is based on the following consideration. 'Reduction"
of the ¥ function must not necessarily be accompanied by the tfan5furmaticn of the original
¥ function into one of the states whose superposition it was before the measurement. [t is
sufficient for the original pure (or coherent] state to have been transformed into the mixed
{or incoherent) one, i.e. for the phase relations between the superposed states to have
become indefinite. In the latter case there is no interference between the states and the
¥ function gives the classical probability, when the system "in veality" is in one of the
states before, but we do not Jnow exactly which. In contrast to this, before the measurement
the system was '"in reality" in all the states simultameously (pure state). But the destruction
of the phase relations between the superposed states, necessary for the transformation of
the pure state into the mixed one, is also apparently inevitable as a result of the inter-
action of the micro-system with the statistical apparatus. This hypothesis of course needs
detailed investigation, which does not come within the scope of the present paper. Let us
point out that this problem has been discussed for quite a leng time in the literature

(see, for example, Ref. 162].

In conclusion let us compare cur point of view with the linear model of present-day
statistical mechanics, introduced by Bogolyubov’!) and more fully developed by Prigogine
-and his school®?) (see also Ref. 161). As already mentioned in Section 2.11, the latter
model does not need ergodicity but it is valid, i.e. it leads to statistical laws, rigorously
speaking, only in the limit of a very large mmber of degrees of freedom N + =. For a
finite N the application of the model has an upper time limit (Section 2.11). For macro-
scopic molecular systems this upper limit is very great'®?) and in practice is insignificant.
It is essential, however, that even when N + = a statistical description is possible only
for the small sub-system N;/N + 0 “*), This condition can be formally satisfied by taking
only the retarded solutions of Liouville's wave equation (2.10.1) (with the additional
requirement N, V + =; N/V = const., V is the volume of the system) thus excluding the
reaction of the whole system on the sub-system studied. For the reason mentioned, this
condition is sometimes incorrectly linked with the principle of causality*g}. It seems to
us better to speak of definite initial conditions [the absence of incoming (advanced) waves],
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since in fact the total solution of Liouville's equation (rstarded + advanced) must also

satisfy the principle of causality.

In the light of the above condition it can be said that the linesar model makes it
possible to cobtain the Gibbs canonical distribution for a sub-system in a thermostat without
a microcanonical distribution of the whole closed system. The sub-system achieves statisti-
cal behaviour because of the additional demands on the parameters of the whole system
(thermostat) of the type of a requirement for random phases or frequencies ({Section 2.11).

A linear model is possible in statistical physics and is very convenient by virtue of
the relative simplicity of its mathematical technique. However, it is not necessary and,
in fact, does not correspond to real molecular dynamics, since real macroscopic molecular
systems are stochastic (Section 2.12). This is contradictory to Prigogine's assertion that
such systems are not ergodic and have a full set of integrals of motion*?), The inaccuracy
of the latter assertion is evident, if only from Sinai's example'®®). The origin of the
error is that the series representing these integrals, generally speaking, diverge. Accor-
ding to the KAM theory they converge only when the perturbation is sufficiently small,
outside the stochastic region. Let us note in passing, that in the stochastic region, and
more precisely, even for weak mixing (Section 2.3), Liouville's equation (2.10.1) does not

have eigenfunctions at all (except a constant].

Nevertheless, there is a region in which the linear model is wvery important. Let us
explain by taking a gas as an example. In his approach to statistical mechanics
Bogolyubovs“) introduced two characteristic time scales: the duration of the interaction
upon gollision [Tin} and the time between collisions {Tcl}. The latter turns cut to be
just of the order of the mixing time (~ h™!) *°), Therefore our non-linear model works
only for t >» Tept i.e. only in a diffusion (hydrodynamical) region, where gas relaxation
(diffusion) takes place in co-ordinates (compare with the diffusion of the basic model,
scale T Section 2.10). Gas relaxation in momenta takes place just in a time ~ Teqs SO
that it cannot be described by a non-linear model. In the best case the latter gives only
the order of the relaxation time®"), For the basic problem of the foundation of statisti-
cal physics such a lower time limit is unimportant -- what is more important is the absence
of an upper limit. However when it comes to applications it is very important to extend the
region of applicability of the kinetic equation in the direction of lower times. This can
be done precisely by means of the linear model with an additional special limitation on the
conditions of the system. The most general limitation of this type was obtained by Sandri®*)
and called by him "the principle of the absence of parallel motion', which means the absence
of strong correlations at the initial moment (t = 0). According to our way of thinking,
this "principle' can be validated on the basis of the previous motion of the system (t < D)
taking into account the mixing. Let us note that '"the absence of parallel motion" according
to Sandri does not at all mean, as is sometimes supposed®®), the total absence of collective
processes. It is only necessary for there also to be random relative motion of the particles,
or more precicely, for the pair correlations to grow no faster than v, when v,z + (1, where
vi: is the relative velocity of two particles®®),



