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1. INTRODUCTION

Until recently statistical properties of a physical system have been
derived with the help of some special postulates, or Ansitze, such as
Gibbs’ microcanonical distribution in equilibrium statistical mech-
anics, Boltzmann’s molecular chaos, Bogolyubov’s correlation decay.
Prigogine’s causality condition, van Hove’s random phase approxi-
mation, and the like in nonequilibrium mechanics. Those assump-
tions are especially plausible and natural in the so-called thermody-
namic limit, that is, in the limit of infinite number of degrees of
freedom (DF) for a given density. In a finite dimension, and the
more so in just a few DF, these conjectures are generally false. Yet,
such a classical approach to the statistical mechanics can be
preserved by introducing an extrinsic “noise” with given statistical
properties (correlations)—a method which can be traced back to
Langevin.

Nowadays, tremendous progress in modern ergodic theory enables
us in principle both to find the conditions for and derive the
properties of the statistical or chaotic (stochastic) behavior on a
purely dynamic basis, i.e., by the analysis of dynamic (deterministic)
evolution equations free of any random element or assumption. In
other words, in this new approach chaotic behavior becomes a
particular regime of dynamic evolution. To reveal the peculiarities of
this regime one needs of course to make use of some special
statistical description and notions, such as the distribution function,
coarse graining, symbolic trajectories, etc. The latter, however,
should not be confused with statistical properties or chaotic
behavior, which do not depend on the description.

As far as it concerns classical mechanics that dynamic chaos
happens to be observationally undistinguishable from a “true”
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random process, the latter being understood as unpredictable or
unreproducible (see Section 5). Quantum dynamics appears to be
less chaotic, and is certainly much less known thus far.”> 8

I shall briefly discuss some of these more recent developments,
referring to a couple of simple models of the Yang-Mills field as
examples.

A mathematical review of the topic in question can be found in
Refs. 1-5, that by a physicist in Refs. 6-9, and a recent popular
presentation in Refs. 10-12.

In what follows we shall restrict ourselves to classical Hamiltonian
dynamics, that is, to nondissipative but not necessarily conservative
(in energy) dynamic systems. A typical problem to be studied—the
Poincaré fundamental dynamic problem—is the influence of a weak
perturbation on a completely integrable unperturbed system, which
for the time being we assume to be nonlinear or nondegenerate. It
means that determinant
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with w;, I; as the frequencies and action variables, respectively, and
H, the unperturbed Hamiltonian. A case of the linear (isochronous)
unperturbed system more difficult for analysis will be considered in
Section 4. Equation (1) implies a one-to-one correspondence between
the I- and w-subspaces of the dynamic (phase) space.

2. KAM integrability

The concept of integrability has little in common with the actual
evaluation of a motion trajectory; the latter can always be done
numerically if necessary. Instead, it is a basic characteristic of the
motion (phase space) structure, namely, of its decomposition into
elementary (irreducible) dynamic components. In group-theoretical
language the problem of integrability is also the problem of the
maximal symmetry group of a dynamic system. For a closed system
the minimal one is the Poincaré group implying the ten well known
integrals of motion. For the sake of brevity we discuss energy only,
assuming the others to have been eliminated beforehand. Thus,
integrability refers to additional specific isolating integrals related to
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some “hidden” symmetry of the system. If there is nothing to hide, the
motion is said to be transitive, or ergodic, on the energy surface. In this
case the whole phase space decomposes into the one-parameter
family of ergodic components, each comprising the entire energy
surface. The opposite case corresponds to the full set of N (the
number of DF) integrals in involution which reduces the elementary
dynamic component to a quasiperiodical motion on a torus. For
almost all tori the motion is ergodic (on the torus) or nonresonant.
This is the classical view of the integrability problem going back to
Poincar¢.

A lucid presentation of our current understanding of this problem
can be given with resonance analysis. This latter is especially
convenient to carry out in the w-subspace where each resonance

IZV: m;w; + f nQ, =(m,0)+(n,Q) =0 _ (2)
K=1

i=1

is clearly a plane. Here m,, n, are integers, and the external pertur-
bation is assumed to be quasiperiodic with M basic frequencies ;.
Note that generally m;, n, are any integers, and hence the resonance
set is everywhere dense in the phase space. Yet, its measure (volume)
is zero, and this constitutes a singularity whose dynamic implications
were not properly recognized until the Kolmogorov-Arnold—Moser
theory was created!= 13 (also see Ref. 18). In particular, the famous
Poincaré theorem'# (Secs. 81-83) stating that a generic Hamiltonian
system is nonintegrable being formally true, has been actually
misleading for a long time, at least for physicists.'® The trick is that
the theorem proves the absence of analytic integrals of motion. This
mathematical subtlety is not merely a technical requirement. On the
contrary, it is essential since the actual destruction of the motion
integrals does occur, as Poincaré was aware of, on the resonance set
due to the well known small denominators in the perturbation series.
Obviously, the function which does not exist on an everywhere dense
set cannot be analytic. But what of that? Do we really need analytic
integrals of motion? Or, to put the question in another way, do we
have to follow Poincaré in his somewhat implicit but fairly obvious
assumption that the motion integrals comprise some solid region
including resonance surfaces? The KAM theory teaches us that we
do not. Yet, one can say also that there are (at least!) two different
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notions of integrability:

1) the Poincaré, or global, integrability which refers to the overall
integrals throughout the phase space; this notion somewhat
exaggerates the letter of Poincare’s idea retaining, however, its spirit,
and is close to the modern notion of complete integrability;

ii) the KAM integrability restricted to a nondense, nonresonant set
in the phase space.

Let us dwell on this latter notion somewhat longer. First, what are
the conditions for KAM integrability? There are essentially three:

1) the unperturbed globally, or Poincaré, integrable system is
nonlinear or nondegenerate (1);

il) the perturbation is sufficiently smooth, i.e., it belongs to the
class C' with some [>1_;

11) the perturbation is sufficiently weak, ie., the perturbation
parameter ¢ <Se,.

The critical perturbation smoothness [, (the number of continuous
mixed partial derivatives both with respect to N angles 6, and to M
time-variables ¢, =Q,t+¢7) can be estimated by the resonance
overlap criterion® (Section 4.5) as

I, ~2(N+M)—2, (3)

which is a generalization of the result in Ref. 6 to an explicit quasi-
periodic time dependence of the Hamiltonian. This may be com-
pared to the rigorous upper estimate for M =0 due to Moser!>:

I, <2N +2. (4)

For a mapping the quantity I, (3) increases by 2. In particular,
I,=2 if M=0, and N=1.° The best rigorous upper bound in the
latter case, again due to Moser,® is I,<4. For I<I, the critical
perturbation does not exist, i.e., the system is not even KAM
integrable at any nonzero &—0. Takens'® has proved this for a
particular mapping with /=2 (M=0; N=1). Note that our |
characterizes the Hamiltonian (or generating function) and is bigger
by one than that in Refs. 3 and 16.

Evaluation of the critical perturbation ¢, (for [>1,) is a more
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tricky problem. We mention here only the analytical case (for detail
see Ref. 6, Section 4.6). Let the perturbation be analytic in both 6;
and ¢, within the strip of half-width ¢. A particular question is:
How does ¢, scale with ¢? An interesting point is that the powerful
techniques developed by Moser® to deal with a smooth perturbation
can be applied to analytic perturbation to get a fairly efficient
estimate®:

3
£ 0C ot tO), (5)

where the constant C=3 from the overlap criterion, and C<3 from
the rigorous upper bound (4).

3. SEPARATRIX STOCHASTIC LAYERS AND
ARNOLD DIFFUSION

What is the nonintegrable set under the conditions of KAM
integrability? The first estimate for its relative size and total measure
was of the order of /e that is of the order of the full width of a
nonlinear resonance (Aw),. However, further studies®®!7 revealed
that the actual measure of the chaotic component, which forms very
narrow stochastic layers along resonance separatrices, is a great deal

smaller:
_(Aw), A(w;)
=~ o] “

where (Aw), is the width of stochastic layer, and the factor A(w;)
depends on dynamic variables. In simple cases the evaluation of
estimate (6), based upon the overlap criterion, is fairly accurate (see
Ref. 6, Section 6.2, and Ref. 20). It is worth noting that estimate (6)
and the like have been obtained not by means of the powerful KAM
techniques for the construction of convergent perturbation series, but
using instead a routine asymptotic method of averaging.>! However,
the crucial new feature of our approach is introducing a new
(resonant) perturbation parameter ¢ (6) (instead of the original ¢)
which has to be explicltly calculated.®-2°

What are the dynamic implications of the nonintegrable compo-
nent of motion? They depend on the topology of the phase space. In
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the case of N =2 (for a closed system) stochastic layers are separated
from each other by integrable components, and their influence is
negligible.!’> The motion remains stable (in the action variables) for
all initial conditions, that is, the averaged globably integrable system
approaches true motion with only an exponentially small (~¢)
ineradicable error.

However, in many dimensions (N >2) the motion changes drasti-
cally since all those layers merge and form an overall dense “web”
along which the trajectory can and generally does approach arbit-
rarily closely any of the points on the energy surface.!” Yet this does
not mean ergodicity of motion, since the total measure of the web is
still exponentially small. For this reason the motion on the web,
which is called Arnold diffusion, may appear to be practically
unimportant. In many cases this is true, especially when the diffusion
rate is also exponentially small.®*®-2? Nevertheless, Arnold diffusion
certainly signifies a real instability of motion contrary to the
assertion in Ref. 23. The confusion is caused by an artificial notion
of allowable solutions introduced in Ref. 23, which excludes the
unstable initial conditions on the web.

On the other hand, the whole problem is improper since the
stochastic web is everywhere dense. There are several methods of so-
called regularization of the problem, i.e., of its unambiguous formul-
ation which would not depend on infinitesimal changes in initial
conditions. One way is to bound the motion time interval from
above by an arbitrary but finite value. It converts the everywhere
dense resonance web into a finite mesh grid of “working” (sufficiently
strong) resonances, and the problem acquires physical meaning.

Another regularization method is introducing, taking account of
some always present arbitrarily weak but finite external “noise”
which results in additional diffusion.® It also leaves the finite
resonance set where the rate of Arnold diffusion exceeds the effect of
the noise. Besides, this brings all the trajectories to one of the
working stochastic layers and thus provides Arnold diffusion for all
initial conditions.

Thus, Poincaré or local nonintegrability does not generally imply
any significant change in the motion structure. Instead, KAM
integrability generally takes place with, at worst, an exponentially
slow Arnold diffusion.

Note that separatrix splitting, and hence formation of a stochastic
layer, which is sometimes used as a criterion of nonintegrability (see,

fa
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e.g., Refs. 24,25), relates only to local nonintegrability and does not
contradict KAM integrability.

Large-scale chaos sets in as a result of breaking down the KAM
integrability as perturbation exceeds the critical level (2 ¢,,).

4. WEAK NONLINEARITY

If unperturbed oscillations are linear (isochronous) and hence
|8wi/61k50 (1), the nonliearity emerges from perturbation terms
only. This situation is rather typical in applications. Consider, for
example, one of Matinyan’s models for a classical spatially homo-
geneous Yang-Mills (YM) field in a Higgs vacuum?®:

H(I,0,) = Ho(I,) + V(I, 6;)

Hy=HE}+E5+wiAi+widAd)=wd,+w,l,

A4 _ ~
V= 122=V+V,+V (7)
_ 1,1 1,1
V=—=12. V=—""2 cos(20,—20,)
2w,0, 4w, m,

- 1,1
V =—12 [cos 26, +cos 20, +1 cos (20, +26,)]
Wi,

Here E,=A,;I,,0, are the action-angle variables; V, V, and V are
mean, low frequency (resonant), and high frequency (nonresonant)
parts of perturbation, respectively, while the small perturbation
parameter is the Hamiltonian itself (w; ~1): e=H~H,~1I; V ~¢H.
This model describes the simplest (N =2DF) nontrivial case of the
internal dynamics of a YM field.

In spite of degeneracy the KAM integrability still holds for this
model under the additional condition w,/w,+# p/q for integers p, g
satisfying |p|+|g| <4 (see Ref. 2). An interesting case for the theory of
YM fields is w, =w,, where an exact resonance occurs at H—0. The
crucial point is that there exists only one single resonance related to
the low frequency perturbation term V,(7). In this case the averaged
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system (w0, =w,=1),
_ 1,1
(Hy=Ho+V+V, =1+, +—=[1+3c0s(20,-20,)],  (8)

is always globally integrable due to a specific resonant symmetry
(only one of N linearly independent phase combinations is present in
the Hamiltonian) which implies (N —1) resonant integrals (see Ref.
6). *One of these integrals is always the unperturbed Hamiltonian
H,=1,+1, for system (8). Since {H) is also an integral the averaged
perturbation (V) =V + V, =const. is also conserved. The two indepen-
dent integrals determine phase curves of the averaged system (8)27:

v

Jr=1- 9)

1+1coso
where J=(I,—1,)/Hy; ¢=20,—20,, and v=8{V)/HZ Thus, the
motion structure is independent of H, in the limit H,—0, the H,
value determining only the time scale of the motion. For example,
the frequency of small oscillation around the stable periodic orbit
J=p=0v=3) is w0=\/%H o- There exists a separatrix corresponding
to the unstable periodic orbit J=0; ¢ == (v=4) which is split by the
high frequency perturbation ¥, the resonant small parameter being

£~eXp< —%) (10)

where exHy~w, and C~1, a numerical factor. Due to weak
nonlinearity this latter parameter and hence the stochastic layer
width is much smaller than Eq. (6), while the resonance width is

much bigger, and is actually independent of ¢ (Jmax=\/-§_-) (9).

Thus, the model (7) is KAM integrable for H<H_~C~1 (10). In
Ref. 26 H ,~6.7 was accepted from numerical simulation of this
model. At H> H_, the motion is globally chaotic,?% 27 although with
a small regular component incorporated.?”’

At larger N the KAM integrability is generally destroyed even in
the limit H,—0. Consider?’ the model (7) with N =3:

H0=w111 +CO212+CO3I3
(11)
2V =(4,4,)* +(A,4;3)* +(4,45).

4]
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If w,=w,=w; there are three resonances, and even the averaged
system {H) is no longer integrable, as numerical simulation in Ref.
27 confirms. The latter is always desirable to rule out any hidden
symmetry in the system. The motion structure again depends only
on the ratio {(V)/H§, not on H, as Hy,—0 [cf. Eq. (9)]. According to
numerical data in Ref. 27 this structure includes both chaotic as well
as regular (quasiperiodic) components of comparable measure.

5. THE NATURE OF DYNAMIC CHAOS

A typical (and the most important) feature of chaotic motion is a
fast (exponential'') local instability, that is, divergence of a beam of
close trajectories. This local dynamic behavior is described by the
equations of motion linearized about one of chaotic trajectories. For
a closed, time-reversible system the instability is characterized by the
n Lyapunov exponents A;>0, the dimensionality of the chaotic
component being (2n+1) (see Ref. 28). If the latter comprises an
energy surface or a part of it, n=N—1. Lyapunov exponents
determine the metric entropy of a dynamic system?®:

h=Y AizA, (12)

which is also sometimes called the KS entropy (Krylov-
Kolmogorov-Sinai entropy). The maximal Lyapunov exponent A, is
determined by

1 |p(0)]
A, =1lim -1 13
" th:)t nlp(o)‘ ()

where p(t) is vector of the linearized solution. For almost any initial
vector p(0) the solution p(t) rapidly approaches the eigenvector
related to A,,. This greatly simplifies the numerical procedure for
calculating A,,. On the other hand, it is also sufficient to calculate
only A,, since all we need to know is whether h> 0. If so, almost all
trajectories of the chaotic component are random according to the
algorithmic theory of dynamic systems.” In this theory random
means unpredictable or uncomputable. It may be elucidated as
follows. Consider a coarse-grained, or symbolic, trajectory which is a
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sequence of integers g, (0=<¢q,<M) where t is the integer time (of
step T), and M is the number of finite elements of the phase space
partition. Each g, describes an instant position of the system to a
finite accuracy. The latter is a crucial point for two reasons. First, it
takes account of an unavoidable uncertainty of any observation or
measurement in physics. Second, and most importantly, it enables us
to rigorously discern “simple” (regular) and “complicated” (chaotic)
trajectories. The important concept of complexity, introduced by
Kolmogorov for sequences, can be in this way extended to dynamic
trajectories.” Loosely speaking, the complexity of a finite sequence is
the amount of information necessary to reproduce this sequence. If
the complexity is maximal, that is, proportional to the sequence
length, it is natural to define that sequence as random. To reproduce
such a sequence one needs just to know it as given cither explicitly
or implicitly, ie., encoded somehow, in particular in the initial
conditions of motion. In the former case the reproduction is merely
copying, and in the latter it is deciphering, by using equations of
motion. The crucial point of the algorithmic philosophy i1s the
impossibility of separating the two above cases in view of a possible
continuous transition between them. For example, an intermediate
step could be the change from binary to decimal numbers or vice
versa. Thus, a given random trajectory is just given and cannot be
reproduced in any simpler way.

The principal result, due to Brudno, in the algorithmic theory

is3: 2%:

K=h (14)

where K stands for the mean Kolmogorov complexity of trajectories,
per unit time. Thus, if K >0 the origin of the maximal complexity of
the trajectory and hence of its randomness is in the initial conditions
and, ultimately, in the continuity of the phase space of classical
mechanics.

The role of the equations of motion themselves in producing
random trajectories turns out to be secondary. It is to provide the
local instability of motion, and hence to grant dynamic significance
to arbitrarily diminutive details of trajectory initial conditions. As
such, the dynamic algorithm can be very simple which has appeared
so puzzling until recently. We now understand that simplicity of the
dynamic system does eclipse the true origin of dynamic chaos.

(4 ]
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The above concept of algorithmic randomness appears to be in
conformity with our intuitive idea of what randomness is like.
Moreover, the developing of this concept has been actually guided
by this conformity. At any event, this randomness does not mean
complete randomness, in particular, it does not exclude the correla-
tions in motion. It only implies the correlation decay, and moreover,
in both directions in time (t+ + o0) in accordance with the dynamic
reversibility. For a given motion there is a continuous transition
from deterministic to chaotic behavior. Generally, this transition can
be characterized by the following randomness parameter:

T-h

r:lnM

(15)

the limit r—0 corresponding to an approximate and temporary
deterministic evolution while the chaos is developing as r—co.

The random, dynamically unstable motion possesses an important
property of statistical stability, i.e., stability of any averaged quantity,
which in turn is a corollary of the structural stability of dynamic
chaos.

On the other hand, the randomness of motion does not fix its
statistical properties. For example, the exponential local instability of
motion generally does not imply any exponential relaxation, nor
does it even appear to be a typical case.’®3® The reason lies in
different averaging for the entropy and the correlation. In particular,
the chaos border in the phase space, i.e., a coexistence of chaotic and
regular components of motion, inevitably leads to a power-type
relaxation (~t"?; p~1).2° Such a relaxation apparently has been
observed both numerically3!'®? and experimentally®? (see Ref. 20).
Note that a power correlation decay generally implies a fairly
complicated statistical description of dynamic chaos.
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