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Long-Time Prediction in Dynamics. Edited by C. W. Horton, Jr,, L. E. 
Reichl, and V. G. Szebehely. John Wiley & Sons, New York, New York, 
1983, xv + 496 pp., $85.00 (cloth). 

The reviewed book, a collection of papers presented at an Inter- 
national Workshop held in March 1981 in Lakeway, Texas, is mainly 
devoted to various aspects of a peculiar phenomenon, the dynamical chaos 
(or stochasticity), i.e., the random (without quotes!) motion of completely 
deterministic (=  dynamical) systems in classical mechanics. Perhaps, it 
would have been more natural to entitle the book something like "Long- 
Time Unpredictability in Dynamics." 

Until very recently dynamical chaos had appeared so "strange" and a 
few then known examples of the chaos seemed "pathological." By now, 
hundreds of examples are known in dynamical systems ranging from "sim- 
ple" mechanics to chemistry and biology--hence a great and ever-increas- 
ing interest in this phenomenon. The reviewed collection of papers, written 
by leading experts, contributes a significant insight into this interesting and 
important domain of classical mechanics. 

Besides numerous applications over a broad spectrum of problems on 
motion stability, chaos bears upon some fundamental questions, such as 
the nature of randomness and of the statistical laws as well as its relation 
to the dynamical laws of physics. The book would therefore be of par- 
ticular interest to readers of Foundations of Physics as well. The present 
review does emphasize just this latter point. 

To begin with, all the authors adhere to the idea of the primality of 
the dynamical laws, which are considered to be more fundamental than the 
statistical laws that arise out of the former under particular conditions. 
This is indeed a natural viewpoint, though not the only one possible [see, 
e.g., J. A. Wheeler, Am. J. Phys. 51, 398 (1983)-]. Besides, one should bear 
in mind the possibility of a secondary dynamics (e.g., Prigogine's dissipative 
structures, or the so-called "synergetics"), that is, the dynamical laws aris- 
ing out of statistical ones. 
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From the logical viewpoint, the principal paper in the book is that due 
to J. Ford, as it presents an up-to-date understanding of the nature of ran- 
domness and of statistical laws (Sections 4 and 5). It is based upon the so- 
called algorithmic theory of dynamical systems, developed essentially by 
the Kolmogorov school. A fundamental concept of this theory is the 
mathematically rigorous and physically satisfactory notion of random 
individual trajectories. According to the Alekseev-Brudno theorem, the 
necessary and sufficient condition for such a randomness is positivity of the 
dynamical entropy (h > 0), i.e., a strong (exponential) local instability of 
motion. No additional Ansiitze are required for a statistical description. It 
should be mentioned, however, that the conjectures of a more general 
nature in Section 6 are disputable. 

Even though the new explanation of randomness seems to be of a fun- 
damental importance, it has not yet been developed into a sound theory of 
statistical mechanics. Therefore, it was well justified (and not from the 
historical viewpoint only) to include the papers by J. Lebowitz, by B. 
Misra and I. Prigogine, by H. Grad, and by S. Goldstein, in which a much 
more elaborate classical explanation of the statistical laws is essentially dis- 
cussed (with some reservations, perhaps, for the second paper of a transient 
philosophy). The classical explanation applies to the limit of indefinitely 
many degrees of freedom, and it requires some additional, though natural, 
statistical Ansiitze, such as certain restrictions upon the initial distribution 
function or Boltzmann's "initial chaos." As we know now, neither is 
necessary under the condition h > 0. However, the classical explanation 
acquires today a new and unexpected relation to the problem of quantum 
chaos, that is, the evolution of the ~(t) function of a classically chaotic 
quantum system. In this case, only a temporary imitation of true random- 
ness, or a transient chaos, is possible. But the same is true for the com- 
pletely integrable, particularly linear, systems in classical mechanics. Such 
an example (linear waves in inhomogeneous plasma) is considered by E. 
Ott. Here one just needs the classical explanation! The nature of the 
imitation is also demonstrated via a simple example by A. Salat and J. 
Tataronis. In the latter model there is no real chaos, of course, as h = 0 (for 
a finite motion). Yet, some trajectories do appear fairly irregular. This 
emphasizes the importance of the rigorous criterion for randomness (h > 0). 

The rest of the book is devoted to various particular aspects of chaotic 
dynamics as well as to some of its applications. 

In papers of R. Helleman, of R. MacKay, and of D. Escande the critical 
phenomena, typical for the transition from regular to chaotic motion, are 
considered. The first two papers deal with Feigenbaum's period-doubling 
bifurcations whose importance for chaotic dynamics appears to be rather 
exaggerated, at least as to Hamiltonian systems. A more universal 
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approach is presented by D. Escande, following the ideas of J. Greene 
(whose paper in the book is devoted to another, more special question). 

M. Lieberman and J. Tennyson consider a rather peculiar regime of 
chaotic motion, the so-called Arnold diffusion, as well as a related 
modulational diffusion. An application of the former to a particular 
problem of the beam-beam interaction is discussed by T. Bountis, C. 
Eminhizer, and R. Helleman. A general review of various experimental data 
on the stability of the colliding beams as well as some theoretical estimates 
are provided by S. Kheifets. 

The effects of an external noise upon a dynamical system are described 
in the papers by A. Rechester et al. and by J. Tennyson. C. Grebogi and A. 
Kaufman and D. Dublin and J. Krommes discuss some methodical 
problems in the theory of dynamical systems. Celestial mechanics is 
addressed in the papers by V. Szebehely and by R. Vicente, with examples 
of chaotic motion for the restricted three-body problem in the first paper, 
while the theory of plasma turbulence is the subject of papers by C. Horton 
and by K. Molvig et al. 

The case opposite to chaotic motion, namely, the dynamics of stable 
nonlinear entities, the solitons, is described by Y. Ichikawa for the Alfven 
waves in plasma, and by J. Hyman et al. for the Davydov solitions in e- 
helix protein. 

At the end of his paper, V. Szebehely poses a question: "... if celestial 
mechanics is not a deterministic science (and aparently it is not), is there 
any meaning in our attempts to predict the future of the solar system or of 
our galaxy?" Perhaps, this is a good place to conclude my review with a 
brief remark that the long-time unpredictability (rather than indeterminacy) 
does not exclude the short-time prediction and even presupposes the latter, 
as the chaos we are talking about is the dynamical chaos. Just recall 
weather forecasting! 

The theory of dynamical chaos is fairly young and rapidly developing. 
It is therefore less of a surprise that the related workshop and the collection 
of papers (as well as the present review!) are somewhat "chaotic," too. If, 
nevertheless, I managed to attract the reader's attention to this new and 
intriguing field of research in physics and mathematics and to prompt him 
to "rummage" through the book--where a lot of new insights and ideas, 
conjectures, and results are scattered around--I would regard my objective 
as realized. 
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