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A new regime of Arnold diffusion in which the diffusion rate has a power-law dependence on
the perturbation strength is studied theoretically and in numerical experiments. The theory
developed predicts this new regime to be universal in the perturbation intermediate asymptotics,
the width of the latter increasing with the dimensionality of the perturbation frequency

space, particularly in large systems with many degrees of freedom. The results of humerical
experiments agree satisfactorily with the theoretical estimates19@Y American Institute of
Physics[S1063-776097)02409-9

1. INTRODUCTION: UNIVERSAL NONLINEAR INSTABILITY sary and sufficient to destroy the oscillation isochronism.
The generalization of that for several degrees of freedom is

One of the most interesting phenomena in Hamiltonian,e necessary condition for determinant to be nonzero every-
dynamics is the so-called Arnold diffusiqAD), a distinc- where

tive universal instability of multidimensional nonlinear
oscillations? This global instability was predicted by
Arnold;? its chaotic nature was discovered in Refs. 1, 4, and
5 and further studied in detail in Refs. 6-11, 14, 15, and 17.

First, following Ref. 17, we briefly recall the diffusion . . :
mechanism, which is related to the interaction of nonlinear!n this case the system is cal[ed nondeger)erate. This allows,
resonances. Consider a general Hamiltonian describing mul” particular, the transformation from action to.frequenc':y
tidimensional oscillations: space. In the latter, the resonance structure is especially

simple and transparent, as the resonant surfidc&sbecome
) ) planes.
H(L‘g't):HO(')J’s% Vam(Dexp(in- g+itm-Q), Another condition for the nonlinear stabilization is the
’ (1.1  requirement for the quadratic form associated with the ma-

trix 9°Hq/d12% to be sign-definite or, geometrically, for the

wherel, ¢ are N-dimensional vectors of the action—angle g rfacedd (1) = const to be conve¥ The latter condition is
variables;() is the M-dimensional vector of the driving fre- 5 \veaker one as it may include higher polynomial forms.
guenciesn, m are integer vectors of dimensiohsandM, Both conditions are only sufficien?:*:

respectively, and stands for a small perturbation parameter.  The above conditions also ensure the absence of strong
The dot in expressions like- 8 denotes the scalar product. instability (~¢), due to a quasilinear(isochronous
Below we shall consider the simpler case of a Complew')"esonancé,especially when severar) independent reso-
integrable and nondegenerate unperturbed system whoggnce conditionél.2) are simultaneously satisfied. The latter
HamiltonianH (1) depends on the full set &f actions only. s cajled multiple(r-fold) nonlinear resonance. However, a
_ Hamiltonian (nondissipativi dynamics is always de_ter- weak instability caused by nonresondat,,#0 for given
mined by resonancesee, e.g., Refs. 1 and @orresponding jnitial condition terms in the perturbation serig&.1) is
to part|_cular terms in the_perturbatm(ﬂ.l). The condmpn possible, and it is just the AD we are going to discuss in
for a primary resonance with unperturbed frequentle® is  getail. Moreover, this weak instability is a typical phenom-
wym=n-o(1)+m-Q~0. (1.2) enon of n_onlinear oscillations,_since it occurs for almpst any
_ o ' ~perturbation of a completely integrable system particularly
In the case of linear oscillations all the frequencies are fixedne that is arbitrarily weak. The only restriction is the action
as parameters of the system which is either in or off resospace dimensiod,, which must be larger than that of the
nance independent of initial conditions. However, for nonlin-invariant torus ¢,>d,=1).2 The torus is an absolute barrier
ear oscillations with the action-dependent frequencies for the motion trajectory, which can only bypass it but never
w(1)=aHy(1)/4l, (1.3 go thrpL_Jgh. For a driving perturbatiaiM >0 in !Eq. (1.7)
the minimum number of degrees of freedom is, th\s;,
condition(1.2) determines resonance surfa¢esne$ in the =2, but in the conservative cas®lE0) it is N,i,=3, since
phase space, that is, the system is always in resonance fthre trajectory is constrained to follow an energy surface.
some initial conditions. On the other hand, nonlinearity sta- Even these minimal restrictions are not absolute, since
bilizes the impact of gsufficiently weak perturbation, en- they apply to the strong nonlinearit{l.4) only when the
suring bounded oscillations even for resonant initial condi-effect of resonant perturbation is smalll(l~\e<1). In
tions. This is precisely due to non-isochronous oscillationsase of lineaHq(1) (the harmonic oscillatgm ,;, is smaller
(1.3). In one degree of freedom such a nonlinearity is necesby 112
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At least three perturbation terms in the serfésl) are —InD=E~k+ )\(k)z)\é’L (1.7
necessary for AD. We shall call each of these terms a reso-
nance(for the appropriate initial conditions of the motio  with respect tk. Here\y=wq/wg, w, Stands for a charac-
single resonance retains the complete integrability of the urteristic oscillation frequency, and the following diophantine
perturbed system. The interaction of even two resonancesstimate was used:
results in the formation of narrow chaotic layers around the
unperturbed separatrices of both resonafees, but the @ 18
chaotic motion remains confined within a small domain of ~ “"m™ kT-1° (1.8
the layer. Only the combined effect of at least two driving
resonances gives rise to diffusion along the layer of the firstThe most important parameter in Ed.7),
guiding, resonance il= N, holds(see Ref. 1 for detaijs
In the first approximatior{1.2) the driving perturbation
terms are nonresonanbf,#0), but the final effect is due is the number of linearly independefitcommensurateun-

to the secondary resonances between the driving perturbanor‘lerturbeol frequencies on arfold resonance. We shall call

and the slow phase oscillation on the guiding resonance. Th : L
. ; the resonance dimensigm frequency spage Actually,
is a particular case of the general rule that all the long-ter . : . . i

g. (1.9 gives the maximum dimension when hlindepen-

effects in nonlinear oscillations are due to some resonances, . . . .
dent frequencies contribute to the driving resonances, which

For the problem in question the principal parameter is themay be termed the full resonances. There are also partial

L=N+M-—r, (1.9

ratio . .
resonances which depend on a smaller number of frequencies
|wnml L<L. Even though there are only a few of the latter, they
A= o ! (1.9 are crucially important for the new AD regime which is the
’ o - _main subject of this papédSec. 5.
wherewg~ (e|Vg|)““ is the frequency of small phase oscil- The estimaté1.7), which represents another AD mecha-

lations at the center of the guiding resonance, and wkigre nism, seems to agree with numerical datAOn the other

is the Fourier amplitude o.f the corresponding perturpatiorhand, Nekhoroshev rigorously prov8dn upper bound of
term. For a weak perturbatior {-~0) the parametex>1is e form (1.7 but with a different exponentM =r =0):
big, and thus the effect of the driving resonances is a high-

frequency one. In fact, this is equivalent to a low-frequency (3N—1)N
(adiabati¢ perturbation. Hence we use the term inverse L<Ly=—F——+2. (1.10
adiabaticity'® The symmetry between the standard and in-

verse adiabaticity is especially clear in a conservative sysgven for the minimum dimensions=3 this upper bound
tem, i.e., for the interaction of coupling resonances. Indeed, . ,.=8 considerably exceeds the estimdfe9): L=2(r
in this case the resonant interaction results in energy ex=1). The difference grows a8—o. Even though this dis-
change between the guiding and driving resonances. Whilgrepancy is not a direct contradiction inasmuch as(Ed.0
for the former the perturbation is a high-frequency d¢ime s the upper bound, it constitutes a problem: what would be
verse adiabaticity for the latter it is low-frequencystandard  the origin of the difference between the two estimates?
adiabaticity. Recently, this problem has been resolved by Lothak
For an analytic perturbation the effect in both cases isyho rigorously proved a more efficient Nekhoroshev-type
exponentially small in the adiabaticity parameter(1.5,  estimate with the exponeiit.9) (for M=0 but anyr). The
namely*** explanation is that Lochak assumed convexity of the unper-
D~e— ™ —y2 (1.6 turbed HamiltonianHq(1) given above, whereas Nekhoro-
s’ shev’s proof holds under a weaker condition of the so-called
whereD is the local dimensionless diffusion rate in the ac-steepness dfl;. From the physical point of view this differ-
tion 1 within a chaotic layer and Wherws~|AHo|/ng ence appears to be insignificant. At least, we are not aware of
stands for the dimensionless layer widfbr a more accurate any example of a steep but non-convey.
estimate see Ref. 14Notice that the effect{1.6) is of a Both the diffusion rate and the measure of the chaotic
nonperturbative nature, sinde~¢ 2 (see Eq(1.5)). component~wg, see Eq(1.6)) are exponentially small in
This is the simplest resonant mechanism of AD. In parthe perturbation in the limitt—0, hence the term KAM
ticular models the accuracy of such a three-resonance ajntegrability** referring to the Kolmogorov-Arnold-Moser
proximation was found to be within a factor of 2, provided theory which proves the complete integrability for most ini-
that the perturbation is not too weak, i.e., the adiabaticitytial conditions ass—0. This partial integrability, or better,
parametei is not very bid (see also Sec. 3 below almost-integrability, is as good as the approximate adiabatic
As A—o the higher-order resonances with large har-invariance. Notice, however, that the complementary set of
monics numbern;|, |[m;|— come into play. Even though initial conditions supporting AD—the so-called Arnold
their amplitudes drop exponentially,,~exp(—ok), where  web—is everywhere dense, as is the set of all resonances
k=ZX|n;|+2|m;|, the detuning$w, | also rapidly decrease. (1.2), any one of which can be a guiding resonance. Also, the
The operative resonances which control the diffusion haveariation is exponentially slow in the actidronly while the
been roughly identified in Refs. 1 and 15 by minimizing thevariation in oscillation constargfor the unperturbed motign
expression phase#, is much faster, with a characteristic time of order
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the inverse Lyapunov exponeriy~ wg/|In wy~T,*, where
T, is the oscillation period in the chaotic layeee Eq(2.2)
below).

ies of subtle nonlinear phenomena like AD. The resulting
theory can, then, be applied to real physical problems, such
as the stability of the Solar Systéfror of charged particles

Both rigorous estimates are valid asymptotica”y' for Suf-in magnetiC fields in plasma dEViceS, accelerators and collid-

ficiently small ¢ only. For example, Lochak requirés(L
>1)

1.1y

o2 2L2
L 1

s<s|_~<

whereo is some average decay rate of the perturbation am
plitudes. This is very small perturbation, and the problem
arises of estimating the diffusion rate in the intermediat

asymptotic regiong <e<k1, or 1<\y<<\ . This problem

was first addressed in Refs. 14, where a new regime of di

fusion, called the fast Arnold diffusiofFAD), was conjec-

tured from some preliminary results of numerical experi-

ments. Two characteristics of the new regime as contrast
to the far-asymptotic Ad1.11) are as follows:

(i) the dependence of the diffusion rate on the adiabatic;

ity (perturbation parametei\, (1.7) is a power law rather
than exponential, and

(i) the diffusion rate does not depend on the resonance
dimensionL, in particular, on the number of degrees of free-

domN (cf. Eq.(1.7)).

Precisely this behavior has been observed in numeric

experiments with another multidimensional motfeHow-

ever, the authors of Ref. 16 have given a different interpre
tation of their numerical results. Instead, we tried to recon

cile the same results with our new diffusion mechantém.

Unfortunately, both interpretations remain somewhat am
biguous because the perturbation in those numerical expe

ments was not sufficiently small to reach any asymptoti
behavior where the theoretical estimates were expected

hold true. To resolve this ambiguity we continued numerical_ .

and theoretical studies with the same model but using

much weaker perturbation. In this paper we report on ou

first results and present their theoretical explanation.

2. MODEL AND NUMERICAL EXPERIMENTS

Following Refs. 16 and 17 we make use here of the same

model with Hamiltonian
N+1

|p|? S
“ COg X+ 1—X;) 61(1)

H(x,p,t)zT— (2.1
and periodic boundary condition&y;2=X1; Pn+2=P1)
wherep, X are action-angle variable,(t) stands for the
Ssfunction of period 1, an&K—0 is small perturbation pa-
rameter. Notice that this model h&s degrees of freedom
due to the additional motion integralp; = const. The unper-
turbed frequencies;=p; are equal to the action variables,
and the energy surfacés,(p) =|p|%/2=const are spheres,
and hence are strictly convex with unit determinaht4).
The driving perturbation in the form of periodic «kicks» is
not important for the diffusion but greatly simplifies numeri-
cal experiments as it allows the use ofraultidimensional
map rather than differential equations of motion.

e

f-

e

Cc

ing beamg>19

In previous work the diffusion in multidimensional mod-
els like (2.1) was studied only down t&~0.11%° For such
perturbation levels and large a considerable part of phase
space becomes globally chaotic, which obscures the AD ef-
fect. Even though the combined action of AD and global
diffusion is an interesting problem which is important for
applications;'® here we mainly wanted to understand the
mechanism of AD itself. To this end we went down as far as
to K~10"% with up toN=15 degrees of freedom. Realiza-
tion of this program has required essential modification of
the problem itself. This is because direct computation of the
((j]jffusion rate quickly becomes prohibitively slow &s—0,
especially since a multiple computation precision is required
for such a smalK. To overcome this technical difficulty we
have taken a different approathpamely, computing the
chaotic layer widthwg and recalculating the diffusion rate
from a relation like(1.6). Of course, this makes sense for a
model withN= N, degrees of freedortSec. 1. In this way
we have managed to rea¢for another modeladiabaticity

E_Harameter values of ;=50 with an ordinary computer, as

compared to g~ 10 only for a direct diffusion calculation on
a Cray supercomputér.ln the model (2.1) this would

roughly correspond t&~\~"2~4-10"% and 102, respec-

tively, andN=2 only.
_In the present work we go further, and give up the cal-
culation of the diffusion rate altogether. Instead, we are

I-

studying numerically and developing the theory of the cha-

otic layer only. This proves sufficient to understand the
to . . .
mechanism of AD as well, since both are essentially deter-

guned by the same higher-order adiabaticity paramt&)
and the exponent in E€1.7). Then, all we need in numerical
r . ) o ;

experiments is to compute the oscillation peridfvg) in-

side the chaatic layer of a guiding resonance, and recalculate
the layer widthws using the simple relatiohs

2
ngmmzln W, ngavzln VT+1,

S S

2.2

whereT i, T,y are the shortest and average periods, respec-
tively. The two values are in a reasonable agreement,
(IN(Wpin/W,))=0.31, within the rms fluctuations
AlIn(Wyin/W,,) = =0.39, and both underestimate the full layer
width. This is because the diffusion at the layer edge is very
slow, so that the 100 oscillation periods used in numerical
experiments were insufficient to reveal the whole layer. A
crude estimat¥ yields the expected correction factor of or-
der 2. No such correction was introduced into the numerical
data, but it will be discussed below in Sec. 3.

A primary coupling resonance; ~ w, with phase oscil-
lation frequencywq= V2K has been chosen as the guiding
resonance. Correspondinglg; ~p,~p, while otherp; (i
=3,...N+1) were taken at random (mod#2. For the tra-
jectory to be inside the layer the initial value of the guiding

Even though this model does not immediately representesonance phase was taken to be approximatgly x;
by itself a physical system, it is very convenient for the stud-—x,~ . However, for smallK the exact position of the
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3. SMALL-X LIMIT: A SIMPLE DYNAMICAL THEORY

To lowest order in the small perturbation paramefer
we can only consider the primary driving resonances which
are explicitly present in the original Hamiltoni&®.1). Then
the problem is very similar to that studied in Ref. 1, apart
from a different expression for the kinetic energy. First, we
transform the variables for the two degrees of freedom which
determine the guiding resonance:, X5, p1, Po— ¥1, ¥,

I, I, where
P1=X1—Xo, Pr=X1+Xz,
pi=Ii1+1y, po=Il—1I;. (3.1

FIG. 1. Summary of numerical data for the mo@2I1). Broken solid lines  |n this approximation the momentum satisfigs= ¢,, and
connecting various symbols show computed valuesipfs a function of all p-~5(- for i=3 are constant and determine the frequen-
1 1 =

the adiabaticity parametar=1/yK and the resonance dimensibs N in- . . .
dicated by the numbers. Dotted lines represent the théargmall-\ limit, cies of the dnvmg resonances. The unperturbed motion on

one fitting parameter, Eq3.5); (b,) largea limit for L=2, two fiting ~ the separatrix of the guiding resonance is given by
parameters, Ed4.9); (c) intermediate asymptotics, three fitting parameters,

Eq. (5.9). yn(t)=4 arctarfe’s’) — , 3.2
where the frequency of the phase oscillatiomjs= \2K. As
the interaction in the original Hamiltonia®.1) is local, only

layer had to be located numerically prior to computation ofthe two degrees of freedom directly coupled to the guiding
w, by a special searching part of the code. The computatioresonance contribute to the driving perturbation in the cha-
was performed for seven valuds=2, 3, 4, 5, 7, 9, 15 with  otic layer. The full set of driving resonances remains for-
the same initial conditions for a single trajectory. mally infinite because of the external perturbatié{t) of

The results are summarized in Figs. 1 and 2. The lowefrequencyQ) =2, but the effect of most of them is expo-
bound ofws~ 10?2 was determined by the computation pre- nentially small due to the large detuning,, (see Eqs(1.5
cision (about 30 decimal placgsThe values of the principal and (1.6)). Consequently, one can retain a single driving
model parameter—the number of independent unperturbeigsonance only with minimal detuning:
frequencies, or the resonance dimension
L=N+M —r=N—are also indicated. Notice that under the
particular conditions of the numerical experiments the resowherepy=p3, pn+1 ands=0.x1. In this approximation the
nance dimension is equal to the number of degrees of freg¢damiltonian takes the formH=Hg(l1,¢1)+V(¢y.1),
dom of the model because the driving perturbation is periwhere
odic (M=1), and guiding resonance is simple<(1). 2 _

The most striking feature of the empirical data is the Ho=11—K cosyy, V==K cogyy/2- wdt+¢)’(3 4
qualitatively different behavior for =2 which was observed '
already in Ref. 16. The rest of the data show no systematignd ¢ is some constant phase.

dependence oh, but rather big fluctuations which rapidly Now, we can apply the standard method for deriving the
increase with\. separatrix map and the layer widtkee Refs. 1 and 13 for

wg=min|pg—pg+sQ|, 3.3

detaily:
We=AHq/K~4mf\3 exp(— m\o/2), (3.5
In(w,/wy,) where AH, is the layer width in energy\o=wq/wy
6 ' ' ' “_ g =\wy/v2, and\=1/\K. Besides the usual approximations
5 b, . for such evaluations, an additional factior 1 shows up for
41 \g~ ;\{ the model(2.1) because the relative perturbatiptyHy|~1
0 —=Y is not small. In the particular cas¢=1, which reduces to
2 b s the well studied standard map, this facfer2.15 was found
_alb, e in numerical experimentsand later confirmed with much
P L=2 better accuracy in Ref. 20:=2.255... . The best theoretical
4 value recently derived i$~2.14 (Ref. 2. Uncertainty in
-8 this factor limits the theoretical accuracy of relatighb). It
‘101 5 3 3 3 is partly balanced by an underestimated layer width, and also

by a factor of 2 as discussed abdieHence the factoif

FIG. 2. The same data as in Fig. 1, with respect to the theoretical depen-: fth/f” in Eq. (3.5 is aCtua”y the ratio of a theoretlc% to

H _ Tl ’
dencewg(\), Eq.(5.8) (curvec in Fig. 1). Thin solid curvesh represent the CorreCt|0rfn_W°° /WS of the emplrlcalvvs value (for 100

the first three members of the familyy(\,L), Eq. (4.9) (cf. Fig. 3. Two OSC_i"a_tif)n periods in our cagéo obtain the true valuev.,
dashed lines show rma fluctuations(5.12). for infinitely many periods.
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In this smallx region the widthwg does not depend on Now a particular term of the higher-order perturbation
N (Fig. 1) because the original interaction is local. However,takes a form similar to Eq.3.4):
this region is rather narrow. A comparison of numerical data
for L=2 with theory(3.5) is presented in Fig. {the dotted Vn~exp(_qg(|__1))cog< Q_lﬂl_ ot + doml, (4.3
line a). The value off =0.64 was obtained from the three 2
leftmost points in Fig. 1 (In=1.5-2.5) with rms deviation where the factot.— 1 is less by 1 than the full number of
from the theory(3.5 A In ws==0.53. Assuming the empiri- frequencies because of th&function in the Hamiltonian
cal correction® f,=2 givesfy=1.3, which is rather differ- (2.1), as discussed above. Assuming again that the (4r8
ent from that in the standard map. provides the main contribution to the formation of the cha-
otic layer, which seems to be plausible owing to the big
detuning fluctuations, we arrive, analogously to E15), at
the following estimate for the layer width:

For large\ the layer width, as well as the AD rate, — q _
progressively exceeds the simple estin{at&) (Fig. 1). This W (2e.)\n(q) exp E(n-)). 44
was noticed already in the first numerical experiments orfiere the principal exponent isf. Eq. (1.7))
AD.! Evidently this effect, which is somewhat strange at first A, @nm Fy
glance, is due to higher-harmonic driving resonances, even E(n)=go(L—1)+—=, Np=—=~Ao c=1, (4.9
though they are much weaker. Generally, such resonances 9 q
are present in the original Hamiltonidg.1), and their am- whereo=Q/wy=NQ/V2, and\=1/\K (Fig. ).

4. LARGE-A\ LIMIT: STATISTICAL ESTIMATES

plitudes V,,, are explicitly given. However, in the model The minimum ofE(n) is (Q=2m)

(2.1 under consideration here this is not the case, and the 5 1

higher perturbation harmonics show up only in higher orders Enin=0PLAY, A= s Fi\, p=1-——, (4.6
of the perturbation expansion with respect to small perturba- v2 L

tion pargmeteK<fl. The mechanism for g_eneratmg higher- and is reached aj~q,, where
harmonic terms is related to the modulation of each unper-
turbed frequencyp; by any other degree of freedom. In LA Ay 20 4

particular, this general mechanism transforms the original 90~ & .~ - “.7

local interaction between degrees of freedom in the systerr|1he latter relation shows that the factor.¢q) in Eq. (4.4)
o . (4.

into a global one. Approximately, the higher-order ampli- : g
tudesV, ~K"=exp@ In K), and their decay rate (per free- gpproxmately reduces to a constant o, which renormal-
izes the amplitude decay rate, where

dom) can be assumed in the fotfn

o=In(A/K) (4.1) (L-1)o ~(L—1)o—In o—In %— 1>0. (4.8

with some constar depending on a particular shape of the ) o N o
perturbation. In our mode{2.1) the leading higher terms The latter inequality is a necessary condition for the validity
roughly correspond té\~ 2, which we will use below. No- ©Of these approximate relations. This condition is satisfied for

tice that the amplitudes do not depend on the external pegufficiently large originalr, or smallK (see Eq(4.1)).

turbation harmonian, since it is as-function. Finally, the approximate relation for the layer width in
A counterbalance to the weaker higher perturbatiorfhis limit reads
terms is the smallex (1.5 due to the smaller detuning,, In WS%Af_b(L)O.ELAl/L_ (4.9

(1.2). Generally, the dependeneg,,,(n,m,w) is very com- . . _ o
plicated, with wild fluctuations, and exact evaluation of a This theoretical dependence is also shown in Figcdrve
higher-order perturbation is practically impossible and everP2) for L=2 and fitted values\;=5.42, andF¢=0.34 for
useless beyond a few first terfisHowever, the leading de- the detuning parameter in E@.6). The rms deviation for 5
pendence can be found as follofgge, e.g., Refs. 22 and 23 Points (INA=2-4) is A In w=*0.71. While the average

and also Refs. 1, 15, and 17 detuningF; has a reasonable value, the facigrseems too
big (see next sectign Apparently, this discrepancy charac-
_ 0 terizes the accuracy of our statistical estimates. The addi-
Onm= =1 Fam(®@), (4.2 . - . o
q tional parameteb(L)=1 was set equal to unity fdr=2,

Sand will be discussed in detail in Sec. 5 below.
For biggerL the behavior is completely different, and
this, our most interesting result, will be described in the next

whereq={(|n;|) is average absolute value of the component
of integer vecton and now the new functiof ,,, describes
the fluctuations only. The latter are quite big, which is the i
main obstacle for reliable estimates. In some special cas&gction.

the functionF,,=F is simply a constant. For example, for

the caseL=2 and frequency raticR=w/Q=(y5—1)/2 5. INTERMEDIATE ASYMPTOTICS: FAST ARNOLD

(“the most irrational” real number we have 1F;,=R DIFFUSION

+1/R= /5. Generally, only a sort of statistical estimate can  The crucial change in the dependencg\) stems from
be obtained by setting,,,(w)~F;~const to some average the factorL—1 in the expression for the exponeB{(n)
value to be fitted from numerical data. (4.5). The effect of this factor was previously missed in Refs.
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1 and 5(cf. Eq. (1.7)). Indeed, it leads to a nonmonotonic

) In(w,/w,, )
dependencevg(L) according to Eq.4.9. The latter was 1.0
derived from optimization with respect to the average har- 05t -
monic numberq among the driving resonances with the 0.0 Wy <A
maximum dimensio. =N only (see Eq(4.2). Meanwhile, i
there are also resonances of lower dimension withl. 0.5
Hence we need a second optimization, now with respect to -1.0f
L, as was first done in Ref. 14ee also Ref. 17 First, we -1.5
explain the idea of optimization for a simple examj&. -2.0}
Eqg. (4.9) 25
4
_ AL 3.0 . .
Ws=exp(—LA™). (5.1 0 1t 2 3 4 5 6 Im

The new factolL decreases the layer width hsgrows, and _ _
thus counteracts the increasevin due to the dependence FIG. 3. A scheme of the familyy(\,L), for L=1-5 as indicated, with

A\, For any pairL;<L, there is a certain value of=\*
at which bothwg values coincide,

A*=(L,/L,)late/ (kb (5.2)

For N <A* we havewg(L;)>wg(L,) and vice versa. Thus,
for a given\ the particularL(\) should be found which
maximizesws. In this way we would obtain a broken line
which is the envelope of the family of curveg(\,L). In-

maximal L=L=5 which form the smooth power-law dependen(&e5)
shown by dotted straight line.

For the more realistic asymptotic relatioh.9) the opti-
mization is more complicated because of the additional de-
pendence o via of . That can be partly removed by ap-
proximate renormalization:Ag—Ag/o. For L>1 the
remaining dependencé.8) is weak and can be neglected, at

terestingly, the existence of such a family of intersecting
curves could already be inferrédut was missedfrom the
validity of approximation(3.5 which corresponds th =1
(Refs. 1, 2, 6, and)7

For L>1 a smooth approximation to the envelope is
found from the local condition

least in evaluating the optimély, which now becomegcf.
Eq. (5.4)

Lo(N)=In(Alo). (5.7

However, we retain the more accurate valuespf(4.8) in
the final expression:

dwg ~ In X\

T =—Ws>\1’L( 1_T> =0, (5.9 In we~A;—be| o |n(%)—|n(470)—1}, (5.9
whence we obtain the optimal value which is the main result of our studies. It is compared with
~ numerical data in Fig. Icurvec, see also Fig. 2 Besides
Lo(A)=InA (54 two fitting parameters previously used in E4.9) (curveb,

and in Fig. 1), which now take somewhat different valueg;(
~ B =-1.05 andF;=0.4), we have to introduce a third on,
Winax N) =Ws(Lo) =", (5.9 =0.29. The fitting of empirical data has been performed for

wheree=exp (1). Thus, the dependence of the layer widthN=5, 7, 9, 15 only. We excluded data f&f=3, 4 as they

on the adiabaticity parameter becomes a power law, providegeem to violate the conditioff. Eq. (5.6))

thatLo<L, or 2

5.6 AsAL:5 FiN ~o€"

i.e., for a not-too-weak perturbation. This border is, offor |n A=5 (see Figs. 1 and)2Using the above fitted value

course, much highefin &) than that in the rigorous theory fqy F;=0.4, and Eq(4.1) for o=In(2/K) =In(2\?) we obtain

(cf. Eq. (1.1D). We term(5.6) the intermediate asymptotic from Eq.(5.9) In Az~4.2 and In\,~5.5. While the first value

region, as contrasted to the far asymptotic limit for the re-is close to the empirical one, the second is too large. The

versed inequality. The former is always bounded from abovyigin of this discrepancy is not completely clear, but it may

but rapidly grows withl, and may be arbitrarily large as pe caused by fluctuations. Apparently, the latter are mainly

L—o. ) ) - . related to the detuning functioR,(w) which fluctuates
We call this regime fast Arnold diffusioFAD). Within it poth the harmonic numbers and the set of frequencies

the domain(5.6) the layer width(and diffusion ratgdoes not  for different L. Interestingly, while the optimal harmonic

depend onl, but for any fixed L and A—x the  nymberq, increases withh>\, as in(4.7), it remains ap-
Nekhoroshev-like dependen¢4.9) is recovered asymptoti- proximately constant,

cally.

In Fig. 3 the power-law mechanism is illustrated, for the (5.10
simple _example(5.1), by plotting the family of curves in the whole FAD region(5.9). This follows directly from
In(Ws(\,L)/Wmay Which are tangent to the line of maximal Egs.(4.7) and (5.7). Surprisingly, the above asymptotic re-
Wnad\) (5.5 up to the largest =L =5. lations remain reasonably good in spite of the relatively

)\S)\L=e|‘, (59)

%”e~3:
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small q, value (Figs. 1 and 2 Notice, however, that the Moreover, the theory explains even a small dip in the depen-
L dencewg(\) around In\=3. This results from a deviation of
the approximate smoothed envelded) from the family of
curveswg(A,L), three of which are shown in Fig. @or
L=2, 3, 4, cf. Fig. 3 as calculated from Eq4.9) with the
d In wy factorb(2)=1, andb(3)=0.29.
dTFf: —Dbreo ~—bre(0.7+21In 1), (5.19 If the above hypothesis is true a new fitting is required,
because the renormalization—bo would result in more
which gives for the rms dispersion complicated expressions than just a single factor in Eq8)
and(4.9). By doing so we have found thats(\) according
(AIn Fp)4=0.18, and(A InF)s=0.25. 612 Eqg. (5.9 changed negligibly after some changes in the
The first value is the average over 4 cases Withs, 7,9, 15 fitting parameters:A;=—0.88, b;=0.28, F{=0.21 which
as in the main fitting; for the secord=3, 4 are also in- @ppear to be reasonable also. A larger chaige=1 occurs
cluded. The latter value is used in Fig. 2 for rms fluctuationgn the family of curves Eq(4.9) for L>2, and their agree-
A In wg according to Eq(5.11). ment with the smooth envelopg®.8) worsens owing to the

The accuracy of our theory does not allow for a reason@pproximate relation5.7). To keep the above estimates
able estimate of the factéy;~ — 1 in the main relatior5.8), more self-consistent we neglect all these minor changes, and
whose value is considerably smaller thap~5 in Eq.(4.9).  retain the above relations with a single paraméter 0.29
However, the value of the new fitting parametg=0.29, for L>2. In any event, the relations, which are approximate
which we had to introduce in E5.8) instead ofo(2)=1 in  anyway, are much simpler in this form.

Eq. (4.9), is a problem for the theory. It is impossible to fit ~ Interestingly, half of the data in Fig. An \<4, L>2)

the data for large. with the latter value or vice versa, i.e., also fit a simple power law with exponent 6.3, which is very
with b(2)=0.3, as in Eq(5.8) except forL=2, unless one close to the value 6.6 obtained in Refs. 16 and 17 around
assumes the valug;=3 in Eq. (4.9 instead of 0.3, which In A~2. However, for larger In>4 the deviation from such
seems too big. In any event, something happens in going simple dependend@ would be a straight line in Fig.)1
from L=2 toL =3, which is obvious from the data in Fig. 1. progressively increases in accordance with the thés:§).

To reconcile these data with the above theory one needs to

assume a drop either in the paramdidrom 1 to 0.3(with
approximately the samé&;~0.4) or in the parameteF;
from 3 to 0.4(with approximately the samie~ 0.3 still to be We have performed detailed investigations into fast Ar-
explained anyway Actually, the valueF;=3 for L=2  nold diffusion, a new regime of AD when the diffusion rate
would contradict the rigorous upper boufig<12? So we depends on the perturbation strengtk K, for the models
have to understand the first possibility above. (1.1 and(2.2) respectively, or on the adiabaticity parameter

In Ref. 17, using a somewhat different approach, thex~1/\e~1/\K as a power law(5.8) rather than an expo-
following expression has been derived for the parametiar  nential like Eq.(4.9).
the relation(2.11), similar to Eq. (5.9 above:b~1/m/e We made use of a specific mod@.l) which is rela-
=0.19. This value is close to the present empirical dne, tively simple and very convenient for numerical experiments
=0.29. However, the former does not fit the far asymptoticwith arbitrary number of degrees of freeddwbut, at the
expression4.9) for L=2, as discussed above. same time, is rather difficult for theoretical analysis. This is

A qualitative explanation of the decreasebifl) with L because the model represents the limiting case of the local
could be related to an underestimate of the perturbation Founteraction between degrees of freedom. Not only between
rier amplitudes in Eq(4.3). Indeed, we assumed that the two degrees of freedom, which would model a pair interac-
amplitudes decay independently for each degree of freedotion in a broad class of physical systems, but even further
(factor L—1). However, the higher harmonics may arise inrestricted to the coupling between two nearest-neighbor de-
the perturbation series not individually but in groups, thusgrees of freedom in a chain. Moreover, the coupling is har-
decreasing the effective parameteior ¢. The former pos- monic, so that only three-frequency primary resonarif@s
sibility is excluded by the assumed expressidr®) for de- the two degrees of freedom and for the driving perturbation
tuning. Hence we guess the effective amplitude decay rate iwith harmonic numbersi==*=1 show up in the original
the form oc— bo with empiricalb~b;=~0.3. Hamiltonian(2.1) independent oN. As a result, the higher-

A different value ofb=1 for L=2 is also explained in harmonic multifrequency resonances, which make the prin-
this way because in that case only a single oscillation fre€ipal contribution to AD, arise only in higher-order pertur-
quency remains. However, another important question arisebation terms, which makes the theory very difficult from the
is the new factob(L) a constant fo.=3 or does it change beginning. We circumvented this difficulty by a plausible
still further with L? In other words, is FAD really indepen- and simple conjecturés.l) for the decay rate of the high-
dent of N? Our empirical data seem to confirm such inde-order perturbation amplitudes. However, to reconcile the em-
pendence. Even though there are quite big fluctuations fopirical data with the theory we had, later on, to further
large A they do not reveal any systematic variationwef  modify this conjecture by introducing the additional factor
with L. This is especially clear from Fig. 2 where the differ- b(L) into our main relation$4.9 and(5.8). Even though we
ence between the numerical data and the theory is showsuggest in sectin 5 a qualitative explanation fds(L)+# 1,

number of resonancesqg(’:A/a still increases with.
Detuning fluctuations ifr¢ were calculated from the nu-
merical data using the relatidsee Eq.(5.8))

6. DISCUSSION
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the origin of this additional dependence is not yet completelythis sort of diffusion was recently observed in numerical ex-
clear, and it constitutes an open question in our theory. Apperiments with the classical model of the hydrogen atom in
parently, this is related to the specific Hamiltonighl) as  crossed electric and magnetic fiefds.
discussed above. In the present study we have chosen one of the strongest

The factorb=0.29, assumed to be constant for=N primary resonances as guiding, with amplitidg=V;~K
>2, is one of the three fitting parameters in our main theo{Sec. 2. In case of a high-harmonic guiding resonarivg
retical relation(5.8) for the FAD. As explained in section 2, =V,, n>1) the main effect would be a tremendous drop in
we actually computed and calculated the chaotic layer widtlihe diffusion rate due to the exponential rise of the adiaba-
w;, related to the diffusion rate via estimdte6). The second ticity parameter withg (see Eq(4.5):
fitting parametefr¢= 0.4, which describes the detuning fluc- o

~ex;{§ Lpl/L), (6.2

tuationsw,, (1.2), also cannot be evaluated in the present )\n~eXF{% Lq
state of the theory but was found numerically to have a plau-
sible value. Finally, the third fitting paramet#; remains  wherep(n)~q" is the density of the guiding resonances in
completely out of theoretical reach and simply characterizethe Arnold web with harmonic numbers up tp (cf. Eq.
the global accuracy of the theory. We recall that all our es{4.2)). Hence, the diffusion rate in the intermediate
timates except the simplest o(&5) are of a statistical na- asymptotic region drops exponentially wighor p, Eq. (5.8),
ture, owing to the large detuning fluctuations. Within thisand even as a double exponential in the far asymptotic limit!
accuracy and fluctuations, the agreement between the empiri- In conclusion, our present studies confirm the previous
cal data and the theory as presented in Figs. 1 and 2 can lsenjecture and preliminary empirical d&t&’ concerning a
regarded as satisfactory, especially taking into account theew regime of fast Arnold diffusion. Moreover, we have
big range ofw, variation, almost 22 orders of magnitude! found that in multifrequency system&$ 1), in particular,
Surprisingly, all this huge range corresponds to the indarge ones Kl>1), the FAD range in the perturbatidb.9)
termediate asymptotic regidh<<\ <\, see Eq(5.9) with  is fairly big, so that this regime appears to be typical, in a
FAD, starting even at a relatively small=N=5. Even for  sense, and might be important in various applications.
L=3 and 4 the FAD range is apparently of a comparable
size, and only for the minimdl =2 does the fakexponen-
tial) asymptotic §>\,) behavior clearly show up. As al-
ready discussed in section 5, the sharp change,(ih) from
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