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A new regime of Arnold diffusion in which the diffusion rate has a power-law dependence on
the perturbation strength is studied theoretically and in numerical experiments. The theory
developed predicts this new regime to be universal in the perturbation intermediate asymptotics,
the width of the latter increasing with the dimensionality of the perturbation frequency
space, particularly in large systems with many degrees of freedom. The results of numerical
experiments agree satisfactorily with the theoretical estimates. ©1997 American Institute of
Physics.@S1063-7761~97!02409-8#

1. INTRODUCTION: UNIVERSAL NONLINEAR INSTABILITY sary and sufficient to destroy the oscillation isochronis
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One of the most interesting phenomena in Hamilton
dynamics is the so-called Arnold diffusion~AD!, a distinc-
tive universal instability of multidimensional nonlinea
oscillations.1,2 This global instability was predicted b
Arnold;3 its chaotic nature was discovered in Refs. 1, 4, a
5 and further studied in detail in Refs. 6–11, 14, 15, and

First, following Ref. 17, we briefly recall the diffusion
mechanism, which is related to the interaction of nonlin
resonances. Consider a general Hamiltonian describing m
tidimensional oscillations:

H~ I ,u,t !5H0~ I !1«(
n,m

Vnm~ I !exp~ in•u1 i tm•V!,

~1.1!

where I , u are N-dimensional vectors of the action–ang
variables;V is theM -dimensional vector of the driving fre
quencies;n, m are integer vectors of dimensionsN andM ,
respectively, and« stands for a small perturbation paramet
The dot in expressions liken•u denotes the scalar produc
Below we shall consider the simpler case of a complet
integrable and nondegenerate unperturbed system w
HamiltonianH0(I ) depends on the full set ofN actions only.

Hamiltonian~nondissipative! dynamics is always deter
mined by resonances~see, e.g., Refs. 1 and 2! corresponding
to particular terms in the perturbation~1.1!. The condition
for a primary resonance with unperturbed frequencies~1.3! is

vnm[n•v~ I !1m•V'0. ~1.2!

In the case of linear oscillations all the frequencies are fi
as parameters of the system which is either in or off re
nance independent of initial conditions. However, for nonl
ear oscillations with the action-dependent frequencies

v~ I !5]H0~ I !/]I , ~1.3!

condition ~1.2! determines resonance surfaces~zones! in the
phase space, that is, the system is always in resonanc
some initial conditions. On the other hand, nonlinearity s
bilizes the impact of a~sufficiently weak! perturbation, en-
suring bounded oscillations even for resonant initial con
tions. This is precisely due to non-isochronous oscillatio
~1.3!. In one degree of freedom such a nonlinearity is nec
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The generalization of that for several degrees of freedom
the necessary condition for determinant to be nonzero ev
where,

U]2H0

]I 2 UÞ0. ~1.4!

In this case the system is called nondegenerate. This allo
in particular, the transformation from action to frequen
space. In the latter, the resonance structure is espec
simple and transparent, as the resonant surfaces~1.2! become
planes.

Another condition for the nonlinear stabilization is th
requirement for the quadratic form associated with the m
trix ]2H0 /]I 2 to be sign-definite or, geometrically, for th
surfacesH0(I )5const to be convex.10 The latter condition is
a weaker one as it may include higher polynomial form
Both conditions are only sufficient.10,11

The above conditions also ensure the absence of st
instability (;«), due to a quasilinear~isochronous!
resonance,1 especially when several (r ) independent reso
nance conditions~1.2! are simultaneously satisfied. The latt
is called multiple~r -fold! nonlinear resonance. However,
weak instability caused by nonresonant~vnmÞ0 for given
initial conditions! terms in the perturbation series~1.1! is
possible, and it is just the AD we are going to discuss
detail. Moreover, this weak instability is a typical phenom
enon of nonlinear oscillations, since it occurs for almost a
perturbation of a completely integrable system particula
one that is arbitrarily weak. The only restriction is the acti
space dimensionda , which must be larger than that of th
invariant torus (da.dt51).3 The torus is an absolute barrie
for the motion trajectory, which can only bypass it but nev
go through. For a driving perturbation~M.0 in Eq. ~1.1!!
the minimum number of degrees of freedom is, thus,Nmin

52, but in the conservative case (M50) it is Nmin53, since
the trajectory is constrained to follow an energy surface.

Even these minimal restrictions are not absolute, si
they apply to the strong nonlinearity~1.4! only when the
effect of resonant perturbation is small (DI /I;A«!1). In
case of linearH0(I ) ~the harmonic oscillator! Nmin is smaller
by 1.12
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At least three perturbation terms in the series~1.1! are
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2 ln D[E;k1l~k!*l0
1/L ~1.7!
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necessary for AD. We shall call each of these terms a re
nance~for the appropriate initial conditions of the motion!. A
single resonance retains the complete integrability of the
perturbed system. The interaction of even two resonan
results in the formation of narrow chaotic layers around
unperturbed separatrices of both resonances,13–15 but the
chaotic motion remains confined within a small domain
the layer. Only the combined effect of at least two drivi
resonances gives rise to diffusion along the layer of the fi
guiding, resonance ifN>Nmin holds~see Ref. 1 for details!.

In the first approximation~1.2! the driving perturbation
terms are nonresonant (vnmÞ0), but the final effect is due
to the secondary resonances between the driving perturb
and the slow phase oscillation on the guiding resonance.
is a particular case of the general rule that all the long-te
effects in nonlinear oscillations are due to some resonan
For the problem in question the principal parameter is
ratio

l5
uvnmu

vg
, ~1.5!

wherevg;(«uVgu)1/2 is the frequency of small phase osc
lations at the center of the guiding resonance, and whereVg

is the Fourier amplitude of the corresponding perturbat
term. For a weak perturbation («→0) the parameterl@1 is
big, and thus the effect of the driving resonances is a hi
frequency one. In fact, this is equivalent to a low-frequen
~adiabatic! perturbation. Hence we use the term inver
adiabaticity.14 The symmetry between the standard and
verse adiabaticity is especially clear in a conservative s
tem, i.e., for the interaction of coupling resonances. Inde
in this case the resonant interaction results in energy
change between the guiding and driving resonances. W
for the former the perturbation is a high-frequency one~in-
verse adiabaticity!, for the latter it is low-frequency~standard
adiabaticity!.

For an analytic perturbation the effect in both cases
exponentially small in the adiabaticity parameterl ~1.5!,
namely:1,14

D;e2pl;ws
2, ~1.6!

whereD is the local dimensionless diffusion rate in the a
tion I within a chaotic layer and wherews;uDH0u/«Vg

stands for the dimensionless layer width~for a more accurate
estimate see Ref. 14!. Notice that the effect~1.6! is of a
nonperturbative nature, sincel;«21/2 ~see Eq.~1.5!!.

This is the simplest resonant mechanism of AD. In p
ticular models the accuracy of such a three-resonance
proximation was found to be within a factor of 2, provide
that the perturbation is not too weak, i.e., the adiabatic
parameterl is not very big1 ~see also Sec. 3 below!.

As l→` the higher-order resonances with large h
monics numbersuni u, umj u→` come into play. Even though
their amplitudes drop exponentiallyVnm;exp(2sk), where
k5(uni u1(umj u, the detuningsuvnmu also rapidly decrease
The operative resonances which control the diffusion h
been roughly identified in Refs. 1 and 15 by minimizing t
expression
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with respect tok. Herel05v0 /vg , v0 stands for a charac
teristic oscillation frequency, and the following diophantin
estimate was used:

vnm;
v0

kL21 . ~1.8!

The most important parameter in Eq.~1.7!,

L5N1M2r , ~1.9!

is the number of linearly independent~incommensurate! un-
perturbed frequencies on anr -fold resonance. We shall ca
L the resonance dimension~in frequency space!. Actually,
Eq. ~1.9! gives the maximum dimension when allL indepen-
dent frequencies contribute to the driving resonances, wh
may be termed the full resonances. There are also pa
resonances which depend on a smaller number of frequen
L̄,L. Even though there are only a few of the latter, th
are crucially important for the new AD regime which is th
main subject of this paper~Sec. 5!.

The estimate~1.7!, which represents another AD mech
nism, seems to agree with numerical data.7,14 On the other
hand, Nekhoroshev rigorously proved10 an upper bound of
the form ~1.7! but with a different exponent (M5r 50):

L<LN5
~3N21!N

4
12. ~1.10!

Even for the minimum dimensionsN53 this upper bound
Lmax58 considerably exceeds the estimate~1.9!: L52(r
51). The difference grows asN→`. Even though this dis-
crepancy is not a direct contradiction inasmuch as Eq.~1.10!
is the upper bound, it constitutes a problem: what would
the origin of the difference between the two estimates?

Recently, this problem has been resolved by Locha11

who rigorously proved a more efficient Nekhoroshev-ty
estimate with the exponent~1.9! ~for M50 but anyr !. The
explanation is that Lochak assumed convexity of the unp
turbed HamiltonianH0(I ) given above, whereas Nekhoro
shev’s proof holds under a weaker condition of the so-ca
steepness ofH0 . From the physical point of view this differ
ence appears to be insignificant. At least, we are not awar
any example of a steep but non-convexH0 .

Both the diffusion rate and the measure of the chao
component~;ws , see Eq.~1.6!! are exponentially small in
the perturbation in the limit«→0, hence the term KAM
integrability14 referring to the Kolmogorov-Arnold-Mose
theory which proves the complete integrability for most in
tial conditions as«→0. This partial integrability, or better
almost-integrability, is as good as the approximate adiab
invariance. Notice, however, that the complementary se
initial conditions supporting AD—the so-called Arnol
web—is everywhere dense, as is the set of all resonan
~1.2!, any one of which can be a guiding resonance. Also,
variation is exponentially slow in the actionI only while the
variation in oscillation constant~for the unperturbed motion!
phaseu0 is much faster, with a characteristic time of ord
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the inverse Lyapunov exponent,u0;vg /u ln wsu;Tw
21, where
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Tw is the oscillation period in the chaotic layer~see Eq.~2.2!
below!.

Both rigorous estimates are valid asymptotically, for s
ficiently small « only. For example, Lochak requires11 (L
@1)

«,«L;S s2

L D 2L2

, ~1.11!

wheres is some average decay rate of the perturbation
plitudes. This is very small perturbation, and the probl
arises of estimating the diffusion rate in the intermedi
asymptotic region:«L!«!1, or 1!l0!lL . This problem
was first addressed in Refs. 14, where a new regime of
fusion, called the fast Arnold diffusion~FAD!, was conjec-
tured from some preliminary results of numerical expe
ments. Two characteristics of the new regime as contra
to the far-asymptotic AD~1.11! are as follows:

~i! the dependence of the diffusion rate on the adiaba
ity ~perturbation! parameterl0 ~1.7! is a power law rather
than exponential, and

~ii ! the diffusion rate does not depend on the resona
dimensionL, in particular, on the number of degrees of fre
dom N ~cf. Eq. ~1.7!!.

Precisely this behavior has been observed in numer
experiments with another multidimensional model.16 How-
ever, the authors of Ref. 16 have given a different interp
tation of their numerical results. Instead, we tried to rec
cile the same results with our new diffusion mechanism17

Unfortunately, both interpretations remain somewhat a
biguous because the perturbation in those numerical exp
ments was not sufficiently small to reach any asympto
behavior where the theoretical estimates were expecte
hold true. To resolve this ambiguity we continued numeri
and theoretical studies with the same model but usin
much weaker perturbation. In this paper we report on
first results and present their theoretical explanation.

2. MODEL AND NUMERICAL EXPERIMENTS

Following Refs. 16 and 17 we make use here of the sa
model with Hamiltonian

H~x,p,t !5
upu2

2
2K (

i 51

N11

cos~xi 112xi !d1~ t ! ~2.1!

and periodic boundary conditions~xN125x1 ; pN125p1!
where p, x are action-angle variables,d1(t) stands for the
d-function of period 1, andK→0 is small perturbation pa
rameter. Notice that this model hasN degrees of freedom
due to the additional motion integral(pi5const. The unper-
turbed frequenciesv i5pi are equal to the action variable
and the energy surfacesH0(p)5upu2/25const are spheres
and hence are strictly convex with unit determinant~1.4!.
The driving perturbation in the form of periodic «kicks»
not important for the diffusion but greatly simplifies nume
cal experiments as it allows the use of a~multidimensional!
map rather than differential equations of motion.

Even though this model does not immediately repres
by itself a physical system, it is very convenient for the stu
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theory can, then, be applied to real physical problems, s
as the stability of the Solar System18 or of charged particles
in magnetic fields in plasma devices, accelerators and co
ing beams.15,19

In previous work the diffusion in multidimensional mod
els like ~2.1! was studied only down toK;0.1.16,9 For such
perturbation levels and largeN a considerable part of phas
space becomes globally chaotic, which obscures the AD
fect. Even though the combined action of AD and glob
diffusion is an interesting problem which is important f
applications,1,15 here we mainly wanted to understand t
mechanism of AD itself. To this end we went down as far
to K;1026 with up to N515 degrees of freedom. Realiza
tion of this program has required essential modification
the problem itself. This is because direct computation of
diffusion rate quickly becomes prohibitively slow asK→0,
especially since a multiple computation precision is requi
for such a smallK. To overcome this technical difficulty we
have taken a different approach,14 namely, computing the
chaotic layer widthws and recalculating the diffusion rat
from a relation like~1.6!. Of course, this makes sense for
model withN>Nmin degrees of freedom~Sec. 1!. In this way
we have managed to reach~for another model! adiabaticity
parameter values ofl0'50 with an ordinary computer, a
compared tol0'10 only for a direct diffusion calculation on
a Cray supercomputer.7 In the model ~2.1! this would
roughly correspond toK;l22;4•1024 and 1022, respec-
tively, andN52 only.

In the present work we go further, and give up the c
culation of the diffusion rate altogether. Instead, we a
studying numerically and developing the theory of the ch
otic layer only. This proves sufficient to understand t
mechanism of AD as well, since both are essentially de
mined by the same higher-order adiabaticity parameter~1.5!
and the exponent in Eq.~1.7!. Then, all we need in numerica
experiments is to compute the oscillation periodT(ws) in-
side the chaotic layer of a guiding resonance, and recalcu
the layer widthws using the simple relations1

vgTmin5 ln
32

ws
, vgTav5 ln

32

ws
11, ~2.2!

whereTmin , Tav are the shortest and average periods, resp
tively. The two values are in a reasonable agreem
^ ln(wmin /wav)&50.31, within the rms fluctuations
D ln(wmin /wav)560.39, and both underestimate the full lay
width. This is because the diffusion at the layer edge is v
slow, so that the 100 oscillation periods used in numeri
experiments were insufficient to reveal the whole layer.
crude estimate14 yields the expected correction factor of o
der 2. No such correction was introduced into the numer
data, but it will be discussed below in Sec. 3.

A primary coupling resonancev1'v2 with phase oscil-
lation frequencyvg5A2K has been chosen as the guidin
resonance. Correspondingly,p1'p2'pg while other pi ( i
53,...,N11) were taken at random (mod/2p). For the tra-
jectory to be inside the layer the initial value of the guidin
resonance phase was taken to be approximatelyc15x1

2x2'p. However, for smallK the exact position of the
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layer had to be located numerically prior to computation
ws by a special searching part of the code. The computa
was performed for seven valuesN52, 3, 4, 5, 7, 9, 15 with
the same initial conditions for a single trajectory.

The results are summarized in Figs. 1 and 2. The lo
bound ofws;10222 was determined by the computation pr
cision ~about 30 decimal places!. The values of the principa
model parameter—the number of independent unpertur
frequencies, or the resonance dimens
L5N1M2r 5N—are also indicated. Notice that under th
particular conditions of the numerical experiments the re
nance dimension is equal to the number of degrees of f
dom of the model because the driving perturbation is p
odic (M51), and guiding resonance is simple (r 51).

The most striking feature of the empirical data is t
qualitatively different behavior forL52 which was observed
already in Ref. 16. The rest of the data show no system
dependence onL, but rather big fluctuations which rapidl
increase withl.

FIG. 1. Summary of numerical data for the model~2.1!. Broken solid lines
connecting various symbols show computed values ofws as a function of
the adiabaticity parameterl[1/AK and the resonance dimensionL5N in-
dicated by the numbers. Dotted lines represent the theory:~a! small-l limit,
one fitting parameter, Eq.~3.5!; (b2) large-l limit for L52, two fitting
parameters, Eq.~4.9!; ~c! intermediate asymptotics, three fitting paramete
Eq. ~5.8!.

FIG. 2. The same data as in Fig. 1, with respect to the theoretical de
dencewth(l), Eq. ~5.8! ~curvec in Fig. 1!. Thin solid curvesbL̄ represent
the first three members of the familyws(l,L̄), Eq. ~4.9! ~cf. Fig. 3!. Two
dashed lines show rmsws fluctuations~5.11!.
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To lowest order in the small perturbation parameterK
we can only consider the primary driving resonances wh
are explicitly present in the original Hamiltonian~2.1!. Then
the problem is very similar to that studied in Ref. 1, ap
from a different expression for the kinetic energy. First, w
transform the variables for the two degrees of freedom wh
determine the guiding resonance:x1 , x2 , p1 , p2→c1 , c2 ,
I 1 , I 2 where

c15x12x2 , c25x11x2 ,

p15I 11I 2 , p25I 22I 1 . ~3.1!

In this approximation the momentum satisfiesI 2'c2 , and
all pi' ẋi for i>3 are constant and determine the freque
cies of the driving resonances. The unperturbed motion
the separatrix of the guiding resonance is given by

c1~ t !54 arctan~evgt!2p, ~3.2!

where the frequency of the phase oscillation isvg5A2K. As
the interaction in the original Hamiltonian~2.1! is local, only
the two degrees of freedom directly coupled to the guid
resonance contribute to the driving perturbation in the c
otic layer. The full set of driving resonances remains fo
mally infinite because of the external perturbationd1(t) of
frequencyV52p, but the effect of most of them is expo
nentially small due to the large detuningvnm ~see Eqs.~1.5!
and ~1.6!!. Consequently, one can retain a single drivi
resonance only with minimal detuning:

vd5minupg2pd1sVu, ~3.3!

wherepd5p3 , pN11 ands50.61. In this approximation the
Hamiltonian takes the formH5H0(I 1 ,c1)1V(c1 ,t),
where

H05I 1
22K cosc1 , V'2K cos~c1/22vdt1f!,

~3.4!

andf is some constant phase.
Now, we can apply the standard method for deriving t

separatrix map and the layer width~see Refs. 1 and 13 fo
details!:

ws5DH0 /K'4p f l0
2 exp~2pl0/2!, ~3.5!

where DH0 is the layer width in energy,l05vd /vg

5lvd /&, andl[1/AK. Besides the usual approximation
for such evaluations, an additional factorf ;1 shows up for
the model~2.1! because the relative perturbationuV/H0u;1
is not small. In the particular caseN51, which reduces to
the well studied standard map, this factorf '2.15 was found
in numerical experiments,1 and later confirmed with much
better accuracy in Ref. 20:f 52.255... . The best theoretica
value recently derived isf '2.14 ~Ref. 21!. Uncertainty in
this factor limits the theoretical accuracy of relation~3.5!. It
is partly balanced by an underestimated layer width, and a
by a factor of 2 as discussed above.14 Hence the factorf
5 f th / f n in Eq. ~3.5! is actually the ratio of a theoreticalf th to
the correctionf n5w` /ws of the empiricalws8 value~for 100
oscillation periods in our case! to obtain the true valuew`

for infinitely many periods.

,

n-

619B. V. Chirikov and V. V. Vecheslavov
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N ~Fig. 1! because the original interaction is local. Howev
this region is rather narrow. A comparison of numerical d
for L52 with theory~3.5! is presented in Fig. 1~the dotted
line a!. The value off 50.64 was obtained from the thre
leftmost points in Fig. 1 (lnl51.5– 2.5) with rms deviation
from the theory~3.5! D ln ws560.53. Assuming the empiri
cal correction14 f n52 gives f th51.3, which is rather differ-
ent from that in the standard map.

4. LARGE-l LIMIT: STATISTICAL ESTIMATES

For large l the layer width, as well as the AD rate
progressively exceeds the simple estimate~3.5! ~Fig. 1!. This
was noticed already in the first numerical experiments
AD.1 Evidently this effect, which is somewhat strange at fi
glance, is due to higher-harmonic driving resonances, e
though they are much weaker. Generally, such resona
are present in the original Hamiltonian~1.1!, and their am-
plitudes Vnm are explicitly given. However, in the mode
~2.1! under consideration here this is not the case, and
higher perturbation harmonics show up only in higher ord
of the perturbation expansion with respect to small pertur
tion parameterK!1. The mechanism for generating highe
harmonic terms is related to the modulation of each unp
turbed frequencypi by any other degree of freedom. I
particular, this general mechanism transforms the orig
local interaction between degrees of freedom in the sys
into a global one. Approximately, the higher-order amp
tudesVn;Kn5exp(n ln K), and their decay rates ~per free-
dom! can be assumed in the form17

s5 ln~A/K ! ~4.1!

with some constantA depending on a particular shape of t
perturbation. In our model~2.1! the leading higher terms
roughly correspond toA;2, which we will use below. No-
tice that the amplitudes do not depend on the external
turbation harmonicm, since it is ad-function.

A counterbalance to the weaker higher perturbat
terms is the smallerl ~1.5! due to the smaller detuningvnm

~1.2!. Generally, the dependencevnm(n,m,v) is very com-
plicated, with wild fluctuations, and exact evaluation of
higher-order perturbation is practically impossible and ev
useless beyond a few first terms.21 However, the leading de
pendence can be found as follows~see, e.g., Refs. 22 and 2
and also Refs. 1, 15, and 17!:

vnm5
V

qL21 Fnm~v!, ~4.2!

whereq5^uni u& is average absolute value of the compone
of integer vectorn and now the new functionFnm describes
the fluctuations only. The latter are quite big, which is t
main obstacle for reliable estimates. In some special ca
the functionFnm5F0 is simply a constant. For example, fo
the caseL52 and frequency ratioR5v/V5(A521)/2
~‘‘the most irrational’’ real number! we have 1/F05R
11/R5A5. Generally, only a sort of statistical estimate c
be obtained by settingFnm(v)'F f'const to some averag
value to be fitted from numerical data.
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takes a form similar to Eq.~3.4!:

Vn;exp~2qs~L21!!cosS qc1

2
2vnmt1fnmD , ~4.3!

where the factorL21 is less by 1 than the full number o
frequencies because of thed-function in the Hamiltonian
~2.1!, as discussed above. Assuming again that the term~4.3!
provides the main contribution to the formation of the ch
otic layer, which seems to be plausible owing to the b
detuning fluctuations, we arrive, analogously to Eq.~3.5!, at
the following estimate for the layer width:

ws;~2eln /q!q exp~2E~n!!. ~4.4!

Here the principal exponent is~cf. Eq. ~1.7!!

E~n!5qs~L21!1
pln

2
, ln5

vnm

vg
'l0

F f

qL21 , ~4.5!

wherel05V/vg5lV/&, andl[1/AK ~Fig. 1!.
The minimum ofE(n) is (V52p)

Emin5spLL1/L, L5
p2

&

F fl, p512
1

L
, ~4.6!

and is reached atq'q0 , where

q0
L'

L

s
,

ln

q0
'

2s

p
. ~4.7!

The latter relation shows that the factor (ln /q) in Eq. ~4.4!
approximately reduces to a constants→sL which renormal-
izes the amplitude decay rate, where

~L21!sL'~L21!s2 ln s2 ln
4

p
21.0. ~4.8!

The latter inequality is a necessary condition for the valid
of these approximate relations. This condition is satisfied
sufficiently large originals, or smallK ~see Eq.~4.1!!.

Finally, the approximate relation for the layer width
this limit reads

ln ws'Af2b~L !sL
pLL1/L. ~4.9!

This theoretical dependence is also shown in Fig. 1~curve
b2! for L52 and fitted valuesAf55.42, andF f50.34 for
the detuning parameter in Eq.~4.6!. The rms deviation for 5
points (lnl5224) is D ln ws560.71. While the average
detuningF f has a reasonable value, the factorAf seems too
big ~see next section!. Apparently, this discrepancy chara
terizes the accuracy of our statistical estimates. The a
tional parameterb(L)51 was set equal to unity forL52,
and will be discussed in detail in Sec. 5 below.

For biggerL the behavior is completely different, an
this, our most interesting result, will be described in the n
section.

5. INTERMEDIATE ASYMPTOTICS: FAST ARNOLD
DIFFUSION

The crucial change in the dependencews(l) stems from
the factor L21 in the expression for the exponentE(n)
~4.5!. The effect of this factor was previously missed in Re
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1 and 5~cf. Eq. ~1.7!!. Indeed, it leads to a nonmonotonic
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dependencews(L) according to Eq.~4.9!. The latter was
derived from optimization with respect to the average h
monic numberq among the driving resonances with th
maximum dimensionL5N only ~see Eq.~4.2!!. Meanwhile,
there are also resonances of lower dimension withL̃,L.
Hence we need a second optimization, now with respec
L̄, as was first done in Ref. 14~see also Ref. 17!. First, we
explain the idea of optimization for a simple example~cf.
Eq. ~4.9!!

ws5exp~2Ll1/L!. ~5.1!

The new factorL decreases the layer width asL grows, and
thus counteracts the increase inws due to the dependenc
l1/L. For any pairL1,L2 there is a certain value ofl5l*
at which bothws values coincide,

l* 5~L2 /L1!L1L2 /~L22L1!. ~5.2!

For l,l* we havews(L1).ws(L2) and vice versa. Thus
for a given l the particularL̃(l) should be found which
maximizesws . In this way we would obtain a broken lin
which is the envelope of the family of curvesws(l,L̃). In-
terestingly, the existence of such a family of intersect
curves could already be inferred~but was missed! from the
validity of approximation~3.5! which corresponds toL̃51
~Refs. 1, 2, 6, and 7!.

For L@1 a smooth approximation to the envelope
found from the local condition

dws

dL̃
52wsl

1/L̃S 12
ln l

L̃
D 50, ~5.3!

whence we obtain the optimal value

L̃0~l!5 ln l ~5.4!

and

wmax~l!5ws~ L̃0!5l2e, ~5.5!

wheree5exp (1). Thus, the dependence of the layer wid
on the adiabaticity parameter becomes a power law, prov
that L̃0<L, or

l<lL5eL, ~5.6!

i.e., for a not-too-weak perturbation. This border is,
course, much higher~in «! than that in the rigorous theor
~cf. Eq. ~1.11!!. We term~5.6! the intermediate asymptoti
region, as contrasted to the far asymptotic limit for the
versed inequality. The former is always bounded from ab
but rapidly grows withL, and may be arbitrarily large a
L→`.

We call this regime fast Arnold diffusion~FAD!. Within
the domain~5.6! the layer width~and diffusion rate! does not
depend on L, but for any fixed L and l→` the
Nekhoroshev-like dependence~4.9! is recovered asymptoti
cally.

In Fig. 3 the power-law mechanism is illustrated, for t
simple example~5.1!, by plotting the family of curves
ln(ws(l,L̃)/wmax) which are tangent to the line of maxima
wmax(l) ~5.5! up to the largestL̃5L55.
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For the more realistic asymptotic relation~4.9! the opti-
mization is more complicated because of the additional
pendence onL via sL

p . That can be partly removed by ap
proximate renormalization:L0→L0 /s. For L@1 the
remaining dependence~4.8! is weak and can be neglected,
least in evaluating the optimalL̃0 , which now becomes~cf.
Eq. ~5.4!!

L̃0~l!' ln~L/s!. ~5.7!

However, we retain the more accurate value ofsL ~4.8! in
the final expression:

ln ws'Af2bfeFs lnS L

s D2 lnS 4s

p D21G , ~5.8!

which is the main result of our studies. It is compared w
numerical data in Fig. 1~curve c, see also Fig. 2!. Besides
two fitting parameters previously used in Eq.~4.9! ~curveb2

in Fig. 1!, which now take somewhat different values; (Af

521.05 andF f50.4), we have to introduce a third one,bf

50.29. The fitting of empirical data has been performed
N55, 7, 9, 15 only. We excluded data forN53, 4 as they
seem to violate the condition~cf. Eq. ~5.6!!

L<LL5
p2

&

F flL'seL ~5.9!

for ln l*5 ~see Figs. 1 and 2!. Using the above fitted value
for F f50.4, and Eq.~4.1! for s5 ln(2/K)5 ln(2l2) we obtain
from Eq.~5.9! ln l3'4.2 and lnl4'5.5. While the first value
is close to the empirical one, the second is too large. T
origin of this discrepancy is not completely clear, but it m
be caused by fluctuations. Apparently, the latter are ma
related to the detuning functionFnm(v) which fluctuates
with both the harmonic numbers and the set of frequenc
for different L. Interestingly, while the optimal harmoni
numberq0 increases withl.lL as in ~4.7!, it remains ap-
proximately constant,

q0'e'3, ~5.10!

in the whole FAD region~5.9!. This follows directly from
Eqs. ~4.7! and ~5.7!. Surprisingly, the above asymptotic re
lations remain reasonably good in spite of the relativ

FIG. 3. A scheme of the familyws(l,L̃), for L̃51 – 5 as indicated, with
maximal L̃5L55 which form the smooth power-law dependence~5.5!
shown by dotted straight line.

621B. V. Chirikov and V. V. Vecheslavov



small q0 value ~Figs. 1 and 2!. Notice, however, that the
L̃

-

n

on

fit
.,

in
.
s

th

ti

o
e

do
in
u

e

fre
se

-
e
f

r-
w

Moreover, the theory explains even a small dip in the depen-
f

d,

he

s
and

te

ry
und

r-
te

er
-

nts

is
ocal
een
c-

her
de-
ar-

on

rin-
r-
he
le
-
m-
er
or
number of resonances;q0
05L/s still increases withl.

Detuning fluctuations inF f were calculated from the nu
merical data using the relation~see Eq.~5.8!!

d ln ws

d ln F f
52bfesL'2bfe~0.712 ln l!, ~5.11!

which gives for the rms dispersion

^D ln F f&450.18, and^D ln F f&650.25. ~5.12!

The first value is the average over 4 cases withN55, 7, 9, 15
as in the main fitting; for the secondN53, 4 are also in-
cluded. The latter value is used in Fig. 2 for rms fluctuatio
D ln ws according to Eq.~5.11!.

The accuracy of our theory does not allow for a reas
able estimate of the factorAf'21 in the main relation~5.8!,
whose value is considerably smaller thanAf'5 in Eq.~4.9!.
However, the value of the new fitting parameterbf50.29,
which we had to introduce in Eq.~5.8! instead ofb(2)51 in
Eq. ~4.9!, is a problem for the theory. It is impossible to
the data for largeL with the latter value or vice versa, i.e
with b(2)50.3, as in Eq.~5.8! except forL52, unless one
assumes the valueF f53 in Eq. ~4.9! instead of 0.3, which
seems too big. In any event, something happens in go
from L52 to L>3, which is obvious from the data in Fig. 1
To reconcile these data with the above theory one need
assume a drop either in the parameterb from 1 to 0.3~with
approximately the sameF f'0.4! or in the parameterF f

from 3 to 0.4~with approximately the sameb'0.3 still to be
explained anyway!. Actually, the valueF f53 for L52
would contradict the rigorous upper boundF f<1.22 So we
have to understand the first possibility above.

In Ref. 17, using a somewhat different approach,
following expression has been derived for the parameterb in
the relation ~2.11!, similar to Eq. ~5.8! above: b'1/pAe
50.19. This value is close to the present empirical one,bf

50.29. However, the former does not fit the far asympto
expression~4.9! for L52, as discussed above.

A qualitative explanation of the decrease inb(L) with L
could be related to an underestimate of the perturbation F
rier amplitudes in Eq.~4.3!. Indeed, we assumed that th
amplitudes decay independently for each degree of free
~factor L21!. However, the higher harmonics may arise
the perturbation series not individually but in groups, th
decreasing the effective parameterL or s. The former pos-
sibility is excluded by the assumed expression~4.2! for de-
tuning. Hence we guess the effective amplitude decay rat
the forms→bs with empiricalb'bf'0.3.

A different value ofb51 for L52 is also explained in
this way because in that case only a single oscillation
quency remains. However, another important question ari
is the new factorb(L) a constant forL>3 or does it change
still further with L? In other words, is FAD really indepen
dent of N? Our empirical data seem to confirm such ind
pendence. Even though there are quite big fluctuations
large l they do not reveal any systematic variation ofws

with L. This is especially clear from Fig. 2 where the diffe
ence between the numerical data and the theory is sho
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dencews(l) around lnl53. This results from a deviation o
the approximate smoothed envelope~5.8! from the family of
curvesws(l,L̃), three of which are shown in Fig. 2~for
L̃52, 3, 4, cf. Fig. 3! as calculated from Eq.~4.9! with the
factor b(2)51, andb(3)50.29.

If the above hypothesis is true a new fitting is require
because the renormalizations→bs would result in more
complicated expressions than just a single factor in Eqs.~5.8!
and ~4.9!. By doing so we have found thatws(l) according
to Eq. ~5.8! changed negligibly after some changes in t
fitting parameters:Af520.88, bf50.28, F f50.21 which
appear to be reasonable also. A larger changedAf'1 occurs
in the family of curves Eq.~4.9! for L̄.2, and their agree-
ment with the smooth envelope~5.8! worsens owing to the
approximate relation~5.7!. To keep the above estimate
more self-consistent we neglect all these minor changes,
retain the above relations with a single parameterbf50.29
for L.2. In any event, the relations, which are approxima
anyway, are much simpler in this form.

Interestingly, half of the data in Fig. 1~ln l<4, L.2!
also fit a simple power law with exponent 6.3, which is ve
close to the value 6.6 obtained in Refs. 16 and 17 aro
ln l'2. However, for larger lnl.4 the deviation from such
a simple dependence~it would be a straight line in Fig. 1!
progressively increases in accordance with the theory~5.8!.

6. DISCUSSION

We have performed detailed investigations into fast A
nold diffusion, a new regime of AD when the diffusion ra
depends on the perturbation strength«5K, for the models
~1.1! and~2.1! respectively, or on the adiabaticity paramet
l;1/A«;1/AK as a power law~5.8! rather than an expo
nential like Eq.~4.9!.

We made use of a specific model~2.1! which is rela-
tively simple and very convenient for numerical experime
with arbitrary number of degrees of freedomN but, at the
same time, is rather difficult for theoretical analysis. This
because the model represents the limiting case of the l
interaction between degrees of freedom. Not only betw
two degrees of freedom, which would model a pair intera
tion in a broad class of physical systems, but even furt
restricted to the coupling between two nearest-neighbor
grees of freedom in a chain. Moreover, the coupling is h
monic, so that only three-frequency primary resonances~for
the two degrees of freedom and for the driving perturbati!
with harmonic numbersn561 show up in the original
Hamiltonian~2.1! independent ofN. As a result, the higher-
harmonic multifrequency resonances, which make the p
cipal contribution to AD, arise only in higher-order pertu
bation terms, which makes the theory very difficult from t
beginning. We circumvented this difficulty by a plausib
and simple conjecture~4.1! for the decay rate of the high
order perturbation amplitudes. However, to reconcile the e
pirical data with the theory we had, later on, to furth
modify this conjecture by introducing the additional fact
b(L) into our main relations~4.9! and~5.8!. Even though we
suggest in section 5 a qualitative explanation forb(L)Þ1,
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the origin of this additional dependence is not yet completely
Ap

eo
,
idt

c-
n

au

ze
es
-
is
p
n
th

in

bl

-

-
es
rm

-

c-
ca
t
w

on
tia
c
ia
ba
r-

ry

iffi

b

he
i

ly,

this sort of diffusion was recently observed in numerical ex-
in

gest

in
ba-

in

te

it!
us

e

a

ity
ial
by

to-

-

clear, and it constitutes an open question in our theory.
parently, this is related to the specific Hamiltonian~2.1! as
discussed above.

The factorb50.29, assumed to be constant forL5N
.2, is one of the three fitting parameters in our main th
retical relation~5.8! for the FAD. As explained in section 2
we actually computed and calculated the chaotic layer w
ws related to the diffusion rate via estimate~1.6!. The second
fitting parameterF f50.4, which describes the detuning flu
tuationswnm ~1.2!, also cannot be evaluated in the prese
state of the theory but was found numerically to have a pl
sible value. Finally, the third fitting parameterAf remains
completely out of theoretical reach and simply characteri
the global accuracy of the theory. We recall that all our
timates except the simplest one~3.5! are of a statistical na
ture, owing to the large detuning fluctuations. Within th
accuracy and fluctuations, the agreement between the em
cal data and the theory as presented in Figs. 1 and 2 ca
regarded as satisfactory, especially taking into account
big range ofws variation, almost 22 orders of magnitude!

Surprisingly, all this huge range corresponds to the
termediate asymptotic region~1!l!lL , see Eq.~5.9!! with
FAD, starting even at a relatively smallL5N>5. Even for
L53 and 4 the FAD range is apparently of a compara
size, and only for the minimalL52 does the far~exponen-
tial! asymptotic (l@lL) behavior clearly show up. As al
ready discussed in section 5, the sharp change inws(l) from
L52 to L53 is precisely due to the ‘‘mysterious’’ param
eterb, which drops by a factor of 3. Unfortunately, this do
not allow us to reach the far asymptotic limit and to confi
the exponential dependence~4.9! on N for l.lL beyond the
minimum L52. Meanwhile, this would be important to de
cide on the different interpretation ofN-independent diffu-
sion for largeN in Ref. 16. The authors of the latter conje
tured that this independence is a result of the lo
interaction in the model~2.1!. This contradicts our theory bu
not as yet the direct empirical evidence. At the moment
can only remark that their reference to Wayne’s theory24 for
the same model is irrelevant. Indeed, Wayne proved a l
N-independent stability for very special, nonresonant, ini
conditions~theorem 1.1!, whereas AD occurs within chaoti
layers only, i.e., also for highly specific but resonant init
conditions. Thus, the former theory is related to a glo
chaos rather than to KAM integrability with its peculiar A
nold web of chaotic layers.

In the case of a global interaction~1.1! with strong non-
linearity ~1.4! and uniform amplitude decay rate our theo
remains valid, and even becomes simpler ass5const. How-
ever, the numerical experiments would be much more d
cult for largeN. On the other hand, both the FAD range~5.9!
and the diffusion rate there depend generally on the num
of incommensurate unperturbed frequenciesL5N1M2r
~1.9!, which may be large ifM , the number of driving per-
turbation frequencies, is large.

Fast Arnold diffusion should not be confused with t
much faster diffusion in degenerate systems or those w
nonconvex energy surfaces~Sec. 1!. In the latter case the
diffusion mechanism is completely different. Apparent
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periments with the classical model of the hydrogen atom
crossed electric and magnetic fields.25

In the present study we have chosen one of the stron
primary resonances as guiding, with amplitudeVg5V1;K
~Sec. 2!. In case of a high-harmonic guiding resonance~Vg

5Vn , n@1! the main effect would be a tremendous drop
the diffusion rate due to the exponential rise of the adia
ticity parameter withq ~see Eq.~4.5!!:

ln;expS s

2
LqD;expS s

2
Lr1/LD , ~6.1!

wherer(n);qL is the density of the guiding resonances
the Arnold web with harmonic numbers up toq ~cf. Eq.
~4.2!!. Hence, the diffusion rate in the intermedia
asymptotic region drops exponentially withq or r, Eq. ~5.8!,
and even as a double exponential in the far asymptotic lim

In conclusion, our present studies confirm the previo
conjecture and preliminary empirical data14,17 concerning a
new regime of fast Arnold diffusion. Moreover, we hav
found that in multifrequency systems (L@1), in particular,
large ones (N@1), the FAD range in the perturbation~5.9!
is fairly big, so that this regime appears to be typical, in
sense, and might be important in various applications.
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