Towards two dimensional search engines

A.D. Chepelianskii

Experiments :

Cavendish Laboratory (Cambridge, Uk)

Since almost no experiments here

Main work done in Toulouse :

Leo Ermann, O. V. Zhirov, A. O. Zhirov Klaus Frahm, B. Georgeot Dima L. Shepelyansky

Quantware (LPT, Toulouse)

Outline

- 1. Introduction on the procedure call network in computer programs
- 2. A rating based on PageRank only is not sufficient, need for another rank based on time reversed dynamics
- 3. On the statistical correlation between the two ranks
- 4. Stability against "spam" links, manipulation ?

Scale free properties of the procedure call network in the Linux kernel

- number of incoming procedure calls $\boldsymbol{\nu}$
- number of outgoing procedure calls \overline{v} A.C. arXiv:1003.5455

Probability distributions $P_{in}(v)$ and $P_{out}(\overline{v})$ follow power laws

Reminder of the Pagerank method

$\mathbf{G} = \alpha \mathbf{S} + (1 - \alpha) \mathbf{E} / N$

 S is constructed from the adjacency matrix A of directed network links between N nodes.

 $\bigcirc S_{ij} = A_{ij} / \sum_k A_{kj}$

columns with only zero elements are replaced by 1/N

 The second term describes a finite probability 1 – α for WWW surfer to jump at random to any node so that the matrix elements E_{ij} = 1.

PageRank: p

- **G** follows PFT (with $\lambda_1 = 1$)
- $\alpha = 0.85$ (random after 6 clicks)

• $\mathbf{G}p = p$

Pagerank method an organization networks

studied in M. Abel, D.L. Shepelyansky Eur. Phys. J. B v.84, p.493 (2011)

CEO

Direct PageRank : System administrator will lead PageRank on the inverse "service" network : CEO leads

Experimental slide: time reversal symmetry

Motions under opposite magnetic fields are related by time-reversal symmetry

Studying time reversed dynamics can lead to intersting results !

Application to Linux kernel

PageRank : general purpose procedures are leading Service PageRank (CheiRank) : coordination/task distribution procedures

On the Similarity with HITS

Both approaches are similar in the sense that two ranks are obtained (Hubness/Authorities for HITS)

However $\rho(i)$ and $\rho^*(i)$ are the steady state distributions of two distinct ("time reversed") Markov processes

While in HITS Hubness and Authorities are computed together thus strongly inter-dependent

We can study correlations between $\rho(i)$ and $\rho^*(i)$

Correlations between the two Ranks

We introduce the correlator : $\kappa = N \Sigma_i \rho(i) \rho^*(i) - 1$

If $\rho(i)$ and $\rho^*(i)$ are statistically independent

~ Connection th correlator scussed by Ily Litvak yesterday $= N^2 \left(\int \rho P(\rho) d\rho \right) \left(\int \rho^* P(\rho^*) d\rho^* \right) - 1$

However we ha

ve
$$\int \rho P(\rho) d\rho = \frac{1}{N} \sum_{i} \rho(i) = \frac{1}{N}$$

Thus $\kappa = 0$ when $\rho(i)$ and $\rho^*(i)$ are independent

Correlation between ranks for Linux kernel

For Linux kernel $\kappa \simeq 0$ or slightly negative

For Linux kernel, the two Ranks are statistically independent

Correlator values in other networks

Information storage networks have $\kappa \ge 1$ (web, wikipedia, ...) Functional networks have $\kappa \simeq 0$ (Linux, Gene regulation, ...)

L. Ermann, A.C. D.L. Shepelyansky J. Phys. A: Math. Theor. 45 (2012) 275101

Density representation in (K, K^{*}) plane

We introduce dN_i the number of sites with ranks in the interval [K + dK, K^{*} + dK^{*}]

The density W is then: $W(K, K^*) = dN_i/dKdK^*$

Peaked 1 Diagonal $K = K^*$ $\log_N K^*$ $\kappa = 1.72$

<u>Colour:</u> W(K, K^{*}) Data for Cambridge

university website (2006)

N = 212710

Peaked diagonal, strong correlation between the two Ranks

Towards two dimensional ranking

It is possible to organize search results, in the two dimensional (K, K^*) plane

Example :

Nobel prize winners in physics, classified on the basis of the English wikipedia (2006)

Dispersion on the (K, K^{*}) plane

Good K^{*} score, may highlight influence in other fields

2D classification of chess players

Chess players (Red points World Champions)

Ordering by PageRank K

- 1. Garry Kasparov
- 2. Bobby Fischer
- 3. Alexander Alekhine

Ordering by K^{*}

- 1. Bobby Fischer
- 2. Alexander Alekhine
- 3. Wilhelm Steinitz

 $\ln K$ A.O. Zhirov, O.V. Zhirov, D.L.Shepelyansky (2010)

More concentration around $K = K^*$ but still strong spreading

Protecting K^{*} against bias and manipulation

Since K^{*} is based on out-going links it can be easy to manipulate (for web, ...)

Many links are automatically generated (links to root, ...)

They should not influence the results

Interest in a filtering procedure

We invert only the links $j \rightarrow i$ for which

$$K(j) < \eta_K K(i)$$

where K(i) and K(j) PageRanks of sites i and j

Invert links only between sites of comparable Rank Here $\eta_{\kappa} > 1$ filtering parameter (all links inversed for $\eta_{\kappa} \rightarrow \infty$)

Fraction of inverted links as function of η_{κ}

Analytical approximation : links only to sites with K(i) < a N Use density of incoming links $\propto 1/K^{\nu}$

$$f(\eta_K) = \begin{cases} \frac{1-\nu}{2-\nu}(a\eta_K) & \eta_K \le 1/a \\ 1 + \left(\frac{1-\nu}{2-\nu} - 1\right)(a\eta_K)^{\nu-1} & \eta_K > 1/a \end{cases} \begin{array}{l} \text{Good fit for} \\ a = 0.4 \\ \nu = 0.8 \end{cases}$$

Fraction of inverted links for universities

For British university networks, the fraction of inversed links has a strong jump at $\eta = 1$ (many sites with similar K are linked)

Except for the jump at $\eta = 1$, dependence $f(\eta)$ (relatively) well understood ...

Formation of the 2D rank for Wikipedia $\eta = 10$ $\eta = 100$

 $\log_{N} K^{*}$

Spreading around diagonal $K = K^*$ increases with η

log_N K

Even a finite spread already leads complementary information to PageRank, but which η to choose ?

Summary on 2D Ranking

- 2D Ranking based on PageRank and its time-reversed conjugate
 - (PageRank on the network where all links are reversed)
- 2. computer programs avoid correlations between the two Ranks (correlator $\kappa \leq 0$)
- 3. For web correlations between K and K^{*} are higher However they still provide distinct information
- 4. Filtering method to make K^{*} stable against manipulation

Fractal dimension of the Linux kernel

Number of eigenvalues with $|\lambda| > 0.25$, $|\lambda| > 0.1$

Procedure number in Kernel (Google matrix size)

Power law distribution of the Eigenvalues $N^{\nu} \simeq N^{0.65}$

Geometrical fractal dimension from cluster grwoth method

Fractal Weyl law : connection between the

the two exponents v = d / 2 : fractal growth

L. Ermann, A.C., D.L. Shepelyansky (2011)

Thank you, for your attention !

Supported by EC FET Open project NADINE