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www2012:

Tim Berners-Lee:
“A Google search shows you the eigenvectors of society”.

More correctly:
it shows you only the principal vector of society.

→ “mostly”
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The standard SIS model:

Infected vertices become susceptible with unit rate:

I
1→ S ,

and each susceptible vertex becomes infected by its
infective neighbour with the infection rate λ:

S
λ→ I .

⇑ Inn
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Seminal papers:

Pastor-Satorras and Vespignani (2001):

λc = 〈q〉/〈q2〉.

If 〈q2〉 → ∞, then λc = 0.
If 〈q2〉 <∞, then λc > 0.

:(

[ For the SIR model, λc = 〈q〉/(〈q2〉−〈q〉). ]
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Their approximations:

(1) Correlations between infectives and susceptibles were
neglected.

(2) A random graph is substituded with its annealed

counterpart !!!

(3) N →∞.
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Without approximation 2, for an individual
graph:

Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos
(2003):

λc = 1/Λ1

Λ1 is the eigenvalue of the principal eigenvector of the
adjacency matrix.
Λ1 ∼

√
qmax , qmax(N →∞)→∞ for the ER graphs,

and so λc(N →∞)→ 0 .
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SIS: the transition is not thermodynamic

The Ising model, percolation:
a thermodynamic phase transition — it exists only if
N →∞.

Sync, neural networks, the SIS model:
a sharp transition is even in finite systems, even for two
pendulums.
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The SIS on an individual graph,

(but not on a statistical ensemble!)

The evolution equation:

dρi (t)

dt
= −ρi (t) + λ[1− ρi (t)]

N∑
j=1

Aijρj(t).

The steady state:

ρi =
λ

∑
j Aijρj

1 + λ
∑

j Aijρj
.
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ρi =
∑

Λ

c(Λ)fi (Λ).

c(Λ) = λ
∑

Λ′

Λ′c(Λ′)
N∑

i=1

fi (Λ)fi (Λ′)

1 + λ
∑

Λ̃ Λ̃c(Λ̃)fi (Λ̃)
.

If τ ≡ λΛ1−1�1, then

ρ ≡
N∑

i=1

ρi/N ≈ α1τ,

α1 = [
N∑

i=1

fi (Λ1)]/[N
N∑

i=1

f 3
i (Λ1)].
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Localized and delocalized eigenvectors:

Normalization:
∑N

i f 2
i (Λ) = 1

The inverse participation ratio:

IPR(Λ) ≡
N∑

i=1

f 4
i (Λ).

A localized state: IPR(Λ)
N→∞→ 0.

A delocalized state: IPR(Λ)
N→∞→ const.

It depends on a particular network realization.
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A delocalized principal eigenvector: fi (Λ) = O(1/
√

N),
so

α1 = O(1)

A localized principal eigenvector:

α1 = O(1/N)

— the disease is localized on a finite number of vertices
in contrast to “localization” within k-cores (a finite
fraction of vertices), see Kitsak (2010), Castellano and
Pastor-Satorras (2012).
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Unweighted networks:

The first iteration (g(0)=1):

Λ
(1)
1 =

1

〈q2〉N
∑

i ,j

qiAijqj = ΛMF +
〈q〉σ2r

〈q2〉
,

IPRMF = 〈q4〉/[N〈q2〉2] ∼ O(1/N)

where r is the Pearson coefficient, ΛMF≡〈q2〉/〈q〉.
So assortative degree–degree correlations increase Λ1 and
decrease λc .
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Weighted and unweighted real-world nets:

(a) astro-phys (upper) and cond-mat-2005 (lower) weighted

networks. (b) Karate-club network (unweighted). The lower curve

accounts for only the eigenstate Λ1. The most upper curve is the

“exact” ρ.
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An uncorrelated scale-free net:

A scale-free network of 105 vertices generated by the static model

with γ = 4, 〈q〉 = 10. (b) Zoom of the prevalence at λ near

λc = 1/Λ1. I, II eigenvectors are localized, III is delocalized.
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A Bethe lattice with a hub:

Find Λ1 if B = k − 1 is the branching and then B
substitute with 〈B〉.
The localization of the principal eigenvector at a hub
with qmax occurs if

Λ1 = qmax/
√

qmax − B ≥ Λd >≈ ΛMF
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Conclusion

If the principal eigenvector is localized,
then right above the threshold 1/Λ1,

the disease is localized on a finite number of vertices.
In this case, a real epidemic affecting a finite fraction of

vertices occurs after a smooth crossover, and
the notion of the epidemic threshold is meaningless.
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Complex Networks
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