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www?2012:

Tim Berners-Lee:
“A Google search shows you the eigenvectors of society”.

More correctly:
it shows you only the principal vector of society.
— “mostly”
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The standard SIS model:

Infected vertices become susceptible with unit rate:
1
| = S,

and each susceptible vertex becomes infected by its
infective neighbour with the infection rate A:

SN
N lon
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Seminal papers:

Pastor-Satorras and Vespignani (2001):

If (¢°) — oo, then A\, = 0.
If (¢%) < oo, then A\ > 0.

(
[ For the SIR model, A = (q)/({¢*>)—{(q)). ]
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Their approximations:

(1) Correlations between infectives and susceptibles were
neglected.

(2) A random graph is substituded with its annealed
counterpart !

(3) N — oc.
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Without approximation 2, for an individual
graph:

Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos
(2003):
Ac=1/N

A1 is the eigenvalue of the principal eigenvector of the
adjacency matrix.

N ~ \/Amax, Gmax(N — 00) — oo for the ER graphs,
and so A(N — o) — 0.
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SIS: the transition is not thermodynamic

The Ising model, percolation:
a thermodynamic phase transition — it exists only if
N — oo.

Sync, neural networks, the SIS model:
a sharp transition is even in finite systems, even for two
pendulums.
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The SIS on an individual graph,
(but not on a statistical ensemble!)

The evolution equation:

dp(;'it) = —pi(t) + A\[1 — pi(t)] ZAijpj(t).

J=1

The steady state:

_ AZJ'AUPJ
1+ A3 Aoy
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pr =3 (N,

A

c(A) = A Z Nc(N) Z N

l—l—)\ZA/\C( INS)

If 7 = )\/\1—1<<1, then

N
EZ i/N =~ aqT,
—1

ap = [Z fi(A)]/IN Z £ (A1)
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Localized and delocalized eigenvectors:

Normalization: SV £2(A) = 1
The inverse participation ratio:

I

IPR(N) =S FA(A).

A localized state: IPR(A) "= 0.
A delocalized state: IPR(N) NZ2° const.

It depends on a particular network realization.
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A delocalized principal eigenvector: f;,(A) = O(1/v/N),
SO

a1 — O(l)
A localized principal eigenvector:
a; = O(1/N)

— the disease is localized on a finite number of vertices
in contrast to “localization” within k-cores (a finite
fraction of vertices), see Kitsak (2010), Castellano and
Pastor-Satorras (2012).
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Unweighted networks:

The first iteration (g(®=1):

(q)o°r

1
AY = == qiAig = Aur + o
U g 2 9 r

IPRwe = (q")/[N{q*)*] ~ O(1/N)

where r is the Pearson coefficient, Ayr=(q%)/(q).
So assortative degree—degree correlations increase A; and
decrease ..
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hte

real-world nets:

Weighted and unweig
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(a) astro-phys (upper) and cond-mat-2005 (lower) weighted

networks. (b) Karate-club network (unweighted). The lower curve

accounts for only the eigenstate A;. The most upper curve is the

“exact” p.
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An uncorrelated scale-free net:
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A scale-free network of 10° vertices generated by the static model
with v =4, (g) = 10. (b) Zoom of the prevalence at A near
Ae = 1/A1. 1, 1l eigenvectors are localized, Il is delocalized.
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A Bethe lattice with a hub:

Find A; if B = k — 1 is the branching and then B

substitute with (B).
The localization of the principal eigenvector at a hub

with gmax occurs if
/\1 — qmax/ V Amax — B 2 /\d >~ /\I\/IF
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Conclusion

If the principal eigenvector is localized,
then right above the threshold 1/A,
the disease is localized on a finite number of vertices.
In this case, a real epidemic affecting a finite fraction of
vertices occurs after a smooth crossover, and
the notion of the epidemic threshold is meaningless.
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