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Networks

• Recent field: study of complex networks

• Tools and models have been created

• Many networks are scale-free, with power-law distribution of links

• Difference between directed and non directed networks

• Important examples from recent technological developments: internet,
World Wide Web, social networks...

• Can be applied also to less recent objects

• In particular, study of human behavior: languages, friendships...
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Games

• Network theory never
applied to games

• Games represent a
privileged approach to
human decision-making

• Can be very difficult to
modelize or simulate

=⇒ While Deep Blue famously
beat the world chess
champion Kasparov in
1997, no computer
program has beaten a very
good go player even in
recent times.

Goban

Bertrand Georgeot (CNRS Toulouse) The game of go as a complex network ECT workshop, July 2012 3 / 19



Rules of go

• White and black stones
alternatively put at
intersections of 19× 19
lines

• Stones without liberties are
removed

• Handicap stones can be
placed

• Aim of the game: construct
protected territories

• total number of legal
positions ∼ 10171,
compared to ∼ 1050 for
chess
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Databases

• We use databases of expert games in order to construct networks from
the different sequences of moves, and study the properties of these
networks

• Databases available at http://www.u-go.net/

• Whole available record, from 1941 onwards, of the most important
historical professional Japanese go tournaments: Kisei (143 games),
Meijin (259 games), Honinbo (305 games), Judan (158 games)

• To increase statistics and compare with professional tournaments, 4000
amateur games were also used.
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Vertices of the network

”plaquette” ⇒ square of 3× 3
intersections

• We identify plaquettes
related by symmetry

• We identify plaquettes with
colors swapped

=⇒ 1107 nonequivalent
plaquettes with empty
centers

=⇒ vertices of our network

Examples of plaquettes
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Zipf’s law

• Zipf’s law: empirical law
observed in many natural
distributions (word
frequency, city sizes...)

• If items are ranked
according to their
frequency, predicts a
power-law decay of the
frequency vs the rank.

• integrated distribution of
1107 moves clearly follows
a Zipf’s law, with an
exponent ≈ 1.06
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Normalized integrated
frequency distribution of 1107
moves. Thick dashed line is
y = −x . Inset: same for
positions on the board
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Sequences of moves

• we connect vertices
corresponding to moves a
and b if b follows a in a
game at a distance ≤ d .

• Each choice of d defines a
different network.

• Left: frequency distribution
for sequences of the 1107
moves with d = 4.
Algebraic decrease visible,
exponent from ≈ 1 (short
sequences) to ≈ 0.7 (long
sequences).

=⇒ Sequences of moves follow
Zipf’s law (cf languages)

=⇒ Exponent decreases as
longer sequences reflect
individual strategies
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Integrated frequency distribution
of sequences of moves f (n) for
(from top to bottom) two to
seven successive moves (all
databases together), plotted
against the ranks of the moves.
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Sequences of moves
Four possible definitions:

• C1: positions on the board,
b follows a if b is played
immediately after a

• C2:positions on the board,
b follows a if b is played
after a at distance d = 4

• C3: sequence of vectors
between successive
positions with d = 4

• C4: as before

=⇒ move sequences, even
long ones, are well hierarchized
by our initial definition
=⇒ amateur database departs

from all professional ones,
playing more often at shorter
distances
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Integrated frequency
distribution of sequences of
moves for two (continuous) and
three (dashed lines) successive
moves, cases C1 (black), C2
(red), C3 (green), C4 (blue).
Inset: distribution of distances
between moves P(d). All
professional tournaments are
different from amateur games.

Bertrand Georgeot (CNRS Toulouse) The game of go as a complex network ECT workshop, July 2012 9 / 19



Link distributions

• Tails of link distributions
very close to a power-law
1/kγ with exponent γ = 1.0
for the integrated
distribution.

• The results are stable in the
sense that the exponent
does not depend on the
database considered.

=⇒ network displays the
scale-free property

=⇒ symmetry between ingoing
and outgoing links is a
peculiarity of this network
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(dashed), Thick solid line is
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Inset: Pin (solid curves) and Pout
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Directed network: Google algorithm
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Weighted adjacency matrix

H =




0 0 0 0 0 0 0
1
3 0 0 0 0 0 0
1
3 0 0 1

2 0 0 0
1
3 0 0 0 1 1 1
0 0 0 1

2 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0




Ranking pages {1, . . . , N} according to their importance.
PageRank vector p = stationary vector of H:
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Computation of PageRank

p = Hp ⇒ p= stationary vector of H:
can be computed by iteration of H.

To remove convergence problems:

Replace columns of 0 (dangling nodes) by 1
N : H → matrix S

In our example, H =




0 0 1
7 0 0 0 0

1
3 0 1

7 0 0 0 0
1
3 0 1

7
1
2 0 0 0

1
3 0 1

7 0 1 1 1
0 0 1

7
1
2 0 0 0

0 1 1
7 0 0 0 0

0 0 1
7 0 0 0 0




.

To remove degeneracies of the eigenvalue 1, replace S by

G = αS + (1− α)
1
N
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Ranking vectors

• The PageRank algorithm gives the PageRank vector, with amplitudes pi ,
with 0 ≤ pi ≤ 1

• PageRank is based on ingoing links

• One can define a similar vector based on outgoing links (CheiRank)

• HITS algorithm: Authorities (ingoing links) and Hubs (outgoing links)

• Other eigenvalues and eigenvectors of G reflect the structure of the
network
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Ranking vectors
• Clustering coefficient

detects local connected
clusters.

• Here depends on the
number of games ng

included, but almost not
on the database.

• For large ng , it goes to an
asymptotic value which
seems larger than 0.7
(higher CC than WWW
≈ 0.11)

• Ranking vectors follow an
algebraic law

• Symmetry between
distributions of ranking
vectors based on ingoing
links and outgoing links.
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Ranking vectors of G. Top bundle:
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Straight dashed line is y = −x .
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ng included to construct the
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professional tournaments; circles:
amateur games.
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PageRank vs CheiRank

• Left: correlation between
the PageRank and the
CheiRank for the five
databases considered.

• Strong correlation between
these rankings based
respectively upon ingoing
and outgoing links.

=⇒ Strong correlation between
moves which open many
possibilities of new moves
and moves that can follow
many other moves.

=⇒ However, the symmetry is
far from exact
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K* vs K where K (resp. K*) is
the rank of a vertex when
ordered according to PageRank
vector (resp CheiRank) for
amateur (violet stars) and
professional (other) databases.
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Spectrum of the Google matrix

• For WWW the spectrum is
spread inside the unit
circle, no gap between first
eigenvalue and the bulk

• Here huge gap between
the first eigenvalue and
next ones =⇒
well-connected network,
few isolated communities
(cf lexical networks).

• Radius of the bulk of
eigenvalues changes with
number of games ng ⇒ As
more games are taken into
account, rare links appear
which break the weakly
coupled communities.
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Eigenvectors of the Google matrix

• Next to leading eigenvalues
are important, as they
indicate the presence of
communities of moves
which have common
features.

• The distribution of the first
7 eigenvectors (Left) shows
that they are concentrated
on particular sets of moves
different for each vector.

• eigenvectors are different
for different tournaments
and from professional to
amateur

• much less peaked for
randomized network
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Connection with tactical sequences

• First eigenvector is
mainly localized on the
most frequent moves

• Third one is localized on
moves describing
captures of the
opponent’s stones, and
part of them single out
the well-known situation
of ko (“eternity”), where
players repeat captures
alternately.

• The 7th eigenvector
singles out moves which
appear to protect an
isolated stone by
connecting it with a
chain.

Moves corresponding to the10
largest entries of right eigenvectors
of G for eigenvalues λ1

(PageRank)(top), λ3 (middle) and
λ7 (bottom), Honinbo database.
Black is playing at the cross. Top
line coincides with the 10 most
frequent moves.
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Conclusion
• we have studied the game of go, one of the most ancient and complex

board games, from a complex network perspective.
• We have defined a proper categorization of moves taking into account the

local environment, and shown that in this case Zipf’s law emerges from
data taken from different tournaments.

• some peculiarities, such as a statistical symmetry between ingoing and
outgoing links distributions

• Differences between professional tournaments and amateur games can
be seen.

• Certain eigenvectors are localized on specific groups of moves which
correspond to different strategies.

=⇒ the point of view developed in this paper should allow to better modelize
such games

=⇒ could also help to design simulators which could in the future beat good
human players.

=⇒ Our approach could be used for other types of games, and in parallel
shed light on the human decision making process.

=⇒ Future: larger plaquettes, comparison human/computers
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