・ロト ・回 ト ・ ヨト ・ ヨトー

3

Cooperative and competitive interactions on random graphs

Cristian Giardina'

イロト イポト イヨト イヨト

3

Joint work with

- Remco van der Hofstad (TU Eindhoven)
- Sander Dommers (TU Eindhoven)
- Shannon Starr (University of Rochester)
- Pierluigi Contucci (Universita' di Bologna)

Plan of the talk

イロト イポト イヨト イヨト

ъ

Plan of the talk

- Spatial processes on random networks.
 - From empirical complex networks...
 - ... to random graph models...
 - ... and processes.

ヘロト ヘ戸ト ヘヨト ヘヨト

Plan of the talk

- Spatial processes on random networks.
 - From empirical complex networks...
 - ... to random graph models...
 - ... and processes.
- Two examples:
 - Ferromagnetic Ising model on power law random graphs, Dommers, G., van der Hofstad, JSP 141, 638-660 (2010) + work in progress on crit. exp.
 - Antiferromagnetic Potts model on Erdös-Rényi random graphs, Contucci, Dommers, G., Starr, arXiv:1106.4714

ヘロト 人間 とくほとくほとう

Empirical networks

Two emerging properties (among others)

• Scale free

Small-world

ヘロト 人間 ト ヘヨト ヘヨト

3

Empirical networks

Two emerging properties (among others)

• Scale free

Number of vertices with degree k is proportional to $k^{-\alpha}$

• Small-world

distance between most pairs of vertices are small

Empirical networks

	network	type	n	m	z	l	α	ĺ
social	film actors	undirected	449 913	25516482	113.43	3.48	2.3	Γ
	company directors	undirected	7673	55392	14.44	4.60	-	
	math coauthorship	undirected	253339	496 489	3.92	7.57	-	
	physics coauthorship	undirected	52909	245300	9.27	6.19	-	
	biology coauthorship	undirected	1520251	11803064	15.53	4.92	-	
	telephone call graph	undirected	47000000	80 000 000	3.16		2.1	
	email messages	directed	59912	86 300	1.44	4.95	1.5/2.0	
	email address books	directed	16 881	57029	3.38	5.22	-	
	student relationships	undirected	573	477	1.66	16.01	-	
	sexual contacts	undirected	2810				3.2	
information	WWW nd.edu	directed	269504	1497135	5.55	11.27	2.1/2.4	
	WWW Altavista	directed	203549046	2130000000	10.46	16.18	2.1/2.7	
	citation network	directed	783339	6716198	8.57		3.0/-	
	Roget's Thesaurus	directed	1 0 2 2	5103	4.99	4.87	-	
	word co-occurrence	undirected	460 902	17000000	70.13		2.7	
technological	Internet	undirected	10697	31992	5.98	3.31	2.5	
	power grid	undirected	4 941	6594	2.67	18.99	-	
	train routes	undirected	587	19603	66.79	2.16	-	
	software packages	directed	1 4 3 9	1 723	1.20	2.42	1.6/1.4	
	software classes	directed	1 377	2 213	1.61	1.51	-	
	electronic circuits	undirected	24097	53248	4.34	11.05	3.0	
	peer-to-peer network	undirected	880	1 296	1.47	4.28	2.1	
biological	metabolic network	undirected	765	3 686	9.64	2.56	2.2	
	protein interactions	undirected	2115	2 2 4 0	2.12	6.80	2.4	
	marine food web	directed	135	598	4.43	2.05	-	
	freshwater food web	directed	92	997	10.84	1.90	-	
	neural network	directed	307	2 3 5 9	7.68	3.97	-	

ヘロト 人間 とくほとくほとう

M.E.J. Newman, The structure and function of complex networks (2003)

Random Graph models for empirical networks

Inhomogeneous random graph

Configuration model

• Preferential attachment model

ヘロト ヘアト ヘビト ヘビト

э.

Random Graph models for empirical networks

Inhomogeneous random graph
Static random graph, independent edges with inhomogeneous edge occupation probability

Configuration model

Static random graph, with prescribed degree sequence

Preferential attachment model

Dynamic random graph, attachment proportional to degree plus constant

・ロト ・聞 と ・ ヨ と ・ ヨ と ・

æ

Networks functions

• Social networks (friendship, sexual, collaboration,..)

• Information networks (WWW, citation, ..)

• Technological networks (internet, airlines, roads, power grids,..)

• Biological networks (protein, neural, ...)

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

Networks functions

- Social networks (friendship, sexual, collaboration,..) spread of disease, opinion formation,..
- Information networks (WWW, citation, ..) email, routing, reputation,..
- Technological networks (internet, airlines, roads, power grids,..) communication, robustness to attack,...
- Biological networks (protein, neural, ...) metabolic pathways, reactions,...

Statistical Mechanics

Configurations $\sigma \in \Omega_n = \{-1, +1\}^n$

Hamiltonian $H(\sigma): \Omega_n \to \mathbb{R}$, depending on a few parameters (temperature, external field,...)

Boltzmann-Gibbs measure $\mu_n(\sigma) = \frac{1}{Z_n} e^{-H(\sigma)}$

Statistical Mechanics

Configurations
$$\sigma \in \Omega_n = \{-1, +1\}^n$$

Hamiltonian $H(\sigma): \Omega_n \to \mathbb{R}$, depending on a few parameters (temperature, external field,...)

Boltzmann-Gibbs measure $\mu_n(\sigma) = \frac{1}{Z_n} e^{-H(\sigma)}$

Aim

Study the means $\langle \sigma_i \rangle_{\mu_n}$, correlations $\langle \sigma_i \sigma_j \rangle_{\mu_n}$,...

It is useful to compute the pressure

$$\psi_n = \frac{1}{n} \ln Z_n = \frac{1}{n} \ln \sum_{\sigma \in \Omega_n} e^{-H(\sigma)}$$

Statistical Mechanics

Configurations
$$\sigma \in \Omega_n = \{-1, +1\}^n$$

Hamiltonian $H(\sigma): \Omega_n \to \mathbb{R}$, depending on a few parameters (temperature, external field,...)

Boltzmann-Gibbs measure $\mu_n(\sigma) = \frac{1}{Z_n} e^{-H(\sigma)}$

Aim

Study the means $\langle \sigma_i \rangle_{\mu_n}$, correlations $\langle \sigma_i \sigma_j \rangle_{\mu_n}$,...

It is useful to compute the pressure

$$\psi_n = \frac{1}{n} \ln Z_n = \frac{1}{n} \ln \sum_{\sigma \in \Omega_n} e^{-H(\sigma)}$$

Outcome

In the thermodynamic limit $n \to \infty$, phase transitions may occur.

Statistical Mechanics on Random Graphs

(At least) Two level of randomness

$$H(\sigma) = -\beta \sum_{(i,j)\in E_n} J_{i,j}\sigma_i\sigma_j - B \sum_{i\in V_n} \sigma_i$$

• Randomness of the graph $G_n = (V_n, E_n)$

• Randomness of the couplings $\{J_{i,j}\}$

- Ferromagnets, $J_{i,j} > 0$: easy physics, interesting mathematics.
- Antiferromagnets, $J_{i,j} < 0$: frustration appears.
- Spin glasses, *J_{i,j}* i.i.d. random variables with symmetric distribution: order parameter is not self-averaging!

Quenched state $\mathbb{E}(\langle \cdot \rangle_{\mu_n})$ is studied.

◆□ > ◆□ > ◆豆 > ◆豆 >

Ferromagnetic models

ヘロン 人間 とくほ とくほ とう

3

Basic questions

- How does ferromagnetic Ising model behave on random graphs with arbitrary degree distribution?
- What is the effect of scale-free random graphs on the ferromagnetic phase transition? In particular for exponent 2 < α < 3.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Basic questions

- How does ferromagnetic Ising model behave on random graphs with arbitrary degree distribution?
- What is the effect of scale-free random graphs on the ferromagnetic phase transition? In particular for exponent 2 < α < 3.

Previous answers

- Physics: Leone et al (2002), Dorogotsev et al (2002),...
- Mathematics: Dembo & Montanari (2010), restricted to degree distributions with finite variance.

イロト イポト イヨト イヨト

3

Basic questions

- How does ferromagnetic Ising model behave on random graphs with arbitrary degree distribution?
- What is the effect of scale-free random graphs on the ferromagnetic phase transition? In particular for exponent 2 < α < 3.

Previous answers

- Physics: Leone et al (2002), Dorogotsev et al (2002),...
- Mathematics: Dembo & Montanari (2010), restricted to degree distributions with finite variance.

Our results

• Rigorous analysis for degree distribution with finite mean degree

ヘロト 人間 とくほとく ほとう

э.

Local convergence to homogeneous trees

 $\{G_n\}_{n\geq 1}$ is *locally tree-like* with asymptotic degree distribution *P* if

$$\lim_{n\to\infty}\mathbb{P}_n[B_i(t)\simeq\mathcal{T}]=\mathbb{P}[\mathcal{T}(P,\rho,t)\simeq\mathcal{T}].$$

 $B_i(t)$ = ball in G_n centered at a uniformly chosen vertex $i \in V$

 $\mathcal{T}(P, \rho, t)$ = rooted random tree with *t* generations (offspring distribution *P* in the first generation, size-biased law ρ in the further generation)

$$\rho_k = \frac{(k+1)P_{k+1}}{\sum_k kP_k}$$

くロト (過) (目) (日)

ъ

Example: the configuration model

- Fix the degree distribution *P*. Assign *D_i* half-edges to each vertex *i* ∈ *V_n*, where *D_i* are i.i.d. with distribution *P* (𝔼(*D_i*) < ∞, also make sure ∑_i *D_i* is even).
- Choose pairs of stubs at random and connect them together.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Example: the configuration model

- Fix the degree distribution *P*. Assign *D_i* half-edges to each vertex *i* ∈ *V_n*, where *D_i* are i.i.d. with distribution *P* (𝔼(*D_i*) < ∞, also make sure ∑_i *D_i* is even).
- Choose pairs of stubs at random and connect them together.

Local Structure

- The degree distribution of a random vertex is *P*.
- The probability that the neighbor of a random vertex has degree k + 1 equals the probability that a random stub is attached to a vertex with k + 1 stubs:

$$\frac{(k+1)\sum_{i\in V_n}\mathbb{I}_{\{D_i=k+1\}}}{\sum_{i\in V_n}D_i}\longrightarrow \frac{(k+1)P_{k+1}}{\mathbb{E}(D)}=\rho_k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Strongly finite mean degree distribution

There exist constants $\alpha > 2$ and c > 0 such that

$$\sum_{i=k}^{\infty} P_i \leq ck^{-(lpha-1)}$$

Remark: Empirical networks with infinite variance degree distribution are included.

Strongly finite mean degree distribution

There exist constants $\alpha > 2$ and c > 0 such that

$$\sum_{i=k}^{\infty} P_i \leq ck^{-(lpha-1)}$$

Remark: Empirical networks with infinite variance degree distribution are included.

Uniform sparsity $\lim_{n \to \infty} \frac{|E_n|}{n} = \lim_{n \to \infty} \frac{1}{2n} \sum_{i \in V_n} \sum_{k=1}^{\infty} k \mathbb{I}_{\{D_i = k\}} = \frac{\mathbb{E}(D)}{2} < \infty.$

3

Theorem

Assume $\{G_n\}_{n\geq 1}$ is uniformly sparse and locally tree-like with asymptotic degree distribution *P*, where *P* has strongly finite mean. Let $D \sim P$ and $K \sim \rho$. Then:

ヘロト ヘ戸ト ヘヨト ヘヨト

3

Theorem

Assume $\{G_n\}_{n\geq 1}$ is uniformly sparse and locally tree-like with asymptotic degree distribution *P*, where *P* has strongly finite mean. Let $D \sim P$ and $K \sim \rho$. Then:

 $\lim_{n\to\infty}\psi_n=\phi$

ヘロト ヘ戸ト ヘヨト ヘヨト

3

Theorem

Assume $\{G_n\}_{n\geq 1}$ is uniformly sparse and locally tree-like with asymptotic degree distribution *P*, where *P* has strongly finite mean. Let $D \sim P$ and $K \sim \rho$. Then:

$$\lim_{n \to \infty} \psi_n = \phi$$

$$\begin{aligned} \phi(\beta, B) &= \frac{\mathbb{E}(D)}{2} \log \cosh(\beta) - \frac{\mathbb{E}(D)}{2} \mathbb{E}[\log(1 + \tanh(\beta) \tanh(h_1) \tanh(h_2))] \\ &+ \mathbb{E}\left[\log\left(e^{\beta} \prod_{i=1}^{D} \{1 + \tanh(\beta) \tanh(h_i)\} + e^{-\beta} \prod_{i=1}^{D} \{1 - \tanh(\beta) \tanh(h_i)\}\right)\right] \end{aligned}$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

3

Theorem

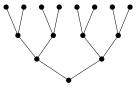
Assume $\{G_n\}_{n\geq 1}$ is uniformly sparse and locally tree-like with asymptotic degree distribution *P*, where *P* has strongly finite mean. Let $D \sim P$ and $K \sim \rho$. Then:

$$\lim_{n \to \infty} \psi_n = \phi$$

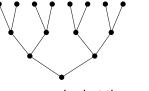
$$\begin{split} \phi(\beta, B) &= \frac{\mathbb{E}(D)}{2} \log \cosh(\beta) - \frac{\mathbb{E}(D)}{2} \mathbb{E}[\log(1 + \tanh(\beta) \tanh(h_1) \tanh(h_2))] \\ &+ \mathbb{E}\left[\log\left(e^{\beta} \prod_{i=1}^{D} \{1 + \tanh(\beta) \tanh(h_i)\} + e^{-\beta} \prod_{i=1}^{D} \{1 - \tanh(\beta) \tanh(h_i)\}\right)\right] \end{split}$$

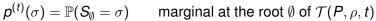
$$h_1 \stackrel{d}{=} B + \sum_{i=1}^{K} \operatorname{arctanh}(\operatorname{tanh}(\beta) \operatorname{tanh}(h_i)) := B + \sum_{i=1}^{K} \xi(h_i)$$

Proof I: Recursion on the random tree



Proof I: Recursion on the random tree

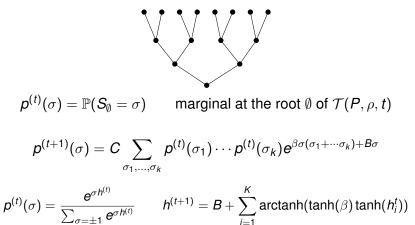




Proof I: Recursion on the random tree

$$p^{(t)}(\sigma) = \mathbb{P}(S_{\emptyset} = \sigma) \qquad \text{marginal at the root } \emptyset \text{ of } \mathcal{T}(P, \rho, t)$$
$$p^{(t+1)}(\sigma) = C \sum_{\sigma_1, \dots, \sigma_k} p^{(t)}(\sigma_1) \cdots p^{(t)}(\sigma_k) e^{\beta \sigma(\sigma_1 + \dots \sigma_k) + B\sigma}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

 $p^{(t)}(\sigma) = \mathbb{P}(S_{\emptyset} = \sigma)$ marginal at the root \emptyset of $\mathcal{T}(P, \rho, t)$ $\boldsymbol{p}^{(t+1)}(\sigma) = \boldsymbol{C} \sum \boldsymbol{p}^{(t)}(\sigma_1) \cdots \boldsymbol{p}^{(t)}(\sigma_k) \boldsymbol{e}^{\beta \sigma(\sigma_1 + \cdots \sigma_k) + \boldsymbol{B}\sigma}$ $\sigma_1 \dots \sigma_k$ $p^{(t)}(\sigma) = \frac{e^{\sigma h^{(t)}}}{\sum_{\sigma=\pm 1} e^{\sigma h^{(t)}}} \qquad h^{(t+1)} = B + \sum_{i=1}^{K} \operatorname{arctanh}(\operatorname{tanh}(\beta) \operatorname{tanh}(h_{i}^{t}))$ Unique fixed point when $t \to \infty$

Proof II: Internal energy

Proof II: Internal energy

$$\frac{\partial \psi_n}{\partial \beta} = \frac{1}{n} \sum_{(i,j) \in E_n} \langle \sigma_i \sigma_j \rangle_{\mu_n}$$

(日) (四) (三) (三) (三) (三) (○) (○)

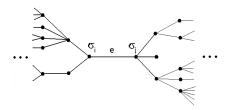
∃ 𝒫𝔄𝔄

Proof II: Internal energy

$$\frac{\partial \psi_n}{\partial \beta} = \frac{1}{n} \sum_{(i,j) \in E_n} \langle \sigma_i \sigma_j \rangle_{\mu_n} = \frac{|E_n|}{n} \frac{\sum_{(i,j) \in E_n} \langle \sigma_i \sigma_j \rangle_{\mu_n}}{|E_n|}$$

Proof II: Internal energy

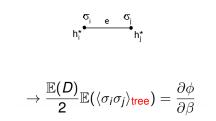
$$\frac{\partial \psi_n}{\partial \beta} = \frac{1}{n} \sum_{(i,j) \in E_n} \langle \sigma_i \sigma_j \rangle_{\mu_n} = \frac{|E_n|}{n} \frac{\sum_{(i,j) \in E_n} \langle \sigma_i \sigma_j \rangle_{\mu_n}}{|E_n|} \to \frac{\mathbb{E}(D)}{2} \mathbb{E}(\langle \sigma_i \sigma_j \rangle_{\mu})$$



◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Proof II: Internal energy

$$\frac{\partial \psi_n}{\partial \beta} = \frac{1}{n} \sum_{(i,j) \in E_n} \langle \sigma_i \sigma_j \rangle_{\mu_n} = \frac{|E_n|}{n} \frac{\sum_{(i,j) \in E_n} \langle \sigma_i \sigma_j \rangle_{\mu_n}}{|E_n|} \to \frac{\mathbb{E}(D)}{2} \mathbb{E}(\langle \sigma_i \sigma_j \rangle_{\mu})$$



Antiferromagnetic models

イロト イポト イヨト イヨト

3

Antiferromagnetic models

- The long loops of locally tree-like random graphs do matter .
- They induce frustration.
- Rather than compare to the tree, better to compare to the spin-glass.

Model: Potts Antiferromagnet on Erdös-Rényi random graphs

$$H_n(\sigma) = \sum_{i,j=1}^n J_{i,j}\delta(\sigma_i,\sigma_j)$$

- $J_{i,j}$ i.i.d. Poisson(c/2n), c > 1 and $\sigma_i \in \{1, 2, \dots, q\}$
- At $\beta = \infty$ it gives the coloring problem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Model: Potts Antiferromagnet on Erdös-Rényi random graphs

$$H_n(\sigma) = \sum_{i,j=1}^n J_{i,j}\delta(\sigma_i,\sigma_j)$$

• $J_{i,j}$ i.i.d. Poisson(c/2n), c > 1 and $\sigma_i \in \{1, 2, \dots, q\}$

• At $\beta = \infty$ it gives the coloring problem.

Previous results

- Physics: Krzakala-Zdeborova (2007) conjectured the critical point for the ER Potts AF = ER Potts SG.
- Mathematics: Achlioptas and Naor (2005) found a formula for $q_{AN}(c)$ such that $q^*(c) \in \{q_{AN}, q_{AN} + 1\}$.

Model: Potts Antiferromagnet on Erdös-Rényi random graphs

$$H_n(\sigma) = \sum_{i,j=1}^n J_{i,j}\delta(\sigma_i,\sigma_j)$$

• $J_{i,j}$ i.i.d. Poisson(c/2n), c > 1 and $\sigma_i \in \{1, 2, \dots, q\}$

• At $\beta = \infty$ it gives the coloring problem.

Previous results

- Physics: Krzakala-Zdeborova (2007) conjectured the critical point for the ER Potts AF = ER Potts SG.
- Mathematics: Achlioptas and Naor (2005) found a formula for $q_{AN}(c)$ such that $q^*(c) \in \{q_{AN}, q_{AN} + 1\}$.

Our results

 We rigorously prove the existence of a phase transition and confirm KZ conjecture for q = 2.

Theorem

Given $q \in \mathbb{N}$ and $c > \min\left\{(q-1)^2, \frac{2 \ln q}{|\ln(1-q^{-1})|}\right\}$, the AF model on the ER random graph has a critical temperature $\beta_{crit}(c, q)$ with

 $\beta_{2^{nd}}(\boldsymbol{c}, \boldsymbol{q}) \leq \beta_{crit}(\boldsymbol{c}, \boldsymbol{q}) \leq \min\{\beta_{RS}(\boldsymbol{c}, \boldsymbol{q}), \beta_{ent}(\boldsymbol{c}, \boldsymbol{q})\}$

where

$$\begin{split} \beta_{RS} &= -\ln\left(1 - \frac{q}{1 + \sqrt{c}}\right), \quad \beta_{entr} = \inf\{\beta : \mathcal{S}(\beta, c, q) < 0\}\\ \beta_{2^{nd}} &= -\ln\left(1 - \frac{q}{q - 1 + \sqrt{c/(2q \ln q)}}\right) \text{ if } q > 2, \quad \beta_{2^{nd}} = \beta_{RS} \text{ if } q = 2 \end{split}$$

Theorem

Given $q \in \mathbb{N}$ and $c > \min\left\{(q-1)^2, \frac{2\ln q}{|\ln(1-q^{-1})|}\right\}$, the AF model on the ER random graph has a critical temperature $\beta_{crit}(c, q)$ with

 $\beta_{2^{nd}}(\boldsymbol{c}, \boldsymbol{q}) \leq \beta_{crit}(\boldsymbol{c}, \boldsymbol{q}) \leq \min\{\beta_{RS}(\boldsymbol{c}, \boldsymbol{q}), \beta_{ent}(\boldsymbol{c}, \boldsymbol{q})\}$

where

$$\begin{array}{ll} \beta_{RS} & = & -\ln\left(1-\frac{q}{1+\sqrt{c}}\right), \quad \beta_{entr} = \inf\{\beta : \mathcal{S}(\beta,c,q) < 0\} \\ \beta_{2^{nd}} & = & -\ln\left(1-\frac{q}{q-1+\sqrt{c/(2q\ln q)}}\right) \mbox{ if } q > 2, \quad \beta_{2^{nd}} = \beta_{RS} \mbox{ if } q = 2 \end{array}$$

A phase transition is a non-analyticity in β :

$$\psi(\beta, \mathbf{c}) \begin{cases} = \mathcal{P}(\beta, \mathbf{c}) := \ln q + \frac{c}{2} \ln \left(1 - \frac{1 - e^{-\beta}}{q}\right) & \text{if } \beta \leq \beta_{2^{nd}}, \\ < \mathcal{P}(\beta, \mathbf{c}) & \text{if } \beta \geq \min\{\beta_{RS}, \beta_{ent}\}. \end{cases}$$

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Proof ingredients

- Interpolation method from spin glasses: existence of TD-limit, Extended Variational Principle, pressure upper-bounds
- (Conditioned) second moment method: control of high temperature region.

Interpolation

If $X \sim Poisson(\lambda)$ then

$$\frac{d}{d\lambda}\mathbb{E}[f(X)] = \mathbb{E}[f(X+1) - f(X)]$$

Interpolation

If $X \sim Poisson(\lambda)$ then

$$\frac{d}{d\lambda}\mathbb{E}[f(X)] = \mathbb{E}[f(X+1) - f(X)]$$

Consider $c \mapsto ct$ for $t \in [0, 1]$. Then

$$\begin{aligned} \frac{d}{dt} \mathbb{E}[\psi_n(t)] &= \frac{c}{2n} \sum_{i,j=1}^n \mathbb{E}\left[\psi_n(t)|_{J_{i,j} \to J_{i,j+1}} - \psi_n(t)\right] \\ &= \frac{c}{2n^2} \sum_{i,j=1}^n \mathbb{E}\left[\ln\left(\frac{Z_n(t)|_{J_{i,j} \to J_{i,j+1}}}{Z_n(t)}\right)\right] \\ &= \frac{c}{2n^2} \sum_{i,j=1}^n \mathbb{E}\left[\ln\langle e^{-\beta\delta(\sigma_i,\sigma_j)}\rangle_t\right] \end{aligned}$$

▲日 → ▲圖 → ▲ 臣 → ▲ 臣 → □

Interpolation

$$\begin{aligned} \frac{d}{dt} \mathbb{E}[\psi_n(t)] &= \frac{c}{2n^2} \sum_{i,j=1}^n \mathbb{E}\left[\ln\langle e^{-\beta\delta(\sigma_i,\sigma_j)}\rangle\right] \\ &= \frac{c}{2n^2} \sum_{i,j=1}^n \mathbb{E}\left[\ln\left(1 - (1 - e^{-\beta})\langle\delta(\sigma_i,\sigma_j)\rangle\right)\right] \end{aligned}$$

Interpolation

$$\begin{aligned} \frac{d}{dt} \mathbb{E}[\psi_n(t)] &= \frac{c}{2n^2} \sum_{i,j=1}^n \mathbb{E}\left[\ln\langle e^{-\beta\delta(\sigma_i,\sigma_j)}\rangle\right] \\ &= \frac{c}{2n^2} \sum_{i,j=1}^n \mathbb{E}\left[\ln\left(1 - (1 - e^{-\beta})\langle\delta(\sigma_i,\sigma_j)\rangle\right)\right] \end{aligned}$$

Assuming $\langle \delta(\sigma_i, \sigma_j) \rangle = \frac{1}{q}$ then

$$\mathbb{E}[\psi_n(\beta, \boldsymbol{c})] = \mathbb{E}[\psi_n(\beta, 0)] + \int_0^1 dt \frac{d}{dt} \mathbb{E}[\psi_n(t)]$$

= $\ln q + \frac{c}{2} \ln \left(1 - \frac{1 - e^{-\beta}}{q}\right) = \mathcal{P}(\beta, \boldsymbol{c})$

Interpolation: consequences

• The sequence $(\mathbb{E}[\psi_n(\beta)])_{n \in \mathbb{N}}$ is superadditive: let $n_1 + n_2 = n$

$$\mathbb{E}[\psi_n] \geq \frac{n_1}{n} \mathbb{E}[\psi_{n_1}] + \frac{n_2}{n} \mathbb{E}[\psi_{n_2}]$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Interpolation: consequences

The sequence (𝔼[ψ_n(β)])_{n∈ℕ} is superadditive: let n₁ + n₂ = n

$$\mathbb{E}[\psi_n] \geq \frac{n_1}{n} \mathbb{E}[\psi_{n_1}] + \frac{n_2}{n} \mathbb{E}[\psi_{n_2}]$$

Extended variational principle

$$\mathbb{E}[\psi_n] \leq \min_{\mathcal{L}} \left[G^{(1)}(\beta, \boldsymbol{c}, \boldsymbol{q}, \mathcal{L}) - G^{(2)}(\beta, \boldsymbol{c}, \boldsymbol{q}, \mathcal{L}) \right]$$

$$G^{(1)} = \mathbb{E}\left[\frac{1}{n}\ln\sum_{\alpha}\xi_{\alpha}\sum_{\sigma}e^{-\beta\tilde{H}(\sigma,\tau_{\alpha})}\right]$$
$$G^{(2)} = \mathbb{E}\left[\frac{1}{n}\ln\sum_{\alpha}\xi_{\alpha}\ e^{-\beta\sum_{k=1}^{K}\delta(\tau_{\alpha,2k-1},\tau_{\alpha,2k})}\right]$$

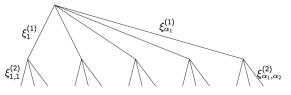
 $\{\xi_{\alpha}\} \text{ random}, \quad \{\tau_{\alpha}\} = \{\tau_{\alpha,1}, \tau_{\alpha,2}, \ldots\} \in [q]^{\mathbb{N}} \sim \mathcal{L} \text{ (exchangeable)}$

イロト イポト イヨト イヨト

2

Interpolation: upper bounds

By choosing $\{\xi_{\alpha}\}$ as Derrida-Ruelle probability cascades

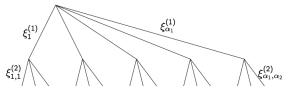


イロト イポト イヨト イヨト

ъ

Interpolation: upper bounds

By choosing $\{\xi_{\alpha}\}$ as Derrida-Ruelle probability cascades



• If \mathcal{L} is product with uniform marginals

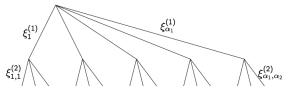
 $\mathbb{E}[\psi_n] \leq \mathcal{P}(\beta, c) =$ Trivial RS-solution

(日) (四) (日) (日) (日)

ъ

Interpolation: upper bounds

By choosing $\{\xi_{\alpha}\}$ as Derrida-Ruelle probability cascades



• If \mathcal{L} is product with uniform marginals

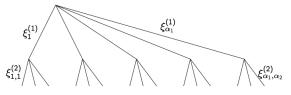
 $\mathbb{E}[\psi_n] \leq \mathcal{P}(\beta, c) = \text{ Trivial RS-solution}$

• If \mathcal{L} is product with non-uniform marginals

 $\mathbb{E}[\psi_n] \leq \mathsf{RS}$ -solution

Interpolation: upper bounds

By choosing $\{\xi_{\alpha}\}$ as Derrida-Ruelle probability cascades



If *L* is product with uniform marginals

 $\mathbb{E}[\psi_n] \leq \mathcal{P}(\beta, c) =$ Trivial RS-solution

• If \mathcal{L} is product with non-uniform marginals

 $\mathbb{E}[\psi_n] \leq \mathsf{RS}$ -solution

• If \mathcal{L} is hierarchical

$$\mathbb{E}[\psi_n] \leq \mathsf{RSB}$$
-solution

イロト イポト イヨト イヨト

ъ

2nd moment method

To conclude existence of a phase transition we need to show that the region $\{\beta : \mathbb{E}[\psi_n] = \mathcal{P}(\beta, c)\}$ is non empty.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

2nd moment method

To conclude existence of a phase transition we need to show that the region $\{\beta : \mathbb{E}[\psi_n] = \mathcal{P}(\beta, c)\}$ is non empty.

Let $B = \{ \sharp \text{ of bonds} = \frac{nc}{2} \}$

$$\lim_{n\to\infty}\frac{1}{n}\ln\mathbb{E}\left[Z_n\mid B\right]=\mathcal{P}(\beta,c)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

2nd moment method

To conclude existence of a phase transition we need to show that the region $\{\beta : \mathbb{E}[\psi_n] = \mathcal{P}(\beta, c)\}$ is non empty.

Let $B = \{ \sharp \text{ of bonds} = \frac{nc}{2} \}$

$$\lim_{n\to\infty}\frac{1}{n}\ln\mathbb{E}\left[Z_n\mid B\right]=\mathcal{P}(\beta,c)$$

If $\beta < \beta_{\mathbf{2}^{nd}}$

$$\lim_{n\to\infty}\frac{1}{n}\ln\mathbb{E}\left[Z_n^2\mid B\right] = \lim_{n\to\infty}\frac{1}{n}\ln\left(\mathbb{E}\left[Z_n\mid B\right]\right)^2$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

2nd moment method

To conclude existence of a phase transition we need to show that the region $\{\beta : \mathbb{E}[\psi_n] = \mathcal{P}(\beta, c)\}$ is non empty.

Let $B = \{ \sharp \text{ of bonds} = \frac{nc}{2} \}$

$$\lim_{n\to\infty}\frac{1}{n}\ln\mathbb{E}\left[Z_n\mid B\right]=\mathcal{P}(\beta,c)$$

If $\beta < \beta_{\mathbf{2}^{nd}}$

$$\lim_{n \to \infty} \frac{1}{n} \ln \mathbb{E} \left[Z_n^2 \mid B \right] = \lim_{n \to \infty} \frac{1}{n} \ln \left(\mathbb{E} \left[Z_n \mid B \right] \right)^2$$

Therefore

$$\frac{1}{n}\mathbb{E}[\ln Z_n] = \mathbb{P}(B)\frac{1}{n}\mathbb{E}[\ln Z_n|B] + \mathbb{P}(B^c)\frac{1}{n}\mathbb{E}[\ln Z_n|B^c]$$
$$\approx \frac{1}{n}\ln[\mathbb{E}[Z_n|B]] \to \mathcal{P}(\beta, c)$$

THANK YOU!

・ロト ・聞ト ・ヨト ・ヨト

ER Potts AF - Replica Symmetric solution

$$\mathbb{E}[\psi_n] \leq \mathbb{E}\ln\left[\sum_{s=1}^q \prod_{k=1}^K (1-(1-e^{-\beta})p_k(s))\right] \\ -\frac{c}{2}\mathbb{E}\ln\left[1-(1-e^{-\beta})\sum_{s=1}^q p_1(s)p_2(s)\right]$$

・ロト ・聞ト ・ヨト ・ヨト

ER Potts AF - Replica Symmetric solution

$$\mathbb{E}[\psi_n] \leq \mathbb{E}\ln\left[\sum_{s=1}^q \prod_{k=1}^K (1-(1-e^{-\beta})p_k(s))\right] \\ -\frac{c}{2}\mathbb{E}\ln\left[1-(1-e^{-\beta})\sum_{s=1}^q p_1(s)p_2(s)\right]$$

$$(p_{1}(s)) \stackrel{d}{=} \begin{pmatrix} \prod_{k=1}^{K} (1 - (1 - e^{-\beta})p_{k}(s)) \\ \sum_{s=1}^{q} \prod_{k=1}^{K} (1 - (1 - e^{-\beta})p_{k}(s)) \end{pmatrix} \qquad s = 1, \dots, q$$
$$\sum_{s=1}^{q} p_{k}(s) = 1 \qquad K \sim Poisson(c)$$