Directed Random Graphs with Given Degree Distributions

Mariana Olvera-Cravioto

Columbia University
molvera@ieor.columbia.edu
Joint work with Ningyuan Chen

July 23th, 2012

The motivating example: WWW

The World Wide Web

- WWW seen as a directed graph (webpages = nodes, links = edges).
- Empirical observations:

$$
\begin{aligned}
\text { fraction pages }>k \text { in-links } \propto k^{-\alpha}, & & \alpha=1.1 \\
\text { fraction pages }>k \text { out-links } \propto k^{-\beta}, & \beta & =1.72
\end{aligned}
$$

- We want a directed random graph model that matches the degree distributions.

Degree distributions

- Directed graph on n nodes $V=\left\{v_{1}, \ldots, v_{n}\right\}$.
- In-degree and out-degree:
- $m_{i}=$ in-degree of node $v_{i}=$ number of edges pointing to v_{i}.
- $d_{i}=$ out-degree of node $v_{i}=$ number of edges pointing from v_{i}.
- $(\mathbf{m}, \mathbf{d})=\left(\left\{m_{i}\right\},\left\{d_{i}\right\}\right)$ is called a bi-degree-sequence.
- Target distributions:

$$
\begin{aligned}
& F=\left(f_{k}: k=0,1,2, \ldots\right), \quad \text { and } \\
& G=\left(g_{k}: k=0,1,2, \ldots\right)
\end{aligned}
$$

- We want the bi-degree-sequence to satisfy:

$$
\frac{1}{n} \sum_{i=1}^{n} 1\left(m_{i}=k\right) \approx f_{k} \quad \text { and } \quad \frac{1}{n} \sum_{i=1}^{n} 1\left(d_{i}=k\right) \approx g_{k}
$$

Simple graphs

- Definition: We say that a directed graph is simple if it has no self-loops and at most one edge in each direction between any two nodes.
- Definition: We say that (\mathbf{m}, \mathbf{d}) is graphical if there exists a simple directed graph having (\mathbf{m}, \mathbf{d}) as its bi-degree-sequence.
- Goal: Choose a graph uniformly at random from all simple graphs having bi-degree-sequence (\mathbf{m}, \mathbf{d}), where (\mathbf{m}, \mathbf{d}) has approximately the target distributions F and G.

Simple graphs

- Definition: We say that a directed graph is simple if it has no self-loops and at most one edge in each direction between any two nodes.
- Definition: We say that (\mathbf{m}, \mathbf{d}) is graphical if there exists a simple directed graph having (\mathbf{m}, \mathbf{d}) as its bi-degree-sequence.
- Goal: Choose a graph uniformly at random from all simple graphs having bi-degree-sequence (\mathbf{m}, \mathbf{d}), where (\mathbf{m}, \mathbf{d}) has approximately the target distributions F and G.
- Two problems:

Simple graphs

- Definition: We say that a directed graph is simple if it has no self-loops and at most one edge in each direction between any two nodes.
- Definition: We say that (\mathbf{m}, \mathbf{d}) is graphical if there exists a simple directed graph having (\mathbf{m}, \mathbf{d}) as its bi-degree-sequence.
- Goal: Choose a graph uniformly at random from all simple graphs having bi-degree-sequence (\mathbf{m}, \mathbf{d}), where (\mathbf{m}, \mathbf{d}) has approximately the target distributions F and G.
- Two problems:
- Construct an appropriate bi-degree-sequence that with high probability will be graphical.

Simple graphs

- Definition: We say that a directed graph is simple if it has no self-loops and at most one edge in each direction between any two nodes.
- Definition: We say that (\mathbf{m}, \mathbf{d}) is graphical if there exists a simple directed graph having (\mathbf{m}, \mathbf{d}) as its bi-degree-sequence.
- Goal: Choose a graph uniformly at random from all simple graphs having bi-degree-sequence (\mathbf{m}, \mathbf{d}), where (\mathbf{m}, \mathbf{d}) has approximately the target distributions F and G.
- Two problems:
- Construct an appropriate bi-degree-sequence that with high probability will be graphical.
- Choose uniformly at random a simple graph from such bi-degree-sequence.

The configuration model (Wormald '78, Bollobas '80)

- For undirected graphs, given a degree sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$:
- assign to each node v_{i} a number d_{i} of stubs or half-edges;
- for the first half-edge of node v_{1} choose uniformly at random from all other half-edges, and if the selected half-edge belongs to, say, node v_{j}, draw an edge between node v_{1} and v_{j};
- proceed in the same way for all remaining unpaired half-edges, i.e., choose uniformly from the set of unpaired half-edges and draw an edge between the current node and the node to which the selected half-edge belongs.
- The result is a multigraph (e.g., with self-loops and multiple edges) on nodes $\left\{v_{1}, \ldots, v_{n}\right\}$.
- If we discard any realization that is not simple, we obtain a uniformly chosen simple graph.

The directed configuration model

- For directed graphs, given a bi-degree-sequence (\mathbf{m}, \mathbf{d}):
- assign to each node v_{i} a number m_{i} of inbound stubs and a number d_{i} of outbound stubs;
- pair outbound stubs to inbound stubs to form directed edges by matching to each inbound stub an outbound stub chosen uniformly at random from the set of unpaired outbound stubs.
- The result is again a multigraph, but if we discard realizations that have self-loops or multiple edges we obtain a uniformly chosen simple graph.
- Questions:

The directed configuration model

- For directed graphs, given a bi-degree-sequence (\mathbf{m}, \mathbf{d}):
- assign to each node v_{i} a number m_{i} of inbound stubs and a number d_{i} of outbound stubs;
- pair outbound stubs to inbound stubs to form directed edges by matching to each inbound stub an outbound stub chosen uniformly at random from the set of unpaired outbound stubs.
- The result is again a multigraph, but if we discard realizations that have self-loops or multiple edges we obtain a uniformly chosen simple graph.
- Questions:
- What is the probability of the resulting graph being simple?

The directed configuration model

- For directed graphs, given a bi-degree-sequence (\mathbf{m}, \mathbf{d}):
- assign to each node v_{i} a number m_{i} of inbound stubs and a number d_{i} of outbound stubs;
- pair outbound stubs to inbound stubs to form directed edges by matching to each inbound stub an outbound stub chosen uniformly at random from the set of unpaired outbound stubs.
- The result is again a multigraph, but if we discard realizations that have self-loops or multiple edges we obtain a uniformly chosen simple graph.
- Questions:
- What is the probability of the resulting graph being simple?
- Under what conditions is it bounded away from zero as $n \rightarrow \infty$?

Probability of graph being simple

- For the undirected configuration model it is known that if \mathbf{d} satisfies certain regularity conditions, the number of self-loops, S_{n}, and the number of multiple edges, M_{n}, satisfy

$$
\left(S_{n}, M_{n}\right) \Rightarrow(S, M) \quad n \rightarrow \infty,
$$

where S and M are independent Poisson r.v.s. (Janson '09, Van der Hofstad '08-'12).

- Then,

$$
\lim _{n \rightarrow \infty} P(\text { graph is simple })=P(S=0, M=0)>0 .
$$

- The same should be true for the directed version.

Regularity conditions

Given $\left\{\left(\mathbf{m}_{n}, \mathbf{d}_{n}\right)\right\}_{n \in \mathbb{N}}$ satisfying $\sum_{i=1}^{n} m_{n i}=\sum_{i=1}^{n} d_{n i}$ for all n, let

$$
P\left(\left(N^{[n]}, D^{[n]}\right)=(i, j)\right)=\frac{1}{n} \sum_{k=1}^{n} 1\left(m_{n k}=i, d_{n k}=j\right) .
$$

1. Weak convergence. For some γ, ξ with $E[\gamma]=E[\xi]>0$,

$$
\left(N^{[n]}, D^{[n]}\right) \Rightarrow(\gamma, \xi), \quad n \rightarrow \infty
$$

2. Convergence of the first moments.

$$
\lim _{n \rightarrow \infty} E\left[N^{[n]}\right]=E[\gamma] \quad \text { and } \quad \lim _{n \rightarrow \infty} E\left[D^{[n]}\right]=E[\xi] .
$$

Regularity conditions... continued

3. Convergence of the covariance.

$$
\lim _{n \rightarrow \infty} E\left[N^{[n]} D^{[n]}\right]=E[\gamma \xi]
$$

4. Convergence of the second moments.

$$
\lim _{n \rightarrow \infty} E\left[\left(N^{[n]}\right)^{2}\right]=E\left[\gamma^{2}\right] \quad \text { and } \quad \lim _{n \rightarrow \infty} E\left[\left(D^{[n]}\right)^{2}\right]=E\left[\xi^{2}\right] .
$$

- Note: $\left(N^{[n]}, D^{[n]}\right)$ denote the in-degree and out-degree of a randomly chosen node.

Poisson Limit for Self-Loops and Multiple Edges

- Proposition: (Chen, O-C '12) If $\left\{\left(\mathbf{m}_{n}, \mathbf{d}_{n}\right)\right\}_{n \in \mathbb{N}}$ satisfies the regularity conditions with $E[\gamma]=E[\xi]=\mu>0$, then

$$
\left(S_{n}, M_{n}\right) \Rightarrow(S, M)
$$

as $n \rightarrow \infty$, where S and M are independent Poisson r.v.s with means

$$
\lambda_{1}=\frac{E[\gamma \xi]}{\mu} \quad \text { and } \quad \lambda_{2}=\frac{E[\gamma(\gamma-1)] E[\xi(\xi-1)]}{2 \mu^{2}}
$$

- Proof adapted from the undirected case (Van der Hofstad '08-'12).
- Theorem: Under the same assumptions,

$$
\lim _{n \rightarrow \infty} P\left(\text { graph obtained from }\left(\mathbf{m}_{n}, \mathbf{d}_{n}\right) \text { is simple }\right)=e^{-\lambda_{1}-\lambda_{2}}>0
$$

The repeated and erased models

- Repeated model: If all four regularity conditions are satisfied, then repeat the random pairing until a simple graph is obtained.

The repeated and erased models

- Repeated model: If all four regularity conditions are satisfied, then repeat the random pairing until a simple graph is obtained.
- If condition (4) is not satisfied, the probability of obtaining a simple graph converges to zero as $n \rightarrow \infty$.

The repeated and erased models

- Repeated model: If all four regularity conditions are satisfied, then repeat the random pairing until a simple graph is obtained.
- If condition (4) is not satisfied, the probability of obtaining a simple graph converges to zero as $n \rightarrow \infty$.
- Erased model: Simply erase the self-loops and merge multiple edges in the same direction into a single edge.

The repeated and erased models

- Repeated model: If all four regularity conditions are satisfied, then repeat the random pairing until a simple graph is obtained.
- If condition (4) is not satisfied, the probability of obtaining a simple graph converges to zero as $n \rightarrow \infty$.
- Erased model: Simply erase the self-loops and merge multiple edges in the same direction into a single edge.
- Question: (yet to answer) What are the in-degree and out-degree distributions of the resulting simple graphs?

Degree sequences

- How to construct an appropriate bi-degree-sequence?

Degree sequences

- How to construct an appropriate bi-degree-sequence?
- For the undirected case one can take $\mathbf{D}_{n}=\left\{D_{1}, \ldots, D_{n}\right\}$, where the $\left\{D_{i}\right\}$ are i.i.d. r.v.s.

Degree sequences

- How to construct an appropriate bi-degree-sequence?
- For the undirected case one can take $\mathbf{D}_{n}=\left\{D_{1}, \ldots, D_{n}\right\}$, where the $\left\{D_{i}\right\}$ are i.i.d. r.v.s.
- Question: When is an i.i.d. sequence graphical?

Degree sequences

- How to construct an appropriate bi-degree-sequence?
- For the undirected case one can take $\mathbf{D}_{n}=\left\{D_{1}, \ldots, D_{n}\right\}$, where the $\left\{D_{i}\right\}$ are i.i.d. r.v.s.
- Question: When is an i.i.d. sequence graphical?
- Answer: (Arratia and Ligget ' 05) Provided $E\left[D_{1}\right]<\infty$,

$$
\lim _{n \rightarrow \infty} P\left(\mathbf{D}_{n} \text { is graphical }\right)= \begin{cases}1 / 2, & \text { if } P\left(D_{1}=\text { odd }\right)>0 \\ 1, & \text { if } P\left(D_{1}=\text { odd }\right)=0\end{cases}
$$

Degree sequences

- How to construct an appropriate bi-degree-sequence?
- For the undirected case one can take $\mathbf{D}_{n}=\left\{D_{1}, \ldots, D_{n}\right\}$, where the $\left\{D_{i}\right\}$ are i.i.d. r.v.s.
- Question: When is an i.i.d. sequence graphical?
- Answer: (Arratia and Ligget ' 05) Provided $E\left[D_{1}\right]<\infty$,

$$
\lim _{n \rightarrow \infty} P\left(\mathbf{D}_{n} \text { is graphical }\right)= \begin{cases}1 / 2, & \text { if } P\left(D_{1}=\text { odd }\right)>0 \\ 1, & \text { if } P\left(D_{1}=\text { odd }\right)=0\end{cases}
$$

- Easy fix: either resample \mathbf{D}_{n} until its sum is even, or simply add 1 to the last node if the sum is odd.

Bi-degree-sequence

- We want a bi-degree-sequence $(\mathbf{N}, \mathbf{D})_{n}$ such that the $\left\{N_{i}\right\}$ and the $\left\{D_{i}\right\}$ are close to being independent sequences of i.i.d. r.v.s from distributions F and G, resp.
- The sequences must satisfy

$$
\sum_{i=1}^{n} N_{i}=\sum_{i=1}^{n} D_{i} \quad \text { for all } n
$$

- Problem: In general, if $\left\{\gamma_{i}\right\}$ and $\left\{\xi_{i}\right\}$ are independent i.i.d. sequences with $E\left[\gamma_{1}\right]=E\left[\xi_{1}\right]$,

$$
\lim _{n \rightarrow \infty} P\left(\sum_{i=1}^{n} \gamma_{i}=\sum_{i=1}^{n} \xi_{i}\right)=0
$$

- The "easy fix": add a few in-degrees or out-degrees to match the sums.

Assumptions on the target distributions

- In-degree target distribution F.
- Out-degree target distribution G.
- Assume F and G have support on $\{0,1,2, \ldots\}$ and have common mean $\mu>0$.
- Suppose further that for some $\alpha, \beta>1$,

$$
\bar{F}(x)=\sum_{k>x} f_{k} \leq x^{-\alpha} L_{F}(x) \quad \text { and } \quad \bar{G}(x)=\sum_{k>x} g_{k} \leq x^{-\beta} L_{G}(x)
$$

for all $x \geq 0$, where $L_{F}(\cdot)$ and $L_{G}(\cdot)$ are slowly varying.

The Algorithm

1. Fix $0<\delta_{0}<1-\theta, \theta=\max \left\{\alpha^{-1}, \beta^{-1}, 1 / 2\right\}$.
2. Sample $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ i.i.d. from F; let $\Gamma_{n}=\sum_{i=1}^{n} \gamma_{i}$.
3. Sample $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ i.i.d. from G; let $\Xi_{n}=\sum_{i=1}^{n} \xi_{i}$.
4. Let $\Delta_{n}=\Gamma_{n}-\Xi_{n}$. If $\left|\Delta_{n}\right| \leq n^{\theta+\delta_{0}}$ go to step 5 ; otherwise go to step 2 .
5. Choose randomly $\left|\Delta_{n}\right|$ nodes $\mathcal{S}=\left\{i_{1}, i_{2}, \ldots, i_{\left|\Delta_{n}\right|}\right\}$ without remplacement and let

$$
N_{i}=\gamma_{i}+\tau_{i}, \quad D_{i}=\xi_{i}+\chi_{i}, \quad i=1,2, \ldots, n
$$

where

$$
\begin{aligned}
\chi_{i} & =\left\{\begin{array}{ll}
1 & \text { if } \Delta_{n} \geq 0 \text { and } i \in \mathcal{S}, \\
0 & \text { otherwise, }
\end{array} \quad\right. \text { and } \\
\tau_{i} & = \begin{cases}1 & \text { if } \Delta_{n}<0 \text { and } i \in \mathcal{S} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Some basic properties

- The parameter θ is chosen so that

$$
\lim _{n \rightarrow \infty} P\left(\left|\Delta_{n}\right| \leq n^{\theta+\delta_{0}}\right)=1 .
$$

- Proposition: $\left(\mathbf{N}_{n}, \mathbf{D}_{n}\right)$ satisfies for any fixed $r, s \in \mathbb{N}$,

$$
\left(N_{i_{1}}, \ldots, N_{i_{r}}, D_{j_{1}}, \ldots, D_{j_{s}}\right) \Rightarrow\left(\gamma_{1}, \ldots, \gamma_{r}, \xi_{1}, \ldots, \xi_{s}\right)
$$

as $n \rightarrow \infty$, where $\left\{\gamma_{i}\right\}$ and $\left\{\xi_{i}\right\}$ are independent sequences of i.i.d. random variables having distributions F and G, respectively.

- $\left(\mathbf{N}_{n}, \mathbf{D}_{n}\right)$ is an approximate equivalent of the i.i.d. degree sequence for the undirected case.

Is the bi-degree-sequence graphical?

- Theorem: (Chen, O-C '12) The bi-degree-sequence ($\mathbf{N}_{n}, \mathbf{D}_{n}$) satisfies $\lim _{n \rightarrow \infty} P\left(\left(\mathbf{N}_{n}, \mathbf{D}_{n}\right)\right.$ is graphical $)=1$.

Is the bi-degree-sequence graphical?

- Theorem: (Chen, O-C '12) The bi-degree-sequence ($\mathbf{N}_{n}, \mathbf{D}_{n}$) satisfies

$$
\lim _{n \rightarrow \infty} P\left(\left(\mathbf{N}_{n}, \mathbf{D}_{n}\right) \text { is graphical }\right)=1 .
$$

- The proof uses a graphicality criterion from Berge '76.

Random pairing with $\left(\mathbf{N}_{n}, \mathbf{D}_{n}\right)$

- Does $\left(\mathbf{N}_{n}, \mathbf{D}_{n}\right)$ satisfy the regularity conditions?

Random pairing with $\left(\mathbf{N}_{n}, \mathbf{D}_{n}\right)$

- Does $\left(\mathbf{N}_{n}, \mathbf{D}_{n}\right)$ satisfy the regularity conditions?
- It can be shown that

$$
\frac{1}{n} \sum_{k=1}^{n} 1\left(N_{k}=i, D_{k}=j\right) \xrightarrow{P} f_{i} g_{j}, \quad \text { for all } i, j \in \mathbb{N} \cup\{0\}
$$

$$
\frac{1}{n} \sum_{i=1}^{n} N_{i} \xrightarrow{P} E\left[\gamma_{1}\right], \quad \frac{1}{n} \sum_{i=1}^{n} D_{i} \xrightarrow{P} E\left[\xi_{1}\right], \quad \text { and } \quad \frac{1}{n} \sum_{i=1}^{n} N_{i} D_{i} \xrightarrow{P} E\left[\gamma_{1} \xi_{1}\right],
$$

and provided $E\left[\gamma_{1}^{2}+\xi_{1}^{2}\right]<\infty$,

$$
\frac{1}{n} \sum_{i=1}^{n} N_{i}^{2} \xrightarrow{P} E\left[\gamma_{1}^{2}\right], \quad \text { and } \quad \frac{1}{n} \sum_{i=1}^{n} D_{i}^{2} \xrightarrow{P} E\left[\xi_{1}^{2}\right] .
$$

- Therefore, if $E\left[\gamma_{1}^{2}+\xi_{1}^{2}\right]<\infty$, the directed configuration model will produce a simple graph with probability bounded away from zero.

Repeated directed configuration model

- Let $N_{k}^{(r)}$ and $D_{k}^{(r)}$ be the in-degree and out-degree of node k in the resulting simple graph.
- Define for $i, j=0,1,2, \ldots$,

$$
\begin{gathered}
h^{(n)}(i, j)=\frac{1}{n} \sum_{k=1}^{n} P\left(N_{k}^{(r)}=i, D_{k}^{(r)}=j\right), \\
\widehat{f}_{i}^{(n)}=\frac{1}{n} \sum_{k=1}^{n} 1\left(N_{k}^{(r)}=i\right) \quad \text { and } \quad \widehat{g}_{j}^{(n)}=\frac{1}{n} \sum_{k=1}^{n} 1\left(D_{k}^{(r)}=j\right) .
\end{gathered}
$$

- Proposition: For the repeated directed configuration model with bi-degree-sequence ($\mathbf{N}_{n}, \mathbf{D}_{n}$) we have for all $i, j=0,1,2, \ldots$, 1.

$$
h^{(n)}(i, j) \rightarrow f_{i} g_{j} \quad \text { as } n \rightarrow \infty, \quad \text { and }
$$

2.

$$
\widehat{f}_{i}^{(n)} \xrightarrow{P} f_{i} \quad \text { and } \quad \widehat{g}_{j}^{(n)} \xrightarrow{P} g_{j}, \quad n \rightarrow \infty .
$$

If the regularity conditions fail...

- If $E\left[\gamma_{1}^{2}+\xi_{1}^{2}\right]=\infty$ but parts (1)-(3) of the regularity condition hold:
"erase all the self-lops and merge multiple edges
in the same direction into a single edge."
- Note: The resulting simple graph no longer has $\left(\mathbf{N}_{n}, \mathbf{D}_{n}\right)$ as its bi-degree-sequence.
- Question: Do the in-degrees and out-degrees still follow the target distributions F and G ?

Erased directed configuration model

- Let $N_{k}^{(e)}$ and $D_{k}^{(e)}$ be the in-degree and out-degree of node k in the resulting simple graph.
- Define for $i, j=0,1,2, \ldots$,

$$
\begin{gathered}
h^{(n)}(i, j)=\frac{1}{n} \sum_{k=1}^{n} P\left(N_{k}^{(e)}=i, D_{k}^{(e)}=j\right), \\
\widehat{f}_{i}^{(n)}=\frac{1}{n} \sum_{k=1}^{n} 1\left(N_{k}^{(e)}=i\right) \quad \text { and } \quad \widehat{g}_{j}^{(n)}=\frac{1}{n} \sum_{k=1}^{n} 1\left(D_{k}^{(e)}=j\right) .
\end{gathered}
$$

- Proposition: For the erased directed configuration model with bi-degree-sequence ($\mathbf{N}_{n}, \mathbf{D}_{n}$) we have for all $i, j=0,1,2, \ldots$, 1.

$$
h^{(n)}(i, j) \rightarrow f_{i} g_{j} \quad \text { as } n \rightarrow \infty, \quad \text { and }
$$

2.

$$
\widehat{f}_{i}^{(n)} \xrightarrow{P} f_{i} \quad \text { and } \quad \widehat{g}_{j}^{(n)} \xrightarrow{P} g_{j}, \quad n \rightarrow \infty .
$$

Erased Model, In-degree distribution, Empirical vs. Target (Paretos $\alpha=1.1, \beta=1.5$)

Thank you for your attention.

