Directed Random Graphs with Given Degree Distributions

Mariana Olvera-Cravioto

Columbia University molvera@ieor.columbia.edu

Joint work with Ningyuan Chen

July 23th, 2012

The motivating example: WWW

Opte project. Part of the MoMA permanent collection

The World Wide Web

- ▶ WWW seen as a directed graph (webpages = nodes, links = edges).
- Empirical observations:

fraction pages > k in-links $\propto k^{-\alpha}$, $\alpha = 1.1$

fraction pages > k out-links $\propto k^{-\beta}$, $\beta = 1.72$

We want a directed random graph model that matches the degree distributions.

Degree distributions

- Directed graph on n nodes $V = \{v_1, \ldots, v_n\}$.
- In-degree and out-degree:
 - $m_i = \text{in-degree of node } v_i = \text{number of edges pointing to } v_i$.
 - d_i = out-degree of node v_i = number of edges pointing from v_i .
- $(\mathbf{m}, \mathbf{d}) = (\{m_i\}, \{d_i\})$ is called a bi-degree-sequence.
- Target distributions:

$$F = (f_k : k = 0, 1, 2, ...),$$
 and
 $G = (g_k : k = 0, 1, 2, ...).$

We want the bi-degree-sequence to satisfy:

$$\frac{1}{n}\sum_{i=1}^n 1(m_i=k)\approx f_k\qquad\text{and}\qquad \frac{1}{n}\sum_{i=1}^n 1(d_i=k)\approx g_k.$$

- Definition: We say that a directed graph is *simple* if it has no self-loops and at most one edge in each direction between any two nodes.
- ▶ **Definition:** We say that (m, d) is *graphical* if there exists a simple directed graph having (m, d) as its bi-degree-sequence.
- ▶ Goal: Choose a graph uniformly at random from all simple graphs having bi-degree-sequence (m, d), where (m, d) has approximately the target distributions *F* and *G*.

- Definition: We say that a directed graph is *simple* if it has no self-loops and at most one edge in each direction between any two nodes.
- ▶ **Definition:** We say that (m, d) is *graphical* if there exists a simple directed graph having (m, d) as its bi-degree-sequence.
- ▶ Goal: Choose a graph uniformly at random from all simple graphs having bi-degree-sequence (m, d), where (m, d) has approximately the target distributions *F* and *G*.
- Two problems:

- Definition: We say that a directed graph is *simple* if it has no self-loops and at most one edge in each direction between any two nodes.
- ▶ Definition: We say that (m, d) is graphical if there exists a simple directed graph having (m, d) as its bi-degree-sequence.
- ▶ Goal: Choose a graph uniformly at random from all simple graphs having bi-degree-sequence (m, d), where (m, d) has approximately the target distributions *F* and *G*.
- Two problems:
 - Construct an appropriate bi-degree-sequence that with high probability will be graphical.

- Definition: We say that a directed graph is *simple* if it has no self-loops and at most one edge in each direction between any two nodes.
- ▶ **Definition:** We say that (m, d) is *graphical* if there exists a simple directed graph having (m, d) as its bi-degree-sequence.
- ▶ Goal: Choose a graph uniformly at random from all simple graphs having bi-degree-sequence (m, d), where (m, d) has approximately the target distributions *F* and *G*.
- Two problems:
 - Construct an appropriate bi-degree-sequence that with high probability will be graphical.
 - Choose uniformly at random a simple graph from such bi-degree-sequence.

The configuration model (Wormald '78, Bollobas '80)

• For undirected graphs, given a degree sequence $\mathbf{d} = (d_1, \dots, d_n)$:

- assign to each node v_i a number d_i of stubs or half-edges;
- ▶ for the first half-edge of node v₁ choose uniformly at random from all other half-edges, and if the selected half-edge belongs to, say, node vj, draw an edge between node v₁ and vj;
- proceed in the same way for all remaining unpaired half-edges, i.e., choose uniformly from the set of unpaired half-edges and draw an edge between the current node and the node to which the selected half-edge belongs.
- ► The result is a multigraph (e.g., with self-loops and multiple edges) on nodes {v₁,...,v_n}.
- If we discard any realization that is not simple, we obtain a uniformly chosen simple graph.

The directed configuration model

 \blacktriangleright For directed graphs, given a bi-degree-sequence $(\mathbf{m},\mathbf{d}){:}$

- assign to each node v_i a number m_i of inbound stubs and a number d_i of outbound stubs;
- pair outbound stubs to inbound stubs to form directed edges by matching to each inbound stub an outbound stub chosen uniformly at random from the set of unpaired outbound stubs.
- ► The result is again a multigraph, but if we discard realizations that have self-loops or multiple edges we obtain a uniformly chosen simple graph.

Questions:

The directed configuration model

 \blacktriangleright For directed graphs, given a bi-degree-sequence $(\mathbf{m},\mathbf{d}){:}$

- assign to each node v_i a number m_i of inbound stubs and a number d_i of outbound stubs;
- pair outbound stubs to inbound stubs to form directed edges by matching to each inbound stub an outbound stub chosen uniformly at random from the set of unpaired outbound stubs.
- ► The result is again a multigraph, but if we discard realizations that have self-loops or multiple edges we obtain a uniformly chosen simple graph.

Questions:

What is the probability of the resulting graph being simple?

The directed configuration model

 \blacktriangleright For directed graphs, given a bi-degree-sequence $(\mathbf{m},\mathbf{d}){:}$

- assign to each node v_i a number m_i of inbound stubs and a number d_i of outbound stubs;
- pair outbound stubs to inbound stubs to form directed edges by matching to each inbound stub an outbound stub chosen uniformly at random from the set of unpaired outbound stubs.
- ► The result is again a multigraph, but if we discard realizations that have self-loops or multiple edges we obtain a uniformly chosen simple graph.

Questions:

- What is the probability of the resulting graph being simple?
- Under what conditions is it bounded away from zero as $n \to \infty$?

Probability of graph being simple

► For the undirected configuration model it is known that if d satisfies certain *regularity conditions*, the number of self-loops, S_n, and the number of multiple edges, M_n, satisfy

$$(S_n, M_n) \Rightarrow (S, M) \qquad n \to \infty,$$

where S and M are independent Poisson r.v.s. (Janson '09, Van der Hofstad '08-'12).

Then,

$$\lim_{n \to \infty} P(\text{graph is simple}) = P(S = 0, M = 0) > 0.$$

The same should be true for the directed version.

Regularity conditions

Given $\{(\mathbf{m}_n, \mathbf{d}_n)\}_{n \in \mathbb{N}}$ satisfying $\sum_{i=1}^n m_{ni} = \sum_{i=1}^n d_{ni}$ for all n, let

$$P((N^{[n]}, D^{[n]}) = (i, j)) = \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}(m_{nk} = i, d_{nk} = j).$$

1. Weak convergence. For some γ,ξ with $E[\gamma]=E[\xi]>0$,

$$(N^{[n]}, D^{[n]}) \Rightarrow (\gamma, \xi), \qquad n \to \infty.$$

2. Convergence of the first moments.

$$\lim_{n \to \infty} E[N^{[n]}] = E[\gamma] \quad \text{and} \quad \lim_{n \to \infty} E[D^{[n]}] = E[\xi].$$

Regularity conditions... continued

3. Convergence of the covariance.

$$\lim_{n \to \infty} E[N^{[n]}D^{[n]}] = E[\gamma\xi].$$

4. Convergence of the second moments.

$$\lim_{n \to \infty} E[(N^{[n]})^2] = E[\gamma^2] \qquad \text{and} \qquad \lim_{n \to \infty} E[(D^{[n]})^2] = E[\xi^2].$$

▶ Note: $(N^{[n]}, D^{[n]})$ denote the in-degree and out-degree of a randomly chosen node.

Poisson Limit for Self-Loops and Multiple Edges

▶ **Proposition:** (Chen, O-C '12) If $\{(\mathbf{m}_n, \mathbf{d}_n)\}_{n \in \mathbb{N}}$ satisfies the regularity conditions with $E[\gamma] = E[\xi] = \mu > 0$, then

$$(S_n, M_n) \Rightarrow (S, M)$$

as $n \to \infty,$ where S and M are independent Poisson r.v.s with means

$$\lambda_1 = \frac{E[\gamma\xi]}{\mu} \qquad \text{and} \qquad \lambda_2 = \frac{E[\gamma(\gamma-1)]E[\xi(\xi-1)]}{2\mu^2}.$$

- Proof adapted from the undirected case (Van der Hofstad '08 -'12).
- Theorem: Under the same assumptions,

 $\lim_{n \to \infty} P(\text{graph obtained from } (\mathbf{m}_n, \mathbf{d}_n) \text{ is simple}) = e^{-\lambda_1 - \lambda_2} > 0.$

Repeated model: If all four regularity conditions are satisfied, then repeat the random pairing until a simple graph is obtained.

- Repeated model: If all four regularity conditions are satisfied, then repeat the random pairing until a simple graph is obtained.
- If condition (4) is not satisfied, the probability of obtaining a simple graph converges to zero as n → ∞.

- Repeated model: If all four regularity conditions are satisfied, then repeat the random pairing until a simple graph is obtained.
- If condition (4) is not satisfied, the probability of obtaining a simple graph converges to zero as n → ∞.
- Erased model: Simply erase the self-loops and merge multiple edges in the same direction into a single edge.

- Repeated model: If all four regularity conditions are satisfied, then repeat the random pairing until a simple graph is obtained.
- If condition (4) is not satisfied, the probability of obtaining a simple graph converges to zero as n → ∞.
- Erased model: Simply erase the self-loops and merge multiple edges in the same direction into a single edge.
- Question: (yet to answer) What are the in-degree and out-degree distributions of the resulting simple graphs?

▶ How to construct an appropriate bi-degree-sequence?

- How to construct an appropriate bi-degree-sequence?
- For the undirected case one can take $\mathbf{D}_n = \{D_1, \dots, D_n\}$, where the $\{D_i\}$ are i.i.d. r.v.s.

- How to construct an appropriate bi-degree-sequence?
- ▶ For the undirected case one can take $\mathbf{D}_n = \{D_1, \dots, D_n\}$, where the $\{D_i\}$ are i.i.d. r.v.s.
- Question: When is an i.i.d. sequence graphical?

- How to construct an appropriate bi-degree-sequence?
- ▶ For the undirected case one can take $D_n = \{D_1, ..., D_n\}$, where the $\{D_i\}$ are i.i.d. r.v.s.
- Question: When is an i.i.d. sequence graphical?
- Answer: (Arratia and Ligget '05) Provided $E[D_1] < \infty$,

$$\lim_{n \to \infty} P(\mathbf{D}_n \text{ is graphical}) = \begin{cases} 1/2, & \text{if } P(D_1 = \mathsf{odd}) > 0, \\ 1, & \text{if } P(D_1 = \mathsf{odd}) = 0. \end{cases}$$

- How to construct an appropriate bi-degree-sequence?
- For the undirected case one can take $\mathbf{D}_n = \{D_1, \dots, D_n\}$, where the $\{D_i\}$ are i.i.d. r.v.s.
- Question: When is an i.i.d. sequence graphical?
- Answer: (Arratia and Ligget '05) Provided $E[D_1] < \infty$,

$$\lim_{n \to \infty} P(\mathbf{D}_n \text{ is graphical}) = \begin{cases} 1/2, & \text{if } P(D_1 = \text{odd}) > 0, \\ 1, & \text{if } P(D_1 = \text{odd}) = 0. \end{cases}$$

► Easy fix: either resample D_n until its sum is even, or simply add 1 to the last node if the sum is odd.

Bi-degree-sequence

- ▶ We want a bi-degree-sequence $(\mathbf{N}, \mathbf{D})_n$ such that the $\{N_i\}$ and the $\{D_i\}$ are close to being independent sequences of i.i.d. r.v.s from distributions *F* and *G*, resp.
- The sequences must satisfy

$$\sum_{i=1}^{n} N_i = \sum_{i=1}^{n} D_i \qquad \text{for all } n.$$

Problem: In general, if {γ_i} and {ξ_i} are independent i.i.d. sequences with E[γ₁] = E[ξ₁],

$$\lim_{n \to \infty} P\left(\sum_{i=1}^n \gamma_i = \sum_{i=1}^n \xi_i\right) = 0.$$

► The "easy fix": add a **few** in-degrees or out-degrees to match the sums.

Assumptions on the target distributions

- ► In-degree target distribution *F*.
- Out-degree target distribution G.
- Assume F and G have support on $\{0, 1, 2, ...\}$ and have common mean $\mu > 0$.
- Suppose further that for some $\alpha, \beta > 1$,

$$\overline{F}(x) = \sum_{k > x} f_k \le x^{-\alpha} L_F(x) \qquad \text{and} \qquad \overline{G}(x) = \sum_{k > x} g_k \le x^{-\beta} L_G(x),$$

for all $x \ge 0$, where $L_F(\cdot)$ and $L_G(\cdot)$ are slowly varying.

The Algorithm

- 1. Fix $0 < \delta_0 < 1 \theta$, $\theta = \max\{\alpha^{-1}, \beta^{-1}, 1/2\}$.
- 2. Sample $\{\gamma_1, \ldots, \gamma_n\}$ i.i.d. from F; let $\Gamma_n = \sum_{i=1}^n \gamma_i$.
- 3. Sample $\{\xi_1, \ldots, \xi_n\}$ i.i.d. from G; let $\Xi_n = \sum_{i=1}^n \xi_i$.
- 4. Let $\Delta_n = \Gamma_n \Xi_n$. If $|\Delta_n| \le n^{\theta + \delta_0}$ go to step 5; otherwise go to step 2.
- 5. Choose randomly $|\Delta_n|$ nodes $S = \{i_1, i_2, \dots, i_{|\Delta_n|}\}$ without remplacement and let

$$N_i = \gamma_i + \tau_i, \qquad D_i = \xi_i + \chi_i, \qquad i = 1, 2, \dots, n,$$

where

$$\begin{split} \chi_i &= \begin{cases} 1 & \text{if } \Delta_n \geq 0 \text{ and } i \in \mathcal{S}, \\ 0 & \text{otherwise,} \end{cases} \qquad \text{ and } \\ \tau_i &= \begin{cases} 1 & \text{if } \Delta_n < 0 \text{ and } i \in \mathcal{S}, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Some basic properties

• The parameter θ is chosen so that

$$\lim_{n \to \infty} P(|\Delta_n| \le n^{\theta + \delta_0}) = 1.$$

• **Proposition:** $(\mathbf{N}_n, \mathbf{D}_n)$ satisfies for any fixed $r, s \in \mathbb{N}$,

$$(N_{i_1},\ldots,N_{i_r},D_{j_1},\ldots,D_{j_s}) \Rightarrow (\gamma_1,\ldots,\gamma_r,\xi_1,\ldots,\xi_s)$$

as $n \to \infty$, where $\{\gamma_i\}$ and $\{\xi_i\}$ are independent sequences of i.i.d. random variables having distributions F and G, respectively.

▶ (**N**_n, **D**_n) is an approximate equivalent of the i.i.d. degree sequence for the undirected case.

Is the bi-degree-sequence graphical?

▶ Theorem: (Chen, O-C '12) The bi-degree-sequence $(\mathbf{N}_n, \mathbf{D}_n)$ satisfies $\lim_{n \to \infty} P\left((\mathbf{N}_n, \mathbf{D}_n) \text{ is graphical}\right) = 1.$

Is the bi-degree-sequence graphical?

▶ Theorem: (Chen, O-C '12) The bi-degree-sequence $(\mathbf{N}_n, \mathbf{D}_n)$ satisfies $\lim_{n \to \infty} P((\mathbf{N}_n, \mathbf{D}_n) \text{ is graphical}) = 1.$

The proof uses a graphicality criterion from Berge '76.

Random pairing with (N_n, D_n)

• Does (N_n, D_n) satisfy the regularity conditions?

Random pairing with $(\mathbf{N}_n, \mathbf{D}_n)$

- Does $(\mathbf{N}_n, \mathbf{D}_n)$ satisfy the regularity conditions?
- It can be shown that

$$\frac{1}{n}\sum_{k=1}^{n}1(N_{k}=i,D_{k}=j)\xrightarrow{P}f_{i}g_{j}, \text{ for all } i,j\in\mathbb{N}\cup\{0\},$$

$$\frac{1}{n}\sum_{i=1}^{n}N_{i}\xrightarrow{P}E[\gamma_{1}], \quad \frac{1}{n}\sum_{i=1}^{n}D_{i}\xrightarrow{P}E[\xi_{1}], \text{ and } \frac{1}{n}\sum_{i=1}^{n}N_{i}D_{i}\xrightarrow{P}E[\gamma_{1}\xi_{1}],$$

and provided $E[\gamma_1^2+\xi_1^2]<\infty$,

$$\frac{1}{n}\sum_{i=1}^n N_i^2 \xrightarrow{P} E[\gamma_1^2], \qquad \text{and} \qquad \frac{1}{n}\sum_{i=1}^n D_i^2 \xrightarrow{P} E[\xi_1^2].$$

► Therefore, if E[γ₁² + ξ₁²] < ∞, the directed configuration model will produce a simple graph with probability bounded away from zero.</p>

Repeated directed configuration model

- Let $N_k^{(r)}$ and $D_k^{(r)}$ be the in-degree and out-degree of node k in the resulting simple graph.
- ▶ Define for i, j = 0, 1, 2, ..., $h^{(n)}(i, j) = \frac{1}{n} \sum_{k=1}^{n} P(N_k^{(r)} = i, D_k^{(r)} = j),$ $\widehat{f_i}^{(n)} = \frac{1}{n} \sum_{k=1}^{n} 1(N_k^{(r)} = i) \text{ and } \widehat{g_j}^{(n)} = \frac{1}{n} \sum_{k=1}^{n} 1(D_k^{(r)} = j).$
- ▶ **Proposition:** For the repeated directed configuration model with bi-degree-sequence $(\mathbf{N}_n, \mathbf{D}_n)$ we have for all i, j = 0, 1, 2, ...,

1. $h^{(n)}(i,j) \to f_i g_j \quad \text{as } n \to \infty, \text{ and}$ 2. $\hat{f_i}^{(n)} \xrightarrow{P} f_i \quad \text{and} \quad \hat{g_j}^{(n)} \xrightarrow{P} g_j, \quad n \to \infty.$

Repeated Model, Out-degree distribution, Empirical vs. Target (Paretos α = 5, β = 5)

If the regularity conditions fail...

• If $E[\gamma_1^2 + \xi_1^2] = \infty$ but parts (1)-(3) of the regularity condition hold:

"erase all the self-lops and merge multiple edges in the same direction into a single edge."

- ▶ Note: The resulting simple graph no longer has (N_n, D_n) as its bi-degree-sequence.
- ▶ **Question:** Do the in-degrees and out-degrees still follow the target distributions *F* and *G*?

Erased directed configuration model

- ▶ Let N_k^(e) and D_k^(e) be the in-degree and out-degree of node k in the resulting simple graph.
- ▶ Define for i, j = 0, 1, 2, ..., $h^{(n)}(i, j) = \frac{1}{n} \sum_{k=1}^{n} P(N_k^{(e)} = i, D_k^{(e)} = j),$ $\widehat{f_i}^{(n)} = \frac{1}{n} \sum_{k=1}^{n} 1(N_k^{(e)} = i) \text{ and } \widehat{g_j}^{(n)} = \frac{1}{n} \sum_{k=1}^{n} 1(D_k^{(e)} = j).$
- ▶ **Proposition:** For the erased directed configuration model with bi-degree-sequence (N_n, D_n) we have for all i, j = 0, 1, 2, ...,

1. $h^{(n)}(i,j) \to f_i g_j \quad \text{as } n \to \infty, \text{ and}$ 2. $\hat{f_i}^{(n)} \xrightarrow{P} f_i \quad \text{and} \quad \hat{g_j}^{(n)} \xrightarrow{P} g_j, \quad n \to \infty.$

Thank you for your attention.