Information Spreading in Last.fm Online Social Network

Róbert Pálovics, András Benczúr

Informatics Laboratory, Department of Computer and Automation Research Institute, Hungarian Academy of Sciences

supported by EC FET Open project NADINE July 26, 2012

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
•	0000	000000	0000	0

INTRODUCTION

Last.fm

Densification in artist subgraphs

Temporal influences

Summary

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	●000	000000	0000	0

Problem

 Characterize *information diffusion*, or *information spreading* by investigating online social networks

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	000000	0000	0

LAST.FM

- About Last.fm
 - Leading online service in music based social networking
 - "Scrobbling": collecting listening activity of users
 - Recommendation system for users
 - Social network
 - Public statistics
- Influences
 - People often share their musical taste
 - ► They recommend each other new artists, albums, tracks
 - Directed influences

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	000000	0000	0

MAIN GOAL

- ► User-user social network, with scrobble time series
- Justify the existence of influences, i.e. correlation between individuals and the listening behavior of their contacts

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	000000	0000	0

LARGE DATASET

- ► Available for us under NDA for Last.fm
- Selection criteria
 - Location is stated as UK
 - ▶ Date of birth between 1/12/1961 and 1/12/1997
 - Profile displays scrobbles publically
 - $5 \cdot 10^{-5} 1/s \le Act < 10^{-2} 1/s$, where

 $Act = \frac{\# \text{ scrobbles}}{\text{elapsed time from registration}}$

- ► Scrobbles between January 2010 and December 2011
- ► Size
 - 10^5 users, $3 \cdot 10^5$ edges, 10^9 scrobbles

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	●00000	0000	0

ARTIST SUBGRAPHS

► For artist *a* in time *t*

 $G(a, t) = \{$ subgraph of users who listened to *a* before $t\}$

- ► Main result:
 - Increased edge density in G(a, t)
 - ► The number of edges m(a, t) is power-law function of the number of users n(a, t) in the subgraph with exponent ≈ 1.535

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	00000	0000	0

Measurements

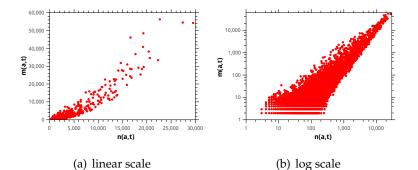


Figure: # edges as the function of vertex number

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	00000	0000	0

Measurements

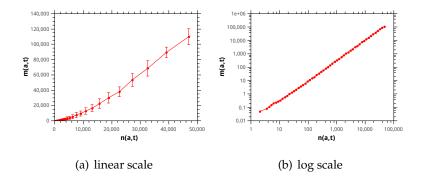
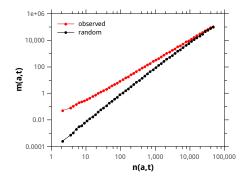



Figure: # edges as the function of vertex number

Introduction 0	Last.fm 0000	Densification in artist subgraphs 000000	Temporal influences 0000	Summary 0

DIFFERENCE FROM THE UNCORRELATED CASE

- Larger graphs are denser
- But small artist subgraphs are much denser than random subgraphs

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	000000	0000	0

PROPOSED MODEL

- Fixed friendship network
- At each time, select a new fan of *a*
- ► Select randomly proportional to its weight *w*(*i*)
- Initial weight w(i) is uniform
- ► User *i* gets weight at time *t* when first neighbor *j* listens to *a*

$$w(i) = 1 + \frac{C}{d(j)} \left(\frac{n(a,t)}{N}\right)^{-\alpha}$$

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	000000	0000	0

SIMULATION RESULT

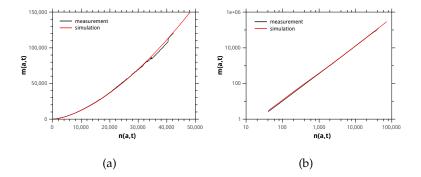
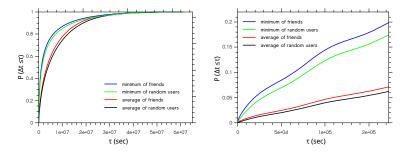


Figure: Simulation result


Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	000000	0000	0

TEMPORAL INFLUENCE

- ► User *j* is influenced by user *i*
- User *j* listens to *a* at the first time at *t*
- If *i* listens to *a* at time $t \Delta t$
- We compute $\overline{\Delta t}$ and Δt_{min} in case of friends and random users.

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	000000	○●○○	0
	/ / /			

CDF CURVES

(a) whole distribution

(b) first 48 hour

Figure: CDF curves

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	000000	0000	0

STRENGTH OF INFLUENCES

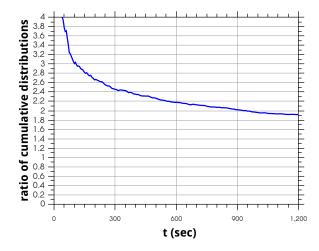


Figure: Ratio of cumulative distributions in the first 20 minutes

Introduction	Last.fm	Densification in artist subgraphs	Temporal influences	Summary
0	0000	000000	000●	0

INFLUENCES

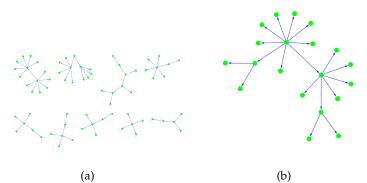


Figure: Influences

Introduction 0	Last.fm 0000	Densification in artist subgraphs 000000	Temporal influences 0000	Summary •
				f

SUMMARY

- ► Work in progress over the Last.fm community
- Large dataset
- Increased edge density in artist subgraphs
- Proposed model for artist subgraphs
- Temporal influences
- Strength of influences