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PROBLEM

I Characterize information diffusion, or information spreading

by investigating online social networks
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LAST.FM

I About Last.fm

I Leading online service in music based social networking

I "Scrobbling": collecting listening activity of users

I Recommendation system for users

I Social network

I Public statistics

I Influences

I People often share their musical taste

I They recommend each other new artists, albums, tracks

I Directed influences
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MAIN GOAL

I User-user social network, with scrobble time series

I Justify the existence of influences, i.e. correlation between

individuals and the listening behavior of their contacts
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LARGE DATASET

I Available for us under NDA for Last.fm

I Selection criteria

I Location is stated as UK

I Date of birth between 1/12/1961 and 1/12/1997

I Profile displays scrobbles publically

I 5 · 10−51/s ≤ Act < 10−21/s, where

Act = # scrobbles
elapsed time from registration

I Scrobbles between January 2010 and December 2011

I Size

I 105 users, 3 · 105 edges, 109 scrobbles
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ARTIST SUBGRAPHS

I For artist a in time t

G(a, t) = {subgraph of users who listened to a before t}

I Main result:

I Increased edge density in G(a, t)

I The number of edges m(a, t) is power-law function of the

number of users n(a, t) in the subgraph with exponent

≈ 1.535
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MEASUREMENTS
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Figure: # edges as the function of vertex number



Introduction Last.fm Densification in artist subgraphs Temporal influences Summary
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DIFFERENCE FROM THE UNCORRELATED CASE
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I Larger graphs are denser

I But small artist subgraphs are much denser than random

subgraphs
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PROPOSED MODEL

I Fixed friendship network

I At each time, select a new fan of a

I Select randomly proportional to its weight w(i)

I Initial weight w(i) is uniform

I User i gets weight at time t when first neighbor j listens to a

w(i) = 1 +
C

d(j)

(
n(a, t)

N

)−α
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SIMULATION RESULT
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Figure: Simulation result
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TEMPORAL INFLUENCE

I User j is influenced by user i

I User j listens to a at the first time at t

I If i listens to a at time t−∆t

I We compute ∆t and ∆tmin in case of friends and random

users.
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STRENGTH OF INFLUENCES
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Figure: Ratio of cumulative distributions in the first 20 minutes
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INFLUENCES

(a) (b)

Figure: Influences
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SUMMARY

I Work in progress over the Last.fm community

I Large dataset

I Increased edge density in artist subgraphs

I Proposed model for artist subgraphs

I Temporal influences

I Strength of influences
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