

Spectra and dynamics for assortative and disassortative networks ECT Workshop Spectral Properties of Complex Networks, 23-27 July 2012 Trento

Antonio Scala

CNR-ISC, Uos "La Sapienza" Rome Italy

with G. D'Agostino, V. Zlatic and G. Caldarelli

Antonio Scala | Spectra and dynamics for assortative and disassortative networks

(同) (三)

Effects of Topology on Networks

Can we have some general ideas on *how Topology affects the Dynamics* of the networks?

To this purpose we considered two different simple dynamical processes

- Epidemics
- Diffusion

Final Goal

Spotting systemic risks with few informations, very important for *Critical Infrastructures*

We focus on the role of assortativity on the dynamics.

Assortative Coefficient

r is the degree-degree Pearson correlation coefficient of two vertices connected by an edge

$$r(G) = \frac{\langle kq \rangle_e - \langle (k+q)/2 \rangle_e^2}{\langle (k^2+q^2)/2 \rangle_e - \langle (k+q)/2 \rangle_e^2}$$

where k, q are the degrees of the nodes at the vertices of the same edge and $\langle \bullet \rangle_e$ is the average over edges

Monte Carlo sampling

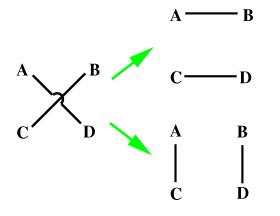
Gibbs measure $\mu[G] \propto \exp(-H_J[G])$ with coupling J

$$H_J[G] = -J\sum_{ij}A_{ij}k_ik_j$$

Assortativity is an increasing function of the coupling

Compare $H_J[G]$ with the assortativity dependent term of the assortativity coefficient r

$$\langle kq \rangle_e = \frac{1}{N_e} \sum_{ij} A_{ij} k_i k_j$$



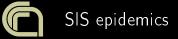
Such swapping moves leave the degree distribution invariant

P.

 $P(G \rightarrow G') = \min[1, \exp(-\Delta H_J)]$

Adjacency Matrix & Branching

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … のへで



SIS Model

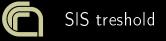
Infected nodes can either infect their neighbors or recover. The epidemic threshold tells us if an epidemics spreads system-wide.

Adjacency Matrix

The epidemic threshold in networks scales as the inverse Λ_1^{-1} of the biggest eigenvalue of the adjacency matrix.

SIS can capture also failure propagation

A (10) > (10) > (10)



MF equations

$$\partial_t I_i = -I_i + (1 - I_i) \tau \sum_j A_{ij} I_j$$

for $\tau < \tau_C$ stable solution $\vec{l} = 0$

Small perturbation

 $\vec{l} \sim \epsilon$

$$\partial_t \vec{l} = \tau A \vec{l} + \mathcal{O}(\epsilon)$$

 $\vec{l} = 0$ solution is stable if

 $\|A\|\,\tau<1$

i.e.

 $au_C = 1/\Lambda_1$

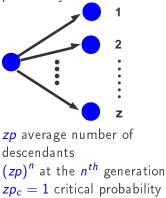
イロト イヨト イヨト イ

Э

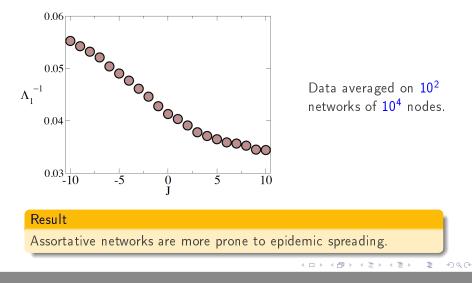
Э

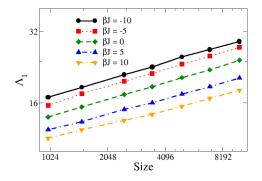
Branching processes are useful to describe percolation-like processes on trees (random networks are trees with few loops)

z branching number, *p* branching probability



Percolation on a network $z_i = \sum_j A_{ij}$ branching number $\sum_j pA_{ij}$ descendants $\sum_j p^n (A^n)_{ij}$ at the n^{th} generation $p_c ||A|| \sim 1$ critical probability

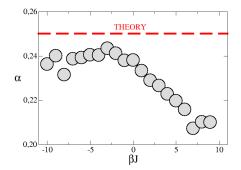




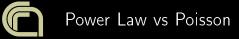
Data averaged on 10² networks for each size.

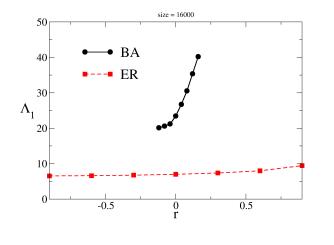
Result

Assortative networks have bigger scaling amplitudes.



ResultScaling deviations at "small" sizes (THEORY is exact for
$$N \to \infty$$
)





Antonio Scala | Spectra and dynamics for assortative and disassortative network

æ

(日) (문) (문) (문)

Laplacian Matrix & Diffusion

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ の Q ()

A adjacency matrix

sparse matrix with $A_{ij} = 1$ iff nodes *i* and *j* are linked

K degree matrix

diagonal matrix with
$$K_{ii} = \sum_{j} A_{ij}$$
 degree k_i of node i

$\mathcal{L} = \mathcal{K} - \mathcal{A}$

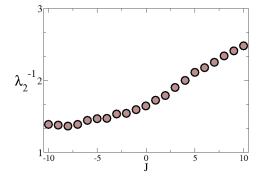
Diffusion in the network is dictated by the Laplacian matrix

$$\partial_t \rho = -\mathcal{L}\rho$$

• The eigenvalues of \mathcal{L} are $\lambda_1 = 0 \leq \lambda_2 \leq \ldots \leq \lambda_N$

The first non-zero eigenvalue λ_2 is the inverse timescale of slowest mode of diffusion (the most extended mode). In general, we can think of λ_2^{-1} as the timescale after which a perturbation (like the infection of a site) that spreads diffusively will settle a new state (like an epidemics) in the whole network.

イロト イロト イヨト イヨト



- Data are averaged on 10² networks of 10⁴ nodes.
- No relevant size depenence

Result

Assortative networks allow for a longer intervention time.

Network vibrations are dictated by the Laplacian matrix

 $\partial_t^2 \rho = -\mathcal{L}\rho$

- Synchronizability is linked to the spectrum of $\mathcal L$
- Controllability is linked to the spectrum of $\mathcal L$

・ 一・ ・ モ ・ ・

A partition of the nodes into two sets can be represented by a vector \vec{x} with $x_i \in \{-1, 1\}$

- Ω_+ sites with $x_i > 0$
- Σ_+ links between nodes in Ω_+
- $\partial \Omega$ sites at the border of the partitions
- $\partial \Sigma$ links among Ω_+ and Ω_-

Min-Cut

find min $\mathcal{H}[\vec{x}]$ s.t. $x_i \in \{-1, 1\}$

$$\mathcal{H}\left[\vec{x}\right] = \sum_{ii}^{n.n.} \left(\frac{x_i - x_j}{2}\right)^2 = \frac{\vec{x}\mathcal{L}\vec{x}}{4}$$

Antonio Scala | Spectra and dynamics for assortative and disassortative networks

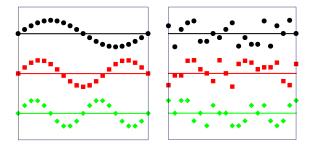
Э

イロト イポト イヨト イヨト

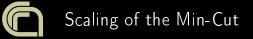
Relax the min - cut conditions and let $\vec{x} \in \mathbb{R}^N$ s.t $\|\vec{x}\| = 1$.; then l can look at the eigenvectors \vec{u}_{α} of \mathcal{L} by expressing $\vec{x} = \sum_{\alpha} a_{\alpha} \vec{u}_{\alpha}$ we get the relation $\vec{x}\mathcal{L}\vec{x} = \sum_{\alpha} a_{\alpha}^2 \lambda_i \ge \lambda_2 \|\vec{x}\|^2 = \lambda_2$

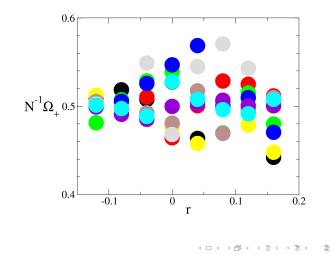
therefore the minimal solution is \vec{u}_2

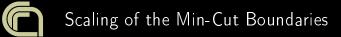
(同) (三)

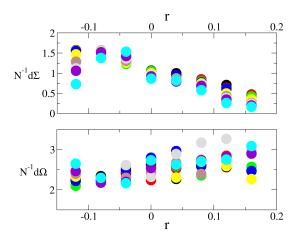


Partitions can be identified by a sequence (1, -1, +p)





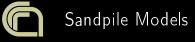




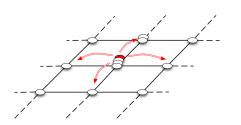
・ロト ・ 日 ・ ・ ヨ ト ・ 日 ト ・ 日 ト

Sandpiles & Finance

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … のへで



Sandpile model has been the prototype of Self-Organised Criticality

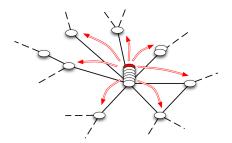


- Defined on a lattice
- Sand accumulates on vertices
- Until threshold
- Then topples

▲ 同 → - ▲ 三

 Until reaches lattice boundaries

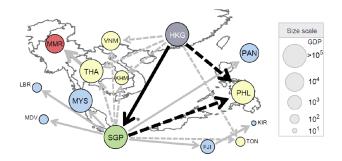
Substitute sand with distress/energy/stress/...



- Defined on a Network
- Threshold is the degree
- Boundaries ?

A B > A B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Avalanches can be seen as propagation of distress



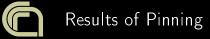
K.-M. Lee, J.-S. Yang, G. Kim, J. Lee, K.-I. Goh, I-M. Kim, PLOSI 6, e18443 (2011)

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ の Q ()

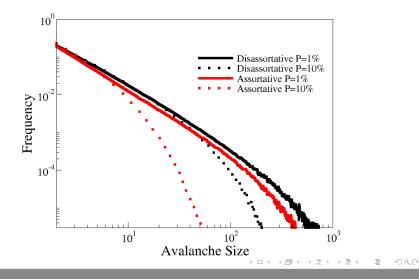
A bank "too big to fail" is a site that does not topple. Pinning Bailing out in the language of sandpile corresponds to pinning. I.e. stopping topples on sites.

- You can pin randomly (standard sandpile)
- You can pin the hubs (too connected to fail) The pinned sites are the boundary ∂G of the sandpile

→ @ ト → 注 ト → 注

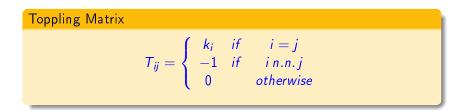


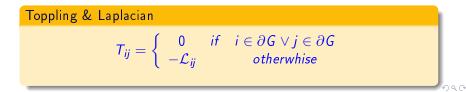
On assortative networks domino-effect have a larger cut-off.

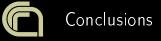


Sandpiles & Laplacian

The toppling of a site is described by $s_{i}\left(t+1\right)=s_{i}\left(t\right)+\mathcal{T}_{ij}$







Spectra

Adjacency Matrix dictates irreversible propagation Laplacian Matrix dictates diffusive propagation Toppling dynamics are linked to Diffusive dynamics

Eigenvectors Min-Cut Community Finding

To Do

Signed Graphs Directed Graphs

- Assortativity vs Size: do non-neutral configurations disappear or is assortativity ill defined?
- MC Sampling with a non-extensive Hamiltonian
- Fixed Assortativity simulations introduce bias in the assortativity structure

Э

▲御▶ ▲注▶ ★注▶



FOC (with the European Central Bank)

Forecast of systemic crisis and mitigation policies www.focproject.net

CRISIS LAB

IMT Lucca & CNR-ISC - Italian government funded

Networks of Networks

6 June Chicago, NetSci 2012 sites.google.com/site/netonets2012

Complex Interacting Networks

8 Sept Bruxelles, ECCS 2012 sites.google.com/site/coinets2012

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ