
Random walking through the 
data: novel spectral methods 
for the analysis of networks

Fabrizio Silvestri
ISTI - CNR, Pisa, Italy



Random walking through the 
data: novel spectral methods 
for the analysis of networks

Fabrizio Silvestri
ISTI - CNR, Pisa, Italy



Random walking through the data: 
applications of a less known spectral 
method for the analysis of networks

Fabrizio Silvestri
ISTI - CNR, Pisa, Italy



Spectral Methods

• Deals with analyzing the spectrum of 
matrices...

• ... we need to put our data in matrix form 
(or equivalently... graph!)

• In the context of Web data we are full of 
graphs, i.e. matrices



Applications

• Recommender systems:

• Tourist recommender system

• Query recommender system

• How do they mix?

• Stay tuned!



Preliminary
(Center-piece Subgraph)

• Hanghang Tong and Christos Faloutsos. Center-piece subgraphs: problem 
definition and fast solutions. In Proceedings of KDD'06.

• It is a generalization of the connection-subgraph 
problem:

• Given: an edge-weighted undirected graph G, 
set vertices Q from G, and an integer budget b
Find: a connected subgraph H containing 
vertices in Q and at most b other vertices that 
maximizes a “goodness” function g(H).



Example
(from H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition and fast 

solutions. In KDD'06.)

R. Agrawal Jiawei Han

V. Vapnik M. Jordan

H.V. 
Jagadish

Laks V.S. 
Lakshmanan

Umeshwar 
Dayal

Bernhard 
Scholkopf

Peter L. 
Bartlett

Alex J. 
Smola

15
10

13

3 3

5 2 2

327

4

DB

Stat



Example
(from H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition and fast 

solutions. In KDD'06.)

26 

R. Agrawal Jiawei Han

V. Vapnik M. Jordan

H.V. 
Jagadish

Laks V.S. 
Lakshmanan

Heikki 
Mannila

Christos 
Faloutsos

Padhraic 
Smyth

Corinna 
Cortes

15 10
13

1 1

6

1 1

4 Daryl 
Pregibon

10

2

1
1

3

1
6



softAND
• Indeed, Center-Piece Subgraph problem has been defined in 

terms of a softAND coefficient:

• Given: n edge-weighted undirected graph W, Q nodes as 
source queries Q = {qi} (i = 1,...,|Q|), the softAND 
coefficient k and an integer budget b

• Find: a suitably connected subgraph H that

• contains all query nodes qi, at most b other vertices,

• it maximizes a “goodness” function g(H), and

• intermediate nodes must have good connections to 
“at least” k of the query nodes.



softAND
• Indeed, Center-Piece Subgraph problem has been defined in 

terms of a softAND coefficient:

• Given: n edge-weighted undirected graph W, Q nodes as 
source queries Q = {qi} (i = 1,...,|Q|), the softAND 
coefficient k and an integer budget b

• Find: a suitably connected subgraph H that

• contains all query nodes qi, at most b other vertices,

• it maximizes a “goodness” function g(H), and

• intermediate nodes must have good connections to 
“at least” k of the query nodes.

In our applications we 
don’t use the softAND 

coefficient.



How to Compute it

• Let us first define the goodness score for 
nodes. For a given node j, we have two 
types of goodness score for it:

• Let r(i, j) be the goodness score of a given 
node j w.r.t. the query qi;

• Let r(Q, j) be the goodness score of a 
given node j w.r.t. the query set Q.



How to Compute it

• The goodness criterion of H can be defined as:

where r(i,j) is the steady-state probability of a 
single node j w.r.t. query node qi.



FAST CePS
(from H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition and fast 

solutions. In KDD'06.)



CEPS
(from H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition and fast 

solutions. In KDD'06.)



EXTRACT
(from H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition and fast 

solutions. In KDD'06.)



Single Key Path Discovery
(from H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition and fast 

solutions. In KDD'06.)



Overall Cost

• Cost of Partitioning +

• for each “query” Q:

• CEPS(Q) = RWR(i,j) (for each node j in W) + 
EXTRACT(Q)

• EXTRACT(Q) = b*(key path discovery)



Overall Cost

• Cost of Partitioning +

• for each “query” Q:

• CEPS(Q) = RWR(i,j) (for each node j in W) + 
EXTRACT(Q)

• EXTRACT(Q) = b*(key path discovery)

• Prohibitively high to compute it for several Q 
arriving online



Our Take on Center-
Piece Subgraph

• Goal:

• to find a representation for the graph 
allowing online computation of CePS for 
multiple query sets Q

• Motivations:

• In the context of recommender systems 
queries arrive online and need to be 
answered in a fraction of a second.



The Idea



The Idea

RWR



The Idea

RWR

Buck
eti

ze

[1,c) [c,c2)

[1,c) [c,c2) [c2,c3)

[1,c) [c,c2) [c2,c3)



The Idea

RWR

Buck
eti

ze

[1,c) [c,c2)

[1,c) [c,c2) [c2,c3)

[1,c) [c,c2) [c2,c3)

Compress



The Idea

RWR

Buck
eti

ze

[1,c) [c,c2)

[1,c) [c,c2) [c2,c3)

[1,c) [c,c2) [c2,c3)

Compress

To solve queries take 
entries related to nodes in 

the query and compute 
Hadamard product. Then 
take nodes in reversed 
order of product result



A Tale of Two 
Applications

• Tourist Recommender System:

• C. Lucchese, R. Perego, F. Silvestri, H. Vahabi, R. Venturini.  How 
random walks can help tourism.  34th European Conference 
on Information Retrieval (ECIR), 2012.

• Query Recommender System:

• F. Bonchi, R. Perego, F. Silvestri, H. Vahabi, and R. Venturini.  Efficient 
Query Recommendations in the Long Tail via Center-
Piece Subgraphs.  SIGIR 2012: To Appear.



Tourist Recommenders



Tourist Recommenders



Tourist Recommenders
the two PoIs are together 
in the album of at least a 

Flickr user or they share at 
least a category in 

Wikipedia.



Some Results
• Baseline: suggest always the top-k visited PoIs in a city

• We used three datasets: Florence, Glasgow, and San Francisco.



Anecdotes



Query Recommender



Query suggestion practices

• Use of the Wisdom of the Crowd mined 
from Query Logs to recommend related 
queries that are likely to better specify the 
information need of the user

• shorten length of user sessions

• enhance perceived QoE 



Queries in the Head



Queries in the Head



Queries in the Head



Queries in the Long Tail



Queries in the Long Tail

?



Queries in the Long Tail

?
?



Queries in the Long Tail

?
?

Rare and never-seen 
queries account for 
more than 50% of 

the traffic!



Open issues

Queries ordered by popularity

Po
pu

la
ri

ty

• Sparsity of models: 
• query assistance services perform 

poorly or are not even triggered 
on long-tail queries

• Performance: 
• on-line process going in parallel 

with query answering



• Query-centric approach

• Suggest queries by 
computing Random Walks 
with Restarts (RWRs) on 
the query-flow graph 
(QFG) by starting from 
the current user query

P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, S. Vigna: The query-flow graph: model and applications. CIKM 2008: 609-618
P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, S. Vigna: Query suggestions using query-flow graphs. WSCD, 2009

SoA: Query Flow Graph

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Boldi:Paolo.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Boldi:Paolo.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Castillo:Carlos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Castillo:Carlos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Donato:Debora.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Donato:Debora.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gionis:Aristides.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gionis:Aristides.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Vigna:Sebastiano.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Vigna:Sebastiano.html
http://www.informatik.uni-trier.de/~ley/db/conf/cikm/cikm2008.html#BoldiBCDGV08
http://www.informatik.uni-trier.de/~ley/db/conf/cikm/cikm2008.html#BoldiBCDGV08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Boldi:Paolo.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Boldi:Paolo.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Castillo:Carlos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Castillo:Carlos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Donato:Debora.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Donato:Debora.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gionis:Aristides.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gionis:Aristides.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Vigna:Sebastiano.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Vigna:Sebastiano.html
http://portal.acm.org/citation.cfm?id=1507518
http://portal.acm.org/citation.cfm?id=1507518
http://www.informatik.uni-trier.de/~ley/db/conf/cikm/cikm2008.html#BoldiBCDGV08
http://www.informatik.uni-trier.de/~ley/db/conf/cikm/cikm2008.html#BoldiBCDGV08


Query-centric suggestions

Computing RWRs on a huge graph, e.g.,  built 
from a QL recording 580,797,850 queries 
(from Y! us):

• |V|               28,763,637

• |E|                56,250,874



Query-centric suggestions

Computing RWRs on a huge graph, e.g.,  built 
from a QL recording 580,797,850 queries 
(from Y! us):

• |V|               28,763,637

• |E|                56,250,874

• |{q: f(q)=1}| 162,221,967 (28%)



Term-centric opportunities

But, in the same Y! QL:

• queries                     580,797,850

• Term occurrences   1,343,988,549



Term-centric opportunities

But, in the same Y! QL:

• queries                     580,797,850

• Term occurrences   1,343,988,549

• |{t: f(t)=1}|                    5,099,145  (0.04%)



The TQ-Graph

free 
restaurant 

design 
software 

restaurant 
menu 
design 

free 

software 

restaurant design 
menu 

QFGraph(



TQG effectiveness

• User study results comparing TQG and QFG effectiveness 
for two different testbeds (Y! US and MSN QLs).

 1

 10

 100

 1000

 10000

 100000

 0  10  20  30  40  50

F
re

q
u

e
n

cy
 o

n
 M

S
N

Query TREC

 1

 10

 100

 0  20  40  60  80  100

F
re

q
u

e
n

cy
 o

n
 Y

a
h

o
o

Random Queries

Figure 1: For all the queries in the two testbeds,
their frequency in the corresponding query log.

TREC on MSN useful somewhat not useful

� = 0.9 57% 16% 27%
� = 0.5 32% 13% 55%
� = 0.1 22% 12% 66%

100 queries on Yahoo! useful somewhat not useful

� = 0.9 48% 11% 41%
� = 0.5 41% 20% 39%
� = 0.1 37% 20% 43%

Table 2: E�ectiveness of TQGraph-based recommen-
dations on the two di�erent set of queries and query
logs, by varying the restart parameter �.

TREC on MSN useful somewhat not useful

TQGraph � = 0.9 57% 16% 27%
QFG 50% 9% 42%

100 queries on Yahoo! useful somewhat not useful

TQGraph � = 0.9 48% 11% 41%
QFG 23% 10% 67%

Table 3: User study results comparing e�ectiveness
of our method with the baseline for the two di�erent
testbeds.

Whereas, we pair TREC queries up with the model built on
the MSN query log. In fact, the period from which TREC
topics come, is close to the period in which MSN queries
were submitted.

We generated the top-5 recommendations for each query
by using both the QFG and the TQGraph with di�erent pa-
rameters setting. Using a web interface each assessor was
presented a random query followed by the list of all the dif-
ferent recommendations produced. Recommendations were
presented shu⇤ed, in order for the assessor to not be able to
distinguish which system produced them. We give assessors
the possibility to observe the search engine results for the
original query and the recommended query that was being
evaluated. The assessor was asked to rate a recommendation
using one of the following scores: useful, somewhat useful,
and not useful. A very broad instruction was given: a useful
recommendation is a query such that, if the user submits it
to the search engine, it provides new results that were not
available using the original query, and that agree with the
inferred user intent of the original query. Of course there is
a great deal of subjectivity in this assessment as the original
intent is not known by the assessor.

In first instance we evaluate the impact of the � parameter

(we recall here that � is the restart value of the RWR, from
each term of the query to be recommended). Table 2 shows
the e�ectiveness of our method when varying � among three
di�erent values � = 0.1, 0.5, 0.9. Results show that the best
quality is achieved when � = 0.9.
Table 3 reports the results of the user study comparing

e�ectiveness of the TQGraph-based and QFG-based recom-
mendations. TQGraph-based recommendations are of higher
quality than QFG-based ones. Indeed, we want to stress that
our main goal was high coverage, we were not actually seek-
ing to outperform the e�ectiveness of QFG. The fact that
we, instead, achieve such a remarkable result is, actually, an
additional benefit of TQGraph-based methods.

Anecdotal evidence. We next show a few examples of
query recommendations. We start from queries that have
never been observed in the query log, i.e., the most di⇥cult
cases. The first query that we show is one among the eight
from the TREC testbed that do not appear at all in the
MSN query log. The query is “lower heart rate”. Below we
report the top 5 recommendations.

Query: lower heart rate
Suggested Query Score
things to lower heart rate 2.9 e�14

lower heart rate through exercise 2.6 e�14

accelerated heart rate and pregnant 2.9 e�15

web md 2.0 e�16

heart problems 8.0 e�17

We can observe that all the top-5 suggestions can be con-
sidered pertinent to the initial topic. Moreover, even if this
is not an objective in this paper, they present some diver-
sity : the first two are how-to queries, while the last three are
queries related to finding information w.r.t. possible prob-
lems (with one very specific for pregnant women). The most
interesting recommendation is probably “web md”, which
makes perfect sense4, and has a large edit distance from
the original query.
The next query we present is a rare (i.e., rarely appearing

query): “dog heat”; which appears only twice in the MSN
query log.

Query: dog heat
Suggested Query Score
heat cycle dog pads 4.3 e�10

what happens when female dog is
in heat & a male dog is around 4.0 e�10

boxer dog in heat 3.99 e�10

dog in heat symptoms 3.98 e�10

behavior of a male dog
around a female dog in heat 3.95 e�10

As in the previous example, the top-5 suggestions are
qualitatively good and present some diversity. Also, the
TQGraph-based method returns long queries, thus likely to
be rare, as recommendation. We conjecture that, given how
scores are computed, long queries are not penalized by the
TQGraph-based method as they are by QFG. We defer to a
future investigation a deeper study of this phenomenon.
Due to space limitations, we do not report any evidence

for frequent queries. For those cases, in fact, suggestions
4WebMD.com is a web site devoted to provide health and
medical news and information.



Effectiveness on rare queries

• Anecdotal evidence

 1

 10

 100

 1000

 10000

 100000

 0  10  20  30  40  50

F
re

q
u
e
n
cy

 o
n
 M

S
N

Query TREC

 1

 10

 100

 0  20  40  60  80  100

F
re

q
u
e
n
cy

 o
n
 Y

a
h
o
o

Random Queries

Figure 1: For all the queries in the two testbeds,
their frequency in the corresponding query log.

TREC on MSN useful somewhat not useful

� = 0.9 57% 16% 27%
� = 0.5 32% 13% 55%
� = 0.1 22% 12% 66%

100 queries on Yahoo! useful somewhat not useful

� = 0.9 48% 11% 41%
� = 0.5 41% 20% 39%
� = 0.1 37% 20% 43%

Table 2: E�ectiveness of TQGraph-based recommen-
dations on the two di�erent set of queries and query
logs, by varying the restart parameter �.

TREC on MSN useful somewhat not useful

TQGraph � = 0.9 57% 16% 27%
QFG 50% 9% 42%

100 queries on Yahoo! useful somewhat not useful

TQGraph � = 0.9 48% 11% 41%
QFG 23% 10% 67%

Table 3: User study results comparing e�ectiveness
of our method with the baseline for the two di�erent
testbeds.

Whereas, we pair TREC queries up with the model built on
the MSN query log. In fact, the period from which TREC
topics come, is close to the period in which MSN queries
were submitted.

We generated the top-5 recommendations for each query
by using both the QFG and the TQGraph with di�erent pa-
rameters setting. Using a web interface each assessor was
presented a random query followed by the list of all the dif-
ferent recommendations produced. Recommendations were
presented shu⇤ed, in order for the assessor to not be able to
distinguish which system produced them. We give assessors
the possibility to observe the search engine results for the
original query and the recommended query that was being
evaluated. The assessor was asked to rate a recommendation
using one of the following scores: useful, somewhat useful,
and not useful. A very broad instruction was given: a useful
recommendation is a query such that, if the user submits it
to the search engine, it provides new results that were not
available using the original query, and that agree with the
inferred user intent of the original query. Of course there is
a great deal of subjectivity in this assessment as the original
intent is not known by the assessor.

In first instance we evaluate the impact of the � parameter

(we recall here that � is the restart value of the RWR, from
each term of the query to be recommended). Table 2 shows
the e�ectiveness of our method when varying � among three
di�erent values � = 0.1, 0.5, 0.9. Results show that the best
quality is achieved when � = 0.9.
Table 3 reports the results of the user study comparing

e�ectiveness of the TQGraph-based and QFG-based recom-
mendations. TQGraph-based recommendations are of higher
quality than QFG-based ones. Indeed, we want to stress that
our main goal was high coverage, we were not actually seek-
ing to outperform the e�ectiveness of QFG. The fact that
we, instead, achieve such a remarkable result is, actually, an
additional benefit of TQGraph-based methods.

Anecdotal evidence. We next show a few examples of
query recommendations. We start from queries that have
never been observed in the query log, i.e., the most di⇥cult
cases. The first query that we show is one among the eight
from the TREC testbed that do not appear at all in the
MSN query log. The query is “lower heart rate”. Below we
report the top 5 recommendations.

Query: lower heart rate
Suggested Query Score
things to lower heart rate 2.9 e�14

lower heart rate through exercise 2.6 e�14

accelerated heart rate and pregnant 2.9 e�15

web md 2.0 e�16

heart problems 8.0 e�17

We can observe that all the top-5 suggestions can be con-
sidered pertinent to the initial topic. Moreover, even if this
is not an objective in this paper, they present some diver-
sity : the first two are how-to queries, while the last three are
queries related to finding information w.r.t. possible prob-
lems (with one very specific for pregnant women). The most
interesting recommendation is probably “web md”, which
makes perfect sense4, and has a large edit distance from
the original query.
The next query we present is a rare (i.e., rarely appearing

query): “dog heat”; which appears only twice in the MSN
query log.

Query: dog heat
Suggested Query Score
heat cycle dog pads 4.3 e�10

what happens when female dog is
in heat & a male dog is around 4.0 e�10

boxer dog in heat 3.99 e�10

dog in heat symptoms 3.98 e�10

behavior of a male dog
around a female dog in heat 3.95 e�10

As in the previous example, the top-5 suggestions are
qualitatively good and present some diversity. Also, the
TQGraph-based method returns long queries, thus likely to
be rare, as recommendation. We conjecture that, given how
scores are computed, long queries are not penalized by the
TQGraph-based method as they are by QFG. We defer to a
future investigation a deeper study of this phenomenon.
Due to space limitations, we do not report any evidence

for frequent queries. For those cases, in fact, suggestions
4WebMD.com is a web site devoted to provide health and
medical news and information.

 1

 10

 100

 1000

 10000

 100000

 0  10  20  30  40  50

F
re

q
u

e
n

cy
 o

n
 M

S
N

Query TREC

 1

 10

 100

 0  20  40  60  80  100

F
re

q
u

e
n

cy
 o

n
 Y

a
h

o
o

Random Queries

Figure 1: For all the queries in the two testbeds,
their frequency in the corresponding query log.

TREC on MSN useful somewhat not useful

� = 0.9 57% 16% 27%
� = 0.5 32% 13% 55%
� = 0.1 22% 12% 66%

100 queries on Yahoo! useful somewhat not useful

� = 0.9 48% 11% 41%
� = 0.5 41% 20% 39%
� = 0.1 37% 20% 43%

Table 2: E�ectiveness of TQGraph-based recommen-
dations on the two di�erent set of queries and query
logs, by varying the restart parameter �.

TREC on MSN useful somewhat not useful

TQGraph � = 0.9 57% 16% 27%
QFG 50% 9% 42%

100 queries on Yahoo! useful somewhat not useful

TQGraph � = 0.9 48% 11% 41%
QFG 23% 10% 67%

Table 3: User study results comparing e�ectiveness
of our method with the baseline for the two di�erent
testbeds.

Whereas, we pair TREC queries up with the model built on
the MSN query log. In fact, the period from which TREC
topics come, is close to the period in which MSN queries
were submitted.

We generated the top-5 recommendations for each query
by using both the QFG and the TQGraph with di�erent pa-
rameters setting. Using a web interface each assessor was
presented a random query followed by the list of all the dif-
ferent recommendations produced. Recommendations were
presented shu⇤ed, in order for the assessor to not be able to
distinguish which system produced them. We give assessors
the possibility to observe the search engine results for the
original query and the recommended query that was being
evaluated. The assessor was asked to rate a recommendation
using one of the following scores: useful, somewhat useful,
and not useful. A very broad instruction was given: a useful
recommendation is a query such that, if the user submits it
to the search engine, it provides new results that were not
available using the original query, and that agree with the
inferred user intent of the original query. Of course there is
a great deal of subjectivity in this assessment as the original
intent is not known by the assessor.

In first instance we evaluate the impact of the � parameter

(we recall here that � is the restart value of the RWR, from
each term of the query to be recommended). Table 2 shows
the e�ectiveness of our method when varying � among three
di�erent values � = 0.1, 0.5, 0.9. Results show that the best
quality is achieved when � = 0.9.
Table 3 reports the results of the user study comparing

e�ectiveness of the TQGraph-based and QFG-based recom-
mendations. TQGraph-based recommendations are of higher
quality than QFG-based ones. Indeed, we want to stress that
our main goal was high coverage, we were not actually seek-
ing to outperform the e�ectiveness of QFG. The fact that
we, instead, achieve such a remarkable result is, actually, an
additional benefit of TQGraph-based methods.

Anecdotal evidence. We next show a few examples of
query recommendations. We start from queries that have
never been observed in the query log, i.e., the most di⇥cult
cases. The first query that we show is one among the eight
from the TREC testbed that do not appear at all in the
MSN query log. The query is “lower heart rate”. Below we
report the top 5 recommendations.

Query: lower heart rate
Suggested Query Score
things to lower heart rate 2.9 e�14

lower heart rate through exercise 2.6 e�14

accelerated heart rate and pregnant 2.9 e�15

web md 2.0 e�16

heart problems 8.0 e�17

We can observe that all the top-5 suggestions can be con-
sidered pertinent to the initial topic. Moreover, even if this
is not an objective in this paper, they present some diver-
sity : the first two are how-to queries, while the last three are
queries related to finding information w.r.t. possible prob-
lems (with one very specific for pregnant women). The most
interesting recommendation is probably “web md”, which
makes perfect sense4, and has a large edit distance from
the original query.
The next query we present is a rare (i.e., rarely appearing

query): “dog heat”; which appears only twice in the MSN
query log.

Query: dog heat
Suggested Query Score
heat cycle dog pads 4.3 e�10

what happens when female dog is
in heat & a male dog is around 4.0 e�10

boxer dog in heat 3.99 e�10

dog in heat symptoms 3.98 e�10

behavior of a male dog
around a female dog in heat 3.95 e�10

As in the previous example, the top-5 suggestions are
qualitatively good and present some diversity. Also, the
TQGraph-based method returns long queries, thus likely to
be rare, as recommendation. We conjecture that, given how
scores are computed, long queries are not penalized by the
TQGraph-based method as they are by QFG. We defer to a
future investigation a deeper study of this phenomenon.
Due to space limitations, we do not report any evidence

for frequent queries. For those cases, in fact, suggestions
4WebMD.com is a web site devoted to provide health and
medical news and information.

Query not occurring 
in the training log

Query occurring twice 
in the training log



TQG pros

• provide query suggestions of quality 
comparable/better than QFG even for rare 
and unique queries

• several possible optimizations for achieving



TQG pros

• provide query suggestions of quality 
comparable/better than QFG even for rare 
and unique queries

• several possible optimizations for achieving

an efficient on-line query 
recommendation service



Indexing precomputed suggestions

• recommendations for an incoming query are computed by 
processing the posting lists associated with the terms in the query!"#$%&%

!"#$%&'(

'&()*% ')()+*% ')+(),*% ')-().-/&**%

)*%+,-%$.(/01*$023+,-(,4("35$.(6,751(0-(*'5(
!"#$%&'(%1(,2*%0-57(2.(%(898(4$,:(!5$:(;(

90*'0-(23<=5*1(>35$051(%$5(1,$*57(2.(*'50$(?/1@()<,$51(%$5(
%&&$,A0:%*57(2.(*'5(B$5%*51*(2,3-7C(0@5@(D0(4,$(%EE(0(F(G@(

012"#3"4%014"5%#"6#"7"1389:1%:;%3<"%=>=7%
?:$6@3"4%:1%3<"%!AB#86<C%!<"%D"5-?:1%-7%$84"%
@6%:;%3"#$%1:4"7(%6:791E7%8#"%3<"%7389:18#F%
4-73#-G@9:1%28D@"7C%



Indexing precomputed suggestions

• recommendations for an incoming query are computed by 
processing the posting lists associated with the terms in the query!"#$%&%

!"#$%&'(

'&()*% ')()+*% ')+(),*% ')-().-/&**%

)*%+,-%$.(/01*$023+,-(,4("35$.(6,751(0-(*'5(
!"#$%&'(%1(,2*%0-57(2.(%(898(4$,:(!5$:(;(

90*'0-(23<=5*1(>35$051(%$5(1,$*57(2.(*'50$(?/1@()<,$51(%$5(
%&&$,A0:%*57(2.(*'5(B$5%*51*(2,3-7C(0@5@(D0(4,$(%EE(0(F(G@(

012"#3"4%014"5%#"6#"7"1389:1%:;%3<"%=>=7%
?:$6@3"4%:1%3<"%!AB#86<C%!<"%D"5-?:1%-7%$84"%
@6%:;%3"#$%1:4"7(%6:791E7%8#"%3<"%7389:18#F%
4-73#-G@9:1%28D@"7C%

:)    O(|T|) posting lists
:(    O(|Q|) length of each posting list



Pruning posting lists

• sort postings by probability and prune them 
at a reasonable threshold p, e.g. 20,000 

computed on the TQGraph are of the same quality of those
computed by the QFG-based method.

Resuming, we have shown that TQGraph-based recom-
mendations outperform in terms of quality those produced
by the QFG-based method. In particular, TQGraph-based
recommendations are able to “cover” a very large fraction
(⇥99%) of users’ queries. Furthermore, as we shall present
and analyze in the following section, TQGraph can be pre-
processed in order to obtain an “inverted list”-based repre-
sentation of the TQGraph that allows a very fast generation
of suggestions “on-the-fly”.

5. EFFICIENCY OF TQGRAPH
Since query suggestions have to be served online, a query

recommender must compute them e⇤ciently, possibly in
real-time. In the remainder of this section we introduce some
novel techniques allowing the e⇤cient generation of recom-
mendations at query time. In particular, we show that the
proposed techniques are peculiar of the TQGraph as they
are enabled by the specific term-centric model it uses. We
recall that given an incoming query q, the generation of sug-
gestions requires to compute RWRs on the TQGraph form
the nodes associated with the terms occurring in the query.
For each term t, the stable probability distribution result-

ing from the RWR is represented by a vector rt that scores
queries in Q according to the probability of reaching them in
a random walk on the TQGraph starting from t. As discussed
in Section 3, given an incoming query q = {t1, . . . , tm}, our
recommender system returns the k queries having the largest
probabilities in the Hadamard product

�m
i=1 rti .

Before introducing our optimized solution we want to
point out the major drawbacks of the two trivial approaches
that can be used for computing suggestions using our model.

The most trivial approach consists in simply computing
the RWR on the TQGraph for each term ti in the incoming
query as it arrives, and in multiplying the resulting stable
distributions.

The second (less) trivial approach, instead, provides to
store the precomputed stable distributions for all the terms
appearing in T . To improve e⇤ciency, we can resort to use
an index on which the stationary distribution of the random
walks for terms in T are stored as lists of postings, where
each posting is given by the identifier of the query (queryID),
along with its probability. Recommendations for an incom-
ing query are then computed by processing the posting lists
associated with the terms composing the query.

Both approaches su⇥er from crucial time or space ine⇤-
ciencies. The former approach requires �(m · |Q| · |T |) time
for each suggestion, thus making it unusable in any online
recommender system. As far as the latter approach is con-
cerned, it has its main drawback in the space occupancy.
Indeed, time complexity is su⇤ciently low (i.e., O(m · |Q|))
for computing recommendations. Storing all the stable dis-
tributions requires to store |T | di⇥erent vectors of |Q| entries
each (namely, the ith entry of each vector is the probability
of the i-th query in the stable distribution of a term). The
space required to store these |T | · |Q| entries is unfortunately
prohibitive even for quite small query logs. For example, we
notice that using such a approach for the TQGraph built over
the relatively small MSN query log would ask to store a total
of 13 � 1012 entries which is clearly not feasible in any real
system.
In the following we show how the two above-mentioned

��

���

���

���

���

���

���

�	�

�� ����� ������ ������ ������


�
�
��
��
��
��
���

��
��
�
���
���
�


������������������

���� ��������

�!"!�#$�%�
�!"!�#$�%�
�!"!�#$�%&

Figure 2: Dissimilarity (in percentage) for the top-5
suggestions as a function of the pruning threshold
p, measured on the MSN (top) and Yahoo! (bottom)
query logs. The curves refer to di�erent values of
the parameter � used in the RWR.

drawbacks can be avoided by using three di⇥erent optimiza-
tions, namely pruning, bucketing, and compression. The
goal is to sensibly reduce space requirements, thus making
our query suggestion method viable.

Pruning Lists. In order to reduce the space occupancy of
the latter approach we consider to prune unnecessary entries
in each list. The idea is to store only the probabilities of the
top-p entries of each stable distribution, where p is a user
defined threshold. In this way we require to store p entries
per term instead of |Q|.5 The total number of entries to
be stored becomes thus p · |T |, with a large saving in space
occupancy when p ⇤ |Q|. Obviously, this pruning phase
comes at the price of introducing errors in the scores com-
puted by the recommender. Assume that the k suggestions
for a query q = {t1, t2, . . . , tm} are the queries q1, q2, . . . , qk.
The pruning phase introduces an error whenever one of these
top-k queries has been pruned in the list of at least one of
the terms ti ⌅ q.
We evaluated experimentally the e⇥ects of pruning, and

reported in Figure 2 the results of these tests. In partic-
ular we measured the average dissimilarities for the top-5
suggestions returned before and after pruning, by varying
the number p of entries maintained for each term. Dissim-
ilarity is simply measured as the percentage of results that
di⇥er with respect to the ones obtained with the integral
lists. This experiment has been repeated by varying also
the parameter � used in the RWR. In both cases the largest
loss is obtained for RWR � = 0.9. This is due to the fact

5The probability of a pruned query is assumed to be 0.



Pruning posting lists

• sort postings by probability and prune them 
at a reasonable threshold p, e.g. 20,000 

computed on the TQGraph are of the same quality of those
computed by the QFG-based method.

Resuming, we have shown that TQGraph-based recom-
mendations outperform in terms of quality those produced
by the QFG-based method. In particular, TQGraph-based
recommendations are able to “cover” a very large fraction
(⇥99%) of users’ queries. Furthermore, as we shall present
and analyze in the following section, TQGraph can be pre-
processed in order to obtain an “inverted list”-based repre-
sentation of the TQGraph that allows a very fast generation
of suggestions “on-the-fly”.

5. EFFICIENCY OF TQGRAPH
Since query suggestions have to be served online, a query

recommender must compute them e⇤ciently, possibly in
real-time. In the remainder of this section we introduce some
novel techniques allowing the e⇤cient generation of recom-
mendations at query time. In particular, we show that the
proposed techniques are peculiar of the TQGraph as they
are enabled by the specific term-centric model it uses. We
recall that given an incoming query q, the generation of sug-
gestions requires to compute RWRs on the TQGraph form
the nodes associated with the terms occurring in the query.
For each term t, the stable probability distribution result-

ing from the RWR is represented by a vector rt that scores
queries in Q according to the probability of reaching them in
a random walk on the TQGraph starting from t. As discussed
in Section 3, given an incoming query q = {t1, . . . , tm}, our
recommender system returns the k queries having the largest
probabilities in the Hadamard product

�m
i=1 rti .

Before introducing our optimized solution we want to
point out the major drawbacks of the two trivial approaches
that can be used for computing suggestions using our model.

The most trivial approach consists in simply computing
the RWR on the TQGraph for each term ti in the incoming
query as it arrives, and in multiplying the resulting stable
distributions.

The second (less) trivial approach, instead, provides to
store the precomputed stable distributions for all the terms
appearing in T . To improve e⇤ciency, we can resort to use
an index on which the stationary distribution of the random
walks for terms in T are stored as lists of postings, where
each posting is given by the identifier of the query (queryID),
along with its probability. Recommendations for an incom-
ing query are then computed by processing the posting lists
associated with the terms composing the query.

Both approaches su⇥er from crucial time or space ine⇤-
ciencies. The former approach requires �(m · |Q| · |T |) time
for each suggestion, thus making it unusable in any online
recommender system. As far as the latter approach is con-
cerned, it has its main drawback in the space occupancy.
Indeed, time complexity is su⇤ciently low (i.e., O(m · |Q|))
for computing recommendations. Storing all the stable dis-
tributions requires to store |T | di⇥erent vectors of |Q| entries
each (namely, the ith entry of each vector is the probability
of the i-th query in the stable distribution of a term). The
space required to store these |T | · |Q| entries is unfortunately
prohibitive even for quite small query logs. For example, we
notice that using such a approach for the TQGraph built over
the relatively small MSN query log would ask to store a total
of 13 � 1012 entries which is clearly not feasible in any real
system.
In the following we show how the two above-mentioned

��

���

���

���

���

���

���

�	�

�� ����� ������ ������ ������


�
�
��
��
��
��
���

��
��
�
���
���
�


������������������

���� ��������

�!"!�#$�%�
�!"!�#$�%�
�!"!�#$�%&

Figure 2: Dissimilarity (in percentage) for the top-5
suggestions as a function of the pruning threshold
p, measured on the MSN (top) and Yahoo! (bottom)
query logs. The curves refer to di�erent values of
the parameter � used in the RWR.

drawbacks can be avoided by using three di⇥erent optimiza-
tions, namely pruning, bucketing, and compression. The
goal is to sensibly reduce space requirements, thus making
our query suggestion method viable.

Pruning Lists. In order to reduce the space occupancy of
the latter approach we consider to prune unnecessary entries
in each list. The idea is to store only the probabilities of the
top-p entries of each stable distribution, where p is a user
defined threshold. In this way we require to store p entries
per term instead of |Q|.5 The total number of entries to
be stored becomes thus p · |T |, with a large saving in space
occupancy when p ⇤ |Q|. Obviously, this pruning phase
comes at the price of introducing errors in the scores com-
puted by the recommender. Assume that the k suggestions
for a query q = {t1, t2, . . . , tm} are the queries q1, q2, . . . , qk.
The pruning phase introduces an error whenever one of these
top-k queries has been pruned in the list of at least one of
the terms ti ⌅ q.
We evaluated experimentally the e⇥ects of pruning, and

reported in Figure 2 the results of these tests. In partic-
ular we measured the average dissimilarities for the top-5
suggestions returned before and after pruning, by varying
the number p of entries maintained for each term. Dissim-
ilarity is simply measured as the percentage of results that
di⇥er with respect to the ones obtained with the integral
lists. This experiment has been repeated by varying also
the parameter � used in the RWR. In both cases the largest
loss is obtained for RWR � = 0.9. This is due to the fact

5The probability of a pruned query is assumed to be 0.

O(|T|) lists, each of size O(p) and no loss in quality!



Bucketing probabilities
• Most space used for storing probabilities

• Given ε < 1, we can arrange postings in 
buckets implicitly coding the approximate 
probabilities

!"#$%&%

!"#$%&'(

'&()*% ')()+*% ')+(),*% ')-().-/&**%

)*%+,-%$.(/01*$023+,-(,4("35$.(6,751(0-(*'5(
!"#$%&'(%1(,2*%0-57(2.(%(898(4$,:(!5$:(;(

90*'0-(23<=5*1(>35$051(%$5(1,$*57(2.(*'50$(?/1@()<,$51(%$5(
%&&$,A0:%*57(2.(*'5(B$5%*51*(2,3-7C(0@5@(D0(4,$(%EE(0(F(G@(

012"#3"4%014"5%#"6#"7"1389:1%:;%3<"%=>=7%
?:$6@3"4%:1%3<"%!AB#86<C%!<"%D"5-?:1%-7%$84"%
@6%:;%3"#$%1:4"7(%6:791E7%8#"%3<"%7389:18#F%
4-73#-G@9:1%28D@"7C%



Bucketing probabilities
• Most space used for storing probabilities

• Given ε < 1, we can arrange postings in 
buckets implicitly coding the approximate 
probabilities

!"#$%&%

!"#$%&'(

'&()*% ')()+*% ')+(),*% ')-().-/&**%

)*%+,-%$.(/01*$023+,-(,4("35$.(6,751(0-(*'5(
!"#$%&'(%1(,2*%0-57(2.(%(898(4$,:(!5$:(;(

90*'0-(23<=5*1(>35$051(%$5(1,$*57(2.(*'50$(?/1@()<,$51(%$5(
%&&$,A0:%*57(2.(*'5(B$5%*51*(2,3-7C(0@5@(D0(4,$(%EE(0(F(G@(

012"#3"4%014"5%#"6#"7"1389:1%:;%3<"%=>=7%
?:$6@3"4%:1%3<"%!AB#86<C%!<"%D"5-?:1%-7%$84"%
@6%:;%3"#$%1:4"7(%6:791E7%8#"%3<"%7389:18#F%
4-73#-G@9:1%28D@"7C%

• Each entry coded with a few bits, e.g., 11-19 bits 
• ~5x reduction!
• no loss in quality!



Caching posting lists

• achieving in-memory query suggestion

MSN query log
p useful somewhat not useful

5, 000 56% 17% 27%

20, 000 55% 15% 30%

200, 000 55% 15% 30%

Yahoo! query log
p useful somewhat not useful

5, 000 46% 29% 25%

20, 000 47% 29% 24%

200, 000 46% 28% 26%

Table 7: E�ectiveness of the suggestions provided
with pruning and bucketing. The results for both
the MSN (top) and Yahoo! (bottom) query logs are
reported for ⇥ = 0.95 and � = 0.9, by varying p.

47.12% and 28.14% of the useful suggestions generated us-
ing the whole lists built from the Yahoo! query log are lost
due to pruning and approximation. We observe however,
that we are measuring exact di�erences in sets of results.
This measure might not actually capture the global qual-
ity of the set of suggestions provided. It could happen in
fact (and we will see that it often actually happens), that a
good query suggested by using the whole lists is evicted by
the set of suggestions due to pruning and bucketing to make
place to a di�erent query of comparable quality. The di�er-
ences in the probabilities among the queries retrieved which
are close to the fifth position, are in fact so small that our
approximation could swap two queries having a very similar
probability. This has a negligible e�ect on the overall quality
of the suggestions provided, but it accounts for a 20% error
according to our metrics. In order to verify this hypothesis,
we thus conducted a new user study to evaluate the rec-
ommendations generated with the index exploiting pruning
(p = 5, 000; 20, 000; 200, 000) and bucketing (⇥ = 0.95).

Table 7 reports the results of this new user study, con-
ducted exactly as discussed in Section 4. By comparing the
figures reported in Table 3 and 7, we can see that the qual-
ity of recommendations as judged by our assessors does not
change remarkably. The experiment confirms our hypothe-
sis: even if some of the lowest-ranked top-5 recommendations
computed on the whole RWRs lists are lacking in the set of
recommendations generated by using the pruned and approx-
imated index, they are in most cases replaced with queries of
similar quality even according to human judgements.

6. SCALING UP SUGGESTION BUILDING
To further improve query suggestion response time in the

case even the pruned and compressed index discussed above
does not fit into the main memory of the computer used for
generating suggestion, we can exploit caching to improve
throughput and scalability. It is in fact worth remarking
that while query popularity changes significantly over time,
the usage of terms in queries presents a higher temporal
locality [3].

As we have discussed in the previous section, our index
is accessed by query terms. For each term t occurring in
queries of the log, we have a posting list consisting of p pairs
of query IDs and (approximated) steady-state probabilities

��

���

���

���

���

����

�� �� �� �� ��� ���

	

��


��
�

��
���
��
�

��

��
�

����
����
�����

������� !
�"�#��

$%����
���
���������'����
��%����
���
�����&���'����
���%����
���
���������'����

$%����
���
�����&���'����
��%����
���
�����&���'����
���%����
���
�����&�	�'����

Figure 4: Miss ratio of our cache as a function of
its size for di�erent values of p. Results obtained
on both the two query logs MSN (top) and Yahoo!
(down) are reported.

of reaching such queries by performing a RWR from t. At
recommendation-generation time, the lists corresponding to
each term occurring in the incoming query are retrieved and
their probabilities multiplied. Therefore, in order to speed-
up the recommendation scoring phase we can adopt a cache
to keep in memory a“working set”of“likely-to-be-used”lists.
Each entry of the cache stores p bucketed queryIDs, and is
accessed by using the associated term as the key. The cache
can be managed with a simple “Least Recently Used” (LRU)
policy consisting in replacing, when needed, the oldest list
in the cache.

Experiments. In order to assess empirically the benefits
of adopting such a caching mechanism, we consider two por-
tions of the query logs not used to learn the TQGraph model.
We extract from such portions the queries and we sort them
by timestamp. From each query we parse the terms and
we build the stream of term requests by keeping the order
induced by query timestamps. Each time a term t appears
in the stream, we check if the cache contains the associated
list. If not we count a cache miss and we store t and the as-
sociated posting list in the cache, possibly evicting another
entry according to the LRU policy. Three di�erent values
of p = 5, 000, 20, 000, 200, 000 are considered in the exper-
iments, while the relative average bits per entry b are set
as reported in Table 5. As in the previous experiments the
RWR s are computed by setting � = 0.9. The number of
entries fitting in a cache of s bits is thus given by s/(p · b).



Conclusions
• TQG model to overcome limitations of current query 

recommenders

• based on a principled, term-centric approach supporting rare and 
never-seen queries 

• deployment with a efficient inverted index resulting in effectiveness 
comparable/better to SoA approaches

• the pruning, bucketing, caching techniques proposed constitute a 
independent contribution in the area of efficiency in large scale RWR 
computations

• reduction of about 80% in the space occupancy w.r.t. 
uncompressed data structures

• in-memory RWRs on huge graphs with   90+ % hit-ratio cache



Open Questions
• Is it possible to speed up computation of RWR 

from a “single” node?

• Is it possible to combine multiple RWRs in single 
iteration of the process?

• Other applications?

• Is there any benefit in using the softAND 
coefficient?

• Are there any other spectral method one could use 
for the problems I presented?



Questions

• Fabrizio Silvestri
ISTI - CNR, Pisa, Italy
fabrizio.silvestri@isti.cnr.it
http://hpc.isti.cnr.it/~fabriziosilvestri
http://google.it/search?q=fabrizio+silvestri

http://google.it/search?q=fabrizio+silvestri
http://google.it/search?q=fabrizio+silvestri

