Anomalous statistics of dynamical systems on networks

Stefan Thurner

www. complex-systems.meduniwien.ac.at
www.santafe.edu

with R. Hanel and M. Gell-Mann
PNAS 108 (2011) 6390-6394
Europhys Lett 93 (2011) 20006
Europhys Lett 96 (2011) 50003

Why are networks cool?

- Tell you who interacts with whom
- Same statistical system on different networks can behave totally different

How?

- Simple example: Ising spins on constant-connectency networks
- Show: this is not of Boltzmann Gibbs type - give exact statistics

Why Statistics ?

- Central concept: understanding macroscopic system behavior on the basis of microscopic elements and interactions \rightarrow entropy
- Functional form of entropy: must encode information on interactions too!
- Entropy relates number of states to an extensive quantity, plays fundamental role in the thermodynamical description
- Hope: 'thermodynamical' relations \rightarrow phase diagrams, etc.

3 Ingredients

- Entropy has scaling properties \rightarrow what are entropies for non-ergodic systems?
- How does entropy grow with system size? \rightarrow what n.e. system is realized?
- Symmetry in thermodynamic systems \rightarrow if broken: entropy has no thermodynamic meaning \rightarrow forget dream about handling system with TD

What is the entropy of strongly interacting systems?

Appendix 2, Theorem 2

C.E. Shannon, The Bell System Technical Journal 27, 379-423, 623-656, 1948.

Entropy

$$
S[p]=\sum_{i=1}^{W} g\left(p_{i}\right)
$$

$p_{i} \ldots$ probability for a particular (micro) state of the system, $\sum_{i} p_{i}=1$
W ... number of states
$g \ldots$ some function. What does it look like?

The Shannon-Khinchin axioms

- SK1: S depends continuously on $p \rightarrow g$ is continuous
- SK2: entropy maximal for equi-distribution $p_{i}=1 / W \rightarrow g$ is concave
- SK3: $S\left(p_{1}, p_{2}, \cdots, p_{W}\right)=S\left(p_{1}, p_{2}, \cdots, p_{W}, 0\right) \rightarrow g(0)=0$
- SK4: $S(A+B)=S(A)+S(B \mid A)$

Theorem:

If SK1-SK4 hold, the only possibility is Boltzmann-Gibbs-Shannon entropy

$$
S[p]=\sum_{i=1}^{W} g\left(p_{i}\right) \quad \text { with } \quad g(x)=-x \ln x
$$

Shannon-Khinchin axiom 4 is non-sense for NWs

\rightarrow SK4 violated for strongly interacting systems
\rightarrow nuke SK4

SK4 corresponds to weak interactions or Markovian processes

The Complex Systems axioms

- SK1 holds
- SK2 holds
- SK3 holds
- $S_{g}=\sum_{i}^{W} g\left(p_{i}\right), W \gg 1$

Theorem: All systems for which these axioms hold
(1) can be uniquely classified by 2 numbers, c and d
(2) have the unique entropy

$$
S_{c, d}=\frac{e}{1-c+c d}\left[\sum_{i=1}^{W} \Gamma\left(1+d, 1-c \ln p_{i}\right)-\frac{c}{e}\right] \quad e \cdots \text { Euler const }
$$

The argument: generic mathematical properties of g

- Scaling transformation $W \rightarrow \lambda W$: how does entropy change ?

Mathematical property I: an unexpected scaling law !

$$
\lim _{W \rightarrow \infty} \frac{S_{g}(W \lambda)}{S_{g}(W)}=\ldots=\lambda^{1-c}
$$

Theorem 1: Define $f(z) \equiv \lim _{x \rightarrow 0} \frac{g(z x)}{g(x)}$ with $(0<z<1)$. Then for systems satisfying SK1, SK2, SK3: $f(z)=z^{c}, 0<c \leq 1$

Theorem 1

Let g be a continuous, concave function on $[0,1]$ with $g(0)=0$ and let $f(z)=\lim _{x \rightarrow 0^{+}} g(z x) / g(x)$ be continuous, then f is of the form $f(z)=z^{c}$ with $c \in(0,1]$.

Proof. Note that $f(a b)=\lim _{x \rightarrow 0} g(a b x) / g(x)=$ $\lim _{x \rightarrow 0}(g(a b x) / g(b x))(g(b x) / g(x))=f(a) f(b)$. All pathological solutions are excluded by the requirement that f is continuous. So $f(a b)=f(a) f(b)$ implies that $f(z)=z^{c}$ is the only possible solution of this equation. Further, since $g(0)=0$, also $\lim _{x \rightarrow 0} g(0 x) / g(x)=0$, and it follows that $f(0)=0$. This necessarily implies that $c>0 . f(z)=z^{c}$ also has to be concave since $g(z x) / g(x)$ is concave in z for arbitrarily small, fixed $x>0$. Therefore $c \leq 1$.

Mathematical properties II: yet another one !!

$$
\lim _{W \rightarrow \infty} \frac{S\left(W^{1+a}\right)}{S(W) W^{a(1-c)}}=\ldots=(1+a)^{d}
$$

Theorem 2: Define $h_{c}(a) \equiv \ldots$

Theorem 2

Let g be like in Theorem 1 and let $f(z)=z^{c}$ then h_{c} given in Eq. (8) is a constant of the form $h_{c}(a)=(1+a)^{d}$ for some constant d.

Proof. We determine $h_{c}(a)$ again by a similar trick as we have used for f.

$$
\begin{aligned}
h_{c}(a) & =\lim _{x \rightarrow 0} \frac{g\left(x^{a+1}\right)}{x^{a c} g(x)}=\frac{g\left(\left(x^{b}\right)\left(\frac{a+1}{b}-1\right)+1\right.}{\left(x^{b}\right)\left(\frac{a+1}{b}-1\right) c}{ }_{g\left(x^{b}\right)} \frac{g\left(x^{b}\right)}{x^{(b-1) c} g(x)} \\
& =h_{c}\left(\frac{a+1}{b}-1\right) h_{c}(b-1),
\end{aligned}
$$

for some constant b. By a simple transformation of variables, $a=b b^{\prime}-1$, one gets $h_{c}\left(b b^{\prime}-1\right)=h_{c}(b-1) h_{c}\left(b^{\prime}-1\right)$. Setting $H(x)=h_{c}(x-1)$ one again gets $H\left(b b^{\prime}\right)=H(b) H\left(b^{\prime}\right)$. So $H(x)=x^{d}$ for some constant d and consequently $h_{c}(a)$ is of the form $(1+a)^{d}$.

Summary

Strongly interacting systems \rightarrow SK1-SK3 hold
$\rightarrow \lim _{W \rightarrow \infty} \frac{S_{g}(W \lambda)}{S_{g}(W)}=\lambda^{1-c}$
$0 \leq c<1$
$\rightarrow \lim _{W \rightarrow \infty} \frac{S\left(W^{1+a}\right)}{S(W) W^{a(1-c)}}=(1+a)^{d}$
d real

Remarkable:

- all systems are characterized by 2 exponents: (c, d) - universality class
- Which S fulfills above? $\rightarrow S_{c, d}=\sum_{i=1}^{W} r e \Gamma\left(1+d, 1-c \ln p_{i}\right)-r c$
- Which distribution maximizes $S_{c, d} \rightarrow p_{c, d}(x)=e^{-\frac{d}{1-c}\left[W_{k}\left(B\left(1+\frac{x}{r}\right)^{\frac{1}{d}}\right)-W_{k}(B)\right]}$
$r=\frac{1}{1-c+c d}, B=\frac{1-c}{c d} \exp \left(\frac{1-c}{c d}\right), \Gamma(a, b)=\int_{b}^{\infty} d t t^{a-1} \exp (-t) ;$ Lambert- W : solution to $x=W(x) e^{W(x)}$

Holds very generically

- for all non-ergodic systems
- for all non-Markovian systems
(complex systems)

Examples

- $S_{1,1}=\sum_{i} g_{1,1}\left(p_{i}\right)=-\sum_{i} p_{i} \ln p_{i}+1$ (BG entropy)
- $S_{q, 0}=\sum_{i} g_{q, 0}\left(p_{i}\right)=\frac{1-\sum_{i} p_{i}^{q}}{q-1}+1$ (Tsallis entropy)
- $S_{1, d>0}=\sum_{i} g_{1, d}\left(p_{i}\right)=\frac{e}{d} \sum_{i} \Gamma\left(1+d, 1-\ln p_{i}\right)-\frac{1}{d}$ (AP entropy)

Classification of entropies: order in the zoo

entropy		c	d
$S_{B G}=\sum_{i} p_{i} \ln \left(1 / p_{i}\right)$		1	1
- $S_{q<1}=\frac{1-\sum p_{i}^{q}}{q-1}$	$(q<1)$	$c=q<1$	0
- $S_{\kappa}=\sum_{i} p_{i}\left(p_{i}^{\kappa}-p_{i}^{-\kappa}\right) /(-2 \kappa)$	$(0<\kappa \leq 1)$	$c=1-\kappa$	0
- $S_{q>1}=\frac{1-\sum p_{i}^{q}}{q-1}$	$(q>1)$	1	0
- $S_{b}=\sum_{i}\left(1-e^{-b p_{i}}\right)+e^{-} b-1$	$(b>0)$	1	0
- $S_{E}=\sum_{i} p_{i}\left(1-e^{\frac{p_{i}-1}{p_{i}}}\right)$		1	0
- $S_{\eta}=\sum_{i} \Gamma\left(\frac{\eta+1}{\eta},-\ln p_{i}\right)-p_{i} \Gamma\left(\frac{\eta+1}{\eta}\right)$	$(\eta>0)$	1	$d=1 / \eta$
- $S_{\gamma}=\sum_{i} p_{i} \ln ^{1 / \gamma}\left(1 / p_{i}\right)$		1	$d=1 / \gamma$
- $S_{\beta}=\sum_{i} p_{i}^{\beta} \ln \left(1 / p_{i}\right)$		$c=\beta$	
$S_{c, d}=\sum_{i} e r \Gamma\left(d+1,1-c \ln p_{i}\right)-c r$		c	d

Distribution functions of CS

- $p_{(1,1)} \rightarrow$ exponentials (Boltzmann distribution)
- $p_{(q, 0)} \rightarrow$ power-laws (q-exponentials)
- $p_{(1, d>0)} \rightarrow$ stretched exponentials
- $p_{(c, d)}$ all others \rightarrow Lambert- W exponentials

NO OTHER POSSIBILITIES

q-exponentials

Lambert-exponentials

The world beyond Shannon

Scaling property opens door to ...

- ...bring order in the zoo of entropies through universality classes
- ...understand ubiquity of power laws (and extremely similar functions)
- ... understand where Tsallis entropy comes from
- ...understand statistical systems on networks

The requirement of extensivity

Needed for TD program to work: extensive entropies

System has N elements $\rightarrow W(N) \ldots$ phasespace volume (system property) Extensive: $S\left(W_{A+B}\right)=S\left(W_{A}\right)+S\left(W_{B}\right)=\cdots$ [use scaling property I] \rightarrow

Can proof: extensive is equivalent to $W(N)=\exp \left[\frac{d}{1-c} W_{k}\left(\mu(1-c) N^{\frac{1}{d}}\right)\right]$

$$
\begin{aligned}
& c=\lim _{N \rightarrow \infty} 1-\frac{1}{N} \frac{W^{\prime}(N)}{W(N)} \\
& d=\lim _{N \rightarrow \infty} \log W\left(\frac{1}{N} \frac{W}{W^{\prime}}+c-1\right)
\end{aligned}
$$

Message: Growth of phasespace volume determines entropy and vice versa

Examples

- $W(N)=2^{N} \rightarrow(c, d)=(1,1)$ and system is BG
- $W(N)=N^{b} \rightarrow(c, d)=\left(1-\frac{1}{b}, 0\right)$ and system is Tsallis
- $W(N)=\exp \left(\lambda N^{\gamma}\right) \rightarrow(c, d)=\left(1, \frac{1}{\gamma}\right)$
- ...

Can explicitly verify statements in theory of binary processes and spinsystems on networks

What does this imply further ?

- almost all systems are Boltzmann Gibbs type
- to be non-BG: phasespace has to collapse to a set of measure zero
- this means: bulk of statistically relevant degrees of freedom is frozen
- only systems where dynamics is confined its surface can be non-BG

Hypothesize applications in:

- Self Organized Critical systems, sandpiles ...
- Spin systems with dense meta-structures, such as spin-domains, vortices, instantons, caging, etc.
- Anomalous diffusion (porous media)

2 Examples

Spin system on networks

- each node i has 2 states: $s_{i}= \pm 1$; YES / NO (e.g. opinion)
- each node i has initial ('kinetic') energy ϵ (e.g. free will)
- (anti) parallel spins add $J^{+(-)}$to energy $E ; \Delta J=J^{-}-J^{+}$
- total energy in the system: $E=\epsilon N$
- spin-flip of node can occur if node has enough energy for it (microcanonic)
\rightarrow Can show entropy depends on network !!!

Phasespace volume

- N nodes, L links, $k=N / L, \phi=N / N(N-1)$
$n^{+} \ldots$ spins pointing up, μ cost for link
- phase space volume: $\Omega=\binom{N}{n^{+}}$(MC partition function)
- derive n^{+}
E can be estimated by
$E=\frac{L\left[\left(n^{+}\left(n^{+}-1\right)+n^{-}\left(n^{-}-1\right)\right) J^{+}+2 n^{+} n^{-} J^{-}\right]}{N(N-1)}+\mu L \sim 2 \phi n^{+}\left(N-n^{+}\right) \Delta J$
and

$$
n^{+}=\frac{N}{2}\left(1-\sqrt{1-\frac{2 \epsilon}{k \Delta J}}\right) \sim \frac{\epsilon}{2 \phi \Delta J}
$$

Phasespace volume and NW growth

- Example 1: NW grows such that connectivity k is constant as it grows $k=$ const. $\rightarrow n^{+}=a N$ with $0<a<1$ constant

Sterling's approximation $W=\binom{N}{a N} \sim b^{N}$ with $b=a^{-a}(1-a)^{a-1}>1$
From before: $c=1$ and $d=1 \rightarrow$ entropy of the system is BG

- Example 2: NW growth: join-a-club network new node links to $\alpha N(t)$ random neighbors, $\alpha<1$

What is this?

Phasespace volume and NW growth

- Example 2: NW growth: join-a-club network new node links to $\alpha N(t)$ random neighbors, $\alpha<1$ constant connectancy, $\phi=$ const. $\rightarrow k=\phi N$ and $n^{+} \sim \epsilon / 2 \phi \Delta J=$ const. $W=\binom{N}{n^{+}} \sim\left(N / n^{+}\right)^{n^{+}} \exp \left(-n^{+}\right) \propto N^{n^{+}}$

From before $(c, d)=\left(1-\frac{1}{n^{+}}, 0\right)$, meaning Tsallis q-entropy with $q=c$

- Note that intermediate cases with $k \propto N^{\gamma}$ with $0<\gamma<1$, require generalized entropies with $c=1$ and $d=1 / \gamma$.

Bonus track: Super-diffusion: Accelerating random walks

- up-down decision of walker is followed by $\left[N^{\beta}\right]_{+}$steps in same direction
- $k(N)$ number of random decisions up to step $N \rightarrow k(N) \sim N^{1-\beta}$
- number of all possible sequences $W(N) \sim 2^{N^{1-\beta}} \rightarrow(c, d)=\left(1, \frac{1}{1-\beta}\right)$
- note continuum limit of such processes is well defined !

Conclusions

- Interactions on networks may violate Shannon-Khinchin axiom 4
- Keep Shannon-Khinchin axioms 1-3, and $S=\sum g$ (CS in general)
- Showed: macroscopic statistical systems can be uniquely classified in terms of 2 scaling exponents (c, d) - analogy to critical exponents
- Single entropy covers all systems: $S_{c, d}=r e \sum_{i} \Gamma\left(1+d, 1-c \ln p_{i}\right)-r c$
- All known entropies of SK1-SK3 systems are special cases
- Distribution functions of all systems are Lambert- W exponentials. There are no other options
- Phasespace growth uniquely determines entropy
- Statistical systems on networks: examples
constant connectivity, $k \rightarrow$ Boltzmann-Gibbs
constant connectancy $\phi \rightarrow$ Tsallis entropy

A note on Rényi entropy

It is it not sooo relevant for CS. Why?

- Relax Khinchin axiom 4:
$S(A+B)=S(A)+S(B \mid A) \rightarrow S(A+B)=S(A)+S(B) \rightarrow$ Rényi entropy
- $S_{R}=\frac{1}{\alpha-1} \ln \sum_{i} p_{i}^{\alpha}$ violates our $S=\sum_{i} g\left(p_{i}\right)$

But: our above argument also holds for Rényi-type entropies !!!

$$
\begin{gathered}
S=G\left(\sum_{i=1}^{W} g\left(p_{i}\right)\right) \\
\lim _{W \rightarrow \infty} \frac{S(\lambda W)}{S(W)}=\lim _{R \rightarrow \infty} \frac{G\left(\frac{f_{g}(z)}{z} G^{-1}(R)\right)}{R}=[\text { for } G \equiv \ln]=1
\end{gathered}
$$

The Lambert-W: a reminder

- solves $x=W(x) e^{W(x)}$
- inverse of $p \ln p=[W(p)]^{-1}$
- delayed differential equations $\dot{x}(t)=\alpha x(t-\tau) \rightarrow x(t)=e^{\frac{1}{\tau} W(\alpha \tau) t}$

Example: a physical system

equation of motion for particle i in system of N overdamped particles

$$
\mu \vec{v}_{i}=\sum_{j \neq i} \vec{J}\left(\vec{r}_{i}-r_{j}\right)+\vec{F}\left(\vec{r}_{i}\right)+\eta\left(\vec{r}_{i}, t\right)
$$

$v_{i} \ldots$ velocity of i th particle $\quad \mu \ldots$ viscosity of medium $\quad F \ldots$ external force
$\vec{J}(\vec{r})=G\left(\frac{|\vec{r}|}{\lambda}\right) \hat{r} \ldots$ repulsive particle-particle interaction
$\eta \ldots$ uncorrelated thermal noise $\langle\eta\rangle=0$ and $\left\langle\eta^{2}\right\rangle=\frac{k T}{\mu}$
λ... characteristic length of short range pairwise interaction

Shown with FP approach and simulation (Curado, Nobre, et al. PRL 2011)

- low temperature: Tsallis system $(c, d)=(q, 0)$
- high temperature limit $\rightarrow \mathrm{BG}$ system $(c, d)=(1,1)$

