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Why are networks cool?

• Tell you who interacts with whom

• Same statistical system on different networks can behave totally different
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How ?

• Simple example: Ising spins on constant-connectency networks

• Show: this is not of Boltzmann Gibbs type – give exact statistics
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Why Statistics ?

• Central concept: understanding macroscopic system behavior on the basis
of microscopic elements and interactions → entropy

• Functional form of entropy: must encode information on interactions too!

• Entropy relates number of states to an extensive quantity, plays funda-
mental role in the thermodynamical description

• Hope: ’thermodynamical’ relations → phase diagrams, etc.
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3 Ingredients

• Entropy has scaling properties → what are entropies for non-ergodic
systems?

• How does entropy grow with system size? → what n.e. system is realized?

• Symmetry in thermodynamic systems → if broken: entropy has no
thermodynamic meaning → forget dream about handling system with TD
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What is the entropy of strongly interacting systems?
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Appendix 2, Theorem 2

C.E. Shannon, The Bell System Technical Journal 27, 379-423, 623-656, 1948.
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Entropy

S[p] =

W∑
i=1

g(pi)

pi ... probability for a particular (micro) state of the system,
∑
i pi = 1

W ... number of states

g ... some function. What does it look like?
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The Shannon-Khinchin axioms

• SK1: S depends continuously on p → g is continuous

• SK2: entropy maximal for equi-distribution pi = 1/W → g is concave

• SK3: S(p1, p2, · · · , pW ) = S(p1, p2, · · · , pW , 0) → g(0) = 0

• SK4: S(A+B) = S(A) + S(B|A)

Theorem:
If SK1-SK4 hold, the only possibility is Boltzmann-Gibbs-Shannon entropy

S[p] =

W∑
i=1

g(pi) with g(x) = −x lnx
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Shannon-Khinchin axiom 4 is non-sense for NWs

→ SK4 violated for strongly interacting systems

→ nuke SK4

SK4 corresponds to weak interactions or Markovian processes
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The Complex Systems axioms

• SK1 holds

• SK2 holds

• SK3 holds

• Sg =
∑W
i g(pi) , W � 1

Theorem: All systems for which these axioms hold

(1) can be uniquely classified by 2 numbers, c and d

(2) have the unique entropy

Sc,d =
e

1− c+ cd

[
W∑
i=1

Γ (1 + d , 1− c ln pi)−
c

e

]
e · · ·Euler const
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The argument: generic mathematical properties of g

• Scaling transformation W → λW : how does entropy change ?
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Mathematical property I: an unexpected scaling law !

lim
W→∞

Sg(Wλ)

Sg(W )
= ... = λ1−c

Theorem 1: Define f(z) ≡ limx→0
g(zx)
g(x) with (0 < z < 1). Then for

systems satisfying SK1, SK2, SK3: f(z) = zc, 0 < c ≤ 1
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Theorem 1

Let g be a continuous, concave function on [0, 1] with g(0) = 0 and let
f(z) = limx→0+ g(zx)/g(x) be continuous, then f is of the form f(z) = zc

with c ∈ (0, 1].

Proof. Note that f(ab) = limx→0 g(abx)/g(x) =
limx→0(g(abx)/g(bx))(g(bx)/g(x)) = f(a)f(b). All pathological solutions
are excluded by the requirement that f is continuous. So f(ab) = f(a)f(b)
implies that f(z) = zc is the only possible solution of this equation. Further,
since g(0) = 0, also limx→0 g(0x)/g(x) = 0, and it follows that f(0) = 0.
This necessarily implies that c > 0. f(z) = zc also has to be concave since
g(zx)/g(x) is concave in z for arbitrarily small, fixed x > 0. Therefore
c ≤ 1.
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Mathematical properties II: yet another one !!

lim
W→∞

S(W 1+a)

S(W )W a(1−c) = ... = (1 + a)d

Theorem 2: Define hc(a) ≡ ...
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Theorem 2

Let g be like in Theorem 1 and let f(z) = zc then hc given in Eq. (8) is a
constant of the form hc(a) = (1 + a)d for some constant d.

Proof. We determine hc(a) again by a similar trick as we have used for f .

hc(a) = limx→0
g(xa+1)
xacg(x) =

g

(
(xb)(

a+1
b
−1)+1

)
(xb)(

a+1
b
−1)cg(xb)

g(xb)

x(b−1)cg(x)

= hc
(
a+1
b − 1

)
hc (b− 1) ,

for some constant b. By a simple transformation of variables, a = bb′ − 1,
one gets hc(bb

′ − 1) = hc(b− 1)hc(b
′ − 1). Setting H(x) = hc(x− 1) one

again gets H(bb′) = H(b)H(b′). So H(x) = xd for some constant d and
consequently hc(a) is of the form (1 + a)d.
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Summary

Strongly interacting systems → SK1-SK3 hold

→ limW→∞
Sg(Wλ)
Sg(W ) = λ1−c 0 ≤ c < 1

→ limW→∞
S(W 1+a)

S(W )Wa(1−c) = (1 + a)d d real

Remarkable:

• all systems are characterized by 2 exponents: (c, d) – universality class

• Which S fulfills above? → Sc,d =
∑W
i=1 reΓ (1 + d , 1− c ln pi)− rc

•Which distribution maximizes Sc,d→pc,d(x) = e
− d

1−c

[
Wk

(
B(1+x

r )
1
d

)
−Wk(B)

]

r = 1
1−c+cd , B = 1−c

cd
exp

(
1−c
cd

)
, Γ(a, b) =

∫∞
b dt ta−1 exp(−t); Lambert-W : solution to x = W (x)eW (x)
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Holds very generically

• for all non-ergodic systems

• for all non-Markovian systems

(complex systems)
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Examples

• S1,1 =
∑
i g1,1(pi) = −

∑
i pi ln pi + 1 (BG entropy)

• Sq,0 =
∑
i gq,0(pi) =

1−
∑
i p
q
i

q−1 + 1 (Tsallis entropy)

• S1,d>0 =
∑
i g1,d(pi) = e

d

∑
i Γ (1 + d , 1− ln pi)− 1

d (AP entropy)

• ...
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Classification of entropies: order in the zoo

entropy c d
SBG =

∑
i pi ln(1/pi) 1 1

• Sq<1 =
1−
∑
p
q
i

q−1 (q < 1) c = q < 1 0

• Sκ =
∑

i pi(p
κ
i − p

−κ
i )/(−2κ) (0 < κ ≤ 1) c = 1− κ 0

• Sq>1 =
1−
∑
p
q
i

q−1 (q > 1) 1 0

• Sb =
∑

i(1− e
−bpi) + e−b− 1 (b > 0) 1 0

• SE =
∑

i pi(1− e
pi−1
pi ) 1 0

• Sη =
∑

i Γ(η+1
η ,− ln pi)− piΓ(η+1

η ) (η > 0) 1 d = 1/η

• Sγ =
∑

i pi ln
1/γ(1/pi) 1 d = 1/γ

• Sβ =
∑

i p
β
i ln(1/pi) c = β 1

Sc,d =
∑

i erΓ(d+ 1, 1− c ln pi)− cr c d
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Distribution functions of CS

• p(1,1) → exponentials (Boltzmann distribution)

• p(q,0) → power-laws (q-exponentials)

• p(1,d>0) → stretched exponentials

• p(c,d) all others → Lambert-W exponentials

NO OTHER POSSIBILITIES
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q-exponentials Lambert-exponentials
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The world beyond Shannon
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Scaling property opens door to ...

• ...bring order in the zoo of entropies through universality classes

• ...understand ubiquity of power laws (and extremely similar functions)

• ...understand where Tsallis entropy comes from

• ...understand statistical systems on networks
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The requirement of extensivity
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Needed for TD program to work: extensive entropies

System has N elements → W (N)... phasespace volume (system property)

Extensive: S(WA+B) = S(WA) + S(WB) = · · · [use scaling property I] →

Can proof: extensive is equivalent toW (N) = exp
[
d

1−cWk

(
µ(1− c)N 1

d

)]

c = lim
N→∞

1− 1

N

W ′(N)

W (N)

d = lim
N→∞

logW

(
1

N

W

W ′
+ c− 1

)

Message: Growth of phasespace volume determines entropy and vice versa
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Examples

• W (N) = 2N → (c, d) = (1, 1) and system is BG

• W (N) = N b → (c, d) = (1− 1
b, 0) and system is Tsallis

• W (N) = exp(λNγ) → (c, d) = (1, 1
γ)

• ...

Can explicitly verify statements in theory of binary processes and spin-
systems on networks
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What does this imply further ?

• almost all systems are Boltzmann Gibbs type

• to be non-BG: phasespace has to collapse to a set of measure zero

• this means: bulk of statistically relevant degrees of freedom is frozen

• only systems where dynamics is confined its surface can be non-BG

Hypothesize applications in:

• Self Organized Critical systems, sandpiles ...

• Spin systems with dense meta-structures, such as spin-domains, vortices,
instantons, caging, etc.

• Anomalous diffusion (porous media)
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2 Examples
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Spin system on networks

• each node i has 2 states: si = ±1 ; YES / NO (e.g. opinion)

• each node i has initial (’kinetic’) energy ε (e.g. free will)

• (anti) parallel spins add J+(−) to energy E; ∆J = J− − J+

• total energy in the system: E = εN

• spin-flip of node can occur if node has enough energy for it (microcanonic)

→ Can show entropy depends on network !!!
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Phasespace volume

• N nodes, L links, k = N/L, φ = N/N(N − 1)

n+ ... spins pointing up, µ cost for link

• phase space volume: Ω =
(
N
n+

)
(MC partition function)

• derive n+

E can be estimated by

E =
L [(n+(n+ − 1) + n−(n− − 1)) J+ + 2n+n−J−]

N(N − 1)
+µL ∼ 2φn+(N−n+)∆J

and

n+ =
N

2

(
1−

√
1− 2ε

k∆J

)
∼ ε

2φ∆J
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Phasespace volume and NW growth

• Example 1: NW grows such that connectivity k is constant as it grows

k = const. → n+ = aN with 0 < a < 1 constant

Sterling’s approximation W =
(
N
aN

)
∼ bN with b = a−a(1− a)a−1 > 1

From before: c = 1 and d = 1 → entropy of the system is BG

• Example 2: NW growth: join-a-club network

new node links to αN(t) random neighbors, α < 1

What is this ?
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N(t)=t

k i (t+1) = a N(t) 
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Phasespace volume and NW growth

• Example 2: NW growth: join-a-club network

new node links to αN(t) random neighbors, α < 1

constant connectancy, φ = const. → k = φN and n+ ∼ ε/2φ∆J = const.

W =
(
N
n+

)
∼ (N/n+)n

+
exp(−n+) ∝ Nn+

From before (c, d) = (1− 1
n+, 0), meaning Tsallis q-entropy with q = c

• Note that intermediate cases with k ∝ Nγ with 0 < γ < 1, require
generalized entropies with c = 1 and d = 1/γ.
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Bonus track: Super-diffusion: Accelerating random walks
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• up-down decision of walker is followed by [Nβ]+ steps in same direction

• k(N) number of random decisions up to step N → k(N) ∼ N1−β

• number of all possible sequences W (N) ∼ 2N
1−β → (c, d) = (1, 1

1−β)

• note continuum limit of such processes is well defined !

trento jul 23 2012 37



Conclusions
• Interactions on networks may violate Shannon-Khinchin axiom 4

• Keep Shannon-Khinchin axioms 1-3, and S =
∑
g (CS in general)

• Showed: macroscopic statistical systems can be uniquely classified in
terms of 2 scaling exponents (c, d) – analogy to critical exponents

• Single entropy covers all systems: Sc,d = re
∑
i Γ (1 + d , 1− c ln pi)− rc

• All known entropies of SK1-SK3 systems are special cases

• Distribution functions of all systems are Lambert-W exponentials. There
are no other options

• Phasespace growth uniquely determines entropy

• Statistical systems on networks: examples

constant connectivity, k → Boltzmann-Gibbs

constant connectancy φ → Tsallis entropy
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A note on Rényi entropy

It is it not sooo relevant for CS. Why?

• Relax Khinchin axiom 4:

S(A+B) = S(A)+S(B|A)→ S(A+B) = S(A)+S(B)→ Rényi entropy

• SR = 1
α−1 ln

∑
i p
α
i violates our S =

∑
i g(pi)

But: our above argument also holds for Rényi-type entropies !!!

S = G

(
W∑
i=1

g(pi)

)

lim
W→∞

S(λW )

S(W )
= lim
R→∞

G
(
fg(z)
z G−1(R)

)
R

= [for G ≡ ln] = 1
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The Lambert-W: a reminder

• solves x = W (x)eW (x)

• inverse of p ln p = [W (p)]
−1

• delayed differential equations ẋ(t) = αx(t− τ) → x(t) = e
1
τW (ατ)t
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Example: a physical system

equation of motion for particle i in system of N overdamped particles

µ~vi =
∑
j 6=i

~J(~ri − rj) + ~F (~ri) + η(~ri, t)

vi ... velocity of i th particle µ ... viscosity of medium F ... external force
~J(~r) = G

(
|~r|
λ

)
r̂ ... repulsive particle-particle interaction

η ... uncorrelated thermal noise 〈η〉 = 0 and 〈η2〉 = kT
µ

λ ... characteristic length of short range pairwise interaction

Shown with FP approach and simulation (Curado, Nobre, et al. PRL 2011)

• low temperature: Tsallis system (c, d) = (q, 0)

• high temperature limit → BG system (c, d) = (1, 1)
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