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Why are networks cool?

e Tell you who interacts with whom

e Same statistical system on different networks can behave totally different
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How ?

e Simple example: Ising spins on constant-connectency networks

e Show: this is not of Boltzmann Gibbs type — give exact statistics
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Why Statistics ?

e Central concept: understanding macroscopic system behavior on the basis
of microscopic elements and interactions — entropy

e Functional form of entropy: must encode information on interactions too!

e Entropy relates number of states to an extensive quantity, plays funda-
mental role in the thermodynamical description

e Hope: 'thermodynamical’ relations — phase diagrams, etc.

CESY FSym—
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3 Ingredients

e Entropy has scaling properties — what are entropies for non-ergodic
systems?

e How does entropy grow with system size? — what n.e. system is realized?

e Symmetry in thermodynamic systems — if broken: entropy has no
thermodynamic meaning — forget dream about handling system with TD
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What is the entropy of strongly interacting systems?
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Appendix 2, Theorem 2

C.E. Shannon, The Bell System Technical Journal 27, 379-423, 623-656, 1948.
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Entropy

pi ... probability for a particular (micro) state of the system, > .p; =1

W ... number of states

g ... some function. What does it look like?
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The Shannon-Khinchin axioms

e SK1: S depends continuously on p — ¢ is continuous

e SK2: entropy maximal for equi-distribution p;, = 1/W — ¢ is concave

o SK3: S(pl;pi";pW) — S(p17p27”. 7pW7O) — g(O) =0

o SK4: S(A+ B) = S(A) + S(B|A)

Theorem:
If SK1-SK4 hold, the only possibility is Boltzmann-Gibbs-Shannon entropy

w

Slp] = Zg(pi) with g¢g(z) = —zlnz

1=1
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Shannon-Khinchin axiom 4 is non-sense for NWs

— SK4 violated for strongly interacting systems

— nuke SK4

SK4 corresponds to weak interactions or Markovian processes
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The Complex Systems axioms

e SK1 holds

e SK2 holds

e SK3 holds

e Sy=21glp) W1

Theorem: All systems for which these axioms hold

(1) can be uniquely classified by 2 numbers, ¢ and d

(2) have the unique entropy

%4
€ C

Sc’dzl—chcd ;F(ler,l—clnpi)—g e - - - BEuler const
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The argument: generic mathematical properties of g

e Scaling transformation W — AW: how does entropy change ?
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Mathematical property |I: an unexpected scaling law !

Jim So(WA) — ... =)\

W—ro0 Sg(W)

Theorem 1: Define f(z) = lim, g g;(z;)) with (0 < z < 1). Then for

systems satisfying SK1, SK2, SK3: f(z) =2 0<c¢ <1
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Theorem 1

Let g be a continuous, concave function on [0,1] with ¢g(0) = 0 and let
f(z) =lim,_, g+ g(zx)/g(x) be continuous, then f is of the form f(z) = z¢
with ¢ € (0, 1].

Proof. Note that f(ab) = lim,_,¢ g(abx)/g(x) =

lim, o(g(abx)/g(bx))(g(bx)/g(x)) = f(a)f(b). All pathological solutions
are excluded by the requirement that f is continuous. So f(ab) = f(a)f(b)
implies that f(z) = z¢ is the only possible solution of this equation. Further,
since g(0) = 0, also lim,_,qg(0x)/g(x) = 0, and it follows that f(0) = 0.
This necessarily implies that ¢ > 0. f(z) = 2¢ also has to be concave since

g(zz)/g(x) is concave in z for arbitrarily small, fixed x > 0. Therefore
c < 1. [ ]
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Mathematical properties Il: yet another one !!

S(wl—l—a) B
W—s 00 S(W)Wa(l—c) R

.= (14 a)’

Theorem 2: Define h.(a) = ...

CESY
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Theorem 2

Let g be like in Theorem 1 and let f(z) = z¢ then h. given in Eq. (8) is a
constant of the form h.(a) = (1 + a)¢ for some constant d.

Proof. We determine h.(a) again by a similar trick as we have used for f.

o (B 1)+
g@ﬁh_gc s ) o(zh)

zCg(z) atl_, a:(b_l)cg(az)

(@) )ty
= he (T D) he(b-1)

he(a) = limg g

for some constant b. By a simple transformation of variables, a = bb’ — 1,
one gets h.(bb' — 1) = he(b— 1)ho(b' — 1). Setting H(x) = h.(x — 1) one
again gets H(bb') = H(b)H (V). So H(x) = % for some constant d and
consequently h.(a) is of the form (1 + a)?. (]
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Summary

Strongly interacting systems — SK1-SK3 hold

= limp o0 By = A1 0<c<1
14+a

— limyy S(aﬁ;ﬂxjva(l)—@ = (1+a)? d real

Remarkable:

e all systems are characterized by 2 exponents: (¢, d) — universality class

e Which S fulfills above? — S, 4= reT'(1+d,1—clnp;) —re

—24 1w, (B 1+£5 —W(B
e Which distribution maximizes S. g—p¢ () = € 1_(’{ k< ) ) i )}

r= #—l—cd B = %exp (1c_dc)’ I'(a,b) = fboo dt 121 exp(—t); Lambert-W: solution to x = W(a:)eW(m)
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Holds very generically

e for all non-ergodic systems

e for all non-Markovian systems

(complex systems)
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Examples

511 = ZZ 91,1(2%‘) = — Zipz' Inp; +1 (BG entropy)
® Sq0="2.:9q0pi) = - Z p" + 1 (Tsallis entropy)

® S1as0=2>_;91.4(p)) =53, T (1+d, 1 —1Inp;) — 5 (AP entropy)
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Classification of entropies: order in the zoo

entropy C d
Spa = >, piIn(1/p:) 1 1
I—qu
® Sqc1 = ——1° (¢g<1l) | c=qg<1 0
e Sy =2 ;pilp; —p;")/(=2kK) (O<k<1) |c=1—k 0
1-> p?
¢ Sq>1 — qézlpl (q > 1) 1 0
oSy =>.(1—e™)4+eb—1 (b > 0) 1 0
pi—1
QSE:Zipi(l—epi) 1 0
Sy = Zir(nTH, —Inp;) — Pz‘r(nTH) (n > 0) 1 d=1/n
Sy = 2P lnl/v(l/Pz’) 1 d=1/v
® S5 =3 v, n(1/pi) c=p 1
Sea=>_erI'(d+ 1,1 —clnp;) —cr c d
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Distribution functions of CS

® p(1,1) — exponentials (Boltzmann distribution)
® D(q,0) — Ppower-laws (g-exponentials)
® P(1,4>0) — Stretched exponentials

® p(c,q) all others — Lambert-W exponentials

NO OTHER POSSIBILITIES

CESY FSym—
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g-exponentials

(b) d=0.025, r=0.9/(1-c)

cev [

Lambert-exponentials




The world beyond Shannon

violates K2

(c,d)—entropy, d<0

violates K2

compact support BG-entropy
(1,0) / of distr. function /

Stretched exponentials — asymptotically stable

(c,d)—entropy, d>0

Lambert W__ exponentials Lambert W exponentials

<«— (Q-entropy, 0<qg<1



Scaling property opens door to ...

e ...bring order in the zoo of entropies through universality classes
e ...understand ubiquity of power laws (and extremely similar functions)
e ...understand where Tsallis entropy comes from

e ...understand statistical systems on networks
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The requirement of extensivity
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Needed for TD program to work: extensive entropies

System has N elements — W(N)... phasespace volume (system property)

Extensive: S(Wa4+p) = S(Wy4)+ S(Wpg) = --- [use scaling property 1] —

Can proof: extensive is equivalent to W (IN) = exp {%Wk <,u(1 — c)N%)}

, 1 W/(N)
c = lim 1-—
. 1 W
d = ]\;gnoologW(NW—Fc—l)

Message: Growth of phasespace volume determines entropy and vice versa
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Examples

e W(N)=2N — (c,d) = (1,1) and system is BG
e W(N)=N"—= (c,d) = (1—1,0) and system is Tsallis
e W(N) =exp(AN?) = (c,d) = (1,2)

"y

Can explicitly verify statements in theory of binary processes and spin-
systems on networks
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What does this imply further ?

e almost all systems are Boltzmann Gibbs type

e to be non-BG: phasespace has to collapse to a set of measure zero

e this means: bulk of statistically relevant degrees of freedom is frozen
e only systems where dynamics is confined its surface can be non-BG
Hypothesize applications in:

e Self Organized Critical systems, sandpiles ...

e Spin systems with dense meta-structures, such as spin-domains, vortices,
Instantons, caging, etc.

e Anomalous diffusion (porous media)

trento jul 23 2012 28



2 Examples
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Spin system on networks

e each node ¢ has 2 states: s; = +1 ; YES / NO (e.g. opinion)
e each node 7 has initial ('kinetic’) energy € (e.g. free will)

e (anti) parallel spins add J*(=) to energy E; AJ =J~ — J*
e total energy in the system: FF =¢eN

e spin-flip of node can occur if node has enough energy for it (microcanonic)

— Can show entropy depends on network !
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Phasespace volume

e N nodes, L links, k= N/L, ¢ = N/N(N — 1)
nt ... spins pointing up, u cost for link
e phase space volume: () = (Tﬁ) (MC partition function)

e derive n™
E can be estimated by

Lint(nT—=1)+n"(n~—1))J"+2nTn"J]

E = NV 1) +puL ~ 2¢nT(N—n1)AJ
and v >
€ €
nt = <1 - \/1 - kAJ) ~ AT
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Phasespace volume and NW growth

e Example 1: NW grows such that connectivity k£ is constant as it grows
k = const. — n* = aN with 0 < a < 1 constant
Sterling’s approximation W = (ajyv) ~bY withb=a"%1-a)*1>1

From before: ¢ =1 and d =1 — entropy of the system is BG

e Example 2: NW growth: join-a-club network

new node links to aN(¢) random neighbors, a < 1

What is this ?
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Phasespace volume and NW growth

e Example 2: NW growth: join-a-club network

new node links to aN(t) random neighbors, a < 1

constant connectancy, ¢ = const. — k = ¢N and n* ~ €/2¢A.J = const.
W= (M)~ (N/n )" exp(—nT) oc N

From before (¢, d) = (1 — n%, 0), meaning Tsallis g-entropy with g = ¢

e Note that intermediate cases with £k o« N7 with 0 < v < 1, require
generalized entropies with c =1 and d = 1/7.
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Conclusions

e Interactions on networks may violate Shannon-Khinchin axiom 4
e Keep Shannon-Khinchin axioms 1-3, and S = >_ ¢ (CS in general)

e Showed: macroscopic statistical systems can be uniquely classified in
terms of 2 scaling exponents (¢, d) — analogy to critical exponents

e Single entropy covers all systems: S, g =re) . I'(1+d,1—clnp;)—rc
e All known entropies of SK1-SK3 systems are special cases

e Distribution functions of all systems are Lambert-1¥ exponentials. There
are no other options

e Phasespace growth uniquely determines entropy
e Statistical systems on networks: examples
constant connectivity, K — Boltzmann-Gibbs

constant connectancy ¢ — Tsallis entropy
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A note on Rényi entropy

It is it not sooo relevant for CS. Why?

e Relax Khinchin axiom 4:
S(A+B)=5(A)+S(B|A) — S(A+B) = S(A)+S(B) — Rényi entropy

e Sp=--In) . p¥ violates our S =", g(p;)

But: our above argument also holds for Rényi-type entropies !!!

S=G <§: g(pz-))

):[foerln]zl
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The Lambert-W: a reminder

e solves x = W (x)eW(®)

e inverse of plnp = [W(P)]_l

e delayed differential equations &(t) = az(t — 7) — x(t) = er

W (ar)t
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Example: a physical system

equation of motion for particle ¢ in system of N overdamped particles

pv; = Z J(7, + F(7) + (7, t)
J#i

Vi ...
_’( ) =G (ﬂ) 7 ... repulsive particle-particle interaction

J

)
7 ... uncorrelated thermal noise (n) = 0 and (n*) = kTT
AL

. characteristic length of short range pairwise interaction

velocity of ¢ th particle W ... viscosity of medium F' ... external force

Shown with FP approach and simulation (Curado, Nobre, et al. PRL 2011)
e low temperature: Tsallis system (¢,d) = (¢, 0)
e high temperature limit — BG system (¢,d) = (1,1)
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