# Nonlinearity，interactions and Anderson localization 

WWW．quantware．ups－tise．fr／dima

Overview of results 1993－2008

－Nonlinearity induced delocalization in the Anderson model
－Many－body Interactions：
Two Interacting Particles effect
－Slow Metal
－Attractive Interactions and Superconductor－Insulator Transition
－Wigner crystal in a periodic potential
－Dynamical or Chirikov localization

## Nonlinearity and Anderson localization: estimates

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\mathbf{1}}+\psi_{\boldsymbol{n}-\mathbf{1}}\right) ;\left[-W / 2<E_{n}<W / 2\right]
$$

localization length $I \approx 96(V / W)^{2}(1 \mathrm{D}) ; \ln I \sim(V / W)^{2}(2 \mathrm{D})$ Amplitudes $C$ in the linear eigenbasis are described by the equation

$$
i \frac{\partial C_{m}}{\partial t}=\epsilon_{\boldsymbol{m}} C_{m}+\beta \sum_{m_{1} m_{2} m_{3}} U_{m m_{1} m_{2} m_{3}} C_{m_{1}} C_{m_{2}}^{*} C_{m_{3}}
$$

the transition matrix elements are $U_{m m_{1}} m_{2} m_{3}=\sum_{n} Q_{n m}^{-1} Q_{n m_{1}} Q_{n m_{2}}^{*} Q_{n m_{3}} \sim 1 / \beta^{3 d / 2}$. There are about $\beta^{3 d}$ random terms in the sum with $U \sim 1^{-3 d / 2}$ so that we have $i d C / d t \sim \beta C^{3}$. We assume that the probability is distributed over $\Delta n>l^{d}$ states of the lattice basis. Then from the normalization condition we have $C_{m} \sim 1 /(\Delta n)^{1 / 2}$ and the transition rate to new non-populated states in the basis $\boldsymbol{m}$ is $\Gamma \sim \beta^{2}|C|^{6} \sim \beta^{2} /(\Delta n)^{3}$. Due to localization these transitions take place on a size $/$ and hence the diffusion rate in the distance $\Delta R \sim(\Delta n)^{1 / d}$ of $d$ - dimensional $\boldsymbol{m}-$ space is $d(\Delta R)^{2} / d t \sim I^{2} \Gamma \sim \beta^{2} l^{2} /(\Delta n)^{3} \sim \beta^{2} l^{2} /(\Delta R)^{3 d}$. At large time scales $\Delta R \sim R$ and we obtain

$$
\Delta n \sim R^{d} \sim(\beta l)^{2 d /(3 d+2)} t^{d /(3 d+2)}
$$

## Chaos criterion:

$$
S=\delta \omega / \Delta \omega \sim \beta>\beta_{c} \sim 1
$$

there $\delta \omega \sim \beta\left|\psi_{n}\right|^{2} \sim \beta / \Delta n$ is nonlinear frequency shift and $\Delta \omega \sim 1 / \Delta n$ is spacing between exites eigenmodes
DLS PRL 70, 1787 (1993) $(d=1)$; I.Garcia-Mata, DLS arXiv:0805.0539 $(2008)(\underline{\underline{d}} \geq 1)$

## Nonlinearity and Anderson localization (1D)


$W / V=2,4, \beta=0,1 ; \sigma=(\Delta n)^{2} \propto t^{2 / 5}$

$W / V=4, \beta=1, t=10^{8}, \beta=0$

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\boldsymbol{1}}+\psi_{\boldsymbol{n}-\mathbf{1}}\right) ;\left[-W / 2<E_{n}<W / 2\right]
$$

A.S.Pikovsky, DLS PRL 100, 094101 (2008)

## Nonlinearity and Anderson localization (1D)


$W / V=4, \beta=1, \beta=0 ; \alpha_{1}=0.325 \pm 0.003$ (theory 0.4 )

$\nu=0.125 \pm 0.001$ (theory 0.2 ); $\xi$ is participation ratio

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\mathbf{1}}+\psi_{\boldsymbol{n}-\mathbf{1}}\right)
$$

I.Garcia-Mata, DLS arXiv:0805.0539 (2008)

## Nonlinearity and Anderson localization (2D)


$W / V=10,15, \beta=0,1 ; \alpha_{2}=0.236,0.229 \pm 0.003$ (theory 0.25 )

$\nu=0.282,0.247 \pm 0.005$ (theory 0.25 ) $; \xi$ is participation ratio

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+1}+\psi_{\boldsymbol{n}-1}\right)
$$

I.Garcia-Mata, DLS arXiv:0805.0539 (2008)

## Nonlinearity and Anderson localization (2D)



$$
\begin{gathered}
W=10 ; \beta=0(\text { left }), 1 \text { (right); } \\
t=10^{4} \text { (bottom), } 10^{6} \text { (middle), } \\
\text { projecton on } x \text {-axis (top); } \\
256 \times 256 \text { lattice }
\end{gathered}
$$

[also: kicked nonlinear rotator model (1d)]
I.Garcia-Mata, DLS arXiv:0805.0539 (2008)

## Possible experimental tests \& applications

- BEC in disordered potential (Aspect, Inguscio)
- BEC time reversal (Phillips)
- nonlinear wave propagation in disordered media (Segev, Silberberg)
- lasing in random media (Cao)
- energy propagation in complex molecular chains (proteins, Fermi-Pasta-Ulam problem)
- NONLINEAR SPIN-GLASS ?
- OTHER GROUPS:
S.Aubry et al. PRL 100, 084103 (2008)
A.Dhar et al. PRL 100, 134301 (2008)
S.Fishman et al. J. Stat. Phys. bf 131, 843 (2008)
S.Flach et al. arXiv:0805.4693[cond-mat] (2008)
W.-M.Wang et al. arXiv:0805.4632[math.DS] (2008) see also the participant list of the NLSE Workshop at the Lewiner Institute, Technion, June 2008


## Two Interacting Particles (TIP) effect

Anderson model in $d$-space + onsite Hubbard interaction $U, V \sim E_{F}$ is one-particle hopping; exited states $\psi_{n} \sim \exp (-|n-m| / I) / \sqrt{1} ; I \gg 1$.
Equation in the basis of noninteracting eigenstates $\chi_{m_{1} m_{2}}$ :

$$
i \partial \chi_{m_{1} m_{2}} / \partial t=\epsilon_{m_{1} m_{2}} \chi_{m_{1} m_{2}}+\sum_{m^{\prime}{ }_{1} m^{\prime}{ }_{2}} U_{m_{1} m_{2} m_{1}^{\prime} m_{2}^{\prime}} \chi_{m_{1}^{\prime} m_{2}^{\prime}}
$$

Sum runs over $M \sim l^{d}$ coupled states; interaction induced matrix elements $U_{s} \sim U_{m_{1} m_{2} m_{1}^{\prime} m_{2}^{\prime}} \sim\left(U /\left(1^{2 d}\right) \times \sqrt{M}\right.$, density of coupled states is $\rho_{2} \sim 1^{2 d} / V$, TIP transition rate $\Gamma_{s} \sim U_{s}^{2} \rho_{2} \sim U^{2} /\left(I^{d} V\right)$. Enhancement factor

$$
\kappa=\Gamma_{s} \rho_{2} \sim(U / V)^{2} I^{d}>1
$$

TIP localization:
$I_{2} / I \sim(U / V)^{2} I(1 d)$;
$\ln \left(I_{2} / I\right) \sim(U / V)^{2} I^{2}(2 \mathrm{~d})$;
delocalization for $\kappa \sim(U / V)^{2} \beta>1$ (3d)

DLS PRL 73, 2607 (1994); Y.Imry EPL 30, 405 (1995)

## Slow Metal (2D)



FIG. 2 (color online). Resistivity as a function of inverse temperature $1 / T$ at $B=0 \mathrm{~T}$ (symbols). At all densities, the strongly insulating $T$ dependence at higher temperatures is followed by a decrease in resistance at low $T$. Device dimensions are $W \times L=8 \mu \mathrm{~m} \times 0.5 \mu \mathrm{~m}$, spacer $\delta=40 \mathrm{~nm}$. Electron densities are indicated by arrows in the inset to (a). Solid lines represent a fit of Eq. (1) to the data. Inset to (a): Resistivity as a function of electron density at $T=60 \mathrm{mK}, 500 \mathrm{mK}, 4 \mathrm{~K}$. Inset to (d): $\rho$ as function of $1 / T$ at the same density as (d) but at $B_{\perp}=1.5 \mathrm{~T}$.

TIP diffusion
$D \sim \Gamma_{s} I^{2} \sim U^{2} / V$ at $(U I / V)^{2}>1$ vs. usual diffusion $D_{0} \sim v_{F} \ell \sim V$
Thus it is possible to have diffusion with conductance $g$ and resistivity per square $\rho_{0}$ (in natural units): $g \sim 1 / \rho_{0} \sim D / D_{0} \sim(U / V)^{2} \ll 1$ With up to $(U I / V)^{2} \sim 1$ and $g \sim 1 / I^{2} \ll 1$
Problems: finite particle density, small density of states near the ground state

## Experiment suggestion: to measure

 a charge of quasi-particles from noise fluctuationsM.Baenninger, A.Ghosh, M.Pepper, H.E.Beere, I.Farrer, D.A.Ritchie PRL 100, 016805 (2008) vs. S.Kravchenko et al. RMP 73,251 (2001)

## TIP near the Fermi level



FIG. 1. Energy dependence of the rescaled Breit-Wigner width $\Gamma / \Gamma_{0}$ in 2D. Direct diagonalization (DD) data at $W / V=2: U / V=0.6$ with $L=8(\mathrm{O}), L=15(\Delta), L=20$ ( $\square$ ); $U / V=1.5$ and $L=20(\diamond)$. Fermi golden rule (FGR) data: $W / V=2$ with $L=20(+), L=25(\times) ; W / V=1$ with $L=15(*)$. The straight line $\Gamma(\epsilon) / \Gamma_{0}=C \epsilon / V$ with $C=0.52$ shows the Imry estimate. Upper inset: the same on a $\log$-log scale with FGR data at higher disorders $[W / V=6$ $(\mathbf{\Delta})$ and $W / V=10(\square)(L=30)]$. Lower inset: $\rho_{W}$ vs $E$ for $L=20, W / 2=V=1, U=0.6, \epsilon=0.4$ fitted by $\rho_{B W}$ with $\Gamma=0.18 \Gamma_{0}$ (solid curve).

Small $\epsilon$ energy excitations above the Fermi level:
a)box size $L \ll I$
$\rho_{2} \sim L^{2 d} \epsilon / V, \Gamma=C \Gamma_{0} \epsilon / V$,
$\Gamma_{0}=U^{2} /\left(V L^{d}\right), C=$ const
b)box size $L \sim 1$
$U_{s}^{2} \sim \Delta^{2}(U / V)^{2}\left(1+\epsilon / E_{c}\right)^{d / 2-2} / g^{2}$,
with $g=E_{C} / \Delta>1$ and for
$\epsilon>E_{c} \sim V / L^{2}>\Delta \sim V / L^{d}$
$\kappa=\Gamma \rho_{2} \sim(U / V)^{2}(\epsilon / \Delta)^{d / 2-1}$
for $L \sim I, d=2$ we have $\kappa$ independent of $\epsilon$ for $\epsilon \sim \Delta$. Problems:
there is no enhancement at $E_{F}$,
$\kappa \sim 1$

## Many electrons near the Fermi level (Coulomb interaction, no spin)



FIG. 4. Dependence of $\epsilon_{\eta} / B$ on the number of particles $N_{p}$, obtained from Fig. 2: $W / V=10$ with $\eta\left(E_{\eta}\right)=0.4$ (full diamond) and $W / V=7$ with $\eta\left(E_{\eta}\right)=0.2$ ( ), where $\epsilon_{\eta}=E_{\eta} / N_{p}$. The straight line shows the slope when $E_{\eta}=$ const. The inset gives the dependence of maximal $\eta$ on $r_{s}$ for $W / V=7$ and $N_{p}=6: U / V$ $=2,8 \leqslant L \leqslant 28$ (full diamond), and $L=14,0.25 \leqslant U / V \leqslant 2(\diamond)$.

Level-spacing statistics $P(s)$ :
$\eta=1$ Poisson distribution,
$\eta=0$ Wigner-Dyson distribution
$\epsilon_{\eta}$ - exitation energy per particle
at a given $\eta=\operatorname{const}(B=4 \mathrm{~V})$
$r_{s}=U /(2 V \sqrt{\pi \nu}), \nu=N_{p} / L^{2} \approx 1 / 32$
usually $U=2 V, r_{s} \approx 3.2$,
$2 \leq N_{p} \leq 20,8 \leq L \leq 25$
Result: chaotic, ergodic states at temperature going to zero

Problems: transport properties ?

DLS PRB 61, 4588 (200); P.H.Song, DLS PRB 61, 15546 (2000)

## Cooper problem in the vicinity of the Anderson transition






J.Lages, DLS PRB 62, 8665 (2000)

## 3d Hubbard model of spin-1/2 fermions (projector quantum Monte Carlo)



FIG. 1. Distribution of charge density difference for an added pair, $\delta p_{p}$, projected on the $(x, y)$ plane for a $6 \times 6 \times 6$ lattice for the same single disorder realization, with $W / t=2$ (left) and $W^{\prime} t=7$ (right), $N=108$. Top: exact computation for $U=0, \xi=70 ; 55$ (left: right). Middle: PQMC calculation for $U / t=-4, \xi=48 ; 6.5$ (left. right). Bottom: BdG mean-field calculation for $U / t=-4, \xi$ $=132 ; 25$ (left; right). All quantities presented in all figures are in dimensionless units (see text).


FIG. 2. Inverse participation ratio $\langle\xi\rangle$ averaged over disorder realizations, as a function of disorder strength $W$ for a $6 \times 6 \times 6$ lattice, at $U=0$ (open circles) and $U / t=-4$ (solid circles). Dotted lines show linear fits to the data, the dashed line represents $\xi=1$ (see text), and error bars indicate statistical errors.
B.Srinivasan, G.Benenti, DLS PRB 66, 172506 (2002) (up to $N=110$ fermions; $t=V$ )

## Superconductor-Insulator Transition: experiment



Fig.1. Magnetoresistance of the film in state 1 (a) and in state 2 (b). The critical $R_{c}$ and $B_{c}$ values at $T=0$ are indicated. Also shown is the position of metalinsulator transition, $B_{I-M}$, determined from Fig.2. The temperature dependences of the resistance are analyzed at fields marked by vertical bars


V.F.Gantmankher et al. Pis'ma Zh̆́ ETF 68, 337 (1998)

## Wigner crystal in a periodic potential (classical)




Hamiltonian:

$$
\begin{aligned}
& \left.H=\sum_{i=1}^{N} \frac{P_{i}^{2}}{2}+\frac{\omega^{2}}{2} x_{i}^{2}-K \cos x_{i}\right)+\sum_{i>j} \frac{1}{\left\lvert\, \frac{1}{\left|x_{i}-x_{j}\right|}\right.} \\
& N=150 \text { ions; } K=0.03<K_{c} \approx 0.05 \text { (open } \\
& \text { circle/red), } K=0.2>K_{c} \text { (full circles/blue) }
\end{aligned}
$$

I.Garcia-Mata, O.V.Zhirov, DLS EPJD 41, 325 (2007)

## Wigner crystal in a periodic potential (quantum)



Fig. 11. (Color online) Formfactor $F(k)$ (see text) of the chain with $N=150$ ions and $\omega=0.00528$. (a) The classical incommensurate phase at $K=0.03, \hbar=0$, arrows mark the peaks at integer multiples of golden mean density $\nu_{g}$. (b) The pinned phase at $K=0.2$ for $\hbar=0$ (bottom black curve), $\hbar=0.1$ (middle red curve shifted 20 units upward), $\hbar=2$ (top green curve shifted 40 units upward, for clarity $F(k)$ is multiplied by factor 5). The temperature of the quantum chain is $T=\hbar / \tau_{0}$ with $\tau_{0}=400$ so that $T \ll K$ and $T \ll \hbar \omega_{0}(K)$. (Compare

Quantum melting of the ground state: transition from pinned instanton glass to sliding phonons gas; links to classical/quantum Frenkel-Kontorova model and Chirikov standard map

Conjecture:
similar mechanism for delocalization of electrons in a disordered potential

## Chirikov localization: Chirikov typical map (1969)




- Standard map with random, periodically repeated phases $\phi_{m}$ :
$\bar{p}=p+K \sin \left(x+\phi_{m}\right), \quad \bar{x}=x+\bar{p}$,
$\phi_{m+T}=\phi_{m}$
chaos border: $T^{-3 / 2}<K \ll 1$
Kolmogorov-Sinai entropy: $h \sim K^{2 / 3} \ll 1$, diffusion rate per period $T: D=K^{2} T / 2$,
=> continuous time flow
(Fig: Husimi function at $K=0.1, T=10, t=2 \times 10^{4}$,
$\hbar=2 \pi / N, N=2^{16}$, initial coherent state at $\left.p=0, x=\pi\right)$
- $\ell \approx 2 D / \hbar^{2}$ : dynamical localization
(Fig: $0.1 \leq K \leq 1,10 \leq T \leq 100, \hbar=2 \pi / 17.618$ )

