Interplay of nonlinearity, interactions and Anderson localization

Dima Shepelyansky www.guantware.ups-tlse.fr/dima

with I.García-Mata (Toulouse), K.Ahnert, M.Mulansky, A.Pikovsky (Potsdam)

Discrete Anderson nonlinear
 Schrödinger equation (DANSE) (d = 1,2)

- Nonlinear delocalization on disordered Stark ladder
- Dynamical thermalization of nonlinear disordered lattices: anti-FPU (poster N2 K.Ahnert *et al.*)
- Two interacting particles effect
- Åberg criterion for dynamical thermalization in many-body quantum systems

I.García-Mata, DLS arXiv:0805.0539 (2008)

Nonlinearity and Anderson localization: estimates

$$i\hbar\frac{\partial\psi_{\mathbf{n}}}{\partial t} = E_{\mathbf{n}}\psi_{\mathbf{n}} + \beta |\psi_{\mathbf{n}}|^{2}\psi_{\mathbf{n}} + V(\psi_{\mathbf{n+1}} + \psi_{\mathbf{n-1}}); [-W/2 < E_{\mathbf{n}} < W/2]$$

localization length $I \approx 96(V/W)^2$ (1D); ln $I \sim (V/W)^2$ (2D) Amplitudes C in the linear eigenbasis are described by the equation

$$i\frac{\partial C_m}{\partial t} = \epsilon_m C_m + \beta \sum_{m_1 m_2 m_3} U_{mm_1 m_2 m_3} C_{m_1} C_{m_2}^* C_{m_3}$$

the transition matrix elements are $U_{mm_1m_2m_3} = \sum_n O_{nm}^{-1} Q_{nm_2} Q_{nm_3} \sim 1/l^{3d/2}$. There are about l^{3d} random terms in the sum with $U \sim l^{-3d/2}$ so that we have $idC/dt \sim \beta C^3$. We assume that the probability is distributed over $\Delta n > l^d$ states of the lattice basis. Then from the normalization condition we have $c_m \sim 1/(\Delta n)^{1/2}$ and the transition rate to new non-populated states in the basis m is $\Gamma \sim \beta^2 |C|^6 \sim \beta^2/(\Delta n)^3$. Due to localization these transitions take place on a size *l* and hence the diffusion rate in the distance $\Delta R \sim (\Delta n)^{1/d}$ of d – dimensional m – space is $d(\Delta R)^2/dt \sim l^2\Gamma \sim \beta^2 l^2/(\Delta n)^3 \sim \beta^2 l^2/(\Delta R)^{3d}$. At large time scales $\Delta R \sim R$ and we obtain

$$\Delta n \sim R^d \sim (\beta l)^{2d/(3d+2)} t^{d/(3d+2)}; \ (\Delta n)^2 \propto t^{lpha}; \ lpha = 2/(3d+2)$$

Chaos criterion:

$$S = \delta \omega / \Delta \omega \sim \beta > \beta_c \sim 1$$

there $\delta\omega \sim \beta |\psi_n|^2 \sim \beta / \Delta n$ is nonlinear frequency shift and $\Delta\omega \sim 1/\Delta n$ is spacing between exites eigenmodes DLS PRL **70**, 1787 (1993) (*d* = 1); I.García-Mata, DLS arXiy:0805.0539 (2008) (*d* \geq 1)

Nonlinearity and Anderson localization (1D)

 $i\hbar\frac{\partial\psi_{\mathbf{n}}}{\partial t} = E_{\mathbf{n}}\psi_{\mathbf{n}} + \beta |\psi_{\mathbf{n}}|^2\psi_{\mathbf{n}} + V(\psi_{\mathbf{n+1}} + \psi_{\mathbf{n-1}}); [-W/2 < E_{\mathbf{n}} < W/2]$

A.S.Pikovsky, DLS PRL 100, 094101 (2008)

(Quantware group, CNRS, Toulouse)

Nonlinearity and Anderson localization (2D)

$$i\hbar \frac{\partial \psi_{\mathbf{n}}}{\partial t} = E_{\mathbf{n}}\psi_{\mathbf{n}} + \beta |\psi_{\mathbf{n}}|^2 \psi_{\mathbf{n}} + V(\psi_{\mathbf{n+1}} + \psi_{\mathbf{n-1}})$$

I.García-Mata, DLS arXiv:0805.0539 (2008)

Nonlinearity and Anderson localization (2D)

 $W = 10; \beta = 0$ (left), 1(right); $t = 10^4$ (bottom), 10⁶ (middle), projecton on *x*-axis (top); 256 × 256 lattice

[also: kicked nonlinear rotator model (1d)]

I.García-Mata, DLS arXiv:0805.0539 (2008)

Delocalization on disordered Stark ladder

Static field f along Stark ladder (W = 4): statistical entanglement

Left: $f = 0, 0.25, 0.5, \alpha = 0.30, 0.26, 0.24, \beta = 1; 0$ top to bottom; inset IPR at f = 0.5;Right: probabability distribution at $f = 0.5, t = 10^2, 10^4, 10^6, 10^8, \beta = 0; 1$ (top/bottom) I.García-Mata, DLS arXiv:0903.2103 (2009)

Dynamical thermalization in DANSE (1D)

starting from Fermi-Pasta-Ulam problem (1955):

regular lattice, delocalized linear modes \rightarrow disorder localized modes

Gibbs distribution with temperature *T* for localized linear modes, $\rho_m = |C_m|^2$: entropy $S = -\sum_m \rho_m \ln \rho_m$, $\rho_m = Z^{-1} \exp(-\epsilon_m/T)$, $Z = \sum_m \exp(-\epsilon_m/T)$, $E = T^2 \partial \ln Z / \partial T$, $S = E/T + \ln Z$. $\langle \ln Z \rangle \approx \ln N + \ln \sinh(\Delta/T) - \ln(\Delta/T)$, $\Delta \approx 3$

M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)

Dynamical thermalization in DANSE (1D)

N = 32, W = 4, $\beta = 1$, $t = 10^6$, initial state: linear eigenmode m', averaged over 8 disoder realisations

Gibbs distribution: time, disorder averaged ρ_m in mode m (y - axis) for initial eigenmode m' (x -axis); left: numerics, right: Gibbs theory
M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009) → (2)

Dynamical thermalization in DANSE (1D)

M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)

Possible experimental tests & applications

- BEC in disordered potential (Aspect, Inguscio)
- kicked rotator with BEC (Phillips)
- nonlinear wave propagation in disordered media (Segev, Silberberg)
- Iasing in random media (Cao)
- energy propagation in complex molecular chains (proteins, Fermi-Pasta-Ulam problem)
- NONLINEAR SPIN-GLASS ?

 OTHER GROUPS: S.Aubry et al. PRL 100, 084103 (2008)
 A.Dhar et al. PRL 100, 134301 (2008)
 S.Fishman et al. J. Stat. Phys. bf 131, 843 (2008)
 S.Flach et al. arXiv:0805.4693[cond-mat] (2008)
 W.-M.Wang et al. arXiv:0805.4632[math.DS] (2008)
 see also the participant list of the NLSE Workshop at the Lewiner Institute, Technion, June 2008

Quntum systems: Two Interacting Particles (TIP) effect

Anderson model in *d*-space + onsite Hubbard interaction *U*, $V \sim E_F$ is one-particle hopping; exited states $\psi_n \sim \exp(-|n - m|/I)/\sqrt{I}$; $I \gg 1$. Equation in the basis of noninteracting eigenstates $\chi_{m_1m_2}$:

$$i\partial\chi_{m_1m_2}/\partial t = \epsilon_{m_1m_2}\chi_{m_1m_2} + \sum_{m'_1m'_2} U_{m_1m_2m'_1m'_2}\chi_{m'_1m'_2}$$

Sum runs over $M \sim I^d$ coupled states; interaction induced matrix elements $U_s \sim U_{m_1m_2m'_1m'_2} \sim (U/(l^{2d}) \times \sqrt{M})$, density of coupled states is $\rho_2 \sim I^{2d}/V$, TIP transition rate $\Gamma_s \sim U_s^2 \rho_2 \sim U^2/(I^d V)$. Enhancement factor

$$\kappa = \Gamma_{s}
ho_{2} \sim (U/V)^{2}I^{d} > 1$$

TIP localization: $l_2/l \sim (U/V)^2 l$ (1d); $\ln(l_2/l) \sim (U/V)^2 l^2$ (2d); delocalization for $\kappa \sim (U/V)^2 l^3 > 1$ (3d)

DLS PRL 73, 2607 (1994); Y.Imry EPL 30, 405 (1995)

Many electrons near the Fermi level (Coulomb interaction, no spin)

FIG. 4. Dependence of ϵ_y/B on the number of particles N_p , obtained from Fig. 2: W/V = 10 with $\eta(E_y) = 0.4$ (full diamond) and W/V = 7 with $\eta(E_y) = 0.2$ (Θ), where $\epsilon_\eta = E_g/N_p$. The straight line shows the slope when $E_\eta = \text{const. The inset gives the dependence of maximal <math>\eta$ on r_s for W/V = 7 and $N_p = 6$: U/V = 2, $8 < L \leq 28$ (full diamond), and L = 14, $0.25 \leq U/V < 2$ (\diamond).

Level-spacing statistics P(s): $\eta = 1$ Poisson distribution, $\eta = 0$ Wigner-Dyson distribution ϵ_{η} - exitation energy per particle at a given $\eta = const$ (B = 4V) $r_s = U/(2V\sqrt{\pi\nu}), \nu = N_p/L^2 \approx 1/32$ usually $U = 2V, r_s \approx 3.2$, $2 \le N_p \le 20, 8 \le L \le 25$

Result: chaotic, ergodic states at temperature going to zero

Problems: transport properties ?

DLS PRB 61, 4588 (2000); P.H.Song, DLS PRB 61, 15546 (2000)

Dyn-thermalization in many-body Q-systems

Åberg criterion $J > J_c \approx \Delta_c$: two-body matrix element *J* should be larger than energy spacing between directly coupled states Δ_c

Example: Quantum computer with $n_q = 16$ qubits. One quantum eigenstate: Occupation numbers n_i vs. rescaled exitation energies $\epsilon_i = \delta_i$. Left:

 $J/J_{C}\approx0.15,\,T=0.15\delta,\,\delta E=0.97\delta,\,S=0.49.\,\text{Right:}\,J/J_{C}\approx1.5,\,T=0.20\delta,\,\delta E=1.19\delta,\,S=8.41.\,\text{Full curves: Fermi-Dirac thermal}$

distribution with given temperature T. G.Benenti et al. EPJD 17, 265 (2001)

QC Hamiltonian: $H = \sum_{i} \Gamma_{i} \sigma_{i}^{z} + \sum_{i < j} J_{ij} \sigma_{i}^{x} \sigma_{j}^{x};$ $\Gamma_{i} = \Delta_{0} + \delta_{i}, -\delta < 2\delta_{i} < \delta, -J < J_{ij} < J; \rightarrow J_{c} \approx 4\delta/n_{q}$ S.Åberg PRL **64**, 3119 (1990); DLS, O.Sushkov EPL **37**, 121 (1997); P.Jacquod, DLS PRL **79**, 1837 (1997); B.Georgeot, DLS PRE **62**, 3504 (2000)

Quantware posters from Toulouse

-0.2

-0.2 0.0 0.2 0.4 0.6 0.8 1.0