Interplay of nonlinearity, interactions and Anderson localization

with I.García-Mata (Toulouse), K.Ahnert, M.Mulansky, A.Pikovsky (Potsdam)

- Discrete Anderson nonlinear Schrödinger equation (DANSE) $(d=1,2)$
- Nonlinear delocalization on disordered Stark ladder
- Dynamical thermalization of nonlinear disordered lattices: anti-FPU (poster N2 K.Ahnert et al.)
- Two interacting particles effect
- Åberg criterion for dynamical thermalization in many-body quantum systems

Nonlinearity and Anderson localization: estimates

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\boldsymbol{1}}+\psi_{\boldsymbol{n}-\mathbf{1}}\right) ;\left[-W / 2<E_{n}<W / 2\right]
$$

localization length $I \approx 96(V / W)^{2}(1 \mathrm{D}) ; \ln / \sim(V / W)^{2}(2 \mathrm{D})$ Amplitudes C in the linear eigenbasis are described by the equation

$$
i \frac{\partial C_{m}}{\partial t}=\epsilon_{m} C_{m}+\beta \sum_{m_{1} m_{2} m_{3}} U_{m m_{1} m_{2} m_{3}} C_{m_{1}} C_{m_{2}}^{*} C_{m_{3}}
$$

the transition matrix elements are $U_{m m_{1}} m_{2} m_{3}=\sum_{n} Q_{n m}^{-1} Q_{n m_{1}} Q_{n m_{2}}^{*} Q_{n m_{3}} \sim 1 / \beta^{3 d / 2}$. There are about $/ 3 d$ random terms in the sum with $U \sim 1^{-3 d / 2}$ so that we have $i d C / d t \sim \beta C^{3}$. We assume that the probability is distributed over $\Delta n>I^{d}$ states of the lattice basis. Then from the normalization condition we have $C_{m} \sim 1 /(\Delta n)^{1 / 2}$ and the transition rate to new non-populated states in the basis \boldsymbol{m} is $\Gamma \sim \beta^{2}|C|^{6} \sim \beta^{2} /(\Delta n)^{3}$. Due to localization these transitions take place on a size / and hence the diffusion rate in the distance $\Delta R \sim(\Delta n)^{1 / d}$ of d - dimensional $\boldsymbol{m}-$ space is $d(\Delta R)^{2} / d t \sim I^{2} \Gamma \sim \beta^{2} l^{2} /(\Delta n)^{3} \sim \beta^{2} l^{2} /(\Delta R)^{3 d}$. At large time scales $\Delta R \sim R$ and we obtain

$$
\Delta n \sim R^{d} \sim(\beta /)^{2 d /(3 d+2)} t^{d /(3 d+2)} ;(\Delta n)^{2} \propto t^{\alpha} ; \alpha=2 /(3 d+2)
$$

Chaos criterion:

$$
S=\delta \omega / \Delta \omega \sim \beta>\beta_{c} \sim 1
$$

there $\delta \omega \sim \beta\left|\psi_{n}\right|^{2} \sim \beta / \Delta n$ is nonlinear frequency shift and $\Delta \omega \sim 1 / \Delta n$ is spacing between exites eigenmodes DLS PRL 70, 1787 (1993) $(d=1)$; I.García-Mata, DLS arXiv:0805.0539 (2008) $(\underline{\underline{\underline{\underline{D}}}} \mathbf{\geq} \geq 1)$

Nonlinearity and Anderson localization (1D)

$W / V=2,4, \beta=0,1 ; \sigma=(\Delta n)^{2} \propto t^{\alpha}$;

$$
W / V=4, \beta=1, t=10^{8}, \beta=0
$$

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\boldsymbol{1}}+\psi_{\boldsymbol{n}-\mathbf{1}}\right) ;\left[-W / 2<E_{n}<W / 2\right]
$$

A.S.Pikovsky, DLS PRL 100, 094101 (2008)

Nonlinearity and Anderson localization (2D)

$$
i \hbar \frac{\partial \psi_{\boldsymbol{n}}}{\partial t}=E_{\boldsymbol{n}} \psi_{\boldsymbol{n}}+\beta\left|\psi_{\boldsymbol{n}}\right|^{2} \psi_{\boldsymbol{n}}+V\left(\psi_{\boldsymbol{n}+\mathbf{1}}+\psi_{\boldsymbol{n}-\mathbf{1}}\right)
$$

I.García-Mata, DLS arXiv:0805.0539 (2008)

Nonlinearity and Anderson localization (2D)

$$
\begin{gathered}
W=10 ; \beta=0(\text { left }), 1 \text { (right); } \\
t=10^{4} \text { (bottom), } 10^{6} \text { (middle), } \\
\text { projecton on } x \text {-axis (top); } \\
256 \times 256 \text { lattice }
\end{gathered}
$$

[also: kicked nonlinear rotator model (1d)]
I.García-Mata, DLS arXiv:0805.0539 (2008)

Delocalization on disordered Stark ladder

Static field f along Stark ladder ($W=4$): statistical entanglement Left: $f=0,0.25,0.5, \alpha=0.30,0.26,0.24, \beta=1 ; 0$ top to bottom; inset IPR at $f=0.5$; Right: probabability distribution at $f=0.5, t=10^{2}, 10^{4}, 10^{6}, 10^{8}, \beta=0 ; 1$ (top/bottom) I.García-Mata, DLS arXiv:0903.2103 (2009)

Dynamical thermalization in DANSE (1D)

starting from Fermi-Pasta-Ulam problem (1955): regular lattice, delocalized linear modes \rightarrow disorder localized modes

Gibbs distribution with temperature T for localized linear modes, $\rho_{m}=\left|C_{m}\right|^{2}$:
entropy $S=-\sum_{m} \rho_{m} \ln \rho_{m}, \rho_{m}=Z^{-1} \exp \left(-\epsilon_{m} / T\right), Z=\sum_{m} \exp \left(-\epsilon_{m} / T\right)$, $E=T^{2} \partial \ln Z / \partial T, S=E / T+\ln Z .\langle\ln Z\rangle \approx \ln N+\ln \sinh (\Delta / T)-\ln (\Delta / T), \Delta \approx 3$
M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)

Dynamical thermalization in DANSE (1D)

$N=32, W=4, \beta=1, t=10^{6}$, initial state: linear eigenmode m^{\prime}, averaged over 8 disoder realisations
Gibbs distribution: time, disorder averaged ρ_{m} in mode $m(y-$ axis $)$ for initial eigenmode $m^{\prime}(x$-axis); left: numerics, right: Gibbs theory

Dynamical thermalization in DANSE (1D)

Fraction of thermalized states: $N=16$ (circles), 32 (curve), $64(+) ; W=4, t=10^{6}$, (diamonds $N=32, t=10^{7}$)
M.Mulansky, K.Ahnert, A.Pikovsky, DLS arxiv:0903.2191 (2009)

Possible experimental tests \& applications

- BEC in disordered potential (Aspect, Inguscio)
- kicked rotator with BEC (Phillips)
- nonlinear wave propagation in disordered media (Segev, Silberberg)
- lasing in random media (Cao)
- energy propagation in complex molecular chains (proteins, Fermi-Pasta-Ulam problem)
- NONLINEAR SPIN-GLASS ?
- OTHER GROUPS:
S.Aubry et al. PRL 100, 084103 (2008)
A.Dhar et al. PRL 100, 134301 (2008)
S.Fishman et al. J. Stat. Phys. bf 131, 843 (2008)
S.Flach et al. arXiv:0805.4693[cond-mat] (2008)
W.-M.Wang et al. arXiv:0805.4632[math.DS] (2008) see also the participant list of the NLSE Workshop at the Lewiner Institute, Technion, June 2008

Quntum systems:
 Two Interacting Particles (TIP) effect

Anderson model in d-space + onsite Hubbard interaction $U, V \sim E_{F}$ is one-particle hopping; exited states $\psi_{n} \sim \exp (-|n-m| / I) / \sqrt{I} ; I \gg 1$.
Equation in the basis of noninteracting eigenstates $\chi_{m_{1} m_{2}}$:

$$
i \partial \chi_{m_{1} m_{2}} / \partial t=\epsilon_{m_{1} m_{2}} \chi_{m_{1} m_{2}}+\sum_{m^{\prime}{ }_{1} m^{\prime} 2} U_{m_{1} m_{2} m_{1}^{\prime} m_{2}^{\prime}} \chi_{m_{1}^{\prime} m_{2}^{\prime}}
$$

Sum runs over $M \sim I^{d}$ coupled states; interaction induced matrix elements $U_{s} \sim U_{m_{1} m_{2} m_{1}^{\prime} m_{2}^{\prime}} \sim\left(U /\left(I^{2 d}\right) \times \sqrt{M}\right.$, density of coupled states is $\rho_{2} \sim I^{2 d} / V$, TIP transition rate $\Gamma_{s} \sim U_{s}{ }^{2} \rho_{2} \sim U^{2} /\left(I^{d} V\right)$. Enhancement factor

$$
\kappa=\Gamma_{s} \rho_{2} \sim(U / V)^{2} I^{d}>1
$$

TIP localization:
$I_{2} / I \sim(U / V)^{2} I(1 d)$;
$\ln \left(I_{2} / I\right) \sim(U / V)^{2} I^{2}(2 d)$;
delocalization for $\kappa \sim(U / V)^{2} \beta^{3}>1$ (3d)

DLS PRL 73, 2607 (1994); Y.Imry EPL 30, 405 (1995)

Many electrons near the Fermi level (Coulomb interaction, no spin)

FIG. 4. Dependence of ϵ_{η} / B on the number of particles N_{p}, obtained from Fig. 2: $W / V=10$ with $\eta\left(E_{\eta}\right)=0.4$ (full diamond) and $W / V=7$ with $\eta\left(E_{\eta}\right)=0.2$ (), where $\epsilon_{\eta}=E_{\eta} / N_{p}$. The straight line shows the slope when $E_{\eta}=$ const. The inset gives the dependence of maximal η on r_{s} for $W / V=7$ and $N_{p}=6: U / V$ $=2,8 \leqslant L \leqslant 28$ (full diamond), and $L=14,0.25 \leqslant U / V \leqslant 2(\diamond)$.

Level-spacing statistics $P(s)$:
$\eta=1$ Poisson distribution,
$\eta=0$ Wigner-Dyson distribution
ϵ_{η} - exitation energy per particle
at a given $\eta=$ const ($B=4 \mathrm{~V}$)
$r_{s}=U /(2 V \sqrt{\pi \nu}), \nu=N_{p} / L^{2} \approx 1 / 32$
usually $U=2 V, r_{s} \approx 3.2$,
$2 \leq N_{p} \leq 20,8 \leq L \leq 25$
Result: chaotic, ergodic states at temperature going to zero

Problems: transport properties ?

DLS PRB 61, 4588 (2000); P.H.Song, DLS PRB 61, 15546 (2000)

Dyn-thermalization in many-body Q-systems

Åberg criterion $J>J_{c} \approx \Delta_{c}$: two-body matrix element J should be larger than energy spacing between directly coupled states Δ_{c}

Example: Quantum computer with $n_{q}=16$ qubits. One quantum eigenstate: Occupation numbers n_{i} vs. rescaled exitation energies $\epsilon_{i}=\delta_{i}$. Left: $J / J_{C} \approx 0.15, T=0.15 \delta, \delta E=0.97 \delta, S=0.49$. Right: $J / J_{C} \approx 1.5, T=0.20 \delta, \delta E=1.19 \delta, S=8.41$. Full curves: Fermi-Dirac thermal distribution with given temperature T. G.Benenti et al. EPJD 17, 265 (2001)

QC Hamiltonian: $H=\sum_{i} \Gamma_{i} \sigma_{i}^{z}+\sum_{i<j} J_{i j} \sigma_{j}^{x} \sigma_{j}^{x}$; $\Gamma_{i}=\Delta_{0}+\delta_{i},-\delta<2 \delta_{i}<\delta,-J<J_{i j}<J ; \rightarrow J_{c} \approx 4 \delta / n_{q}$ S.Åberg PRL 64, 3119 (1990); DLS, O.Sushkov EPL 37, 121 (1997); P.Jacquod, DLS PRL 79, 1837 (1997); B.Georgeot, DLS PRE 62, 3504 (2000)

Quantware posters from Toulouse

- Klaus Frahm
"Diffusion and localization in the Chirikov typical map"

- Bertrand Georgeot "Delocalization transition in Google Matrix"

